• 关于 数据优化出问题什么情况 的搜索结果

问题

大数据量下如何优化全数据模糊查询

小旋风柴进 2019-12-01 20:14:25 2000 浏览量 回答数 2

问题

数据库从服务器迁移到rds后,后台操作出现这一情况

运行中 2019-12-01 20:58:51 3996 浏览量 回答数 1

问题

数据库从服务器迁移到rds后,后台操作出现这一情况

运行中 2019-12-01 20:58:46 4402 浏览量 回答数 3

海外云虚拟主机包年25元/月起

海外独享虚拟主机全面上线,助力构建海外网站,提升公司国际形象;全球有效覆盖,超高性价比;建站入门首选,助力出口,适合跨境贸易企业。

问题

【RDS系列二】别总等数据库宕了才想起我

belle.zhoux 2019-12-01 21:49:29 17195 浏览量 回答数 15

问题

HBase最佳实践-读性能优化策略

pandacats 2019-12-20 21:02:08 0 浏览量 回答数 0

问题

MySQL官方管理工具上线啦,快来体验!

加菲 2019-12-01 21:45:52 19567 浏览量 回答数 13

问题

MySQL官方管理工具上线啦,快来体验!

加菲 2019-12-01 22:01:40 18867 浏览量 回答数 12

回答

这几个问题回答起来没什么意思,我主要分析分析面试官为什么问你这几个问题。问题 1 主要应该是想了解你对调用其他程序或接口时出现的异常情况是如何处理的,毕竟程序的运行并不总是一帆风顺,如果由于其他的接口出现了问题,而你没有处理好这些问题继而引发你写的程序出错或崩溃,那确实不是一个优秀的程序员所做的。程序员不仅应该了解用户按常理出牌,按既定路线完成程序的情况,还应该做好发生各种异常情况的处理。问题 2 主要应该是想了解你是怎样评估你写的程序的,是通过怎样的手段了解的程序的运行情况,是如何优化你的程序的。实现功能并不是程序员的唯一目标,在实现功能的情况下做一个优秀的、高效的程序也是一项艰巨的工程。问题 3 主要应该是想了解你对程序体系结构,或者说是架构的理解,程序不是简单的代码堆积,是有思想线路支撑,有模块协作分工的。作为程序员,虽然可能不会去实际写某一块的东西,但是至少应该了解这些模块的功能以及所有模块之间的联系和他们是如何协作工作的。就好比实现一个接口,你需要处理输入,进行逻辑判断,数据库操作,遇到错误的响应,返回结果等等,这里每一块都是相当细致的。

a123456678 2019-12-02 03:03:23 0 浏览量 回答数 0

回答

1. 原生 DOM 操作 VS 通过框架封装操作。 这是一个性能 vs. 可维护性的取舍。框架的意义在于为你掩盖底层的 DOM 操作,让你用更声明式的方式来描述你的目的,从而让你的代码更容易维护。没有任何框架可以比纯手动的优化 DOM 操作更快,因为框架的 DOM 操作层需要应对任何上层 API 可能产生的操作,它的实现必须是普适的。针对任何一个 benchmark,我都可以写出比任何框架更快的手动优化,但是那有什么意义呢?在构建一个实际应用的时候,你难道为每一个地方都去做手动优化吗?出于可维护性的考虑,这显然不可能。框架给你的保证是,你在不需要手动优化的情况下,我依然可以给你提供过得去的性能。 2. 对 React 的 Virtual DOM 的误解。 React 从来没有说过 “React 比原生操作 DOM 快”。React 的基本思维模式是每次有变动就整个重新渲染整个应用。如果没有 Virtual DOM,简单来想就是直接重置 innerHTML。很多人都没有意识到,在一个大型列表所有数据都变了的情况下,重置 innerHTML 其实是一个还算合理的操作... 真正的问题是在 “全部重新渲染” 的思维模式下,即使只有一行数据变了,它也需要重置整个 innerHTML,这时候显然就有大量的浪费。 我们可以比较一下 innerHTML vs. Virtual DOM 的重绘性能消耗: innerHTML: render html string O(template size) + 重新创建所有 DOM 元素 O(DOM size)Virtual DOM: render Virtual DOM + diff O(template size) + 必要的 DOM 更新 O(DOM change) Virtual DOM render + diff 显然比渲染 html 字符串要慢,但是!它依然是纯 js 层面的计算,比起后面的 DOM 操作来说,依然便宜了太多。可以看到,innerHTML 的总计算量不管是 js 计算还是 DOM 操作都是和整个界面的大小相关,但 Virtual DOM 的计算量里面,只有 js 计算和界面大小相关,DOM 操作是和数据的变动量相关的。前面说了,和 DOM 操作比起来,js 计算是极其便宜的。这才是为什么要有 Virtual DOM:它保证了 1)不管你的数据变化多少,每次重绘的性能都可以接受;2) 你依然可以用类似 innerHTML 的思路去写你的应用。 3. MVVM vs. Virtual DOM 相比起 React,其他 MVVM 系框架比如 Angular, Knockout 以及 Vue、Avalon 采用的都是数据绑定:通过 Directive/Binding 对象,观察数据变化并保留对实际 DOM 元素的引用,当有数据变化时进行对应的操作。MVVM 的变化检查是数据层面的,而 React 的检查是 DOM 结构层面的。MVVM 的性能也根据变动检测的实现原理有所不同:Angular 的脏检查使得任何变动都有固定的 O(watcher count) 的代价;Knockout/Vue/Avalon 都采用了依赖收集,在 js 和 DOM 层面都是 O(change): - 脏检查:scope digest O(watcher count) + 必要 DOM 更新 O(DOM change) - 依赖收集:重新收集依赖 O(data change) + 必要 DOM 更新 O(DOM change)可以看到,Angular 最不效率的地方在于任何小变动都有的和 watcher 数量相关的性能代价。但是!当所有数据都变了的时候,Angular 其实并不吃亏。依赖收集在初始化和数据变化的时候都需要重新收集依赖,这个代价在小量更新的时候几乎可以忽略,但在数据量庞大的时候也会产生一定的消耗。 MVVM 渲染列表的时候,由于每一行都有自己的数据作用域,所以通常都是每一行有一个对应的 ViewModel 实例,或者是一个稍微轻量一些的利用原型继承的 "scope" 对象,但也有一定的代价。所以,MVVM 列表渲染的初始化几乎一定比 React 慢,因为创建 ViewModel / scope 实例比起 Virtual DOM 来说要昂贵很多。这里所有 MVVM 实现的一个共同问题就是在列表渲染的数据源变动时,尤其是当数据是全新的对象时,如何有效地复用已经创建的 ViewModel 实例和 DOM 元素。假如没有任何复用方面的优化,由于数据是 “全新” 的,MVVM 实际上需要销毁之前的所有实例,重新创建所有实例,最后再进行一次渲染!这就是为什么题目里链接的 angular/knockout 实现都相对比较慢。相比之下,React 的变动检查由于是 DOM 结构层面的,即使是全新的数据,只要最后渲染结果没变,那么就不需要做无用功。 Angular 和 Vue 都提供了列表重绘的优化机制,也就是 “提示” 框架如何有效地复用实例和 DOM 元素。比如数据库里的同一个对象,在两次前端 API 调用里面会成为不同的对象,但是它们依然有一样的 uid。这时候你就可以提示 track by uid 来让 Angular 知道,这两个对象其实是同一份数据。那么原来这份数据对应的实例和 DOM 元素都可以复用,只需要更新变动了的部分。或者,你也可以直接 track by $index 来进行 “原地复用”:直接根据在数组里的位置进行复用。在题目给出的例子里,如果 angular 实现加上 track by $index 的话,后续重绘是不会比 React 慢多少的。甚至在 dbmonster 测试中,Angular 和 Vue 用了 track by $index 以后都比 React 快: dbmon (注意 Angular 默认版本无优化,优化过的在下面) 顺道说一句,React 渲染列表的时候也需要提供 key 这个特殊 prop,本质上和 track-by 是一回事。 4. 性能比较也要看场合 在比较性能的时候,要分清楚初始渲染、小量数据更新、大量数据更新这些不同的场合。Virtual DOM、脏检查 MVVM、数据收集 MVVM 在不同场合各有不同的表现和不同的优化需求。Virtual DOM 为了提升小量数据更新时的性能,也需要针对性的优化,比如 shouldComponentUpdate 或是 immutable data。 初始渲染:Virtual DOM > 脏检查 >= 依赖收集小量数据更新:依赖收集 >> Virtual DOM + 优化 > 脏检查(无法优化) > Virtual DOM 无优化大量数据更新:脏检查 + 优化 >= 依赖收集 + 优化 > Virtual DOM(无法/无需优化)>> MVVM 无优化 不要天真地以为 Virtual DOM 就是快,diff 不是免费的,batching 么 MVVM 也能做,而且最终 patch 的时候还不是要用原生 API。在我看来 Virtual DOM 真正的价值从来都不是性能,而是它 1) 为函数式的 UI 编程方式打开了大门;2) 可以渲染到 DOM 以外的 backend,比如 ReactNative。 总结 以上这些比较,更多的是对于框架开发研究者提供一些参考。主流的框架 + 合理的优化,足以应对绝大部分应用的性能需求。如果是对性能有极致需求的特殊情况,其实应该牺牲一些可维护性采取手动优化:比如 Atom 编辑器在文件渲染的实现上放弃了 React 而采用了自己实现的 tile-based rendering;又比如在移动端需要 DOM-pooling 的虚拟滚动,不需要考虑顺序变化,可以绕过框架的内置实现自己搞一个。

九旬 2020-05-24 11:46:45 0 浏览量 回答数 0

问题

竞价排名的这些猫腻,你真的知道吗!

晨大官人 2019-12-01 22:06:38 6200 浏览量 回答数 0

问题

如何用OneAPM优化你的Node.js应用?

sunny夏筱 2019-12-01 21:42:21 5608 浏览量 回答数 5

回答

希望楼主能多分享下优化心得哈 ######心得?就是怀疑一切。我相信在Soc公司里,开发driver,特别是网络,电源管理,总线方面的朋友都知道。spec有时只能当草纸用。 ######反汇编下代码,看看编译结果有无问题.######去掉编译优化选项再试试######会不会跟子函数传递形参有关?###### 你用的是什么编译器? gcc for arm?你这个问题很可能是编译器的问题. gcc不可靠的对容易有歧义和很复杂的表达式,编译出来的东西是错误的.以前遇到过. VC的或者商用编译器就好多了. ######这么说,反汇编已经检查过了吧,如果确定汇编也没有问题的话,那就只能是硬件层的了。 编译器一般情况下是不会犯错的,因为它无论怎么优化,第一个原则就是正确性,在原程序中会被执行的代码在结果里也一定会被执行。然而,对于不同的芯片,实现上可能会有一定的差异,对编译器也有不同程度的裁剪,但它毕竟只是个程序。再者,芯片实现越来越复杂,内部指令到底是个怎么执行流程,连代码自己都不能知道,何况是编译器和程序员。###### 引用来自“ZeroOne”的答案 你用的是什么编译器? gcc for arm?你这个问题很可能是编译器的问题. gcc不可靠的对容易有歧义和很复杂的表达式,编译出来的东西是错误的.以前遇到过. VC的或者商用编译器就好多了. 上ARM 1GHz的Soc跑的准“固件”。我没办法用VC。而且是android 的NDK。 ###### 引用来自“晓寒”的答案 这么说,反汇编已经检查过了吧,如果确定汇编也没有问题的话,那就只能是硬件层的了。 编译器一般情况下是不会犯错的,因为它无论怎么优化,第一个原则就是正确性,在原程序中会被执行的代码在结果里也一定会被执行。然而,对于不同的芯片,实现上可能会有一定的差异,对编译器也有不同程度的裁剪,但它毕竟只是个程序。再者,芯片实现越来越复杂,内部指令到底是个怎么执行流程,连代码自己都不能知道,何况是编译器和程序员。 目前怀疑是函数过早跳出,对应寄存器的值没有有效传递给外部变量前,被堆栈弹出的数据覆盖,转而将数据写出变量时导致错误。虽然问题解决了。但是具体原因我还需要查一下。当然可能有另外个错误,就是进入计算和判断的变量,在寄存器传递为有些写入前,就被使用。 ######这个问题目前查清楚了,让小朋友看反汇编,让他自己理解。还不错。把问题向我汇报清楚了 。也希望大家注意, android下的C编译器存在错误。尽量把C代码写简单点。上述错误是C编译器在优化模式下的逻辑错误。

kun坤 2020-05-30 14:00:18 0 浏览量 回答数 0

问题

MaxCompute最佳实践:计算长尾调优

行者武松 2019-12-01 22:09:25 1223 浏览量 回答数 0

问题

HBase查询优化

pandacats 2019-12-20 21:09:28 0 浏览量 回答数 0

问题

CDN类产品问题解决思路

mytsing520 2019-12-01 21:31:42 2809 浏览量 回答数 2

问题

我这个是共享型的吗?能否升级成独享?

skagh 2019-12-01 19:30:08 1151 浏览量 回答数 2

回答

Re阿里云RDS产品经理访谈,等你来提问 请问1千万条数据的表group查询,统计出大约100行的结果,需要多少IOPS,每条数据500好了 数据库文件大小10G~20G 有些糊涂,阿里云的RDS  SQL Server 2008 连结数100,IOPS 1000 大致能承受多少的样子 ------------------------- Re阿里云RDS产品经理访谈,等你来提问 如果网站运行瞬时 IOPS或者连接数 超出,会出现什么情况? ------------------------- Re阿里云RDS产品经理访谈,等你来提问 请问1千万条数据的表group查询,统计出大约100行的结果,需要多少IOPS,每条数据500字节好了   数据库文件大小10G~20G   有些糊涂,阿里云的RDS  SQL Server 2008 连结数100,IOPS 1000 大致能承受多少的样子 不知道提问的有没问题,是数据库小白,刚就按照数据库都优化好的设置来分析 某库正在独立托管服务器中运行,4核6G内存,09年的中档配置。每年10000元,因为一到重要时间总担心因为机房原因导致网站无法访问,一直想移到阿里云,就是不敢动手,万一数据库支持不了,搞个成本好几万就完蛋了 还有个问题 SQL Server 代理 能否使用,实话还在用 SQL Server 2000,呵呵

hldcg 2019-12-02 00:53:05 0 浏览量 回答数 0

回答

Netty的worker线程只负责nio,在收到完整数据后将数据按要求封装并放入到业务数据队列;业务处理类负责从该队列中取出数据并处理。 这里的业务处理类现在是如何实现的?按你的说法,单线程和多线程 在这个类中都试验过,并且都没能解决问题,由此来看 可以得出2个结论:(1)需要再努力优化业务处理过程以节省处理时间;(2)提升服务器硬件性能。######回复 @阿森lin1991 : 我也是碰到这个问题,单位时间内大量客户端同时连接上来,服务端线程来不及处理。就大量堆积在队列里,请问有办法解决吗?######回复 @阿森lin1991 : 你netty什么版本?netty3和4的线程模型有不小区别,推荐infoq上李林峰写的《netty升级血泪史》######如果netty没有相应api接口的话,那就无解了。看看新版本中是否有,或者可以参考下######回复 @阿森lin1991 : 回复 @阿森lin1991 : 关键是netty接收消息队列消息时造成的阻塞;netty3.0中有ExecutionHandler可以使用(其实也是一个线程池,work执行到ExecutionHandler时直接返回执行下一个channel);我现在也遇到这样的问题,希望可以找到一起其他的解决办法,比如非阻塞接收消息队列消息。######2:接第1条...所以想把消息输出也放在nioEventLoopGroup(worker)线程中执行,即业务处理完后把输出消息压入输出队列,但是怎样才能调用nioEventLoopGroup(worker)线程去处理这个输出队列了?好像没有相关接口###### 1  netty本身的 worker线程的个数是根据CPU来的,直接在 worker线程里做业务逻辑处理不好么? 2 如果不想并发,修改源码,让worker线程个数为1,就没有并发了,这一点跟redis一样的,redis单线程的处理能力貌似也够用了,redis的作者是这么说的。 3 为啥要自定义多个业务逻辑线程?netty本身的worker线程拿到消息后就可以处理了啊 ######回复 @阿森lin1991 : 没必要为每个消息加业务逻辑处理线程,并发量多,线程自然多,这样跟IO模型就没区别了。收到数据后消息处理直接用worker线程,当你预估的业务逻辑实在是太费资源才开一个线程,这个线程中尽量不要有类变量已减少并发错误或人为加锁。实在不能满足需求,可以考虑用RMI把复杂逻辑放到另外的机器上做分布式处理######1.worker线程更多的负责读写网络数据,对于复杂或耗时的业务处理都交由自定义的逻辑线程处理,不然很可能阻塞nio线程,大大减少并发量。 2.我现在的情况不是worker线程并发有问题,而是自定义了逻辑线程并发有问题(阻塞情况比较严重) 3.同1 不过谢谢你...###### 你现在的问题跟Netty没有关系,主要是你的业务处理速度跟不上你所要求的请求速度,单线程也好,多线程也好,都没有关系。 处理不过来, 1,要不把超时的改掉或做优化处理 2,增强处理速度:找到瓶颈优化或者做请求分发到不同服务器处理 ######同意这种说法,最好是将业务线程能够优化######(2)提升服务器硬件以提高业务处理性能。######楼主你好,请问这个问题解决了吗?我先在也是遇到了这问题。######单机环境调优讲一种方法吧。 1. 明确你的优化目标(优化是永无止境的,但必须适可而止) 2. 分析你的硬件瓶颈(归根到底,还是你的硬件在执行软件代码), 比如你的核,内存,带宽(本例中注意下你的带宽拥挤是否延迟你的消息返回) 3. 根据你的目标调整Netty的BoosEventLoop, WorkEvnetLoop,Buffer大小。 4. 优化你的消息包,尽量在一个MTU大小,优化你的编解码工具类,比如使用Protobuffer(传输小,解码快)代替Json.  另外,特别注意Bytebuf转Message后,是否有被ReferenceCountUtil.release() 5. 消息的返回注意 chanel的write跟writeAndFlush的区别。一个是等缓冲区满了才返回,一个是立刻返回。 上面做完了,就跟netty没啥关系了。 针对你的 编解码Loop线程组 与 工作线程组 的优化 Netty WorkEvnetGroup = M,   BusinessWorkerGroup = N  ( M, N >1) 这种情况就是一个生产消费模型,M, N之间有一个ArrayBlockingQueue(必需限制上限)做消息缓存。 1. 为了减少锁竞争,可以使用 无锁队列 Disruptor代替 java的 ArrayBlockingQueue, 据说效率是后者的10倍 2.工作任务代码优化,可以全内存操作以及算法优化。######业务服务是否可以分析出单独微服务啊

kun坤 2020-06-08 19:18:03 0 浏览量 回答数 0

回答

一、基础篇 1.1、Java基础 面向对象的特征:继承、封装和多态 final, finally, finalize 的区别 Exception、Error、运行时异常与一般异常有何异同 请写出5种常见到的runtime exception int 和 Integer 有什么区别,Integer的值缓存范围 包装类,装箱和拆箱 String、StringBuilder、StringBuffer 重载和重写的区别 抽象类和接口有什么区别 说说反射的用途及实现 说说自定义注解的场景及实现 HTTP请求的GET与POST方式的区别 Session与Cookie区别 列出自己常用的JDK包 MVC设计思想 equals与==的区别 hashCode和equals方法的区别与联系 什么是Java序列化和反序列化,如何实现Java序列化?或者请解释Serializable 接口的作用 Object类中常见的方法,为什么wait notify会放在Object里边? Java的平台无关性如何体现出来的 JDK和JRE的区别 Java 8有哪些新特性 1.2、Java常见集合 List 和 Set 区别 Set和hashCode以及equals方法的联系 List 和 Map 区别 Arraylist 与 LinkedList 区别 ArrayList 与 Vector 区别 HashMap 和 Hashtable 的区别 HashSet 和 HashMap 区别 HashMap 和 ConcurrentHashMap 的区别 HashMap 的工作原理及代码实现,什么时候用到红黑树 多线程情况下HashMap死循环的问题 HashMap出现Hash DOS攻击的问题 ConcurrentHashMap 的工作原理及代码实现,如何统计所有的元素个数 手写简单的HashMap 看过那些Java集合类的源码 1.3、进程和线程 线程和进程的概念、并行和并发的概念 创建线程的方式及实现 进程间通信的方式 说说 CountDownLatch、CyclicBarrier 原理和区别 说说 Semaphore 原理 说说 Exchanger 原理 ThreadLocal 原理分析,ThreadLocal为什么会出现OOM,出现的深层次原理 讲讲线程池的实现原理 线程池的几种实现方式 线程的生命周期,状态是如何转移的 可参考:《Java多线程编程核心技术》 1.4、锁机制 说说线程安全问题,什么是线程安全,如何保证线程安全 重入锁的概念,重入锁为什么可以防止死锁 产生死锁的四个条件(互斥、请求与保持、不剥夺、循环等待) 如何检查死锁(通过jConsole检查死锁) volatile 实现原理(禁止指令重排、刷新内存) synchronized 实现原理(对象监视器) synchronized 与 lock 的区别 AQS同步队列 CAS无锁的概念、乐观锁和悲观锁 常见的原子操作类 什么是ABA问题,出现ABA问题JDK是如何解决的 乐观锁的业务场景及实现方式 Java 8并法包下常见的并发类 偏向锁、轻量级锁、重量级锁、自旋锁的概念 可参考:《Java多线程编程核心技术》 1.5、JVM JVM运行时内存区域划分 内存溢出OOM和堆栈溢出SOE的示例及原因、如何排查与解决 如何判断对象是否可以回收或存活 常见的GC回收算法及其含义 常见的JVM性能监控和故障处理工具类:jps、jstat、jmap、jinfo、jconsole等 JVM如何设置参数 JVM性能调优 类加载器、双亲委派模型、一个类的生命周期、类是如何加载到JVM中的 类加载的过程:加载、验证、准备、解析、初始化 强引用、软引用、弱引用、虚引用 Java内存模型JMM 1.6、设计模式 常见的设计模式 设计模式的的六大原则及其含义 常见的单例模式以及各种实现方式的优缺点,哪一种最好,手写常见的单利模式 设计模式在实际场景中的应用 Spring中用到了哪些设计模式 MyBatis中用到了哪些设计模式 你项目中有使用哪些设计模式 说说常用开源框架中设计模式使用分析 动态代理很重要!!! 1.7、数据结构 树(二叉查找树、平衡二叉树、红黑树、B树、B+树) 深度有限算法、广度优先算法 克鲁斯卡尔算法、普林母算法、迪克拉斯算法 什么是一致性Hash及其原理、Hash环问题 常见的排序算法和查找算法:快排、折半查找、堆排序等 1.8、网络/IO基础 BIO、NIO、AIO的概念 什么是长连接和短连接 Http1.0和2.0相比有什么区别,可参考《Http 2.0》 Https的基本概念 三次握手和四次挥手、为什么挥手需要四次 从游览器中输入URL到页面加载的发生了什么?可参考《从输入URL到页面加载发生了什么》 二、数据存储和消息队列 2.1、数据库 MySQL 索引使用的注意事项 DDL、DML、DCL分别指什么 explain命令 left join,right join,inner join 数据库事物ACID(原子性、一致性、隔离性、持久性) 事物的隔离级别(读未提交、读以提交、可重复读、可序列化读) 脏读、幻读、不可重复读 数据库的几大范式 数据库常见的命令 说说分库与分表设计 分库与分表带来的分布式困境与应对之策(如何解决分布式下的分库分表,全局表?) 说说 SQL 优化之道 MySQL遇到的死锁问题、如何排查与解决 存储引擎的 InnoDB与MyISAM区别,优缺点,使用场景 索引类别(B+树索引、全文索引、哈希索引)、索引的原理 什么是自适应哈希索引(AHI) 为什么要用 B+tree作为MySQL索引的数据结构 聚集索引与非聚集索引的区别 遇到过索引失效的情况没,什么时候可能会出现,如何解决 limit 20000 加载很慢怎么解决 如何选择合适的分布式主键方案 选择合适的数据存储方案 常见的几种分布式ID的设计方案 常见的数据库优化方案,在你的项目中数据库如何进行优化的 2.2、Redis Redis 有哪些数据类型,可参考《Redis常见的5种不同的数据类型详解》 Redis 内部结构 Redis 使用场景 Redis 持久化机制,可参考《使用快照和AOF将Redis数据持久化到硬盘中》 Redis 集群方案与实现 Redis 为什么是单线程的? 缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级 使用缓存的合理性问题 Redis常见的回收策略 2.3、消息队列 消息队列的使用场景 消息的重发补偿解决思路 消息的幂等性解决思路 消息的堆积解决思路 自己如何实现消息队列 如何保证消息的有序性 三、开源框架和容器 3.1、SSM/Servlet Servlet的生命周期 转发与重定向的区别 BeanFactory 和 ApplicationContext 有什么区别 Spring Bean 的生命周期 Spring IOC 如何实现 Spring中Bean的作用域,默认的是哪一个 说说 Spring AOP、Spring AOP 实现原理 动态代理(CGLib 与 JDK)、优缺点、性能对比、如何选择 Spring 事务实现方式、事务的传播机制、默认的事务类别 Spring 事务底层原理 Spring事务失效(事务嵌套),JDK动态代理给Spring事务埋下的坑,可参考《JDK动态代理给Spring事务埋下的坑!》 如何自定义注解实现功能 Spring MVC 运行流程 Spring MVC 启动流程 Spring 的单例实现原理 Spring 框架中用到了哪些设计模式 Spring 其他产品(Srping Boot、Spring Cloud、Spring Secuirity、Spring Data、Spring AMQP 等) 有没有用到Spring Boot,Spring Boot的认识、原理 MyBatis的原理 可参考《为什么会有Spring》 可参考《为什么会有Spring AOP》 3.2、Netty 为什么选择 Netty 说说业务中,Netty 的使用场景 原生的 NIO 在 JDK 1.7 版本存在 epoll bug 什么是TCP 粘包/拆包 TCP粘包/拆包的解决办法 Netty 线程模型 说说 Netty 的零拷贝 Netty 内部执行流程 Netty 重连实现 3.3、Tomcat Tomcat的基础架构(Server、Service、Connector、Container) Tomcat如何加载Servlet的 Pipeline-Valve机制 可参考:《四张图带你了解Tomcat系统架构!》 四、分布式 4.1、Nginx 请解释什么是C10K问题或者知道什么是C10K问题吗? Nginx简介,可参考《Nginx简介》 正向代理和反向代理. Nginx几种常见的负载均衡策略 Nginx服务器上的Master和Worker进程分别是什么 使用“反向代理服务器”的优点是什么? 4.2、分布式其他 谈谈业务中使用分布式的场景 Session 分布式方案 Session 分布式处理 分布式锁的应用场景、分布式锁的产生原因、基本概念 分布是锁的常见解决方案 分布式事务的常见解决方案 集群与负载均衡的算法与实现 说说分库与分表设计,可参考《数据库分库分表策略的具体实现方案》 分库与分表带来的分布式困境与应对之策 4.3、Dubbo 什么是Dubbo,可参考《Dubbo入门》 什么是RPC、如何实现RPC、RPC 的实现原理,可参考《基于HTTP的RPC实现》 Dubbo中的SPI是什么概念 Dubbo的基本原理、执行流程 五、微服务 5.1、微服务 前后端分离是如何做的? 微服务哪些框架 Spring Could的常见组件有哪些?可参考《Spring Cloud概述》 领域驱动有了解吗?什么是领域驱动模型?充血模型、贫血模型 JWT有了解吗,什么是JWT,可参考《前后端分离利器之JWT》 你怎么理解 RESTful 说说如何设计一个良好的 API 如何理解 RESTful API 的幂等性 如何保证接口的幂等性 说说 CAP 定理、BASE 理论 怎么考虑数据一致性问题 说说最终一致性的实现方案 微服务的优缺点,可参考《微服务批判》 微服务与 SOA 的区别 如何拆分服务、水平分割、垂直分割 如何应对微服务的链式调用异常 如何快速追踪与定位问题 如何保证微服务的安全、认证 5.2、安全问题 如何防范常见的Web攻击、如何方式SQL注入 服务端通信安全攻防 HTTPS原理剖析、降级攻击、HTTP与HTTPS的对比 5.3、性能优化 性能指标有哪些 如何发现性能瓶颈 性能调优的常见手段 说说你在项目中如何进行性能调优 六、其他 6.1、设计能力 说说你在项目中使用过的UML图 你如何考虑组件化、服务化、系统拆分 秒杀场景如何设计 可参考:《秒杀系统的技术挑战、应对策略以及架构设计总结一二!》 6.2、业务工程 说说你的开发流程、如何进行自动化部署的 你和团队是如何沟通的 你如何进行代码评审 说说你对技术与业务的理解 说说你在项目中遇到感觉最难Bug,是如何解决的 介绍一下工作中的一个你认为最有价值的项目,以及在这个过程中的角色、解决的问题、你觉得你们项目还有哪些不足的地方 6.3、软实力 说说你的优缺点、亮点 说说你最近在看什么书、什么博客、在研究什么新技术、再看那些开源项目的源代码 说说你觉得最有意义的技术书籍 工作之余做什么事情、平时是如何学习的,怎样提升自己的能力 说说个人发展方向方面的思考 说说你认为的服务端开发工程师应该具备哪些能力 说说你认为的架构师是什么样的,架构师主要做什么 如何看待加班的问题

徐刘根 2020-03-31 11:22:08 0 浏览量 回答数 0

回答

当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。;读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读;缓存: 使用MySQL的缓存,另外对重量级、更新少的数据可以考虑使用应用级别的缓存; 还有就是通过分库分表的方式进行优化,主要有垂直分表和水平分表 垂直分区: 根据数据库里面数据表的相关性进行拆分。 例如,用户表中既有用户的登录信息又有用户的基本信息,可以将用户表拆分成两个单独的表,甚至放到单独的库做分库。 简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。 如下图所示,这样来说大家应该就更容易理解了。 垂直拆分的优点: 可以使得行数据变小,在查询时减少读取的Block数,减少I/O次数。此外,垂直分区可以简化表的结构,易于维护。 垂直拆分的缺点: 主键会出现冗余,需要管理冗余列,并会引起Join操作,可以通过在应用层进行Join来解决。此外,垂直分区会让事务变得更加复杂; 垂直分表 把主键和一些列放在一个表,然后把主键和另外的列放在另一个表中 适用场景 1、如果一个表中某些列常用,另外一些列不常用 2、可以使数据行变小,一个数据页能存储更多数据,查询时减少I/O次数 缺点 有些分表的策略基于应用层的逻辑算法,一旦逻辑算法改变,整个分表逻辑都会改变,扩展性较差 对于应用层来说,逻辑算法增加开发成本 管理冗余列,查询所有数据需要join操作 水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。 水平拆分可以支撑非常大的数据量。 水平拆分是指数据表行的拆分,表的行数超过200万行时,就会变慢,这时可以把一张的表的数据拆成多张表来存放。举个例子:我们可以将用户信息表拆分成多个用户信息表,这样就可以避免单一表数据量过大对性能造成影响。 水品拆分可以支持非常大的数据量。需要注意的一点是:分表仅仅是解决了单一表数据过大的问题,但由于表的数据还是在同一台机器上,其实对于提升MySQL并发能力没有什么意义,所以 水平拆分最好分库 。 水平拆分能够 支持非常大的数据量存储,应用端改造也少,但 分片事务难以解决 ,跨界点Join性能较差,逻辑复杂。 《Java工程师修炼之道》的作者推荐 尽量不要对数据进行分片,因为拆分会带来逻辑、部署、运维的各种复杂度 ,一般的数据表在优化得当的情况下支撑千万以下的数据量是没有太大问题的。如果实在要分片,尽量选择客户端分片架构,这样可以减少一次和中间件的网络I/O。 水平分表: 表很大,分割后可以降低在查询时需要读的数据和索引的页数,同时也降低了索引的层数,提高查询次数 适用场景 1、表中的数据本身就有独立性,例如表中分表记录各个地区的数据或者不同时期的数据,特别是有些数据常用,有些不常用。 2、需要把数据存放在多个介质上。 水平切分的缺点 1、给应用增加复杂度,通常查询时需要多个表名,查询所有数据都需UNION操作 2、在许多数据库应用中,这种复杂度会超过它带来的优点,查询时会增加读一个索引层的磁盘次数 下面补充一下数据库分片的两种常见方案: 客户端代理: 分片逻辑在应用端,封装在jar包中,通过修改或者封装JDBC层来实现。 当当网的 Sharding-JDBC 、阿里的TDDL是两种比较常用的实现。 中间件代理: 在应用和数据中间加了一个代理层。分片逻辑统一维护在中间件服务中。 我们现在谈的 Mycat 、360的Atlas、网易的DDB等等都是这种架构的实现。 分库分表后面临的问题 事务支持 分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。 跨库join 只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。 分库分表方案产品 跨节点的count,order by,group by以及聚合函数问题 这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。 数据迁移,容量规划,扩容等问题 来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。 ID问题 一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由. 一些常见的主键生成策略

剑曼红尘 2020-03-31 11:34:39 0 浏览量 回答数 0

回答

  Tomcat 只是一个轻量级的容器,连接模型上还是采用了一请求,一线程的模型,这种模型最大的缺点是对延迟非常敏感,因为响应慢会导致新请求无可用连接可用。       但是,虽然理论上我们可以将配置中线程池设置到一个足够大的值,但是我们通常不建议这样做。更多的线程意味着更多的CPU切换时间。   解决这个问题的方案是 降低延迟,增加机器。 ######我也想换T_T######这是后台资源响应慢吧,例如数据库或者本地文件IO。可以分析看下各线程都在等待什么资源######大概知道卡在什么地方 但是对同样的地址压测却不会出现线程满的情况。。######可以看看最近网站上是不是有些会被请求的资源随着时间的增长而爆满了,比如数据库,文件目录等等,首先要找出为什么不卡现在卡的原因再做针对性的优化。######大概知道卡在什么地方 但是对同样的地址压测却不会出现线程满的情况。。。######达到极限了,你还是试一下resin,单机性能要高于tomcat######环境上暂时没法换中间件。。诶###### 不应该一味的从线程池增大的方向去解决性能问题,如果查询较慢,或者有比较复杂的算法、递归等操作,增大线程池没有意义的。 应该首先找到性能瓶颈。我建议先把线程池降下来。 ######从tomcat的管理页面知道大概都卡在什么地方 但是我自己对同样的地址压测却出不来线程阻塞的情况。。###### 换tomcat8 数据库数据量巨大?导致查询阻塞导致后来的线程都并发? 硬盘快挂了? ######tomcat7和8性能差很多么??######nginx 前端控制最大连接数######是想上nginx来着 但是目前没有条件 以及控制了最大连接数如果满了不是一样么= =######每个请求响应要多久 线程阻塞的话就没办法了  线程越多 切换越慢 ###### 查下日志,看下10:30 - 10:40有什么操作。 这期间响应时间明显变慢了。这期间如果有长时间未响应线程,线程池中的 线程很容易被耗尽。 ######不好查。。都是用户的操作###### compression="on" 这个关闭掉,让前面的Web服务器(Nginx / Apache)来做压缩。 ######那也关掉,压缩也是比较占计算资源的。######前面没有WEB服务器= =

爱吃鱼的程序员 2020-05-30 23:52:28 0 浏览量 回答数 0

回答

  关于 SQLite 的优化,首先是能用SQL语句的,就不要单笔操作, Cursor 就更是能不用就不用。比如成批的 DELETE/UPDATE ,将条件组装到 SQL 语句,会比使用 CURSOR 一条条的查再删效率要高很多( 若干年前就曾使用存储过程代替单笔操作,将一次批量计算时间从一晚上缩到了一小时以内 )。其次是对操作的优化:对于 INSERT/UPDATE 操作较多时使用事务,如果SELECT操作较多时,使用索引。   结合现在的工作,发现针对操作的优化,下面 这篇文章 可以翻译出来归档。以下为正文:   SQLite 有一个简洁的SQL接口,且以低内存占用著称。现如今, SQLite 已经在 Android 及 iOS 开发中得到广泛的应用。本文主要讨论在 Android 应用如何优化 SQLite 的性能和资源占用。   1, 使用事务( Transaction )   在默认情况下每一个SQL语句都被包一个全新的事务内,比如执行一个如INSERT这样基本的数据库操作,就会放到一个新创建的事务中执行。一次只需要操作一次数据库操作时,让SQLite自己来进行事务管理当然是明智的。但如果一次有大量的操作要做时,比如循环调用INSERT添加时,这样就显得开销过大了,因为每一笔操作都要重新打开、写入,最后再关闭journal文件, 这个文件是临时用来保存数据操作的中间结果,详细内容看这里( 参考 )。   如果明确地在一系列SQL语句前后以 BEGIN TRANSACTION 及 END TRANSACTION 这样显示地使用事务就可以避免上面的情况。对于那些不会改变数据的操作,这样的方式也同样可以提速(好似数据库操作中单笔的操作效率将远低于批次操作,如果用SQL语句可以搞定的事,就不可使用Cursor进行操作)。   注明:除了发起事务外,你必须还要负责对事务的提交和回滚操作。   在Android应用开发中可以使用类似如下的方式使用 BEGIN TRANSACTION 及 END TRANSACTION :   db.beginTransaction(); try{ for(int i =0; i< LENGTH ; i++,sequenceNum++) { // execute SQL } db.setTransactionSuccessful();// marks a commit } finally{ db.endTransaction(); }   2. 使用索引   如果没有在数据库使用索引,当你在一个没有排序的数据表中使用映射查询(projection query)搜索时,无可避免的要执行一个全序列查找。这种情况通常并不是什么问题,每种数据库,包括SQLite都会为数据集执行索引来降低查找时间。   索引维护着一个表中某一列或某几列的顺序,这样就可以快速定位到一组值,而不用扫遍全表。所有的索引信息会被保存在一个独立的索引表中,所以会产生额外的空间占用,不过绝对物超所值,特别是当你会在数据库中进行大量的读及搜索操作时。   SQLite会自动为每一个UNIQUE栏位创建索引,包括主键(Primary Key)栏位,另外也可以通过CREATE INDEX进行显示地创建。   注:如果你的查询太复杂而无法使用所创建的索引,那你就要好好想想你数据库的结构了。   3. 在Where分支中使用限定符   如果以字串拼接出SQL语句的Where,莫不如使用SQLite的query操作带上'?'来编译查询。以下是它的好处:   a. 有利于SQLite缓存这些查询。   b. 可以避免达到SQLite缓存的上限。使用字串拼接Where的查询,每一个都被视为不同的查询,这就容易达到缓存的上限。   c. 可以避免非法的SQL注入。    “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:17:55 0 浏览量 回答数 0

回答

1,架构师是什么?要想往架构师的方向发展首先要知道架构师是什么?架构师是一个既需要掌控整体又需要洞悉局部瓶颈并依据具体的业务场景给出解决方案的团队领导型人物。一个架构师得需要足够的想像力,能把各种目标需求进行不同维度的扩展,为目标客户提供更为全面的需求清单。架构师在软件开发的整个过程中起着很重要的作用。说的详细一些,架构师就是确认和评估系统需求,给出开发规范,搭建系统实现的核心构架,并澄清技术细节、扫清主要难点的技术人员。主要着眼于系统的“技术实现”。2,架构师的任务架构师的主要任务不是从事具体的软件程序的编写,而是从事更高层次的开发构架工作。他必须对开发技术非常了解,并且需要有良好的组织管理能力。可以这样说,一个架构师工作的好坏决定了整个软件开发项目的成败。在成为Java架构师之前,应当先成为Java工程师。熟练使用各种框架,并知道它们实现的原理。jvm虚拟机原理、调优,懂得jvm能让你写出性能更好的代码;池技术,什么对象池,连接池,线程池……Java反射技术,写框架必备的技术,遇到有严重的性能问题,替代方案java字节码技术;nio,没什么好说的,值得注意的是"直接内存"的特点,使用场景;java多线程同步异步;java各种集合对象的实现原理,了解这些可以让你在解决问题时选择合适的数据结构,高效的解决问题,比如hashmap的实现原理,好多五年以上经验的人都弄不清楚,还有为什扩容时有性能问题?不弄清楚这些原理,就写不出高效的代码,还会认为自己做的很对;总之一句话,越基础的东西越重要,很多人认为自己会用它们写代码了,其实仅仅是知道如何调用api而已,离会用还差的远。如果你立志做架构,首先打好基础,从最底层开始。然后发展到各种技术和语言,什么都要懂两点,要全面且不肤浅。为什么不是懂一点?你要看得透彻,必须尽量深入一些。别人懂一点,你要做架构师,必须再多懂一点。比如你发现golang很流行,别人可能写一个helloworld就说自己玩过golang,但你至少要尝试写一个完整的应用。不肯下苦功,如何高人一头?另外你要非常深入地了解至少一门语言,如果你的目标是java,就学到极致,作为敲门砖,先吃饱了才能谈理想。3,架构师都是从码农过来的而Java学到极致势必涉及到设计模式,算法和数据结构,多线程,文件及网络IO,数据库及ORM,不一而足。这些概念放之一切语言都适用。先精一门,为全面且不肤浅打基础。另外就是向有经验的架构师学习,和小伙伴们讨论辩论争论。其实最重要的能力就是不断学习。在思考新的技术是否能更好地解决你们遇到的问题之前,你首先得知道并了解新的技术。架构师都是从码农过来的,媳妇熬成婆。千万不要成为不写代码的架构师,有些公司专门产不写技术的架构师。所谓架构师,只是功底深厚的程序员而已。个人认为应该扎扎实实学习基础知识,学习各种规范,架构,需要广泛的知识面,懂的东西越多视野越开阔,设计的东西当然会越好越全面。成为架构师需要时间的积累的,不但要知其然还要知其所以然。平时的一点一滴你感觉不到特别用处,但某天你会发现所有东西都没有白学的。4,架构师知识体系下面是我总结多年经验开发的架构师知识体系一、分布式架构架构分布式的英文( Distributed computing 分布式计算技术)的应用和工具,成熟目前的技术包括 J2EE,CORBA 和 .NET(DCOM),这些技术牵扯的内容非常广,相关的书籍也非常多。本文不介绍这些技术的内容,也没有涉及这些技术的细节,只是从各种分布式系统平台产生的背景和在软件开发中应用的情况来探讨它们的主要异同。分布式系统是一个古老而宽泛的话题,而近几年因为“大数据”概念的兴起,又焕发出了新的青春与活力。除此之外,分布式系统也是一门理论模型与工程技法。并重的学科内容相比于机器学习这样的研究方向,学习分布式系统的同学往往会感觉:“入门容易,深入难”的确,学习分布式系统几乎不需要太多数学知识。分布式系统是一个复杂且宽泛的研究领域,学习一两门在线课程,看一两本书可能都是不能完全覆盖其所有内容的。总的来说,分布式系统要做的任务就是把多台机器有机的组合,连接起来,让其协同完成一件任务,可以是计算任务,也可以是存储任务。如果一定要给近些年的分布式系统研究做一个分类的话,我个人认为大概可以包括三大部分:分布式存储系统分布式计算系统分布式管理系统二、微服务当前微服务很热,大家都号称在使用微服务架构,但究竟什么是微服务架构?微服务架构是不是发展趋势?对于这些问题,我们都缺乏清楚的认识。为解决单体架构下的各种问题,微服务架构应运而生。与其构建一个臃肿庞大,难以驯服的怪兽,还不如及早将服务拆分。微服务的核心思想便是服务拆分与解耦,降低复杂性。微服务强调将功能合理拆解,尽可能保证每个服务的功能单一,按照单一责任原则(Single Responsibility Principle)明确角色。将各个服务做轻,从而做到灵活,可复用,亦可根据各个服务自身资源需求,单独布署,单独作横向扩展。微服务架构(Microservice Architecture)是一种架构概念,旨在通过将功能分解到各个离散的服务中以实现对解决方案的解耦。你可以将其看作是在架构层次而非获取服务的类上应用很多 SOLID 原则。微服务架构是个很有趣的概念,它的主要作用是将功能分解到离散的各个服务当中,从而降低系统的耦合性,并提供更加灵活的服务支持。概念:把一个大型的单个应用程序和服务拆分为数个甚至数十个的支持微服务,它可扩展单个组件而不是整个的应用程序堆栈,从而满足服务等级协议。定义:围绕业务领域组件来创建应用,这些应用可独立地进行开发,管理和迭代在分散的组件中使用云架构和平台式部署,管理和服务功能,使产品交付变得更加简单。本质:用一些功能比较明确,业务比较精练的服务去解决更大,更实际的问题。三、源码分析从字面意义上来讲,源文件的英文指一个文件,指源代码的集合。源代码则是一组具有特定意义的可以实现特定功能的字符(程序开发代码)。源码分析是一种临界知识,掌握了这种临界知识,能不变应万变,源码分析对于很多人来说很枯燥,生涩难懂。源码阅读,我觉得最核心有三点:技术基础+强烈的求知欲+耐心。我认为是阅读源码的最核心驱动力我见到绝大多数程序员,对学习的态度,基本上就是这几个层次(很偏激哦):1,只关注项目本身,不懂就百度一下。2,除了做好项目,还会阅读和项目有关的技术书籍,看维基百科。3,除了阅读和项目相关的书外,还会阅读IT行业的书,比如学的Java的时,还会去了解函数语言,如LISP。4,找一些开源项目看看,大量试用第三方框架,还会写写演示。5,阅读基础框架,J2EE 规范,调试服务器内核。大多数程序都是第1种,到第5种不光需要浓厚的兴趣,还需要勇气:?我能读懂吗其实,你能够读懂的耐心,真的很重要。因为你极少看到阅读源码的指导性文章或书籍,也没有人要求或建议你读。你读的过程中经常会卡住,而一卡主可能就陷进了迷宫这时,你需要做的,可能是暂时中断一下,再从外围看看它:如API结构,框架的设计图。四、工具使用工欲善其事必先利其器,工具对 Java 的的程序员的重要性不言而喻现在有很多库,实用工具和程序任的 Java 的开发人员选择。下图列出的工具都是程序员必不可少的工具五、性能优化不管是应付前端面试还是改进产品体验,性能优化都是躲不开的话题。优化的目的是让用户有“快”的感受,那如何让用户感受到快呢?加载速度真的很快,用户打开输入网址按下回车立即看到了页面加载速度并没有变快,但用户感觉你的网站很快性能优化取决于多个因素,包括垃圾收集,虚拟机和底层操作系统(OS)设置。有多个工具可供开发人员进行分析和优化时使用,你可以通过阅读爪哇工具的源代码优化和分析来学习和使用它们。必须要明白的是,没有两个应用程序可以使用相同的优化方式,也没有完美的优化的 Java 应用程序的参考路径。使用最佳实践并且坚持采用适当的方式处理性能优化。想要达到真正最高的性能优化,你作为一个 Java 的开发人员,需要对 Java 的虚拟机(JVM)和底层操作系统有正确的理解。性能优化,简而言之,就是在不影响系统运行正确性的前提下,使之运行地更快,完成特定功能所需的时间更短。性能问题永远是永恒的主题之一,而优化则更需要技巧。Java程序员如何学习才能快速入门并精通呢?当真正开始学习的时候难免不知道从哪入手,导致效率低下影响继续学习的信心。但最重要的是不知道哪些技术需要重点掌握,学习时频繁踩坑,最终浪费大量时间,所以有一套实用的视频课程用来跟着学习是非常有必要的。为了让学习变得轻松、高效,今天给大家免费分享一套阿里架构师传授的一套教学资源。帮助大家在成为架构师的道路上披荆斩棘。这套视频课程详细讲解了(Spring,MyBatis,Netty源码分析,高并发、高性能、分布式、微服务架构的原理,JVM性能优化、分布式架构)等这些成为架构师必备的内容!而且还把框架需要用到的各种程序进行了打包,根据基础视频可以让你轻松搭建分布式框架环境,像在企业生产环境一样进行学习和实践。

auto_answer 2019-12-02 01:51:27 0 浏览量 回答数 0

问题

APP线上推广策划具体包括哪些形式

活动盒子 2019-12-01 21:09:13 2677 浏览量 回答数 0

问题

如何保证缓存与数据库的双写一致性?【Java问答】38期

剑曼红尘 2020-06-16 12:58:57 36 浏览量 回答数 1

回答

1、LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般 DBA 想到的办法是在 type, name, create_time 字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。 好吧,可能90%以上的 DBA 解决该问题就到此为止。但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL 重新设计如下: 在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。 2、隐式转换 SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句: 其中字段 bpn 的定义为 varchar(20),MySQL 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。 3、关联更新、删除 虽然 MySQL5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 JOIN。比如下面 UPDATE 语句,MySQL 实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。 执行计划: 重写为 JOIN 之后,子查询的选择模式从 DEPENDENT SUBQUERY 变成 DERIVED,执行速度大大加快,从7秒降低到2毫秒 执行计划简化为: 4、混合排序 MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。 执行计划显示为全表扫描: 由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。 5、EXISTS语句 MySQL 对待 EXISTS 子句时,仍然采用嵌套子查询的执行方式。如下面的 SQL 语句: 执行计划为: 去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。 新的执行计划: 6、条件下推外部查询条件不能够下推到复杂的视图或子查询的情况有: 聚合子查询; 含有 LIMIT 的子查询; UNION 或 UNION ALL 子查询; 输出字段中的子查询; 如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后 确定从语义上查询条件可以直接下推后,重写如下: 执行计划变为: 7、提前缩小范围 先上初始 SQL 语句: 数为90万,时间消耗为12秒。 由于最后 WHERE 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。SQL 重写后如下,执行时间缩小为1毫秒左右。 再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及 LIMIT 子句后,实际执行时间变得很小。 8、中间结果集下推 再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件): 那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。 但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 WITH 语句再次重写: 总结数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。编写复杂SQL语句要养成使用 WITH 语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 。

茶什i 2020-01-13 11:11:06 0 浏览量 回答数 0

回答

转自:阿飞的博客 一、数据库技术选型的思考维度 我们做选型的时候首先要问: 谁选型?是负责采购的同学、 DBA 还是业务研发? 如果选型的是采购的同学,他们更注重成本,包括存储方式、网络需求等。 如果选型的是 DBA 同学,他们关心的: ① 运维成本 首先是运维成本,包括监控告警是否完善、是否有备份恢复机制、升级和迁移的成本是否高、社区是否稳定、是否方便调优、排障是否简易等; ② 稳定性 其次,DBA会关注稳定性,包括是否支持数据多副本、服务高可用、多写多活等; ③ 性能 第三是性能,包括延迟、QPS 以及是否支持更高级的分级存储功能等; ④ 拓展性 第四是扩展性,如果业务的需求不确定,是否容易横向扩展和纵向扩容; ⑤ 安全 最后是安全,需要符合审计要求,不容易出现 SQL 注入或拖库情况。 ⑥ 其他 除了采购和 DBA之外,后台应用研发的同学同样会关注稳定性、性能、扩展性等问题,同时也非常关注数据库接口是否便于开发,是否便于修改数据库 schema 等问题。 接下来我们来看一下爱奇艺使用的数据库类型: MySQL,互联网业务必备系统; TiDB,爱奇艺的 TiDB 实践会有另外的具体介绍; Redis,KV 数据库,互联网公司标配; Couchbase,这个在爱奇艺用得比较多,但国内互联网公司用得比较少,接下来的部分会详细说明; 其他,比如 MongoDB、图数据库、自研 KV 数据库 HiKV 等; 大数据分析相关系统,比如 Hive、Impala 等等。 可以看到爱奇艺的数据库种类还是很多的,这会造成业务开发的同学可能不太清楚在他的业务场景下应该选用哪种数据库系统。 那么,我们先对这些数据库按照接口(SQL、NoSQL)和面向的业务场景(OLTP、OLAP)这两位维度进行一个简单非严谨的分类。 下图中,左上角是面向 OLTP、支持 SQL 的这样一类系统,例如 MySQL,一般支持事务不同的隔离级别, QPS 要求比较高,延时比较低,主要用于交易信息和关键数据的存储,比如订单、VIP 信息等。 左下角是 NoSQL 数据库,是一类针对特殊场景做优化的系统,schema 一般比较简单,吞吐量较高、延迟较低,一般用作缓存或者 KV 数据库。 整个右侧都是 OLAP 的大数据分析系统,包括 Clickhouse、Impala等,一般支持SQL、不支持事务,扩展性比较好,可以通过加机器增加数据的存储量,响应延迟较长。 还有一类数据库是比较中立的,在数据量比较小的时候性能比较好,在数据量较大或复杂查询的时候性能也不差,一般通过不同的存储引擎和查询引擎来满足不同的业务需求,我们把它叫做 HTAP,TiDB 就是这样一种数据库。 二、iQIYI对数据库的优化与完善 前面我们提到了很多种的数据库,那么接下来就和大家介绍一下在爱奇艺我们是怎么使用这些数据库的。 1、MySQL在爱奇艺的使用 ① MySQL 首先是 MySQL。MySQL 基本使用方式是 master-slave + 半同步,支持每周全备+每日增量备份。我们做了一些基本功能的增强,首先是增强了数据恢复工具 Xtrabackup 的性能。 之前遇到一个情况,我们有一个全量库是 300G 数据,增量库每天 70G 数据,总数据量 700G 左右。我们当时只需要恢复一个表的数据,但该工具不支持单表恢复,且整库恢复需要 5 个小时。 针对这个情况我们具体排查了原因,发现在数据恢复的过程中需要进行多次写盘的 IO 操作并且有很多串行操作,所以我们做了一些优化。例如删减过程中的一些写盘操作,减少落盘并将数据处理并行化,优化后整库恢复耗时减少到 100 分钟,而且可以直接恢复单表数据。 然后是适配 DDL 和 DML 工具到内部系统,gh-ostt 和 oak-online-alter-table 在数据量大的时候会造成 master-slave 延时,所以我们在使用工具的时候也增加了延时上的考虑,实时探测Master-Slave 库之间延时的情况,如果延时较大会暂停工具的使用,恢复到正常水平再继续。 ② MySQL高可用 第二是 MySQL 高可用。Master-slave 加上半同步这种高可用方式不太完善,所以我们参照了 MHA 并进行了改动,采用 master + agent 的方式。Agent 在每一个物理机上部署,可以监控这个物理机上的所有实例的状态,周期性地向 master 发送心跳,Master 会实时监测各个Agent的状态。 如果 MySQL故障,会启动 Binlog 补偿机制,并切换访问域名完成 failover。考虑到数据库跨机房跨地区部署的情况,MHA 的 master 我们也做了高可用设计,众多 master 会通过 raft 组成一个 raft group,类似 TiDB 的 PD 模块。目前 MySQL failover 策略支持三种方式:同机房、同地域跨机房以及跨地域。 ③ MySQL拓展能力 第三是提高MySQL扩展能力,以提供更大容量的数据存储。扩展方式有 SDK,例如开源的 ShardingSphere,在爱奇艺的使用也比较广泛。另外就是 Proxy,开源的就更多了。但是 SDK 和 Proxy 使用的问题是支持的 SQL 语句简单,扩容难度大,依赖较多且运维复杂,所以部分业务已经迁移至 TiDB。 ④ 审计 第四是审计。我们在 MySQL 上做了一个插件获取全量 SQL 操作,后端打到 Kafka,下游再接入包括 Clickhouse 等目标端进行 SQL 统计分析。除此之外还有安全策略,包括主动探索是否有 SQL 注入及是否存在拖库情况等,并触发对应的告警。 MySQL 审计插件最大的问题是如何降低对 MySQL 性能的影响,对此我们进行了一些测试,发现使用 General Log 对性能损耗较大,有 10%~20% 的降低。 于是我们通过接口来获取 MySQL 插件里的监控项,再把监控项放到 buffer 里边,用两级的 RingBuffer 来保证数据的写入不会有锁资源竞争。在这个插件里再启动一个线程,从 RingBuffer 里读取数据并把数据打包写到 FIFO 管道里。 我们在每台 MySQL 的物理机里再启动一个 Agent,从管道里阻塞地读取数据发至 Kafka。优化后我们再次进行压测,在每台机器上有 15 万的更新、删除或插入操作下不会丢失数据,性能损耗一般情况下小于 2%。 目前已经在公司内部的集群上线了一年时间,运行比较稳定,上线和下线对业务没有影响。 ⑤ 分级存储 第五是分级存储。MySQL 里会存一些过程性的数据,即只需要读写最近一段时间存入的数据,过段时间这些数据就不需要了,需要进行定时清理。 分级存储就是在 MySQL 之上又用了其他存储方式,例如 TiDB 或其他 TokuDB,两者之间可以进行数据自动搬迁和自动归档,同时前端通过 SDK + Proxy 来做统一的访问入口。这样一来,业务的开发同学只需要将数据存入 MySQL 里,读取时可能从后端接入的任意数据库读出。这种方式目前只是过渡使用,之后会根据 TiDB 的特性进行逐步迁移。 Redis在爱奇艺的使用 接下来是 Redis。Redis 也是使用 master - slave 这种方式,由于网络的复杂性我们对 Sentinel 的部署进行了一些特殊配置,在多机房的情况下每个机房配置一定数量 Sentinel 来避免脑裂。 备份恢复方面介绍一个我们的特殊场景,虽然 Redis 是一个缓存,但我们发现不少的业务同学会把它当做一个 KVDB 来使用,在某些情况下会造成数据的丢失。 所以我们做了一个 Redis 实时备份功能,启动一个进程伪装成 Redis 的 Slave 实时获取数据,再放到后端的 KV 存储里,例如 ScyllaDB,如果要恢复就可以从 ScyllaDB 里把数据拉出来。 我们在用 Redis 时最大的痛点就是它对网络的延迟或抖动非常敏感。如有抖动造成 Redis Master 超时,会由 Sentinel 重新选出一个新的节点成为 Master,再把该节点上的数据同步到所有 Slave 上,此过程中数据会放在 Master 节点的 Buffer 里,如果写入的 QPS 很高会造成 Buffer 满溢。如果 Buffer 满后 RDB 文件还没有拷贝过去,重建过程就会失败。 基于这种情况,我们对 Redis 告警做了自动化优化,如有大量 master - slave 重建失败,我们会动态调整一些参数,例如把 Buffer 临时调大等, 此外我们还做了 Redis 集群的自动扩缩容功能。 我们在做 Redis 开发时如果是 Java 语言都会用到 Jedis。用 Jedis 访问客户端分片的 Redis 集群,如果某个分片发生了故障或者 failover,Jedis 就会对所有后端的分片重建连接。如果某一分片发生问题,整个 Redis 的访问性能和 QPS 会大幅降低。针对这个情况我们优化了 Jedis,如果某个分片发生故障,就只针对这个分片进行重建。 在业务访问 Redis 时我们会对 Master 绑定一个读写域名,多个从库绑定读域名。但如果我们进行 Master failover,会将读写域名从某旧 Master 解绑,再绑定到新 Master 节点上。 DNS 本身有一个超时时间,所以数据库做完 failover 后业务程序里没有立刻获取到新的 Master 节点的 IP的话,有可能还会连到原来的机器上,造成访问失败。 我们的解决方法是把 DNS 的 TTL 缩短,但对 DNS 服务又会造成很大的压力,所以我们在 SDK 上提供 Redis 的名字服务 RNS,RNS 从 Sentinel 里获取集群的拓扑和拓扑的变化情况,如果集群 failover,Sentinel 会接到通知,客户端就可以通过 RNS 来获取新的 Master 节点的 IP 地址。我们去掉域名,通过 IP 地址来访问整个集群,屏蔽了 DNS 的超时,缩短了故障的恢复时间。 SDK 上还做了一些功能,例如 Load Balance 以及故障检测,比如某个节点延时较高的话会被临时熔断等。 客户端分片的方式会造成 Redis 的扩容非常痛苦,如果客户端已经进行了一定量的分片,之后再增加就会非常艰难。 Redis 在 3.0 版本后会提供 Redis Cluster,因为功能受限在爱奇艺应用的不是很多,例如不支持显示跨 DC 部署和访问,读写只在主库上等。 我们某些业务场景下会使用 Redis 集群,例如数据库访问只发生在本 DC,我们会在 DC 内部进行 Cluster 部署。 但有些业务在使用的过程中还是想做 failover,如果集群故障可以切换到其他集群。根据这种情况我们做了一个 Proxy,读写都通过它来进行。写入数据时 Proxy 会做一个旁路,把新增的数据写在 Kafka 里,后台启用同步程序再把 Kafka 里的数据同步到其他集群,但存在一些限制,比如我们没有做冲突检测,所以集群间数据需要业务的同学做单元化。线上环境的Redis Cluster 集群间场景跨 DC 同步 需要 50 毫秒左右的时间。 2、Couchbase在爱奇艺的使用 Redis 虽然提供 Cluster 这种部署方式,但存在一些问题。所以数据量较大的时候(经验是 160G),就不推荐 Redis 了,而是采用另一种存储方式 Couchbase。 Couchbase 在国内互联网公司用的比较少,一开始我们是把他当做一个 Memcached 来使用的,即纯粹的缓存系统。 但其实它性能还是比较强大的,是一个分布式高性能的 KV 系统,支持多种存储引擎 (bucket)。第一种是 Memcached bucket,使用方式和 Memcached 一样为 KV 存储,不支持数据持久化也没有数据副本,如果节点故障会丢失数据; 第二种是 Couchbase bucket,支持数据持久化,使用 Json 写入,有副本,我们一般会在线上配置两个副本,如果新加节点会对数据进行 rebalance,爱奇艺使用的一般是 Couchbase bucket 这种配置。 Couchbase 数据的分布如下图,数据写入时在客户端上会先进行一次哈希运算,运算完后会定位 Key 在哪一个 vBucket (相当于数据库里的某个分片)。之后客户端会根据 Cluster Map 发送信息至对应的服务端,客户端的 Cluster Map 保存的是 vBucket 和服务器的映射关系,在服务端数据迁移的过程中客户端的 Cluster Map 映射关系会动态更新,因此客户端对于服务端的 failover 操作不需要做特殊处理,但可能在 rebalance 过程中会有短暂的超时,导致的告警对业务影响不大。 Couchbase 在爱奇艺应用比较早,2012 年还没有 Redis Cluster 的时候就开始使用了。集群管理使用 erlang 语言开发,最大功能是进行集群间的复制,提供多种复制方式:单向、双向、星型、环式、链式等。 爱奇艺从最初的 1.8 版本使用到如今的 5.0 版本,正在调研的 6.0,中间也遇到了很多坑,例如 NTP 时间配置出错会导致崩溃,如果每个集群对外 XDCR 并发过高导致不稳定,同步方向变更会导致数据丢失等等,我们通过运维和一些外部工具来进行规避。 Couchbase 的集群是独立集群,集群间的数据同步通过 XDCR,我们一般配置为双向同步。对于业务来说,如果 Cluster 1 写入, Cluster 2 不写入,正常情况下客户端会写 Cluster 1。如果 Cluster 1 有故障,我们提供了一个 Java SDK,可以在配置中心把写入更改到 Cluster 2,把原来到 Cluster 1 的连接逐步断掉再与Cluster 2 新建连接。这种集群 failover 的过程对于客户端来说是相对透明和无感的。 3、爱奇艺自研数据库HiKV的使用 Couchbase 虽然性能非常高,并且数据的存储可以超过内存。但是,如果数据量超过内存 75% 这个阈值,性能就会下降地特别快。在爱奇艺,我们会把数据量控制在可用内存的范围之内,当做内存数据库使用。但是它的成本非常高,所以我们后面又开发了一个新的数据库—— HiKV。 开发 HiKV 的目的是为了把一些对性能要求没那么高的 Couchbase 应用迁移到 HiKV 上。HiKV 基于开源系统 ScyllaDB,主要使用了其分布式数据库的管理功能,增加了单机存储引擎 HiKV。 ScyllaDB 比较吸引人的是它宣称性能高于 Cassandra 十倍,又完全兼容 Cassandra 接口,设计基本一致,可以视为 C++ 版 Cassandra 系统。 ScyllaDB 性能的提升主要是使用了一些新的技术框架,例如 C++ 异步框架 seastar,主要原理是在j每台物理机的核上会 attach 一个应用线程,每个核上有自己独立的内存、网络、IO 资源,核与核之间没有数据共享但可以通信,其最大的好处是内存访问无锁,没有冲突过程。 当一个数据读或写到达 ScyllaDB 的 server 时,会按照哈希算法来判断请求的 Key 是否是该线程需要处理的,如果是则本线程处理,否则会转发到对应线程上去。 除此之外,它还支持多副本、多数据中心、多写多活,功能比较强大。 在爱奇艺,我们基于 SSD 做了一个 KV 存储引擎。Key 放在内存里,Value 放在盘上的文件里,我们在读和写文件时,只需要在内存索引里定位,再进行一次盘的 IO 开销就可以把数据读出来,相比 ScyllaDB 原本基于 LSM Tree 的存储引擎方式对 IO 的开销较少。 索引数据全部放在内存中,如果索引长度较长会限制单机可存储的数据量,于是我们通过开发定长的内存分布器,对于比较长的 Key 做摘要缩短长度至 20 字节,采用红黑树索引,限制每条记录在内存里的索引长度至为 64 字节。内存数据要定期做 checkpoint,客户端要做限流、熔断等。 HiKV 目前在爱奇艺应用范围比较大,截至目前已经替换了 30% 的 Couchbase,有效地降低了存储成本。 4、爱奇艺的数据库运维管理 爱奇艺数据库种类较多,如何高效地运维和管理这些数据库也是经历了不同的阶段。 最初我们通过 DBA 写脚本的方式管理,如果脚本出问题就找 DBA,导致了 DBA 特别忙碌。 第二个阶段我们考虑让大家自己去查问题的答案,于是在内部构建了一个私有云,通过 Web 的方式展示数据库运行状态,让业务的同学可以自己去申请集群,一些简单的操作也可以通过自服务平台实现,解放了 DBA。一些需要人工处理的大型运维操作经常会造成一些人为故障,敲错参数造成数据丢失等。 于是在第三个阶段我们把运维操作 Web 化,通过网页点击可以进行 90% 的操作。 第四个阶段让经验丰富的 DBA 把自身经验变成一些工具,比如有业务同学说 MySQL master-slave 延时了,DBA 会通过一系列操作排查问题。现在我们把这些操作串起来形成一套工具,出问题时业务的同学可以自己通过网页上的一键诊断工具去排查,自助进行处理。 除此之外我们还会定期做预警检查,对业务集群里潜在的问题进行预警报告;开发智能客服,回答问题;通过监控的数据对实例打标签,进行削峰填谷地智能调度,提高资源利用率。 三、不同场景下数据库选型建议 1、实用数据库选型树 最后来说一些具体数据库选型建议。这是 DBA 和业务一起,通过经验得出来的一些结论。 对于关系型数据库的选型来说,可以从数据量和扩展性两个维度考虑,再根据数据库有没有冷备、要不要使用 Toku 存储引擎,要不要使用 Proxy 等等进行抉择。 NoSQL 也是什么情况下使用 master-slave,什么情况下使用客户端分片、集群、Couchbase、HiKV 等,我们内部自服务平台上都有这个选型树信息。 2、一些思考 ① 需求 我们在选型时先思考需求,判断需求是否真实。 你可以从数据量、QPS、延时等方面考虑需求,但这些都是真实需求吗?是否可以通过其他方式把这个需求消耗掉,例如在数据量大的情况下可以先做数据编码或者压缩,数据量可能就降下来了。 不要把所有需求都推到数据库层面,它其实是一个兜底的系统。 ② 选择 第二个思考的点是对于某个数据库系统或是某个技术选型我们应该考虑什么?是因为热门吗?还是因为技术上比较先进?但是不是能真正地解决你的问题?如果你数据量不是很大的话就不需要选择可以存储大数据量的系统。 ③ 放弃 第三是放弃,当你放弃一个系统时真的是因为不好用吗?还是没有用好?放弃一个东西很难,但在放弃时最好有一个充分的理由,包括实测的结果。 ④ 自研 第四是自研,在需要自己开发数据库时可以参考和使用一些成熟的产品,但不要盲目自研。 ⑤ 开源 最后是开源,要有拥抱开源的态度。

茶什i 2019-12-27 14:17:56 0 浏览量 回答数 0

回答

你这是几年工作经验(多少钱的岗位)问到这些问题的? Q1:如果对时效性要求不是太高的话,首先考虑静态化。静态资源请求处理耗系统资源少,不会请求数据库。数据库方面可以加个缓存,或者查询频率高的直接全部放redis。(再接着问的话再接着往深里回答) Q2:数据库性能问题?这题太抽象,反问一句具体场景,再具体问题具体分析。这块我也不熟。但是数据库一般就分表、表分区、分库、索引。 Q3:简单的实现可以是 nginx用upstream做负载(apache同样可以),静态资源直接urlrewrite到专门服务器上,对后端请求通过upstream配置分发到不同服务器上,这里主要做一些session复制或者自己实现一套无session的用户跟踪机制。或者更复杂的,在第一个server前搞个lvs。原理主要就是多服务器处理请求。其实负载这些都是专业的运维搞更好,术业有专攻。并且小公司的项目并发也不会高到哪里去,真高了也就有钱找专业的运维了。 ######我才两年多,回答的不错,赞!###### Q1就是扯淡,没有具体场景,方案完全不一样。 ######回答这种题目也没什么扯淡的吧,主要还是考你知不知道这方面的知识。你可以在交流过程中自己把场景限定下来,然后给出解决方案的思路,这种问题没有标准答案,面试官也会根据你的回答来深入探讨,看面试者的水平在什么level。###### 现在企业数据量庞大,应用越来越普及 所以性能问题很明显,重要性比较突出 ###### 现在普通的笔记本都安装64位,内存好大 不做集群自己试试那就等于浪费 ######不排除有的公司是为了拿这个来考验你的实力!也不排除它这个公司就有那么大的数据流量。######可以参考一下我的博客关于系统调优的###### 哈,我给楼主正确答案吧。问你问题的,最近正在考虑这些,而且自己琢磨出来一套方案了,想看看是否有共鸣,或者让别人说些更sb的方案好bs一下,然后乐乐,别无其他,答的有点上路子,但被bs,是最佳状态。如果你一不小心,呼呼呼,顺着他的思路,说了很多他暂时还没想到的,基本他会10分钟内容去找技术总监“来了个狠的,招架不住,大哥,帮一把吧。。。” 如果你遇到这种情况,就是技术总监,过了5分钟慢悠悠的来了,一般他不会如pm那样问直接问题,而是随意聊聊,大体套路就是”刚才我同事已经和你交流了不少,你的水平很不错“云云。随后会尽可能了解你的整体情况后,再下手做技术对答。 不过面试时,能把pm说晕,让技术总监出来的,基本上也就大家交个朋友了,因为暂需岗位和你的人力已经不匹配了。。就当喝下午茶。这种事情我干过。 补充说一点,pm这个级别出来面试,一般都会从自己的视角面来谈技术。所以通常会问自己正在琢磨的问题。你就是提出一个足以否定他们的更好多方案也不会改变他们已经实施的计划。 ######我顶######我刚毕业1年,也问我这些。问我集群,问我给数据库优化,问我hadoop###### 引用来自“张子游”的答案 我刚毕业1年,也问我这些。问我集群,问我给数据库优化,问我hadoop 确实,现在不少公司对应届生也问这样的问题(比如某刚被百度收购的p2p视频公司) ######我觉得就是看你有多少招数来应对这些问题,不能一点都没有啊,等真遇到这问题了你搞不定就麻烦了。

kun坤 2020-05-29 13:03:17 0 浏览量 回答数 0

回答

回 2楼(zc_0101) 的帖子 您好,       您的问题非常好,SQL SERVER提供了很多关于I/O压力的性能计数器,请选择性能计算器PhysicalDisk(LogicalDisk),根据我们的经验,如下指标的阈值可以帮助你判断IO是否存在压力: 1.  % Disk Time :这个是磁盘时间百分比,这个平均值应该在85%以下 2.  Current Disk Queue Length:未完成磁盘请求数量,这个每个磁盘平均值应该小于2. 3.  Avg. Disk Queue Length:磁盘请求队列的平均长度,这个每个磁盘平均值也应该小于2 4.  Disk Transfers/sec:每次磁盘传输数量,这个每个磁盘的最大值应该小于100 5.  Disk Bytes/sec:每次磁盘传入字节数,这个在普通的磁盘上应该在10M左右 6.  Avg. Disk Sec/Read:从磁盘读取的平均时间,这个平均值应该小于10ms(毫秒) 7.  Avg. Disk Sec/Write:磁盘写入的平均时间,这个平均值也应该小于10ms(毫秒) 以上,请根据自己的磁盘系统判断,比如传统的机械臂磁盘和SSD有所不同。 一般磁盘的优化方向是: 1. 硬件优化:比如使用更合理的RAID阵列,使用更快的磁盘驱动器,添加更多的内存 2. 数据库设置优化:比如创建多个文件和文件组,表的INDEX和数据放到不同的DISK上,将数据库的日志放到单独的物理驱动器,使用分区表 3. 数据库应用优化:包括应用程序的设计,SQL语句的调整,表的设计的合理性,INDEX创建的合理性,涉及的范围很广 希望对您有所帮助,谢谢! ------------------------- 回 3楼(鹰舞) 的帖子 您好,      根据您的描述,由于查询产生了副本REDO LOG延迟,出现了架构锁。我们知道SQL SERVER 2012 AlwaysOn在某些数据库行为上有较多变化。我们先看看架构锁: 架构锁分成两类: 1. SCH-M:架构更改锁,主要发生在数据库SCHEMA的修改上,从你的描述看,没有更改SCHEMA,那么可以排除这个因素 2. SCH-S:架构稳定锁,主要发生在数据库的查询编译等活动 根据你的情况,应该属于SCH-S导致的。查询编译活动主要发生有新增加了INDEX, 更新了统计信息,未参数化的SQL语句等等 对于INDEX和SQL语句方面应,我想应该不会有太多问题。 我们重点关注一下统计信息:SQL SERVER 2012 AG副本的统计信息维护有两种: 1. 主体下发到副本 2. 临时统计信息存储在TEMPDB 对于主体下发的,我们可以设置统计信息的更新行为,自动更新时,可以设置为异步的(自动更新统计信息必须首先打开): USE [master] GO ALTER DATABASE [Test_01]     SET AUTO_UPDATE_STATISTICS_ASYNC ON WITH NO_WAIT GO 这样的话查询优化器不等待统计信息更新完成即编译查询。可以优化一下你的BLOCK。 对于临时统计信息存储在TEMPDB里面也是很重要的,再加上ALWAYSON的副本数据库默认是快照隔离,优化TEMPDB也是必要的,关于优化TEPDB这个我想大部分都知道,这里只是提醒一下。 除了从统计信息本身来解决,在查询过程中,可以降低查询的时间,以尽量减少LOCK的时间和范围,这需要优化你的SQL语句或者应用程序。 以上,希望对您有所帮助。谢谢! ------------------------- 回 4楼(leamonjxl) 的帖子 这是一个关于死锁的问题,为了能够提供帮助一些。请根据下列建议进行: 1.    跟踪死锁 2.    分析死锁链和原因 3.    一些解决办法 关于跟踪死锁,我们首先需要打开1222标记,例如DBCC TRACEON(1222,-1), 他将收集的信息写入到死锁事件发生的服务器上的日志文件中。同时建议打开Profiler的跟踪信息: 如果发生了死锁,需要分析死锁发生的根源在哪里?我们不是很清楚你的具体发生死锁的形态是怎么样的。 关于死锁的实例也多,这里不再举例。 这里只是提出一些可以解决的思路: 1.    减少锁的争用 2.    减少资源的访问数 3.    按照相同的时间顺序访问资源 减少锁的争用,可以从几个方面入手 1.    使用锁提示,比如为查询语句添加WITH (NOLOCK), 但这还取决于你的应用是否允许,大部分分布式的系统都是可以加WITH (NOLOCK), 金融行业可能需要慎重。 2.    调整隔离级别,使用MVCC,我们的数据库默认级别是READ COMMITED. 建议修改为读提交快照隔离级别,这样的话可以尽量读写不阻塞,只不过MVCC的ROW VERSION保存到TEMPDB下面,需要维护好TEMPDB。当然如果你的整个数据库隔离级别可以设置为READUNCOMMINTED,这些就不必了。 减少资源的访问数,可以从如下几个方面入手: 1.    使用聚集索引,非聚集INDEX的叶子页面与堆或者聚集INDEX的数据页面分离。因此,如果对非聚集INDEX 操作的话,会产生两个锁,一个是基本表,一个是非聚集INDEX。而聚集INDEX就不一样,聚集INDEX的叶子页面和表的数据页面相同,他只需要一个LOCK。 2.    查询语句尽量使用覆盖INDEX, 使用全覆盖INDEX,就不需要访问基本表。如果没有全覆盖,还会通过RID或者CLUSTER INDEX访问基本表,这样产生的LOCK可能会与其他SESSION争用。 按照相同的时间顺序访问资源: 确保每个事务按照相同的物理顺序访问资源。两个事务按照相同的物理顺序访问,第一个事务会获得资源上的锁而不会被第二个事务阻塞。第二个事务想获得第一个事务上的LOCK,但被第一个事务阻塞。这样的话就不会导致循环阻塞的情况。 ------------------------- 回 4楼(leamonjxl) 的帖子 两种方式看你的业务怎么应用。这里不仅是分表的问题,还可能存在分库,分服务器的问题。取决与你的架构方案。 物理分表+视图,这是一种典型的冷热数据分离的方案,大致的做法如下: 1.    保留最近3个月的数据为当前表,也即就是我们说的热数据 2.    将其他数据按照某种规则分表,比如按照年或者季度或者月,这部分是相对冷的数据 分表后,涉及到几个问题: 第一问题是,转移数据的过程,一般是晚上业务比较闲来转移,转移按照一定的规则来做,始终保持3个月,这个定时任务本身也很消耗时间 再者,关于查询部分,我想你们的数据库服务器应该通过REPLICATION做了读写分离的吧,主库我觉得压力不会太大,主要是插入或者更新,只读需要做视图来包含全部的数据,但通过UNION ALL所有分表的数据,最后可能还是非常大,在某些情况下,性能不一定好。这个是不是业务上可以解决。比如,对于1年前的历史数据,放在单独的只读上,相对热的数据放在一起,这样压力也会减少。 分区表的话,因为涉及到10亿数据,要有好的分区方案,相对比较简单一点。但对于10亿的大表,始终是个棘手的问题,无论分多少个分区,单个服务器的资源也是有限的。可扩展性方面也存在问题,比如在只读上你没有办法做服务器级别的拆分了。这可能也会造成瓶颈。 现在很多企业都在做分库分表,这些的要解决一些高并发,数据量大的问题。不知是否考虑过类似于中间件的方案,比如阿里巴巴的TDDL类似的方案,如果你有兴趣,可以查询相关资料。 ------------------------- 回 9楼(jiangnii) 的帖子 阿里云数据库不仅提供一个数据库,还提供数据库一种服务。阿里云数据库不仅简化了基础架构的部署,还提供了数据库高可用性架构,备份服务,性能诊断服务,监控服务,专家服务等等,保证用户放心、方便、省心地使用数据库,就像水电一样。以前的运维繁琐的事,全部由阿里云接管,用户只需要关注数据库的使用和具体的业务就好。 关于优化和在云数据库上处理大数据量或复杂的数据操作方面,在云数据库上是一样的,没有什么特别的地方,不过我们的云数据库是使用SSD磁盘,这个比普通的磁盘要快很多,IO上有很大的优势。目前单个实例支持1T的数据量大小。陆续我们会推出更多的服务,比如索引诊断,连接诊断,容量分析,空间诊断等等,这些工作可能是专业的DBA才能完成的,以后我们会提供自动化的服务来为客户创造价值,希望能帮助到客户。 谢谢! ------------------------- 回 12楼(daniellin17) 的帖子 这个问题我不知道是否是两个问题,一个是并行度,另一个是并发,我更多理解是吞吐量,单就并行度而言。 提高并行度需要考虑的因素有: 1.    可用于SQL SERVER的CPU数量 2.    SQL SERVER的版本(32位/64位) 3.    可用内存 4.    执行的查询类型 5.    给定的流中处理的行数 6.    活动的并发连接数量 7.    sys.configurations参数:affinity mask/max server memory (MB)/ max degree of parallelism/ cost threshold for parallelism 以DOP的参数控制并行度为例,设置如下: SELECT * FROM sys.configurations WITH (NOLOCK) WHERE name = 'max degree of parallelism' EXEC sp_configure 'max degree of parallelism',2 RECONFIGURE WITH OVERRIDE 经过测试,DOP设置为2是一个比较适中的状态,特别是OLTP应用。如果设置高了,会产生较多的SUSPEND进程。我们可以观察到资源等待资源类型是:CXPACKET 你可以用下列语句去测试: DBCC SQLPERF('sys.dm_os_wait_stats',CLEAR) SELECT * FROM sys.dm_os_wait_stats WITH (NOLOCK) ORDER BY 2 DESC ,3 DESC 如果是吞吐量的话。优化的范围就很广了。优化是系统性的。硬件配置我们选择的话,大多根据业务量来预估,然后考虑以下: 1.    RAID的划分,RAID1适合存放事务日志文件(顺序写),RAID10/RAID5适合做数据盘,RAID10是条带化并镜像,RAID5条带化并奇偶校验 2.    数据库设置,比如并行度,连接数,BUFFER POOL 3.    数据库文件和日志文件的存放规则,数据库文件的多文件设置规则 4.    TEMPDB的优化原则,这个很重要的 5.    表的设计方面根据业务类型而定 6.    CLUSTERED INDEX和NONCLUSTERED INDEX的设计 7.    阻塞分析 8.    锁和死锁分析 9.    执行计划缓冲分析 10.    存储过程重编译 11.    碎片分析 12.    查询性能分析,这个有很多可以优化的方式,比如OR/UNION/类型转换/列上使用函数等等 我这里列举一个高并发的场景: 比如,我们的订单,比如搞活动的时候,订单刷刷刷地增长,单个实例可能每秒达到很高很高,我们分析到最后最常见的问题是HOT PAGE问题,其等待类型是PAGE LATCH竞争。这个过程可以这么来处理,简单列几点,可以参考很多涉及高并发的案例: 1.    数据库文件和日志文件分开,存放在不同的物理驱动器磁盘上 2.    数据库文件需要与CPU个数形成一定的比例 3.    表设计可以使用HASH来作为表分区 4.    表可以设置无序的KEY/INDEX,比如使用GUID/HASH VALUE来定义PRIMARY KEY CLUSTER INDEX 5.    我们不能将自增列设计为聚集INDEX 这个场景只是针对高并发的插入。对于查询而言,是不适合的。但这些也可能导致大量的页拆分。只是在不同的场景有不同的设计思路。这里抛砖引玉。 ------------------------- 回 13楼(zuijh) 的帖子 ECS上现在有两种磁盘,一种是传统的机械臂磁盘,另一种是SSD,请先诊断你的IO是否出现了问题,本帖中有提到如何判断磁盘出现问题的相关话题,请参考。如果确定IO出现问题,可以尝试使用ECS LOCAL SSD。当然,我们欢迎你使用云数据库的产品,云数据库提供了很多有用的功能,比如高可用性,灵活的备份方案,灵活的弹性方案,实用的监控报警等等。 ------------------------- 回 17楼(豪杰本疯子) 的帖子 我们单个主机或者单个实例的资源总是有限的,因为涉及到很大的数据量,对于存储而言是个瓶颈,我曾使用过SAN和SAS存储,SAN存储的优势确实可以解决数据的灵活扩展,但是SAN也分IPSAN和FIBER SAN,如果IPSAN的话,性能会差一些。即使是FIBER SAN,也不是很好解决性能问题,这不是它的优势,同时,我们所有DB SERVER都连接到SAN上,如果SAN有问题,问题涉及的面就很广。但是SAS毕竟空间也是有限的。最终也会到瓶颈。数据量大,是造成性能问题的直接原因,因为我们不管怎么优化,一旦数据量太大,优化的能力总是有限的,所以这个时候更多从架构上考虑。单个主机单个实例肯定是抗不过来的。 所以现在很多企业在向分布式系统发展,对于数据库而言,其实有很多形式。我们最常见的是读写分离,比如SQL SERVER而言,我们可以通过复制来完成读写分离,SQL SERVER 2012及以后的版本,我们可以使用ALWAYSON来实现读写分离,但这只能解决性能问题,那空间问题怎么解决。我们就涉及到分库分表,这个分库分表跟应用结合得紧密,现在很多公司通过中间件来实现,比如TDDL。但是中间件不是每个公司都可以玩得转的。因此可以将业务垂直拆分,那么DB也可以由此拆分开来。举个简单例子,我们一个典型的电子商务系统,有订单,有促销,有仓库,有配送,有财务,有秒杀,有商品等等,很多公司在初期,都是将这些放在一个主机一个实例上。但是这些到了一定规模或者一定数据量后,就会出现性能和硬件资源问题,这时我们可以将它们独立一部分获完全独立出来。这些都是一些好的方向。希望对你有所帮助。 ------------------------- 回 21楼(dt) 的帖子 问: 求大数据量下mysql存储,优化方案 分区好还是分表好,分的过程中需要考虑事项 mysql高并发读写的一些解决办法 答: 分区:对于应用来说比较简单,改造较少 分表: 应用需较多改造,优点是数据量太大的情况下,分表可以拆分到多个实例上,而分区不可以。 高并发优化,有两个建议: 1.    优化事务逻辑 2.    解决mysql高并发热点,这个可以看看阿里的一个热点补丁: http://www.open-open.com/doc/view/d58cadb4fb68429587634a77f93aa13f ------------------------- 回 23楼(aelven) 的帖子 对于第一个问题.需要看看你的数据库架构是什么样的?比如你的架构具有高可用行?具有读写分离的架构?具有群集的架构.数据库应用是否有较冷门的功能。高并发应该不是什么问题。可扩展性方面需要考虑。阿里云数据库提供了很多优势,比如磁盘是性能超好的SSD,自动转移的高可用性,没有任何单点,自动灵活的备份方案,实用的监控报警,性能监控服务等等,省去DBA很多基础性工作。 你第二个问题,看起来是一个高并发的场景,这种高并发的场景容易出现大量的LOCK甚至死锁,我不是很清楚你的业务,但可以建议一下,首先可以考虑快照隔离级别,实现行多版本控制,让读写不要阻塞。至于写写过程,需要加锁的粒度降低最低,同时这种高并发也容易出现死锁,关于死锁的分析,本帖有提到,请关注。 第三个问题,你用ECS搭建自己的应用也是可以的,RDS数据库提供了很多功能,上面已经讲到了。安全问题一直是我们最看重的问题,肯定有超好的防护的。 ------------------------- 回 26楼(板砖大叔) 的帖子 我曾经整理的关于索引的设计与规范,可以供你参考: ----------------------------------------------------------------------- 索引设计与规范 1.1    使用索引 SQL SERVER没有索引也可以检索数据,只不过检索数据时扫描这个表而异。存储数据的目的,绝大多数都是为了再次使用,而一般数据检索都是带条件的检索,数据查询在数据库操作中会占用较大的比例,提高查询的效率往往意味着整个数据库性能的提升。索引是特定列的有序集合。索引使用B-树结构,最小优化了定位所需要的键值的访问页面量,包含聚集索引和非聚集索引两大类。聚集索引与数据存放在一起,它决定表中数据存储的物理顺序,其叶子节点为数据行。 1.2    聚集索引 1.2.1    关于聚集索引 没聚集索引的表叫堆。堆是一种没有加工的数据,以行标示符作为指向数据存储位置的指针,数据没有顺序。聚集索引的叶子页面和表的数据页面相同,因此表行物理上按照聚集索引列排序,表数据的物理顺序只有一种,所以一个表只有一个聚集索引。 1.2.2    与非聚集索引关系 非聚集索引的一个索引行包含指向表对应行的指针,这个指针称为行定位器,行定位器的值取决于数据页保存为堆还是被聚集。若是堆,行定位器指向的堆中数据行的行号指针,若是聚集索引表,行定位器是聚集索引键值。 1.2.3    设计聚集索引注意事项     首先创建聚集索引     聚集索引上的列需要足够短     一步重建索引,不要使用先DROP再CREATE,可使用DROP_EXISTING     检索一定范围和预先排序数据时使用,因为聚集索引的叶子与数据页面相同,索引顺序也是数据物理顺序,读取数据时,磁头是按照顺序读取,而不是随机定位读取数据。     在频繁更新的列上不要设计聚集索引,他将导致所有的非聚集所有的更新,阻塞非聚集索引的查询     不要使用太长的关键字,因为非聚集索引实际包含了聚集索引值     不要在太多并发度高的顺序插入,这将导致页面分割,设置合理的填充因子是个不错的选择 1.3    非聚集索引 1.3.1    关于非聚集索引 非聚集索引不影响表页面中数据的顺序,其叶子页面和表的数据页面时分离的,需要一个行定位器来导航数据,在将聚集索引时已经有说明,非聚集索引在读取少量数据行时特别有效。非聚集索引所有可以有多个。同时非聚集有很多其他衍生出来的索引类型,比如覆盖索引,过滤索引等。 1.3.2    设计非聚集索引     频繁更新的列,不适合做聚集索引,但可以做非聚集索引     宽关键字,例如很宽的一列或者一组列,不适合做聚集索引的列可作非聚集索引列     检索大量的行不宜做非聚集索引,但是可以使用覆盖索引来消除这种影响 1.3.3    优化书签查找 书签会访问索引之外的数据,在堆表,书签查找会根据RID号去访问数据,若是聚集索引表,一般根据聚集索引去查找。在查询数据时,要分两个部分来完成,增加了读取数据的开销,增加了CPU的压力。在大表中,索引页面和数据页面一般不会临近,若数据只存在磁盘,产生直接随机从磁盘读取,这导致更多的消耗。因此,根据实际需要优化书签查找。解决书签查找有如下方法:     使用聚集索引避免书签查找     使用覆盖索引避免书签查找     使用索引连接避免数据查找 1.4    聚集与非聚集之比较 1.4.1    检索的数据行 一般地,检索数据量大的一般使用聚集索引,因为聚集索引的叶子页面与数据页面在相同。相反,检索少量的数据可能非聚集索引更有利,但注意书签查找消耗资源的力度,不过可考虑覆盖索引解决这个问题。 1.4.2    数据是否排序 如果数据需要预先排序,需要使用聚集索引,若不需要预先排序就那就选择聚集索引。 1.4.3    索引键的宽度 索引键如果太宽,不仅会影响数据查询性能,还影响非聚集索引,因此,若索引键比较小,可以作为聚集索引,如果索引键够大,考虑非聚集索引,如果很大的话,可以用INCLUDE创建覆盖索引。 1.4.4    列更新的频度 列更新频率高的话,应该避免考虑所用非聚集索引,否则可考虑聚集索引。 1.4.5    书签查找开销 如果书签查找开销较大,应该考虑聚集索引,否则可使用非聚集索引,更佳是使用覆盖索引,不过得根据具体的查询语句而看。 1.5    覆盖索引 覆盖索引可显著减少查询的逻辑读次数,使用INCLUDE语句添加列的方式更容易实现,他不仅减小索引中索引列的数据,还可以减少索引键的大小,原因是包含列只保存在索引的叶子级别上,而不是索引的叶子页面。覆盖索引充当一个伪的聚集索引。覆盖索引还能够有效的减少阻塞和死锁的发生,与聚集索引类似,因为聚集索引值发生一次锁,非覆盖索引可能发生两次,一次锁数据,一次锁索引,以确保数据的一致性。覆盖索引相当于数据的一个拷贝,与数据页面隔离,因此也只发生一次锁。 1.6    索引交叉 如果一个表有多个索引,那么可以拥有多个索引来执行一个查询,根据每个索引检索小的结果集,然后就将子结果集做一个交叉,得到满足条件的那些数据行。这种技术可以解决覆盖索引中没有包含的数据。 1.7    索引连接 几乎是跟索引交叉类似,是一个衍生品种。他将覆盖索引应用到交叉索引。如果没有单个覆盖索引查询的索引而多个索引一起覆盖查询,SQL SERVER可以使用索引连接来完全满足查询而不需要查询基础表。 1.8    过滤索引 用来在可能没有好的选择性的一个或者多个列上创建一个高选择性的关键字组。例如在处理NULL问题比较有效,创建索引时,可以像写T-SQL语句一样加个WHERE条件,以排除某部分数据而检索。 1.9    索引视图 索引视图在OLAP系统上可能有胜算,在OLTP会产生过大的开销和不可操作性,比如索引视图要求引用当前数据库的表。索引视图需要绑定基础表的架构,索引视图要求企业版,这些限制导致不可操作性。 1.10    索引设计建议 1.10.1    检查WHERE字句和连接条件列 检查WHERE条件列的可选择性和数据密度,根据条件创建索引。一般地,连接条件上应当考虑创建索引,这个涉及到连接技术,暂时不说明。 1.10.2    使用窄的索引 窄的索引有可减少IO开销,读取更少量的数据页。并且缓存更少的索引页面,减少内存中索引页面的逻辑读取大小。当然,磁盘空间也会相应地减少。 1.10.3    检查列的唯一性 数据分布比较集中的列,种类比较少的列上创建索引的有效性比较差,如果性别只有男女之分,最多还有个UNKNOWN,单独在上面创建索引可能效果不好,但是他们可以为覆盖索引做出贡献。 1.10.4    检查列的数据类型 索引的数据类型是很重要的,在整数类型上创建的索引比在字符类型上创建索引更有效。同一类型,在数据长度较小的类型上创建又比在长度较长的类型上更有效。 1.10.5    考虑列的顺序 对于包含多个列的索引,列顺序很重要。索引键值在索引上的第一上排序,然后在前一列的每个值的下一列做子排序,符合索引的第一列通常为该索引的前沿。同时要考虑列的唯一性,列宽度,列的数据类型来做权衡。 1.10.6    考虑索引的类型 使用索引类型前面已经有较多的介绍,怎么选择已经给出。不再累述。 ------------------------- 回 27楼(板砖大叔) 的帖子 这两种都可以吧。看个人的喜好,不过微软现在的统一风格是下划线,比如表sys.all_columns/sys.tables,然后你再看他的列全是下划线连接,name     /object_id    /principal_id    /schema_id    /parent_object_id      /type    /type_desc    /create_date    /modify_date 我个人的喜好也是喜欢下划线。    

石沫 2019-12-02 01:34:30 0 浏览量 回答数 0

回答

学习另外一门语言主要不是用来提升你的PHP能力的,选语言主要是为了解决不同场景与类型的问题,这也就是为什么会有这么多语言的原因,现在针对你的技能点,我谈下我的想法:第一:PHP框架源码以及设计模式,你阅读各个框架的源码,那么首先你要明确,你是否真正理解其设计思想,与设计理念,你从中吸取了多少作者的思想?如果让你自己写一套框架,你可以真正上手了吗?不要认为,阅读了源码,看的懂代码,就以为明白了,这只是阅读的第一步;第二:nosql,暂且说你都用过这些技术,那么你能很明确的清楚他们之间的最本质的区别吗?技术选型的时候,你能很明确的说出为什么要选这个,这个比起其他几个nosql来说,优势在哪里?再换个方向,你学过了memcache,那么分布式呢?分布式的情况下,memcache如果扩容呢?如何保证其伸缩性,和扩展性呢?第三:环境搭建,优化,负载,mysql主从,那我且问你,你掌握了这些技能,都只是会用,根本谈不上根据场景的变化,做出相应的配置,比如给你1000万-1亿的PV网站,你来架构,你难道还是就一个主从套上去就好了吗?海量数据你又采用什么方式解决呢?最后总结:非常理解楼主认为自己到达瓶颈的想法,上述写的只是想说,不管学习认识的技术,想想这个东西为什么要出来,他的诞生是用来解决什么问题的,最后再研究下他的原理,而不是很多技术,我学过用过就好了,这样没有深入的理解,是不会有多大效果的,最后建议楼主学习一下C语言,可以研究PHP源码,这样在写代码的时候也会考虑性能问题,同时通过C语言的学习,可以研究各种软件的源码和他们的原理,比如memcache,apache,nginx都可以去往源码方面研究,你会看到更多东西,学习JAVA会对你的框架设计思想以及设计模式方面有所提升

我的中国 2019-12-02 00:31:20 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播