• 关于

    多标签分类算法是什么

    的搜索结果

回答

什么是机器学习? 如果人类能够训练机器从过去的数据中学习呢?嗯,这被称为机器学习,但它不仅仅是学习,它还涉及理解和推理,所以今天我们将学习机器学习的基础知识。 插一段《Python3入门机器学习经典算法与应用》这门课程中的解释: 人类是怎么学习的?通过给大脑输入一定的资料,经过学习总结得到知识和经验,有当类似的任务时可以根据已有的经验做出决定或行动。 机器学习(Machine Learning)的过程与人类学习的过程是很相似的。机器学习算法本质上就是获得一个 f(x) 函数表示的模型,如果输入一个样本 x 给 f(x) 得到的结果是一个类别,解决的就是一个分类问题,如果得到的是一个具体的数值那么解决的就是回归问题。 机器学习与人类学习的整体机制是一致的,有一点区别是人类的大脑只需要非常少的一些资料就可以归纳总结出适用性非常强的知识或者经验,例如我们只要见过几只猫或几只狗就能正确的分辨出猫和狗,但对于机器来说我们需要大量的学习资料,但机器能做到的是智能化不需要人类参与。 简单的示例 保罗听新歌,他根据歌曲的节奏、强度和声音的性别来决定喜欢还是不喜欢。 为了简单起见,我们只使用速度和强度。所以在这里,速度是在 x 轴上,从缓慢到快速,而强度是在 y 轴上,从轻到重。我们看到保罗喜欢快节奏和高亢的歌曲,而他不喜欢慢节奏和轻柔的歌曲。 现在我们知道了保罗的选择,让我们看看保罗听一首新歌,让我们给它命名这首歌 A,歌曲 A 速度快,强度飙升,所以它就在这里的某个地方。看看数据,你能猜出球在哪里会喜欢这首歌? ![7.jpg](https://ucc.alicdn.com/pic/d eveloper-ecology/a61a1dd9937f4aa4bba873397609969b.jpg) 对,保罗喜欢这首歌。 通过回顾保罗过去的选择,我们能够很容易地对未知的歌曲进行分类。假设现在保罗听了一首新歌,让我们把它贴上 B 的标签,B 这首歌就在这里的某个地方,节奏中等,强度中等,既不放松也不快速, 既不轻缓也不飞扬。 现在你能猜出保罗喜欢还是不喜欢它吗?不能猜出保罗会喜欢或不喜欢它,其他选择还不清楚。没错,我们可以很容易地对歌曲 A 进行分类,但是当选择变得复杂时,就像歌曲B 一样。机器学习可以帮你解决这个问题。 让我们看看如何。在歌曲 B 的同一个例子中,如果我们在歌曲 B 周围画一个圆圈,我们会看到有四个绿色圆点表示喜欢,而一个红色圆点不喜欢。 如果我们选择占大多数比例的绿色圆点,我们可以说保罗肯定会喜欢这首歌,这就是一个基本的机器学习算法,它被称为 K 近邻算法, 这只是众多机器学习算法之一中的一个小例子。 但是当选择变得复杂时会发生什么?就像歌曲 B 的例子一样,当机器学习进入时,它会学习数据,建立预测模型,当新的数据点进来时,它可以很容易地预测它。数据越多,模型越好,精度越高。 机器学习的分类 机器学习的方式有很多,它可以是监督学习、无监督学习或强化学习。 监督学习 让我们首先快速了解监督学习。假设你的朋友给你 100 万个三种不同货币的硬币,比如说一个是 1 欧元,一个是 1 欧尔,每个硬币有不同的重量,例如,一枚 1 卢比的硬币重 3 克, 一欧元重 7 克,一欧尔重 4 克,你的模型将预测硬币的货币。在这里,体重成为硬币的特征,而货币成为标签,当你将这些数据输入机器学习模型时,它会学习哪个特征与哪个结果相关联。 例如,它将了解到,如果一枚硬币是三克,它将是一枚卢比硬币。根据新硬币的重量,你的模型将预测货币。因此,监督学习使用标签数据来训练模型。在这里,机器知道对象的特征以及与这些特征相关的标签。 无监督学习 在这一点上,让我们看看与无监督学习的区别。假设你有不同球员的板球数据集。当您将此数据集送给机器时,机器会识别玩家性能的模式,因此它会在 x 轴上使用各自的 Achatz 对这些数据进行处理,同时在 y 轴上运行 在查看数据时,你会清楚地看到有两个集群,一个集群是得分高,分较少的球员,而另一个集群是得分较少但得分较多的球员,所以在这里我们将这两个集群解释为击球手和投球手。 需要注意的重要一点是,这里没有击球手、投球手的标签,因此 使用无标签数据的学习是无监督学习。因此,我们了解了数据被标记的监督学习和数据未标记的无监督学习。 强化学习 然后是强化学习,这是一种基于奖励的学习,或者我们可以说它的工作原理是反馈。 在这里,假设你向系统提供了一只狗的图像,并要求它识别它。系统将它识别为一只猫,所以你给机器一个负面反馈,说它是狗的形象,机器会从反馈中学习。最后,如果它遇到任何其他狗的图像,它将能够正确分类,那就是强化学习。 让我们看一个流程图,输入给机器学习模型,然后根据应用的算法给出输出。如果是正确的,我们将输出作为最终结果,否则我们会向火车模型提供反馈,并要求它预测,直到它学 机器学习的应用 你有时不知道在当今时代,机器学习是如何成为可能的,那是因为今天我们有大量可用的数据,每个人都在线,要么进行交易,要么上网,每分钟都会产生大量数据,数据是分析的关键。 此外,计算机的内存处理能力也在很大程度上增加,这有助于他们毫不拖延地处理手头如此大量的数据。 是的,计算机现在拥有强大的计算能力,所以有很多机器学习的应用。 仅举几例,机器学习用于医疗保健,在医疗保健中,医生可以预测诊断,情绪分析。 科技巨头在社交媒体上所做的推荐是另一个有趣的应用。金融部门的机器学习欺诈检测,并预测电子商务部门的客户流失。 小测验 我希望你已经理解了监督和无监督学习,所以让我们做一个快速测验,确定给定的场景是使用监督还是非监督学习。 场景 1:  Facebook 从一张标签照片相册中识别出你的朋友场景 2: Netflix 根据某人过去的电影选择推荐新电影场景 3: 分析可疑交易的银行数据并标记欺诈交易 场景 1: Facebook 在一张标签照片相册中的照片中识别你的朋友解释: 这是监督学习。在这里,Facebook 正在使用标记的照片来识别这个人。因此,标记的照片成为图片的标签,我们知道当机器从标记的数据中学习时,它是监督学习。 场景 2: 根据某人过去的音乐选择推荐新歌解释: 这是监督学习。该模型是在预先存在的标签 (歌曲流派) 上训练分类器。这是 Netflix,Pandora 和 Spotify 一直在做的事情,他们收集您已经喜欢的歌曲/电影,根据您的喜好评估功能,然后根据类似功能推荐新电影/歌曲。 场景 3: 分析可疑交易的银行数据并标记欺诈交易解释: 这是无监督学习。在这种情况下,可疑交易没有定义,因此没有 “欺诈” 和 “非欺诈” 的标签。该模型试图通过查看异常交易来识别异常值,并将其标记为 “欺诈”。
剑曼红尘 2020-04-15 19:05:53 0 浏览量 回答数 0

问题

【精品问答】110+数据挖掘面试题集合

数据挖掘工程师面试宝典双手呈上,快来收藏吧! 1.异常值是指什么?请列举1种识别连续型变量异常值的方法? 2.什么是聚类分析? 3.聚类算法有哪几种?选择一种详细描述其计算原理和步骤。 4.根据要求写出SQL ...
珍宝珠 2019-12-01 21:56:45 2713 浏览量 回答数 3

问题

【精品问答】python技术1000问(2)

为了方便python开发者快速找到相关技术问题和答案,开发者社区策划了python技术1000问内容,包含最基础的如何学python、实践中遇到的技术问题、python面试等维度内容。 我们会以每天至少50条的...
问问小秘 2019-12-01 22:03:02 3129 浏览量 回答数 1

问题

【算法】五分钟算法小知识:学习数据结构和算法的框架思维

这是好久之前的一篇文章「学习数据结构和算法的框架思维」的修订版。之前那篇文章收到广泛好评,没看过也没关系,这篇文章会涵盖之前的所有内容,并且会举很多代码的实例,教你如何使用框架思维。 ...
游客ih62co2qqq5ww 2020-04-17 09:56:03 10 浏览量 回答数 1

问题

比赛_快速入门_4_19_update_仅供参考,思维不要受局限

【这里只讲快速入门——即破题,正负样本不平衡、特征数量等问题就自己多看论文或者其他资料吧~~如果还有数据挖掘相关基础知识不了解的,建议看看《数据挖掘导论》】 【以下是理解错误案例】:错误的根本...
小斯never 2019-12-01 21:43:08 30563 浏览量 回答数 24

回答

关于神经网络也有很多的种类,考虑到它们的使用效果,有些使用起来恰到好处,但事实表明,到目前几乎所有由神经网络创造的经济价值,本质上都离不开一种叫做监督学习的机器学习类别,让我们举例看看。 在监督学习中你有一些输入,你想学习到一个函数来映射到一些输出,比如我们之前提到的房价预测的例子,你只要输入有关房屋的一些特征,试着去输出或者估计价格。我们举一些其它的例子,来说明神经 如今应用深度学习获利最多的一个领域,就是在线广告。这也许不是最鼓舞人心的,但真的很赚钱。具体就是通过在网站上输入一个广告的相关信息,因为也输入了用户的信息,于是网站就会考虑是否向你展示广告。 神经网络已经非常擅长预测你是否会点开这个广告,通过向用户展示最有可能点开的广告,这就是神经网络在很多家公司难以置信地提高获利的一种应用。因为有了这种向你展示你最有可能点击的广告的能力,而这一点击的行为的改变会直接影响到一些大型的在线广告公司的收入。 计算机视觉在过去的几年里也取得了长足的进步,这也多亏了深度学习。你可以输入一个图像,然后想输出一个索引,范围从1到1000来试着告诉你这张照片,它可能是,比方说,1000个不同的图像中的任何一个,所以你可能会选择用它来给照片打标签。 深度学习最近在语音识别方面的进步也是非常令人兴奋的,你现在可以将音频片段输入神经网络,然后让它输出文本记录。得益于深度学习,机器翻译也有很大的发展。你可以利用神经网络输入英语句子,接着输出一个中文句子。 在自动驾驶技术中,你可以输入一幅图像,就好像一个信息雷达展示汽车前方有什么,据此,你可以训练一个神经网络,来告诉汽车在马路上面具体的位置,这就是神经网络在自动驾驶系统中的一个关键成分。 那么深度学习系统已经可以创造如此多的价值,通过智能的选择,哪些作为哪些作为,来针对于你当前的问题,然后拟合监督学习部分,往往是一个更大的系统,比如自动驾驶。这表明神经网络类型的轻微不同,也可以产生不同的应用,比如说,应用到我们在上一个视频提到的房地产领域,我们不就使用了一个普遍标准神经网络架构吗? 也许对于房地产和在线广告来说可能是相对的标准一些的神经网络,正如我们之前见到的。对于图像应用,我们经常在神经网络上使用卷积(Convolutional Neural Network),通常缩写为CNN。对于序列数据,例如音频,有一个时间组件,随着时间的推移,音频被播放出来,所以音频是最自然的表现。作为一维时间序列(两种英文说法one-dimensional time series / temporal sequence).对于序列数据,经常使用RNN,一种递归神经网络(Recurrent Neural Network),语言,英语和汉语字母表或单词都是逐个出现的,所以语言也是最自然的序列数据,因此更复杂的RNNs版本经常用于这些应用。 对于更复杂的应用比如自动驾驶,你有一张图片,可能会显示更多的CNN卷积神经网络结构,其中的雷达信息是完全不同的,你可能会有一个更定制的,或者一些更复杂的混合的神经网络结构。所以为了更具体地说明什么是标准的CNN和RNN结构,在文献中你可能见过这样的图片,这是一个标准的神经网络。 我们会在后面的课程了解这幅图的原理和实现,卷积网络(CNN)通常用于图像数据。 你可能也会看到这样的图片,而且你将在以后的课程中学习如何实现它。 递归神经网络(RNN)非常适合这种一维序列,数据可能是一个时间组成部分。 你可能也听说过机器学习对于结构化数据和非结构化数据的应用,结构化数据意味着数据的基本数据库。例如在房价预测中,你可能有一个数据库,有专门的几列数据告诉你卧室的大小和数量,这就是结构化数据。或预测用户是否会点击广告,你可能会得到关于用户的信息,比如年龄以及关于广告的一些信息,然后对你的预测分类标注,这就是结构化数据,意思是每个特征,比如说房屋大小卧室数量,或者是一个用户的年龄,都有一个很好的定义。 相反非结构化数据是指比如音频,原始音频或者你想要识别的图像或文本中的内容。这里的特征可能是图像中的像素值或文本中的单个单词。 从历史经验上看,处理非结构化数据是很难的,与结构化数据比较,让计算机理解非结构化数据很难,而人类进化得非常善于理解音频信号和图像,文本是一个更近代的发明,但是人们真的很擅长解读非结构化数据。 神经网络的兴起就是这样最令人兴奋的事情之一,多亏了深度学习和神经网络,计算机现在能更好地解释非结构化数据,这是与几年前相比的结果,这为我们创造了机会。许多新的令人兴奋的应用被使用,语音识别、图像识别、自然语言文字处理,甚至可能比两三年前的还要多。因为人们天生就有本领去理解非结构化数据,你可能听说了神经网络更多在媒体非结构化数据的成功,当神经网络识别了一只猫时那真的很酷,我们都知道那意味着什么。 但结果也表明,神经网络在许多短期经济价值的创造,也是基于结构化数据的。比如更好的广告系统、更好的利润建议,还有更好的处理大数据的能力。许多公司不得不根据神经网络做出准确的预测。 因此在这门课中,我们将要讨论的许多技术都将适用,不论是对结构化数据还是非结构化数据。为了解释算法,我们将在使用非结构化数据的示例中多画一点图片,但正如你所想的,你自己团队里通过运用神经网络,我希望你能发现,神经网络算法对于结构化和非结构化数据都有用处。 神经网络已经改变了监督学习,正创造着巨大的经济价值,事实证明,基本的神经网络背后的技术理念大部分都离我们不遥远,有的是几十年,那么为什么他们现在才刚刚起步,效果那么好,下一集视频中我们将讨论为什么最近的神经网络已经成为你可以使用的强大工具。网络已经被高效应用到其它地方。
因为相信,所以看见。 2020-05-19 20:32:55 0 浏览量 回答数 0

问题

天猫推荐算法大赛Top 7  Bazinga团队访谈

Bazinga团队由3名队员组成,他们有两位来自中科院计算所,一位来自中科院软件所。最近一次公布F1得分是6.11。 CSDN:请描述你的解题思路、算法亮点以及着重攻坚方向,并具体...
夜之魅 2019-12-01 21:01:44 9055 浏览量 回答数 2

回答

逻辑回归 逻辑回归实际上是一种分类算法。我怀疑它这样命名是因为它与线性回归在学习方法上很相似,但是成本和梯度函数表述不同。特别是,逻辑回归使用了一个sigmoid或“logit”激活函数,而不是线性回归的连续输出。 首先导入和检查我们将要处理的数据集。 import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import os path = os.getcwd() + '\data\ex2data1.txt' data = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted']) data.head() 在数据中有两个连续的自变量——“Exam 1”和“Exam 2”。我们的预测目标是“Admitted”的标签。值1表示学生被录取,0表示学生没有被录取。我们看有两科成绩的散点图,并使用颜色编码来表达例子是positive或者negative。 positive = data[data['Admitted'].isin([1])] negative = data[data['Admitted'].isin([0])] fig, ax = plt.subplots(figsize=(12,8)) ax.scatter(positive['Exam 1'], positive['Exam 2'], s=50, c='b', marker='o', label='Admitted') ax.scatter(negative['Exam 1'], negative['Exam 2'], s=50, c='r', marker='x', label='Not Admitted') ax.legend() ax.set_xlabel('Exam 1 Score') ax.set_ylabel('Exam 2 Score') 从这个图中我们可以看到,有一个近似线性的决策边界。它有一点弯曲,所以我们不能使用直线将所有的例子正确地分类,但我们能够很接近。现在我们需要实施逻辑回归,这样我们就可以训练一个模型来找到最优决策边界,并做出分类预测。首先需要实现sigmoid函数。 def sigmoid(z): return 1 / (1 + np.exp(-z)) 这个函数是逻辑回归输出的“激活”函数。它将连续输入转换为0到1之间的值。这个值可以被解释为分类概率,或者输入的例子应该被积极分类的可能性。利用带有界限值的概率,我们可以得到一个离散标签预测。它有助于可视化函数的输出,以了解它真正在做什么。 nums = np.arange(-10, 10, step=1) fig, ax = plt.subplots(figsize=(12,8)) ax.plot(nums, sigmoid(nums), 'r') 我们的下一步是写成本函数。成本函数在给定一组模型参数的训练数据上评估模型的性能。这是逻辑回归的成本函数。 def cost(theta, X, y): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) first = np.multiply(-y, np.log(sigmoid(X * theta.T))) second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T))) return np.sum(first - second) / (len(X)) 注意,我们将输出减少到单个标量值,该值是“误差”之和,是模型分配的类概率与示例的真实标签之间差别的量化函数。该实现完全是向量化的——它在语句(sigmoid(X * theta.T))中计算模型对整个数据集的预测。 测试成本函数以确保它在运行,首先需要做一些设置。 # add a ones column - this makes the matrix multiplication work out easier data.insert(0, 'Ones', 1) # set X (training data) and y (target variable) cols = data.shape[1] X = data.iloc[:,0:cols-1] y = data.iloc[:,cols-1:cols] # convert to numpy arrays and initalize the parameter array theta X = np.array(X.values) y = np.array(y.values) theta = np.zeros(3) 检查数据结构的形状,以确保它们的值是合理的。这种技术在实现矩阵乘法时非常有用 X.shape, theta.shape, y.shape ((100L, 3L), (3L,), (100L, 1L)) 现在计算初始解的成本,将模型参数“theta”设置为零。 cost(theta, X, y) 0.69314718055994529 我们已经有了工作成本函数,下一步是编写一个函数,用来计算模型参数的梯度,以找出改变参数来提高训练数据模型的方法。在梯度下降的情况下,我们不只是在参数值周围随机地jigger,看看什么效果最好。并且在每次迭代训练中,我们通过保证将其移动到减少训练误差(即“成本”)的方向来更新参数。我们可以这样做是因为成本函数是可微分的。这是函数。 def gradient(theta, X, y): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) parameters = int(theta.ravel().shape[1]) grad = np.zeros(parameters) error = sigmoid(X * theta.T) - y for i in range(parameters): term = np.multiply(error, X[:,i]) grad[i] = np.sum(term) / len(X) return grad 我们并没有在这个函数中执行梯度下降——我们只计算一个梯度步骤。在练习中,使用“fminunc”的Octave函数优化给定函数的参数,以计算成本和梯度。因为我们使用的是Python,所以我们可以使用SciPy的优化API来做同样的事情。 import scipy.optimize as opt result = opt.fmin_tnc(func=cost, x0=theta, fprime=gradient, args=(X, y)) cost(result[0], X, y) 0.20357134412164668 现在我们的数据集里有了最优模型参数,接下来我们要写一个函数,它使用我们训练过的参数theta来输出数据集X的预测,然后使用这个函数为我们分类器的训练精度打分。 def predict(theta, X): probability = sigmoid(X * theta.T) return [1 if x >= 0.5 else 0 for x in probability] theta_min = np.matrix(result[0]) predictions = predict(theta_min, X) correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)] accuracy = (sum(map(int, correct)) % len(correct)) print 'accuracy = {0}%'.format(accuracy) accuracy = 89% 我们的逻辑回归分类器预测学生是否被录取的准确性可以达到89%,这是在训练集中的精度。我们没有保留一个hold-out set或使用交叉验证来获得准确的近似值,所以这个数字可能高于实际的值。 正则化逻辑回归 既然我们已经有了逻辑回归的工作实现,我们将通过添加正则化来改善算法。正则化是成本函数的一个条件,使算法倾向于更简单的模型(在这种情况下,模型会减小系数),原理就是帮助减少过度拟合和帮助模型提高通用化能力。我们使用逻辑回归的正则化版本去解决稍带挑战性的问题, 想象你是工厂的产品经理,你有一些芯片在两种不同测试上的测试结果。通过两种测试,你将会决定那种芯片被接受或者拒绝。为了帮助你做这个决定,你将会有以往芯片的测试结果数据集,并且通过它建立一个逻辑回归模型。 现在可视化数据。 path = os.getcwd() + '\data\ex2data2.txt' data2 = pd.read_csv(path, header=None, names=['Test 1', 'Test 2', 'Accepted']) positive = data2[data2['Accepted'].isin([1])] negative = data2[data2['Accepted'].isin([0])] fig, ax = plt.subplots(figsize=(12,8)) ax.scatter(positive['Test 1'], positive['Test 2'], s=50, c='b', marker='o', label='Accepted') ax.scatter(negative['Test 1'], negative['Test 2'], s=50, c='r', marker='x', label='Rejected') ax.legend() ax.set_xlabel('Test 1 Score') ax.set_ylabel('Test 2 Score') 这个数据看起来比以前的例子更复杂,你会注意到没有线性决策线,数据也执行的很好,处理这个问题的一种方法是使用像逻辑回归这样的线性技术,就是构造出由原始特征多项式派生出来的特征。我们可以尝试创建一堆多项式特性以提供给分类器。 degree = 5 x1 = data2['Test 1'] x2 = data2['Test 2'] data2.insert(3, 'Ones', 1) for i in range(1, degree): for j in range(0, i): data2['F' + str(i) + str(j)] = np.power(x1, i-j) * np.power(x2, j) data2.drop('Test 1', axis=1, inplace=True) data2.drop('Test 2', axis=1, inplace=True) data2.head() 现在我们需要去修改成本和梯度函数以包含正则项。在这种情况下,将正则化矩阵添加到之前的计算中。这是更新后的成本函数。 def costReg(theta, X, y, learningRate): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) first = np.multiply(-y, np.log(sigmoid(X * theta.T))) second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T))) reg = (learningRate / 2 * len(X)) * np.sum(np.power(theta[:,1:theta.shape[1]], 2)) return np.sum(first - second) / (len(X)) + reg 我们添加了一个名为“reg”的新变量,它是参数值的函数。随着参数越来越大,对成本函数的惩罚也越来越大。我们在函数中添加了一个新的“learning rate”参数。 这也是等式中正则项的一部分。 learning rate为我们提供了一个新的超参数,我们可以使用它来调整正则化在成本函数中的权重。 接下来,我们将在梯度函数中添加正则化。 def gradientReg(theta, X, y, learningRate): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) parameters = int(theta.ravel().shape[1]) grad = np.zeros(parameters) error = sigmoid(X * theta.T) - y for i in range(parameters): term = np.multiply(error, X[:,i]) if (i == 0): grad[i] = np.sum(term) / len(X) else: grad[i] = (np.sum(term) / len(X)) + ((learningRate / len(X)) * theta[:,i]) return grad 与成本函数一样,将正则项加到最初的计算中。与成本函数不同的是,我们包含了确保第一个参数不被正则化的逻辑。这个决定背后的直觉是,第一个参数被认为是模型的“bias”或“intercept”,不应该被惩罚。 我们像以前那样测试新函数 # set X and y (remember from above that we moved the label to column 0) cols = data2.shape[1] X2 = data2.iloc[:,1:cols] y2 = data2.iloc[:,0:1] # convert to numpy arrays and initalize the parameter array theta X2 = np.array(X2.values) y2 = np.array(y2.values) theta2 = np.zeros(11) learningRate = 1 costReg(theta2, X2, y2, learningRate) 0.6931471805599454 我们能使用先前的最优代码寻找最优模型参数。 result2 = opt.fmin_tnc(func=costReg, x0=theta2, fprime=gradientReg, args=(X2, y2, learningRate)) result2 (数组([ 0.35872309, -3.22200653, 18.97106363, -4.25297831, 18.23053189, 20.36386672, 8.94114455, -43.77439015, -17.93440473, -50.75071857, -2.84162964]), 110, 1) 最后,我们可以使用前面应用的相同方法,为训练数据创建标签预测,并评估模型的性能。 theta_min = np.matrix(result2[0]) predictions = predict(theta_min, X2) correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y2)] accuracy = (sum(map(int, correct)) % len(correct)) print 'accuracy = {0}%'.format(accuracy) 准确度 = 91%
珍宝珠 2019-12-02 03:22:33 0 浏览量 回答数 0

回答

由于数据集与上次练习中使用的数据集相同,我们将重新使用上次的代码来加载数据。 上传参考链接:https://developer.aliyun.com/ask/260171 import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.io import loadmat %matplotlib inline data = loadmat('data/ex3data1.mat') data {'X': array([[ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], ..., [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.]]), '__globals__': [], '__header__': 'MATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Sun Oct 16 13:09:09 2011', '__version__': '1.0', 'y': array([[10], [10], [10], ..., [ 9], [ 9], [ 9]], dtype=uint8)} 我们以后需要和经常使用变量,先创建一些有用的变量。 X = data['X'] y = data['y'] X.shape, y.shape ((5000L, 400L), (5000L, 1L) )``` 我们还需要对标签进行专有热编码。专有热编码将类标签\(n \)(出于\(k \)类)转换为长度\(k \)的向量,其中索引\(n \)为“ hot”(1),其余为零。scikit-学习有一个内置的实用工具,我们可以使用它。 ```js from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder(sparse=False) y_onehot = encoder.fit_transform(y) y_onehot.shape (5000L, 10L) 为这个练习创建的神经网络具有与我们实例数据(400 +偏差单元)大小匹配的输入层,25个单位的隐藏层(带有26个偏差单元)和10个单位的输出层对应我们的独热编码类标签。我们需要实现成本函数,用它来评估一组给定的神经网络参数的损失,源数学函数有助于将成本函数分解成多个。以下是计算成本所需的函数。 def sigmoid(z): return 1 / (1 + np.exp(-z)) def forward_propagate(X, theta1, theta2): m = X.shape[0] a1 = np.insert(X, 0, values=np.ones(m), axis=1) z2 = a1 * theta1.T a2 = np.insert(sigmoid(z2), 0, values=np.ones(m), axis=1) z3 = a2 * theta2.T h = sigmoid(z3) return a1, z2, a2, z3, h def cost(params, input_size, hidden_size, num_labels, X, y, learning_rate): m = X.shape[0] X = np.matrix(X) y = np.matrix(y) # reshape the parameter array into parameter matrices for each layer theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1)))) theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1)))) # run the feed-forward pass a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2) # compute the cost J = 0 for i in range(m): first_term = np.multiply(-y[i,:], np.log(h[i,:])) second_term = np.multiply((1 - y[i,:]), np.log(1 - h[i,:])) J += np.sum(first_term - second_term) J = J / m return J 我们之前已经使用过sigmoid函数。正向传播函数计算给定当前参数的每个训练实例的假设(换句话说,给定神经网络当前的状态和一组输入,它能计算出神经网络每一层假设向量(由\(h \)表示)的形状,包含了每个类的预测概率,应该与y的独热编码相匹配。最后成本函数运行正向传播步,并计算实例的假设(预测)和真实标签之间的误差。 可以快速测试一下它是否按预期的工作。从中间步骤中看到的输出也有助于了解发生了什么。 # initial setup input_size = 400 hidden_size = 25 num_labels = 10 learning_rate = 1 # randomly initialize a parameter array of the size of the full network's parameters params = (np.random.random(size=hidden_size * (input_size + 1) + num_labels * (hidden_size + 1)) - 0.5) * 0.25 m = X.shape[0] X = np.matrix(X) y = np.matrix(y) # unravel the parameter array into parameter matrices for each layer theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1)))) theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1)))) theta1.shape, theta2.shape ((25L, 401L), (10L, 26L)) a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2) a1.shape, z2.shape, a2.shape, z3.shape, h.shape ((5000L, 401L), (5000L, 25L), (5000L, 26L), (5000L, 10L), (5000L, 10L)) 计算假设矩阵\(h \)后的成本函数,用成本方程式计算\(y \)和\(h \)之间的总偏差。 cost(params, input_size, hidden_size, num_labels, X, y_onehot, learning_rate) 6.8228086634127862 下一步是在成本函数中增加正则化,增加了与参数大小相关的惩罚项。这个方程式可以归结为一行代码,将其添加到成本函数中。只需在返回语句之前添加以下内容。 J+= (float(learning_rate)/ (2 * m))* (np.sum(np.power(theta1[:,1:],2))+ np.sum(np.power(theta2[:,1:],2))) 接下来是反向传播算法,反向传播算法计算参数更新以减少训练数据的误差。我们首先需要的是一个函数,用来计算我们先前创建的Sigmoid函数梯度。 def sigmoid_gradient(z): return np.multiply(sigmoid(z), (1 - sigmoid(z))) 现在我们准备用反向传播算法来计算梯度,由于反向传播算法所需的计算是成本函数要求的超集,我们将扩展成本函数来执行反向传播算法,并返回成本和梯度函数。 backprop函数中调用了现有的成本函数来使设计更加正确的原因是,backprop函数使用了成本函数计算的一些其他变量。我跳过了完整的实现,添加了渐变正则化。 def backprop(params, input_size, hidden_size, num_labels, X, y, learning_rate): ##### this section is identical to the cost function logic we already saw ##### m = X.shape[0] X = np.matrix(X) y = np.matrix(y) # reshape the parameter array into parameter matrices for each layer theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1)))) theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1)))) # run the feed-forward pass a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2) # initializations J = 0 delta1 = np.zeros(theta1.shape) # (25, 401) delta2 = np.zeros(theta2.shape) # (10, 26) # compute the cost for i in range(m): first_term = np.multiply(-y[i,:], np.log(h[i,:])) second_term = np.multiply((1 - y[i,:]), np.log(1 - h[i,:])) J += np.sum(first_term - second_term) J = J / m # add the cost regularization term J += (float(learning_rate) / (2 * m)) * (np.sum(np.power(theta1[:,1:], 2)) + np.sum(np.power(theta2[:,1:], 2))) ##### end of cost function logic, below is the new part ##### # perform backpropagation for t in range(m): a1t = a1[t,:] # (1, 401) z2t = z2[t,:] # (1, 25) a2t = a2[t,:] # (1, 26) ht = h[t,:] # (1, 10) yt = y[t,:] # (1, 10) d3t = ht - yt # (1, 10) z2t = np.insert(z2t, 0, values=np.ones(1)) # (1, 26) d2t = np.multiply((theta2.T * d3t.T).T, sigmoid_gradient(z2t)) # (1, 26) delta1 = delta1 + (d2t[:,1:]).T * a1t delta2 = delta2 + d3t.T * a2t delta1 = delta1 / m delta2 = delta2 / m # add the gradient regularization term delta1[:,1:] = delta1[:,1:] + (theta1[:,1:] * learning_rate) / m delta2[:,1:] = delta2[:,1:] + (theta2[:,1:] * learning_rate) / m # unravel the gradient matrices into a single array grad = np.concatenate((np.ravel(delta1), np.ravel(delta2))) return J, grad 成本函数的第一部分通过“神经网络”(正向传播函数)运行数据和当前参数来计算误差,将输出与真实标签作比较。数据集的总误差表示为\(J \)。这部分是我们之前的过的成本函数。 成本函数的其余部分的本质是回答“下次运行网络时,如何调整参数以减少误差?”,它通过计算每层的贡献与总误差,提出“梯度”矩阵(或者改变参数和方向)进行适当调整。 backprop计算中最难的部分是获取矩阵维度。顺便说一下,不是只有你对使用A * B和np.multiply(A,B)感到疑惑。 让我们测试一下,以确保函数返回我们所期望的。 J, grad = backprop(params, input_size, hidden_size, num_labels, X, y_onehot, learning_rate) J, grad.shape (6.8281541822949299, (10285L,)) 最后训练我们的神经网络,利用它做出的预测,这和先前的多层次逻辑回归大致相同。 from scipy.optimize import minimize # minimize the objective function fmin = minimize(fun=backprop, x0=params, args=(input_size, hidden_size, num_labels, X, y_onehot, learning_rate), method='TNC', jac=True, options={'maxiter': 250}) fmin status: 3 success: False nfev: 250 fun: 0.33900736818312283 x: array([ -8.85740564e-01, 2.57420350e-04, -4.09396202e-04, ..., 1.44634791e+00, 1.68974302e+00, 7.10121593e-01]) message: 'Max. number of function evaluations reach' jac: array([ -5.11463703e-04, 5.14840700e-08, -8.18792403e-08, ..., -2.48297749e-04, -3.17870911e-04, -3.31404592e-04]) nit: 21 由于目标函数不太可能完全收敛,我们对迭代次数进行限制。我们的总成本已经下降到0.5以下,这是算法正常工作的一个指标。我们用它找到的参数,然后通过神经网络正向传播它们以获得一些预测。我们必须重构优化器的输出,以匹配神经网络所期望的参数矩阵形状,然后运行正向传播函数以生成输入数据的假设。 X = np.matrix(X) theta1 = np.matrix(np.reshape(fmin.x[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1)))) theta2 = np.matrix(np.reshape(fmin.x[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1)))) a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2) y_pred = np.array(np.argmax(h, axis=1) + 1) y_pred array([[10], [10], [10], ..., [ 9], [ 9], [ 9]], dtype=int64) 最后计算准确度以观察我们训练过的神经网络的工作状况 correct = [1 if a == b else 0 for (a, b) in zip(y_pred, y)] accuracy = (sum(map(int, correct)) / float(len(correct))) print 'accuracy = {0}%'.format(accuracy * 100) accuracy = 99.22% 我们完成了,我们已经成功地实施了一个基本的反向传播的前馈式神经网络,并用它来分类手写数字图像。
珍宝珠 2019-12-02 03:22:37 0 浏览量 回答数 0

问题

SEO外链优化

  外链优化   1前言   外链优化只关于运用在高权重网站上的连接,即指的是其他网站的反向连接,运用domain:指令就能够查到。对于网站在百度的排名适当的重要,如果说网站的内容...
梦醒丶呆子 2019-12-01 21:33:37 9245 浏览量 回答数 3

问题

特征工程是什么?(2)

随机森林特征重要性 组件功能 使用原始数据和随机森林模型,计算特征重要性. PAI 命令 <divre style='background: rgb(246, 246, 246); fo...
nicenelly 2019-12-01 20:56:25 992 浏览量 回答数 0

问题

什么是特征工程?(1)

目录 主成分分析特征尺度变换特征离散特征异常平滑随机森林特征重要性GBDT特征重要性线性模型特征重要性偏好计算 主成分分析 PCA 利用主成分分析方法,实现降维和降维的功能. PCA算法原理见wiki目前支持稠密数...
nicenelly 2019-12-01 22:09:08 1465 浏览量 回答数 0

回答

转自:阿飞的博客 一、数据库技术选型的思考维度 我们做选型的时候首先要问: 谁选型?是负责采购的同学、 DBA 还是业务研发? 如果选型的是采购的同学,他们更注重成本,包括存储方式、网络需求等。 如果选型的是 DBA 同学,他们关心的: ① 运维成本 首先是运维成本,包括监控告警是否完善、是否有备份恢复机制、升级和迁移的成本是否高、社区是否稳定、是否方便调优、排障是否简易等; ② 稳定性 其次,DBA会关注稳定性,包括是否支持数据多副本、服务高可用、多写多活等; ③ 性能 第三是性能,包括延迟、QPS 以及是否支持更高级的分级存储功能等; ④ 拓展性 第四是扩展性,如果业务的需求不确定,是否容易横向扩展和纵向扩容; ⑤ 安全 最后是安全,需要符合审计要求,不容易出现 SQL 注入或拖库情况。 ⑥ 其他 除了采购和 DBA之外,后台应用研发的同学同样会关注稳定性、性能、扩展性等问题,同时也非常关注数据库接口是否便于开发,是否便于修改数据库 schema 等问题。 接下来我们来看一下爱奇艺使用的数据库类型: MySQL,互联网业务必备系统; TiDB,爱奇艺的 TiDB 实践会有另外的具体介绍; Redis,KV 数据库,互联网公司标配; Couchbase,这个在爱奇艺用得比较多,但国内互联网公司用得比较少,接下来的部分会详细说明; 其他,比如 MongoDB、图数据库、自研 KV 数据库 HiKV 等; 大数据分析相关系统,比如 Hive、Impala 等等。 可以看到爱奇艺的数据库种类还是很多的,这会造成业务开发的同学可能不太清楚在他的业务场景下应该选用哪种数据库系统。 那么,我们先对这些数据库按照接口(SQL、NoSQL)和面向的业务场景(OLTP、OLAP)这两位维度进行一个简单非严谨的分类。 下图中,左上角是面向 OLTP、支持 SQL 的这样一类系统,例如 MySQL,一般支持事务不同的隔离级别, QPS 要求比较高,延时比较低,主要用于交易信息和关键数据的存储,比如订单、VIP 信息等。 左下角是 NoSQL 数据库,是一类针对特殊场景做优化的系统,schema 一般比较简单,吞吐量较高、延迟较低,一般用作缓存或者 KV 数据库。 整个右侧都是 OLAP 的大数据分析系统,包括 Clickhouse、Impala等,一般支持SQL、不支持事务,扩展性比较好,可以通过加机器增加数据的存储量,响应延迟较长。 还有一类数据库是比较中立的,在数据量比较小的时候性能比较好,在数据量较大或复杂查询的时候性能也不差,一般通过不同的存储引擎和查询引擎来满足不同的业务需求,我们把它叫做 HTAP,TiDB 就是这样一种数据库。 二、iQIYI对数据库的优化与完善 前面我们提到了很多种的数据库,那么接下来就和大家介绍一下在爱奇艺我们是怎么使用这些数据库的。 1、MySQL在爱奇艺的使用 ① MySQL 首先是 MySQL。MySQL 基本使用方式是 master-slave + 半同步,支持每周全备+每日增量备份。我们做了一些基本功能的增强,首先是增强了数据恢复工具 Xtrabackup 的性能。 之前遇到一个情况,我们有一个全量库是 300G 数据,增量库每天 70G 数据,总数据量 700G 左右。我们当时只需要恢复一个表的数据,但该工具不支持单表恢复,且整库恢复需要 5 个小时。 针对这个情况我们具体排查了原因,发现在数据恢复的过程中需要进行多次写盘的 IO 操作并且有很多串行操作,所以我们做了一些优化。例如删减过程中的一些写盘操作,减少落盘并将数据处理并行化,优化后整库恢复耗时减少到 100 分钟,而且可以直接恢复单表数据。 然后是适配 DDL 和 DML 工具到内部系统,gh-ostt 和 oak-online-alter-table 在数据量大的时候会造成 master-slave 延时,所以我们在使用工具的时候也增加了延时上的考虑,实时探测Master-Slave 库之间延时的情况,如果延时较大会暂停工具的使用,恢复到正常水平再继续。 ② MySQL高可用 第二是 MySQL 高可用。Master-slave 加上半同步这种高可用方式不太完善,所以我们参照了 MHA 并进行了改动,采用 master + agent 的方式。Agent 在每一个物理机上部署,可以监控这个物理机上的所有实例的状态,周期性地向 master 发送心跳,Master 会实时监测各个Agent的状态。 如果 MySQL故障,会启动 Binlog 补偿机制,并切换访问域名完成 failover。考虑到数据库跨机房跨地区部署的情况,MHA 的 master 我们也做了高可用设计,众多 master 会通过 raft 组成一个 raft group,类似 TiDB 的 PD 模块。目前 MySQL failover 策略支持三种方式:同机房、同地域跨机房以及跨地域。 ③ MySQL拓展能力 第三是提高MySQL扩展能力,以提供更大容量的数据存储。扩展方式有 SDK,例如开源的 ShardingSphere,在爱奇艺的使用也比较广泛。另外就是 Proxy,开源的就更多了。但是 SDK 和 Proxy 使用的问题是支持的 SQL 语句简单,扩容难度大,依赖较多且运维复杂,所以部分业务已经迁移至 TiDB。 ④ 审计 第四是审计。我们在 MySQL 上做了一个插件获取全量 SQL 操作,后端打到 Kafka,下游再接入包括 Clickhouse 等目标端进行 SQL 统计分析。除此之外还有安全策略,包括主动探索是否有 SQL 注入及是否存在拖库情况等,并触发对应的告警。 MySQL 审计插件最大的问题是如何降低对 MySQL 性能的影响,对此我们进行了一些测试,发现使用 General Log 对性能损耗较大,有 10%~20% 的降低。 于是我们通过接口来获取 MySQL 插件里的监控项,再把监控项放到 buffer 里边,用两级的 RingBuffer 来保证数据的写入不会有锁资源竞争。在这个插件里再启动一个线程,从 RingBuffer 里读取数据并把数据打包写到 FIFO 管道里。 我们在每台 MySQL 的物理机里再启动一个 Agent,从管道里阻塞地读取数据发至 Kafka。优化后我们再次进行压测,在每台机器上有 15 万的更新、删除或插入操作下不会丢失数据,性能损耗一般情况下小于 2%。 目前已经在公司内部的集群上线了一年时间,运行比较稳定,上线和下线对业务没有影响。 ⑤ 分级存储 第五是分级存储。MySQL 里会存一些过程性的数据,即只需要读写最近一段时间存入的数据,过段时间这些数据就不需要了,需要进行定时清理。 分级存储就是在 MySQL 之上又用了其他存储方式,例如 TiDB 或其他 TokuDB,两者之间可以进行数据自动搬迁和自动归档,同时前端通过 SDK + Proxy 来做统一的访问入口。这样一来,业务的开发同学只需要将数据存入 MySQL 里,读取时可能从后端接入的任意数据库读出。这种方式目前只是过渡使用,之后会根据 TiDB 的特性进行逐步迁移。 Redis在爱奇艺的使用 接下来是 Redis。Redis 也是使用 master - slave 这种方式,由于网络的复杂性我们对 Sentinel 的部署进行了一些特殊配置,在多机房的情况下每个机房配置一定数量 Sentinel 来避免脑裂。 备份恢复方面介绍一个我们的特殊场景,虽然 Redis 是一个缓存,但我们发现不少的业务同学会把它当做一个 KVDB 来使用,在某些情况下会造成数据的丢失。 所以我们做了一个 Redis 实时备份功能,启动一个进程伪装成 Redis 的 Slave 实时获取数据,再放到后端的 KV 存储里,例如 ScyllaDB,如果要恢复就可以从 ScyllaDB 里把数据拉出来。 我们在用 Redis 时最大的痛点就是它对网络的延迟或抖动非常敏感。如有抖动造成 Redis Master 超时,会由 Sentinel 重新选出一个新的节点成为 Master,再把该节点上的数据同步到所有 Slave 上,此过程中数据会放在 Master 节点的 Buffer 里,如果写入的 QPS 很高会造成 Buffer 满溢。如果 Buffer 满后 RDB 文件还没有拷贝过去,重建过程就会失败。 基于这种情况,我们对 Redis 告警做了自动化优化,如有大量 master - slave 重建失败,我们会动态调整一些参数,例如把 Buffer 临时调大等, 此外我们还做了 Redis 集群的自动扩缩容功能。 我们在做 Redis 开发时如果是 Java 语言都会用到 Jedis。用 Jedis 访问客户端分片的 Redis 集群,如果某个分片发生了故障或者 failover,Jedis 就会对所有后端的分片重建连接。如果某一分片发生问题,整个 Redis 的访问性能和 QPS 会大幅降低。针对这个情况我们优化了 Jedis,如果某个分片发生故障,就只针对这个分片进行重建。 在业务访问 Redis 时我们会对 Master 绑定一个读写域名,多个从库绑定读域名。但如果我们进行 Master failover,会将读写域名从某旧 Master 解绑,再绑定到新 Master 节点上。 DNS 本身有一个超时时间,所以数据库做完 failover 后业务程序里没有立刻获取到新的 Master 节点的 IP的话,有可能还会连到原来的机器上,造成访问失败。 我们的解决方法是把 DNS 的 TTL 缩短,但对 DNS 服务又会造成很大的压力,所以我们在 SDK 上提供 Redis 的名字服务 RNS,RNS 从 Sentinel 里获取集群的拓扑和拓扑的变化情况,如果集群 failover,Sentinel 会接到通知,客户端就可以通过 RNS 来获取新的 Master 节点的 IP 地址。我们去掉域名,通过 IP 地址来访问整个集群,屏蔽了 DNS 的超时,缩短了故障的恢复时间。 SDK 上还做了一些功能,例如 Load Balance 以及故障检测,比如某个节点延时较高的话会被临时熔断等。 客户端分片的方式会造成 Redis 的扩容非常痛苦,如果客户端已经进行了一定量的分片,之后再增加就会非常艰难。 Redis 在 3.0 版本后会提供 Redis Cluster,因为功能受限在爱奇艺应用的不是很多,例如不支持显示跨 DC 部署和访问,读写只在主库上等。 我们某些业务场景下会使用 Redis 集群,例如数据库访问只发生在本 DC,我们会在 DC 内部进行 Cluster 部署。 但有些业务在使用的过程中还是想做 failover,如果集群故障可以切换到其他集群。根据这种情况我们做了一个 Proxy,读写都通过它来进行。写入数据时 Proxy 会做一个旁路,把新增的数据写在 Kafka 里,后台启用同步程序再把 Kafka 里的数据同步到其他集群,但存在一些限制,比如我们没有做冲突检测,所以集群间数据需要业务的同学做单元化。线上环境的Redis Cluster 集群间场景跨 DC 同步 需要 50 毫秒左右的时间。 2、Couchbase在爱奇艺的使用 Redis 虽然提供 Cluster 这种部署方式,但存在一些问题。所以数据量较大的时候(经验是 160G),就不推荐 Redis 了,而是采用另一种存储方式 Couchbase。 Couchbase 在国内互联网公司用的比较少,一开始我们是把他当做一个 Memcached 来使用的,即纯粹的缓存系统。 但其实它性能还是比较强大的,是一个分布式高性能的 KV 系统,支持多种存储引擎 (bucket)。第一种是 Memcached bucket,使用方式和 Memcached 一样为 KV 存储,不支持数据持久化也没有数据副本,如果节点故障会丢失数据; 第二种是 Couchbase bucket,支持数据持久化,使用 Json 写入,有副本,我们一般会在线上配置两个副本,如果新加节点会对数据进行 rebalance,爱奇艺使用的一般是 Couchbase bucket 这种配置。 Couchbase 数据的分布如下图,数据写入时在客户端上会先进行一次哈希运算,运算完后会定位 Key 在哪一个 vBucket (相当于数据库里的某个分片)。之后客户端会根据 Cluster Map 发送信息至对应的服务端,客户端的 Cluster Map 保存的是 vBucket 和服务器的映射关系,在服务端数据迁移的过程中客户端的 Cluster Map 映射关系会动态更新,因此客户端对于服务端的 failover 操作不需要做特殊处理,但可能在 rebalance 过程中会有短暂的超时,导致的告警对业务影响不大。 Couchbase 在爱奇艺应用比较早,2012 年还没有 Redis Cluster 的时候就开始使用了。集群管理使用 erlang 语言开发,最大功能是进行集群间的复制,提供多种复制方式:单向、双向、星型、环式、链式等。 爱奇艺从最初的 1.8 版本使用到如今的 5.0 版本,正在调研的 6.0,中间也遇到了很多坑,例如 NTP 时间配置出错会导致崩溃,如果每个集群对外 XDCR 并发过高导致不稳定,同步方向变更会导致数据丢失等等,我们通过运维和一些外部工具来进行规避。 Couchbase 的集群是独立集群,集群间的数据同步通过 XDCR,我们一般配置为双向同步。对于业务来说,如果 Cluster 1 写入, Cluster 2 不写入,正常情况下客户端会写 Cluster 1。如果 Cluster 1 有故障,我们提供了一个 Java SDK,可以在配置中心把写入更改到 Cluster 2,把原来到 Cluster 1 的连接逐步断掉再与Cluster 2 新建连接。这种集群 failover 的过程对于客户端来说是相对透明和无感的。 3、爱奇艺自研数据库HiKV的使用 Couchbase 虽然性能非常高,并且数据的存储可以超过内存。但是,如果数据量超过内存 75% 这个阈值,性能就会下降地特别快。在爱奇艺,我们会把数据量控制在可用内存的范围之内,当做内存数据库使用。但是它的成本非常高,所以我们后面又开发了一个新的数据库—— HiKV。 开发 HiKV 的目的是为了把一些对性能要求没那么高的 Couchbase 应用迁移到 HiKV 上。HiKV 基于开源系统 ScyllaDB,主要使用了其分布式数据库的管理功能,增加了单机存储引擎 HiKV。 ScyllaDB 比较吸引人的是它宣称性能高于 Cassandra 十倍,又完全兼容 Cassandra 接口,设计基本一致,可以视为 C++ 版 Cassandra 系统。 ScyllaDB 性能的提升主要是使用了一些新的技术框架,例如 C++ 异步框架 seastar,主要原理是在j每台物理机的核上会 attach 一个应用线程,每个核上有自己独立的内存、网络、IO 资源,核与核之间没有数据共享但可以通信,其最大的好处是内存访问无锁,没有冲突过程。 当一个数据读或写到达 ScyllaDB 的 server 时,会按照哈希算法来判断请求的 Key 是否是该线程需要处理的,如果是则本线程处理,否则会转发到对应线程上去。 除此之外,它还支持多副本、多数据中心、多写多活,功能比较强大。 在爱奇艺,我们基于 SSD 做了一个 KV 存储引擎。Key 放在内存里,Value 放在盘上的文件里,我们在读和写文件时,只需要在内存索引里定位,再进行一次盘的 IO 开销就可以把数据读出来,相比 ScyllaDB 原本基于 LSM Tree 的存储引擎方式对 IO 的开销较少。 索引数据全部放在内存中,如果索引长度较长会限制单机可存储的数据量,于是我们通过开发定长的内存分布器,对于比较长的 Key 做摘要缩短长度至 20 字节,采用红黑树索引,限制每条记录在内存里的索引长度至为 64 字节。内存数据要定期做 checkpoint,客户端要做限流、熔断等。 HiKV 目前在爱奇艺应用范围比较大,截至目前已经替换了 30% 的 Couchbase,有效地降低了存储成本。 4、爱奇艺的数据库运维管理 爱奇艺数据库种类较多,如何高效地运维和管理这些数据库也是经历了不同的阶段。 最初我们通过 DBA 写脚本的方式管理,如果脚本出问题就找 DBA,导致了 DBA 特别忙碌。 第二个阶段我们考虑让大家自己去查问题的答案,于是在内部构建了一个私有云,通过 Web 的方式展示数据库运行状态,让业务的同学可以自己去申请集群,一些简单的操作也可以通过自服务平台实现,解放了 DBA。一些需要人工处理的大型运维操作经常会造成一些人为故障,敲错参数造成数据丢失等。 于是在第三个阶段我们把运维操作 Web 化,通过网页点击可以进行 90% 的操作。 第四个阶段让经验丰富的 DBA 把自身经验变成一些工具,比如有业务同学说 MySQL master-slave 延时了,DBA 会通过一系列操作排查问题。现在我们把这些操作串起来形成一套工具,出问题时业务的同学可以自己通过网页上的一键诊断工具去排查,自助进行处理。 除此之外我们还会定期做预警检查,对业务集群里潜在的问题进行预警报告;开发智能客服,回答问题;通过监控的数据对实例打标签,进行削峰填谷地智能调度,提高资源利用率。 三、不同场景下数据库选型建议 1、实用数据库选型树 最后来说一些具体数据库选型建议。这是 DBA 和业务一起,通过经验得出来的一些结论。 对于关系型数据库的选型来说,可以从数据量和扩展性两个维度考虑,再根据数据库有没有冷备、要不要使用 Toku 存储引擎,要不要使用 Proxy 等等进行抉择。 NoSQL 也是什么情况下使用 master-slave,什么情况下使用客户端分片、集群、Couchbase、HiKV 等,我们内部自服务平台上都有这个选型树信息。 2、一些思考 ① 需求 我们在选型时先思考需求,判断需求是否真实。 你可以从数据量、QPS、延时等方面考虑需求,但这些都是真实需求吗?是否可以通过其他方式把这个需求消耗掉,例如在数据量大的情况下可以先做数据编码或者压缩,数据量可能就降下来了。 不要把所有需求都推到数据库层面,它其实是一个兜底的系统。 ② 选择 第二个思考的点是对于某个数据库系统或是某个技术选型我们应该考虑什么?是因为热门吗?还是因为技术上比较先进?但是不是能真正地解决你的问题?如果你数据量不是很大的话就不需要选择可以存储大数据量的系统。 ③ 放弃 第三是放弃,当你放弃一个系统时真的是因为不好用吗?还是没有用好?放弃一个东西很难,但在放弃时最好有一个充分的理由,包括实测的结果。 ④ 自研 第四是自研,在需要自己开发数据库时可以参考和使用一些成熟的产品,但不要盲目自研。 ⑤ 开源 最后是开源,要有拥抱开源的态度。
茶什i 2019-12-27 14:17:56 0 浏览量 回答数 0
阿里云企业服务平台 陈四清的老板信息查询 上海奇点人才服务相关的云产品 爱迪商标注册信息 安徽华轩堂药业的公司信息查询 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 天籁阁商标注册信息 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 北京芙蓉天下的公司信息查询