• 关于 学习机制是啥 的搜索结果

问题

关于Android中Handler和Looper机制的两个问题

爵霸 2019-12-01 19:54:04 844 浏览量 回答数 1

问题

objective-c对内存管理的疑问

a123456678 2019-12-01 20:27:07 778 浏览量 回答数 1

回答

代表你的基础已经很好了,嵌入式学习相关的基础知识主要是这些: 一是程序设计的基础,例如:基本的编程语言基础,至少对数据类型、程序的结构及流程控制等最基本的内容要相当清楚,所以建议恶补一下C语言,推荐谭浩强的C语言程序设计,好好看一下,呵呵。另外有不少同学都问到数据结构的基础,我一直认为数据结构和算法的学习是帮助形成程序设计逻辑思维的很好训练方式,对于程序员的长期专业素养的提高一定有好处,所以建议即使已经在嵌入式行业中工作之后也应该多补充一些相关的知识。许多在学校没有学过数据结构的同学往往认为这部分非常枯燥、难学。而实际上如果你能明白研究计算机存储和数据组织方式的意义,就一定能够充分体会到数据结构的价值和魅力。一旦兴趣有了,一切就会迎刃而解,呵呵。 二是操作系统工作原理,这部分往往是非计算机专业的同学在学校时没有接触过的。而由于嵌入式软件设计相关的多任务环境、模块间的同步与通信协同、驱动设计等往往都需要有对操作系统工作机制的了解和掌握作为基础,因此建议没有系统学习过的同学,找一本相关的操作系统工作原理书籍认真看一下(不用特厚、特专业、特内核的,先以普及知识为主,呵呵。)。 三是基本的硬件基础,由于嵌入式Linux开发往往是ARM+Linux路线,所以为了能够在后续学习过程中很好地掌握主流嵌入式微处理器的结构与原理(例如:ARM9),就需要对硬件工作原理有初步的了解和掌握,建议看一下诸如计算机组成原理、体系结构等相关的专业书籍。 要深入学习你可以尝试以下路线: (1) C语言是所有编程语言中的强者,单片机、DSP、类似ARM的种种芯片的编程都可以用C语言搞定),因此必须非常熟练的掌握。 推荐书籍:《The C Programming Language》 这本经典的教材是老外写的,也有中译版本。 (2) 操作系统原理,是必需的,如果你是计算机专业毕业那也就无所谓了,如果是非计算机专业的就必须找一本比较浅显的计算机原理书籍看一看,把啥叫“进程”“线程”“系统调度”等等基本问题搞清楚。 (3)Linux操作系统就是用C语言编写的,所以你也应该先学习下Linux方面的编程,只有你会应用了,才能近一步去了解其内核的精髓。 推荐书籍:《UNIX环境高级编程》(第2版) (4) 了解ARM的架构,原理,以及其汇编指令,我们在嵌入式开发中,一般很少去写汇编,但是最起码的要求是能够看懂arm汇编。 (5) 系统移植的时候,就需要你从最下层的bootloader开始,然后内核移植,文件系统移植等。而移植这部分对硬件的依赖是非常大的,其配置步骤也相对复杂,也没有太多详细资料。 (6) 驱动开发 linux驱动程序设计既是个极富有挑战性的领域,又是一个博大精深的内容。 linux驱动程序设计本质是属于linux内核编程范畴的,因而是对linux内核和内核编程是有要求的。在学习前你要想了解linux内核的组成,因为每一部分要详细研究的话足够可以扩展成一本厚书。 以上只不过是大概的框架,在实际的开发中还会涉及很多东西,比如:交叉编译、makefile、shell脚本等等,所以说学习嵌入式的周期较长,门槛较高,自学的话更是需要较强的学习能力和专业功底。只要能坚持下来一定会取得成功。 华清远见的嵌入式专业教材比较专业,也很出名,高校图书馆以及外面书店都有卖,你可以去网上搜一下,买本看看,华清远见的网站和技术论坛上面也有很多嵌入式学习资料和视频可以下载,而且更新的速度也很快,LZ没事可以去转转,相信对你会有帮助。 另外,虚机团上产品团购,超级便宜-------------------------推荐使用:Linux 高级程序设计(第二版)杨宗德 邓玉春编著 这本书不仅讲述linux常使用的函数,同时对整体的系统结构分析都比较好,例如内存管理,多进程等等

琴瑟 2019-12-02 01:19:56 0 浏览量 回答数 0

新用户福利专场,云服务器ECS低至96.9元/年

新用户福利专场,云服务器ECS低至96.9元/年

回答

第一:要了解最新的前端趋势比如 Micro Frontends、omi、Houdini、CSS Scroll Snap Points、React Suspense、Hooks、quicklink、Workbox、Angular8 Lvy 等等。 第二:同时还要熟练掌握现在流行的前端技术如 Webpack、React、Vue、ES9、Angular、KOA、TS、Three 等等。 第三:如果你是普通公司,你就每天实打实,脑子里不要考虑做轮子哥(原因——轮子太多了Parcel、Moon、hyperapp.js、Fastify…),但是一定要理解内部机制是怎么样的,要理解后面的东西,不是天天一顿摆 API。 因为现在前端的面试基本都是原理!原理!原理!即便现在行情是面试造火箭,入职钉钉子。 第四:我有个习惯,就是每隔一段时间就回去看一波招聘的 JD 和面经,并不是为了跳槽,而是关注一下最近大家都需要什么样的人才,需要补充自己哪方面的知识。知己知彼,方能百战百胜!平日里还喜欢逛技术论坛,看看大家都在玩啥黑科技。有什么技术沙龙偶尔也去参加一下,得时刻关注技术的发展,学习大厂的解决方案。 最后:建议大家一定要把 Node.Js 要研究透彻,这才是真材实料的硬货。 看到这里,如果你还是懵的话,以下是更详细的 5 点建议: 要学会 C|C++(Webkit、Libuv 等等后面也会用到)。天下武功出少林,天下语言爹是 C。 最早讨论的经典思想—OOP 到 AOP 再到 Functional,个人建议先学思想再学框架。还有 NodeJs 中三个特别有意思的框架 Nest(NodeJs 版本的 Spring)、Nuxt 和 Next(Vue&React 的 SSR),有没有也傻傻分不清楚。 在强调一次至少会一门正统的语言,比如:JAVA、NET 等。 项目,一定要做有质量的,有些技术没有条件创建条件也要用。只有把技术用到项目中去,才能让你醍醐灌顶,光学不干等于耍流氓。 多读书,一本好书就像高级武功秘籍一样。哪怕是从里面领悟一招半式,功力提升起来都是惊人的。

茶什i 2019-12-02 03:23:51 0 浏览量 回答数 0

问题

【精品问答】大数据技术问题之Flink百问

问问小秘 2019-12-01 21:59:43 7280 浏览量 回答数 1

回答

我主攻游戏后端,游戏中Excel数值配置表我都是转换为JavaBean使用的,数值配置表转javabean已有固定框架,不依赖spring系列。如有需要可以看看我的开源项目 kaka######答案还是给你把,excel毕竟是表格,而且是二进制文件吧,不同excel软件厂商的excel文件内部结构不一致,我比较担心的是用wps的excel编辑,到了微软的excel打开,再读取会不会抛出异常问题, 最后还是自己花了几个小时学习反射设置类属性知识,搭建了一个基于toml格式的配置文件的反射Bean配置工具类。######回复 @齿轮1 : 子对象需要配合注解注明转换器,将String转换为对象,比如 一个单元格里面配置多个道具,格式为:1001 #10;1002#5;1003 #8,“#”前面表示道具ID后面为道具数量,JavaBean注解中只要配置转化器将 1001#10 这种转换为子对象就可以,kaka框架中特别适合做数值配置解析,可能不适合你的情况。######子对象转换怎么办?这个若可以的话,那怎么在excel里表示子对象?,把子对象信息写在一个单元格里?###### 可以实现的,使用字节码加载机制,有现成的开源框架帮你,装载配置类###### java没有xml的库吗?.net有现成的###### xStream  xml转Java的bean对象###### 不喜欢xml,那么可以直接使用json。读取json文件,然后用json反序列化为类即可。十行代码就搞定了。######回复 @齿轮1 : 肯定行啊。######回复 @齿轮1 : 注释和运行时,有啥关系?######还有注释######json换行不行###### 引用来自“RippleChan”的评论 不喜欢xml,那么可以直接使用json。读取json文件,然后用json反序列化为类即可。十行代码就搞定了。 @RippleChan    如果Json要真的做配置文件,那得能配置多行字符串属性,还有单行注释和多行注释,key不能写双引号。比如下面这个   { info:" 这是一个换行的字符串 这是一个换行的字符串 " #单行注释 /# 多行注释 #/ asd:"", } 读取这种json格式的有现成框架么?######回复 @RippleChan : 但是无论如何,把文本弄成一行一行的,就变成传统字符串了。。最后拼接起来完事。######另外,json没有双引号,各种非主流。。图个啥。######注释很简单啊,你把每行读取到list<String>中,然后循环,如果以/#开头的话,就直接替换掉。如果是/#开头的话,那么就boolean isComment= true。遇到#/的后,isComment=false就好了。处理完成后,就是通用的json格式了。

kun坤 2020-06-07 13:48:27 0 浏览量 回答数 0

回答

个人觉得比较运行速度其实没啥意义, 因为两种语言都是生成 JVM 的字节码, 依赖 JVM 这个虚拟平台来跑代码. 除非 Scalac (scala的编译器) 有重大 bug, 生成的字节码执行让人无法接受, 否则基本上不会相差太多. 再说, scala 都到大版本2了, 这种概率实在是不大.相比较与 Java, 在下觉得 Scala 最主要的有以下两点优势:•FP 泛型支持 如果用多了 Spring 中大量的 template 接口, 你就会觉得 FP 其实还是蛮好用的.而这仅仅是 FP 好处的冰山一角.函数其实就是一个 input -> output (scala 也是这么表示一个函数的), 没有任何副作用, 与状态无关, 由于这种特性, 所以函数式的编程范式在分布式领域有很多好处 对于函数式编程,我的知识实在是皮毛, 但可以这么说, FP 相对与 OO 有哪些优势, Scala 对于 Java 差不多就有哪些优势.正因为 FP 有如此多的优势, 所以 Java8 才引入了 FP. 从某种程度上来说, Java 认可了 Scala 的做法.•类型系统支持 如果说 Java 是一种类型安全的语言, 那么毫无疑问, Scala 的类型更加安全, 从某种程度上说, Scala 的类型是图灵完备的, 而 Java 不是. 我的一位好朋友在这方面研究的比较深( http://hongjiang.info/scala/ ), 而我对与 Scala 的类型系统的理解, 也还是皮毛.正是以上这两点大优势, 造成了 Scala 比 Java 更加安全, 同时又具备灵活性, 想象力.•其他语言层面上的优势在 Java 中, 你是否有时很想继承多个 AbstractClass 呢? 对不起, Java 只支持单继承在 Scala 中, 你可以进行 mixin (Java 8 也开始引入 default method 了呢)在 Java 中, 想要一个 singleton ? 要么在 static block 中做, 要么利用 Enum 的单例特性完成, 或者其他更纠结的方法.在 Scala 中, 只要声明为 object, 即为单例.在 Java 中, 想要延迟加载一个单例? double check吧在 Scala 中, 只要在 object 中将变量修饰为 lazy 即可在 Java 中, 想要对集合进行一些操作? 使用一层一层的 for 循环吧在 Scala 中, 使用 collection 的一些集合操作, 即可获得如写SQL般的享受.在 Java 中, 在并发中想对Future进行回调? 对不起, Future 不是 Listenable (无法支持回调), 除非你使用额外的工具(如 guava, spring)在 Scala 中, 本来就主张异步编程, future 和 promise 的配合让人非常愉快.在 Java 中, 要透明扩展一个第三方库的类怎么办? 包装, 再加一层.在 Scala 中, 有强大的 implicit 机制让你更优雅的做到这一点, 同时还能保证类型安全(比起 Ruby 的 monkey patch, 要安全得多)•Scala 的表达力很强, 相同功能的代码, 用 Java 和 Scala 的行数不可同日而语.这些单单是语言层面上的优势, 除此之外, Scala 还能无缝结合 Java尽管罗列了如此多的好处, 但 Scala 有如下劣势:•语法复杂, 学习曲线非常高•国内 Scala 程序员很难找 (目前 Scala 的影响力也在缓慢扩大, 比如 Scala 社区中的明星 Spark 的流行也在慢慢拉动 Scala 的流行, 如同 rails 之于 ruby)•社区, 生态还比较小, Scala 风格的库还非常少(但可以和 Java 很容易的斜街很多时候弥补了这一点)对于程序员来说: Scala 很难学, 但值得学 对于企业来说: Scala 是过滤优秀(好学)程序员(Geek)的好滤斗.

蛮大人123 2019-12-02 01:55:25 0 浏览量 回答数 0

问题

【精品问答】大数据计算技术1000问

问问小秘 2019-12-01 21:57:13 3431 浏览量 回答数 1

回答

【Java问答学堂】13期 redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发? 面试官心理分析 这个是问 redis 的时候,最基本的问题吧,redis 最基本的一个内部原理和特点,就是 redis 实际上是个单线程工作模型,你要是这个都不知道,那后面玩儿 redis 的时候,出了问题岂不是什么都不知道? 还有可能面试官会问问你 redis 和 memcached 的区别,但是 memcached 是早些年各大互联网公司常用的缓存方案,但是现在近几年基本都是 redis,没什么公司用 memcached 了。 面试题剖析 redis 和 memcached 有啥区别? redis 支持复杂的数据结构 redis 相比 memcached 来说,拥有更多的数据结构,能支持更丰富的数据操作。如果需要缓存能够支持更复杂的结构和操作, redis 会是不错的选择。 redis 原生支持集群模式 在 redis3.x 版本中,便能支持 cluster 模式,而 memcached 没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据。 性能对比 由于 redis 只使用单核,而 memcached 可以使用多核,所以平均每一个核上 redis 在存储小数据时比 memcached 性能更高。而在 100k 以上的数据中,memcached 性能要高于 redis。虽然 redis 最近也在存储大数据的性能上进行优化,但是比起 memcached,还是稍有逊色。 redis 的线程模型 redis 内部使用文件事件处理器 file event handler,这个文件事件处理器是单线程的,所以 redis 才叫做单线程的模型。它采用 IO 多路复用机制同时监听多个 socket,将产生事件的 socket 压入内存队列中,事件分派器根据 socket 上的事件类型来选择对应的事件处理器进行处理。 文件事件处理器的结构包含 4 个部分: 多个 socketIO 多路复用程序文件事件分派器事件处理器(连接应答处理器、命令请求处理器、命令回复处理器) 多个 socket 可能会并发产生不同的操作,每个操作对应不同的文件事件,但是 IO 多路复用程序会监听多个 socket,会将产生事件的 socket 放入队列中排队,事件分派器每次从队列中取出一个 socket,根据 socket 的事件类型交给对应的事件处理器进行处理。 来看客户端与 redis 的一次通信过程: 要明白,通信是通过 socket 来完成的,不懂的同学可以先去看一看 socket 网络编程。 首先,redis 服务端进程初始化的时候,会将 server socket 的 AE_READABLE 事件与连接应答处理器关联。 客户端 socket01 向 redis 进程的 server socket 请求建立连接,此时 server socket 会产生一个 AE_READABLE 事件,IO 多路复用程序监听到 server socket 产生的事件后,将该 socket 压入队列中。文件事件分派器从队列中获取 socket,交给连接应答处理器。连接应答处理器会创建一个能与客户端通信的 socket01,并将该 socket01 的 AE_READABLE 事件与命令请求处理器关联。 假设此时客户端发送了一个 set key value 请求,此时 redis 中的 socket01 会产生 AE_READABLE 事件,IO 多路复用程序将 socket01 压入队列,此时事件分派器从队列中获取到 socket01 产生的 AE_READABLE 事件,由于前面 socket01 的 AE_READABLE 事件已经与命令请求处理器关联,因此事件分派器将事件交给命令请求处理器来处理。命令请求处理器读取 socket01 的 key value 并在自己内存中完成 key value 的设置。操作完成后,它会将 socket01 的 AE_WRITABLE 事件与命令回复处理器关联。 如果此时客户端准备好接收返回结果了,那么 redis 中的 socket01 会产生一个 AE_WRITABLE 事件,同样压入队列中,事件分派器找到相关联的命令回复处理器,由命令回复处理器对 socket01 输入本次操作的一个结果,比如 ok,之后解除 socket01 的 AE_WRITABLE 事件与命令回复处理器的关联。 这样便完成了一次通信。关于 Redis 的一次通信过程,推荐读者阅读《Redis 设计与实现——黄健宏》进行系统学习。 为啥 redis 单线程模型也能效率这么高? 纯内存操作。核心是基于非阻塞的 IO 多路复用机制。C 语言实现,一般来说,C 语言实现的程序“距离”操作系统更近,执行速度相对会更快。单线程反而避免了多线程的频繁上下文切换问题,预防了多线程可能产生的竞争问题。 往期回顾: 【Java问答学堂】1期 为什么使用消息队列?消息队列有什么优点和缺点?Kafka、ActiveMQ、RabbitMQ、RocketMQ 都有什么区别,以及适合哪些场景? 【Java问答学堂】2期 如何保证消息队列的高可用? 【Java问答学堂】3期 如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性? 【Java问答学堂】4期 如何保证消息的可靠性传输?(如何处理消息丢失的问题?) 【Java问答学堂】5期 如何保证消息的顺序性? 【Java问答学堂】6期 如何解决消息队列的延时以及过期失效问题? 【Java问答学堂】7期 如果让你写一个消息队列,该如何进行架构设计? 【Java问答学堂】8期 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)? 【Java问答学堂】9期 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊? 【Java问答学堂】10期 es 在数据量很大的情况下(数十亿级别)如何提高查询效率啊? 【Java问答学堂】11期 es 生产集群的部署架构是什么?每个索引的数据量大概有多少? 【Java问答学堂】12期 项目中缓存是如何使用的?为什么要用缓存?缓存使用不当会造成什么后果?

剑曼红尘 2020-05-06 14:37:53 0 浏览量 回答数 0

问题

【Java问答学堂】13期 redis 和 memcached 有什么区别?

剑曼红尘 2020-05-06 14:37:41 0 浏览量 回答数 1

问题

Redis 和 Memcached 的区别?Redis 的线程模型是什么?【Java问答学堂】31期

剑曼红尘 2020-06-03 20:28:14 28 浏览量 回答数 1

回答

前言 这期我想写很久了,但是因为时间的原因一直拖到了现在,我以为一两天就写完了,结果从构思到整理资料,再到写出来用了差不多一周的时间吧。 你们也知道丙丙一直都是创作鬼才来的,所以我肯定不会一本正经的写,我想了好几个切入点,最后决定用一个完整的电商系统作为切入点,带着大家看看,我们需要学些啥,我甚至还收集配套视频和资料,暖男石锤啊,这期是呕心沥血之作,不要白嫖了。 正文 在写这个文章之前,我花了点时间,自己臆想了一个电商系统,基本上算是麻雀虽小五脏俱全,我今天就用它开刀,一步步剖析,我会讲一下我们可能会接触的技术栈可能不全,但是够用,最后给个学习路线。 Tip:请多欣赏一会,每个点看一下,看看什么地方是你接触过的,什么技术栈是你不太熟悉的,我觉得还算是比较全的,有什么建议也可以留言给我。 不知道大家都看了一下没,现在我们就要庖丁解牛了,我从上到下依次分析。 前端 你可能会会好奇,你不是讲后端学习路线嘛,为啥还有前端的部分,我只能告诉你,傻瓜,肤浅。 我们可不能闭门造车,谁告诉你后端就不学点前端了? 前端现在很多也了解后端的技术栈的,你想我们去一个网站,最先接触的,最先看到的是啥? 没错就是前端,在大学你要是找不到专门的前端同学,去做系统肯定也要自己顶一下前端的,那我觉得最基本的技术栈得熟悉和了解吧,丙丙现在也是偶尔会开发一下我们的管理系统主要是VUE和React。 在这里我列举了我目前觉得比较简单和我们后端可以了解的技术栈,都是比较基础的。 作为一名后端了解部分前端知识还是很有必要的,在以后开发的时候,公司有前端那能帮助你前后端联调更顺畅,如果没前端你自己也能顶一下简单的页面。 HTML、CSS、JS、Ajax我觉得是必须掌握的点,看着简单其实深究或者去操作的话还是有很多东西的,其他作为扩展有兴趣可以了解,反正入门简单,只是精通很难很难。 在这一层不光有这些还有Http协议和Servlet,request、response、cookie、session这些也会伴随你整个技术生涯,理解他们对后面的你肯定有不少好处。 Tip:我这里最后删除了JSP相关的技术,我个人觉得没必要学了,很多公司除了老项目之外,新项目都不会使用那些技术了。 前端在我看来比后端难,技术迭代比较快,知识好像也没特定的体系,所以面试大厂的前端很多朋友都说难,不是技术多难,而是知识多且复杂,找不到一个完整的体系,相比之下后端明朗很多,我后面就开始讲后端了。 网关层: 互联网发展到现在,涌现了很多互联网公司,技术更新迭代了很多个版本,从早期的单机时代,到现在超大规模的互联网时代,几亿人参与的春运,几千亿成交规模的双十一,无数互联网前辈的造就了现在互联网的辉煌。 微服务,分布式,负载均衡等我们经常提到的这些名词都是这些技术在场景背后支撑。 单机顶不住,我们就多找点服务器,但是怎么将流量均匀的打到这些服务器上呢? 负载均衡,LVS 我们机器都是IP访问的,那怎么通过我们申请的域名去请求到服务器呢? DNS 大家刷的抖音,B站,快手等等视频服务商,是怎么保证同时为全国的用户提供快速的体验? CDN 我们这么多系统和服务,还有这么多中间件的调度怎么去管理调度等等? zk 这么多的服务器,怎么对外统一访问呢,就可能需要知道反向代理的服务器。 Nginx 这一层做了反向负载、服务路由、服务治理、流量管理、安全隔离、服务容错等等都做了,大家公司的内外网隔离也是这一层做的。 我之前还接触过一些比较有意思的项目,所有对外的接口都是加密的,几十个服务会经过网关解密,找到真的路由再去请求。 这一层的知识点其实也不少,你往后面学会发现分布式事务,分布式锁,还有很多中间件都离不开zk这一层,我们继续往下看。 服务层: 这一层有点东西了,算是整个框架的核心,如果你跟我帅丙一样以后都是从事后端开发的话,我们基本上整个技术生涯,大部分时间都在跟这一层的技术栈打交道了,各种琳琅满目的中间件,计算机基础知识,Linux操作,算法数据结构,架构框架,研发工具等等。 我想在看这个文章的各位,计算机基础肯定都是学过的吧,如果大学的时候没好好学,我觉得还是有必要再看看的。 为什么我们网页能保证安全可靠的传输,你可能会了解到HTTP,TCP协议,什么三次握手,四次挥手。 还有进程、线程、协程,什么内存屏障,指令乱序,分支预测,CPU亲和性等等,在之后的编程生涯,如果你能掌握这些东西,会让你在遇到很多问题的时候瞬间get到点,而不是像个无头苍蝇一样乱撞(然而丙丙还做得不够)。 了解这些计算机知识后,你就需要接触编程语言了,大学的C语言基础会让你学什么语言入门都会快点,我选择了面向对象的JAVA,但是也不知道为啥现在还没对象。 JAVA的基础也一样重要,面向对象(包括类、对象、方法、继承、封装、抽象、 多态、消息解析等),常见API,数据结构,集合框架,设计模式(包括创建型、结构型、行为型),多线程和并发,I/O流,Stream,网络编程你都需要了解。 代码会写了,你就要开始学习一些能帮助你把系统变得更加规范的框架,SSM可以会让你的开发更加便捷,结构层次更加分明。 写代码的时候你会发现你大学用的Eclipse在公司看不到了,你跟大家一样去用了IDEA,第一天这是什么玩意,一周后,真香,但是这玩意收费有点贵,那免费的VSCode真的就是不错的选择了。 代码写的时候你会接触代码的仓库管理工具maven、Gradle,提交代码的时候会去写项目版本管理工具Git。 代码提交之后,发布之后你会发现很多东西需要自己去服务器亲自排查,那Linux的知识点就可以在里面灵活运用了,查看进程,查看文件,各种Vim操作等等。 系统的优化很多地方没优化的空间了,你可能会尝试从算法,或者优化数据结构去优化,你看到了HashMap的源码,想去了解红黑树,然后在算法网上看到了二叉树搜索树和各种常见的算法问题,刷多了,你也能总结出精华所在,什么贪心,分治,动态规划等。 这么多个服务,你发现HTTP请求已经开始有点不满足你的需求了,你想开发更便捷,像访问本地服务一样访问远程服务,所以我们去了解了Dubbo,Spring cloud。 了解Dubbo的过程中,你发现了RPC的精华所在,所以你去接触到了高性能的NIO框架,Netty。 代码写好了,服务也能通信了,但是你发现你的代码链路好长,都耦合在一起了,所以你接触了消息队列,这种异步的处理方式,真香。 他还可以帮你在突发流量的时候用队列做缓冲,但是你发现分布式的情况,事务就不好管理了,你就了解到了分布式事务,什么两段式,三段式,TCC,XA,阿里云的全局事务服务GTS等等。 分布式事务的时候你会想去了解RocketMQ,因为他自带了分布式事务的解决方案,大数据的场景你又看到了Kafka。 我上面提到过zk,像Dubbo、Kafka等中间件都是用它做注册中心的,所以很多技术栈最后都组成了一个知识体系,你先了解了体系中的每一员,你才能把它们联系起来。 服务的交互都从进程内通信变成了远程通信,所以性能必然会受到一些影响。 此外由于很多不确定性的因素,例如网络拥塞、Server 端服务器宕机、挖掘机铲断机房光纤等等,需要许多额外的功能和措施才能保证微服务流畅稳定的工作。 **Spring Cloud **中就有 Hystrix 熔断器、Ribbon客户端负载均衡器、Eureka注册中心等等都是用来解决这些问题的微服务组件。 你感觉学习得差不多了,你发现各大论坛博客出现了一些前沿技术,比如容器化,你可能就会去了解容器化的知识,像**Docker,Kubernetes(K8s)**等。 微服务之所以能够快速发展,很重要的一个原因就是:容器化技术的发展和容器管理系统的成熟。 这一层的东西呢其实远远不止这些的,我不过多赘述,写多了像个劝退师一样,但是大家也不用慌,大部分的技术都是慢慢接触了,工作中慢慢去了解,去深入的。 好啦我们继续沿着图往下看,那再往下是啥呢? 数据层: 数据库可能是整个系统中最值钱的部分了,在我码文字的前一天,刚好发生了微盟程序员删库跑路的操作,删库跑路其实是我们在网上最常用的笑话,没想到还是照进了现实。 这里也提一点点吧,36小时的故障,其实在互联网公司应该是个笑话了吧,权限控制没做好类似rm -rf 、fdisk、drop等等这样的高危命令是可以实时拦截掉的,备份,全量备份,增量备份,延迟备份,异地容灾全部都考虑一下应该也不至于这样,一家上市公司还是有点点不应该。 数据库基本的事务隔离级别,索引,SQL,主被同步,读写分离等都可能是你学的时候要了解到的。 上面我们提到了安全,不要把鸡蛋放一个篮子的道理大家应该都知道,那分库的意义就很明显了,然后你会发现时间久了表的数据大了,就会想到去接触分表,什么TDDL、Sharding-JDBC、DRDS这些插件都会接触到。 你发现流量大的时候,或者热点数据打到数据库还是有点顶不住,压力太大了,那非关系型数据库就进场了,Redis当然是首选,但是MongoDB、memcache也有各自的应用场景。 Redis使用后,真香,真快,但是你会开始担心最开始提到的安全问题,这玩意快是因为在内存中操作,那断点了数据丢了怎么办?你就开始阅读官方文档,了解RDB,AOF这些持久化机制,线上用的时候还会遇到缓存雪崩击穿、穿透等等问题。 单机不满足你就用了,他的集群模式,用了集群可能也担心集群的健康状态,所以就得去了解哨兵,他的主从同步,时间久了Key多了,就得了解内存淘汰机制…… 他的大容量存储有问题,你可能需要去了解Pika…. 其实远远没完,每个的点我都点到为止,但是其实要深究每个点都要学很久,我们接着往下看。 实时/离线/大数据 等你把几种关系型非关系型数据库的知识点,整理清楚后,你会发现数据还是大啊,而且数据的场景越来越多多样化了,那大数据的各种中间件你就得了解了。 你会发现很多场景,不需要实时的数据,比如你查你的支付宝去年的,上个月的账单,这些都是不会变化的数据,没必要实时,那你可能会接触像ODPS这样的中间件去做数据的离线分析。 然后你可能会接触Hadoop系列相关的东西,比如于Hadoop(HDFS)的一个数据仓库工具Hive,是建立在 Hadoop 文件系统之上的分布式面向列的数据库HBase 。 写多的场景,适合做一些简单查询,用他们又有点大材小用,那Cassandra就再合适不过了。 离线的数据分析没办法满足一些实时的常见,类似风控,那Flink你也得略知一二,他的窗口思想还是很有意思。 数据接触完了,计算引擎Spark你是不是也不能放过…… 搜索引擎: 传统关系型数据库和NoSQL非关系型数据都没办法解决一些问题,比如我们在百度,淘宝搜索东西的时候,往往都是几个关键字在一起一起搜索东西的,在数据库除非把几次的结果做交集,不然很难去实现。 那全文检索引擎就诞生了,解决了搜索的问题,你得思考怎么把数据库的东西实时同步到ES中去,那你可能会思考到logstash去定时跑脚本同步,又或者去接触伪装成一台MySQL从服务的Canal,他会去订阅MySQL主服务的binlog,然后自己解析了去操作Es中的数据。 这些都搞定了,那可视化的后台查询又怎么解决呢?Kibana,他他是一个可视化的平台,甚至对Es集群的健康管理都做了可视化,很多公司的日志查询系统都是用它做的。 学习路线 看了这么久你是不是发现,帅丙只是一直在介绍每个层级的技术栈,并没说到具体的一个路线,那是因为我想让大家先有个认知或者说是扫盲吧,我一样用脑图的方式汇总一下吧,如果图片被平台二压了。 资料/学习网站 Tip:本来这一栏有很多我准备的资料的,但是都是外链,或者不合适的分享方式,博客的运营小姐姐提醒了我,所以大家去公众号回复【路线】好了。 絮叨 如果你想去一家不错的公司,但是目前的硬实力又不到,我觉得还是有必要去努力一下的,技术能力的高低能决定你走多远,平台的高低,能决定你的高度。 如果你通过努力成功进入到了心仪的公司,一定不要懈怠放松,职场成长和新技术学习一样,不进则退。 丙丙发现在工作中发现我身边的人真的就是实力越强的越努力,最高级的自律,享受孤独(周末的歪哥)。 总结 我提到的技术栈你想全部了解,我觉得初步了解可能几个月就够了,这里的了解仅限于你知道它,知道他是干嘛的,知道怎么去使用它,并不是说深入了解他的底层原理,了解他的常见问题,熟悉问题的解决方案等等。 你想做到后者,基本上只能靠时间上的日积月累,或者不断的去尝试积累经验,也没什么速成的东西,欲速则不达大家也是知道的。 技术这条路,说实话很枯燥,很辛苦,但是待遇也会高于其他一些基础岗位。 所实话我大学学这个就是为了兴趣,我从小对电子,对计算机都比较热爱,但是现在打磨得,现在就是为了钱吧,是不是很现实?若家境殷实,谁愿颠沛流离。 但是至少丙丙因为做软件,改变了家庭的窘境,自己日子也向小康一步步迈过去。 说做程序员改变了我和我家人的一生可能夸张了,但是我总有一种下班辈子会因为我选择走这条路而改变的错觉。 我是敖丙,一个在互联网苟且偷生的工具人。 创作不易,本期硬核,不想被白嫖,各位的「三连」就是丙丙创作的最大动力,我们下次见! 本文 GitHub https://github.com/JavaFamily 已经收录,有大厂面试完整考点,欢迎Star。 该回答来自:敖丙

剑曼红尘 2020-03-06 11:35:37 0 浏览量 回答数 0

问题

我们为什么需要HBase?

pandacats 2019-12-23 10:02:07 2 浏览量 回答数 1

回答

在校生要找到好工作,主要靠几个光环,学校光环、竞赛光环、项目光环、实习光环。其中项目经验尤为重要。有些同学就有疑问了: “我校招没offer,没有项目经验,是不是要报个培训班?” “我转行计算机,是不是应该报个班?” “我也想自学,可怎么学啊,选哪个方向啊?” 对于有些同学,当我还在想办法劝他自学时,给我贴出了培训班的广告词,真可谓,人有多大胆,口号就有多不要脸: “0基础入学,三个月包就业” “毕业月入不过万,不收学费” “从前是你找工作,接下来是工作找你” 当我推荐某些同学去培训时,又给咔咔咔亮出了几个帖子,说培训出来的受歧视啊、有些同学培训出来还是找不到工作啊,等等。 其实,选择自学还是培训是看自身情况而定,无论选择自学还是培训,都只是入门的一种手段,各有优劣势,本文就详细说说自学/培训怎么选,选择以后怎么办,记得帮我点赞哦。   目录: 自学还是培训,怎么选? 自学怎么学? 培训班到底在培训什么? 有些企业歧视培训班学员,培训班的问题到底出在哪? 一些建议 一、自学还是培训,怎么选? 无论你是什么学历、有没有计算机基础,这些都不是决定你适合自学的条件,具备如下三个条件的人都可以选择自学: (1)、时间充足 如果说从零基础靠自学达到找工作的水平,需要多久呢?我觉得至少一年,有的人可能需要两年。所以,如果你是大一、大二、大三的学生,你还有时间,可以选择自学。如果你是已经工作的,想转行计算机,可以边工作边学习,这个过程会比较辛苦,但也不是绝对不可行。 对于大四的同学,以就业为导向,建议你去培训。不可否认,培训是最快入门的方式,对于时间不足的同学而言,培训是最优解。同样地,如果你是已工作的,不存在财务压力,我同样建议你去培训,工作后的时间很珍贵,比不上在校期间有大把时间可以浪费,如果做好了必转的决心,以最快速度转行才是最优解。 (2)、自控力强 能管得住自己,自己定的目标能想尽一切办法实现的同学,真不多,能占人群中1/4已经不错了。 有些人学了半小时就会累,休息一会,就成这样: 我见过太多的半途而废的同学,也见过太多自己安慰自己式的学习方式,但就业就是一个试金石,你这段时间的努力有没有回报,去找工作的时候,就水落石出。 如果在自律这方面不太行的话,可以看下这篇文章,《启舰:你是怎么变自律的?》,找到自已的驱动器,完成自己的梦想。 (3)、具备高中以上学历 计算机本身是数学家发明的,或多或少会用到一些基本的数学知识、经常用到的很多算法都是数学知识的延伸,没有基本的数学功底,自学确实很难。 至于英语阅读能力还好说,只要会用有道词典,不会的去搜去看,总会读懂的,而且入门级的文献和视频中文版的资料已足够你入门,英语应该不是太大的问题。 如果你这三点都满足,恭喜你,你具有了自学的基础,可以选择自学。 二、自学怎么学? 1、选定一个方向 首先,我们选择方向的目的是什么?不就是为了找份工作吗?那直接到招聘类网站去搜下相关的岗位数量及要求不就好了,哪个数量多,自己也喜欢,那就选这个即可。 其次,如果是大三、大四即将毕业的同学,想知道最近哪个岗位好找工作的话。还可以看看很多培训机构的培训内容,现在很多培训机构都声称保就业,真的以为,培训几个月能培训出朵花来吗?不可能的,编程是个需要长期训练的活,几个月的培训,仅是入门而已,入门的水平能保证找份工作,就靠的是这个岗位门槛低,需求大,好找工作。 如果实在不知道选什么,我帮你找几个方向:python、java后端、Html5就业岗位都挺多,就业门槛低,相对好就业,如果也有其它方向推荐,大家可以留言。 2、找到几套视频教材 在入门时强烈不建议跟着书学 第一,不一定能看得懂 第二,书本的知识不成体系,入门有入门的书,进阶有进阶的书,实战有实战的书,需要自己去选择,本身就不是一件易事。 第三,视频可以看到老师的操作,而书本全靠自己摸 现在某某培训班的入门、进阶、实战的系列视频不要太好找,找到这么两套视频,对比着看,或者跟着一套视频深入看,来得更容易。人家培训班安排好的路线跟着学,不懂的自己搜,就已经排除了自已给自己安排路线的难点,况且人家本身就是面向就业的,培训出来的同学能保就业,只要你能跟着学通学会,自然找到工作也不是问题。 我精心整理了计算机各个方向的从入门、进阶、实战的视频课程和电子书,都是技术学习路上必备的经验,跟着视频学习是进步最快的,而且所有课程都有源码,直接跟着去学!!! 只要关注微信公众号【启舰杂谈】后回复你所需方向的关键字即可,比如『Android』、『java』、『ReactNative』、『H5』、『javaweb』、『面试』、『机器学习』、『web前端』、『设计模式』等关键字获取对应资料。(所有资料免费送,转发宣传靠大家自愿) 视频内容非常多,总共2184G、一千六百多册电子书,九百多套视频教程,涉及43个方向。我整理了很长时间,有些资料是靠买的,希望大家能最快的提升自己。帮我点个赞吧。 启舰:全网2184G计算机各方向视频教程/电子书汇总(持续更新中)​   3、自学,除了知识,你还能学到什么? 自学的缺点很明显: 第一:速度慢,所有进度完全靠自己把控,没有氛围 第二:遇到问题需要自己解决,无人请教 那优点恰恰是从这些缺点中磨练出来的,进度靠自己把握,完全磨练了你的意志力。而所有问题靠自己解决,恰恰培养了你的解决问题的能力。 而这些能力都是培训班教不出来的、无法速成的。而这些能力却是真正的开发高手所必备的 问题定义、分析与设计阶段,这是最需要智商、创造力和经验的阶段,真正的开发高手,就是在这一阶段体现出远超普通人的水平,而在这一阶段所需要的能力,对不起,培训班教不出来,也无法速成,只能靠人自己的努力,慢慢地培养和增强。 4、自学建议 (1)、多做笔记、多复习 刚开始学习时,很难,真的很难。很多东西听不懂,很多东西需要自己搜,自己定的进度很可能完不成。 没关系,坚持下去,都是这么过来的。我刚开始自学的时候,也是无数次想死的冲动…… 学会做笔记,把自己学到的东西及时记下来,形成目录,在后面用到的时候,根据笔记再去看一遍,刚开始经常会出现,听得懂,跟着学会,自己弄就不会的现象。这都是正常的,技术本就是个熟能生巧的过程。 多动手,多总结,就慢慢熟练了。 (2)、多写代码!听得懂、看得懂,并没什么用 入门级知识,本就是语法和框架的熟悉过程,说到底就是工具的使用方法熟悉的过程。既然是工具,那就必然要多用。熟能生巧,指的是用的熟。很多同学看的懂,听的会,自己一下手就问题百出,就是练的少! (3)、听不懂,搜一下,再不懂就放过 刚学的时候很多概念听不懂,没关系,自己搜一下,能理解了就理解,理解不了就算。听一遍就行,学到后面的时候,你就懂些了回头,再看看那些知识,基本上你都懂了。 (4)、多写注释 刚开始的时候,很多逻辑弄不懂,没关系,自己把代码拆解,并对其加以注释,这样,你在反过来再看这些代码时,能很快弄懂它的逻辑。你要知道,你后面学习时还是会碰到这些知识的,而在只看一遍的情况下是不可能记得住的,到时候,你还是会返回来复习这些知识的。 增加注释,看起来浪费时间,其实是整理代码逻辑的过程。浑浑噩噩敲出来的代码,自己都不明白什么意思的话,其实相当于没有真正学会。 三、培训班到底在培训什么? 去培训的主要原因,说到底还是因为自己啥都不会。但不会与不会间是有区别的。 对于科班出身的,上学又好好学了的同学,虽然他们没有系统的编程知识,没有项目经验,但他们有计算机基础,他懂得操作系统原理、数据结构与算法等原理性知识。 而对于跨专业和在玩了四年的同学而言,那才是真正的零基础。 而对于培训机构而言,它的责任就是让你实现从0到1的入门过程,而有经验的老鸟都知道,编程入门仅仅是知识的堆积,并没有什么技巧性可言。所有的语法和框架运用,简单来说,就是学会编程套路,学习工具使用。 而培训机构的责任,就是把这些套路教给你。只要你不太笨,经过几个月的强化训练,大部分人都能学得会。 所以,培训班教你的就是工具的使用,目的,就是以最快的速度塞给你,助你找到工作。 四、有些企业歧视培训班学员,培训班的问题到底出在哪? 培训机构有着熟练的授课体系,老师手把手答疑,让你在学习路上没有一丁点的思考时间,为的就是以最快的速度让你达标,好结课,开始下一波培训。 1、问题就出在速度上。 认知科学的研究成果表明,知识的消化与吸收,职业技能的学习与精通,本质上是在大脑神经元之间建立连接,重塑大脑结构的过程,这个过程的时间可以缩短,但不能无限地缩短。另外,不同的人,拥有不同的背景和基础,在学习与掌握相同的知识与职业技能时,所花的时间是不一样的。 而培训机构才不管这些,他的目的就是挣钱,以最快的速度挣钱,能在三天内把所有内容塞给你绝不用四天,只要最终能糊弄住面试官,让学员找到一份工作就可以了。 所以,必然会出现下面的现象: 对于原来有一些基础的,学习能力较强的同学,在学习之前已经有较扎实的基础,所以在培训期间能够自己构建成技术体系,知识吸收相对较好: 而另一些学员,则会出现消化不良的情况: 2、培训后遗症 对于软件开发而言,所有的软件开发都大致分为两个阶段: 1、分析、定义、设计阶段。这个阶段是需要有解决问题、分析问题的能力。而这个能力培训班培训不出来,只能是慢慢增强。 2、语法、工具的使用,将设计的内容实现出来。这一块就比较机械了,工具嘛,学一学都能会,培训班在这一块的效率是很高效的,它们多半能在较短的时间内,教会学员特定编程语言(比如Python)特定工具(比如Git)与特定技术的使用(比如Spring MVC),并且传授给他们一些开发的“套路”(比如分层架构与设计模式),从而将学员成功地培养成为一个能够“搬砖”的软件工人,即初级程序员。 培训班一般都会选择门槛低、就业岗位多的方向进行培训,对于这类岗位,人才缺口大,只要能直接上手写代码的初级程序员,都很容易找到一份工作。这也就是为什么培训班多半会收学生五位数的学费,而学生也愿意支付的根本原因。 (1)、解决问题能力差,动不动就得人教 经过几个月饭来张口、衣来伸手的填鸭式集训,有些人在工作后,却依然认为,当他遇到问题时,从来不想着自己搜搜资料解决,而是依赖同事帮他答疑! 自学能力差、解决问题能力差,是很多人找到了工作,过不了试用期的根本原因。 (2)、培训效果立竿见影,却又很快遗忘 任何的知识都是一样,短时间内填鸭式学到的知识,在一段时间不用后,就会遗忘。这就是有些同学刚从培训班出来时,能找到份工作,当学到的东西在工作中几个月用不到时,就很快忘记,总觉得自己还是啥都不会的原因。 永远要记住:学历不行靠实力,实力不行靠态度!!! 当我们初入职场,尽心尽责地把自己的工作做完做好的同时,千万不要忘记像海绵一样,以最快的速度给自己充水。 像培训完的同学,在校期间已经做了很多的笔记,工作之余,多复习,重新练,利用时间将它理解,真正内化为自己的本领。 对于自学的同学,多找进阶性书籍和视频去看,以最快的速度提升自己。 文末我整理了计算机各个方向的从入门、进阶、实战的视频课程和电子书,都是技术学习路上必备的经验,跟着视频学习是进步最快的,而且所有课程都有源码,直接跟着去学!!! 五、一些建议 1、非科班同学建议 对于非科班转行计算机的同学,有太多的知识需要补足,如果你靠的是自学,需要强有力的自律能力,只要时间还够,是可以靠自学的,在跟着视频学的时候,哪里听不懂及时去搜相关的资料去补足。 刚开始自学时,即便是科班出身也是有想死的冲动的,大家都一样。我也是靠自学过来的,很多的东西不会,很多的东西听不懂。没关系,多做笔试,多搜资料,把不会的弄会,你会发现,学习起来越来越容易。 所有的困难只不过是纸老虎,坚持过去就成功了。 如果你是通过培训找到了一份工作,你需要比别人更努力补充计算机知识,基础知识的缺乏,会使你很难在这条路上走很远,所有的大神,都是自学能力很强的人,你想,你也可以。 2、所有开发方向都必须从C++开始? 经常会有要校生问我:我要做H5开发,是不是要先学C++? 其实,各个语言之间是没有任何关联的,完全都是有各自的语法体系和开发工具的,简单来讲,他们都是不同类型的工具。 你学会一种工具,只会对另一种类似的工具更容易上手,而不是完全不用学。所以,想学哪个方向,直接去学就行了,没必须先从C++入手迂回一下,纯属浪费时间。 但,如果你还在上学,现在正在学C++,那我还是建议你好好学,必须C语言语法更接近低层编译器原理,学会了它,对理解低层分配、释放、编译机制都是很有用的,但就以工作为导向而言,如果你不从事C++相关工作,是没必要学的。 3、培训出来人人工资过万? 有个男生非常沮丧的找我,自己是专科毕业,培训完,小公司不想进,大点的公司进不去,给的工资也不高,问我怎么办? 上面我们已经讲到,对于不同程度的同学,在培训出来的结果是不一样的,你要分清,你培训完的情况是属于这种: 还是这种? 对于没有名校光环的同学,建议以先就业为主。 别看培训班招你的时候给你洗脑,培训完人人过万,但能不能过万,最终靠的是自己,而不是培训班。 认请自己的情况,可以先就业,再优化自己履历,而进步步高升。 4、建议不要暴露自己的培训经历 你百度、知乎搜一下,遍地的培训歧视,很多公司根本不要培训出来的同学. 业界对培训有偏见,因为写代码是一个逐渐学习、熟练的过程,经过几个月集中的培训,虽然看起来什么都接触到了,但真正能内化为自己知识的部分其实不多。在工作中并不能熟练运用,仅是入门水平而已。 而且大家普遍认为参加培训的主要原因是因为,大学中没好好学,临近毕业了,催熟一把。不然,谁会花这几万块钱呢?对普通家庭而言,其实也并不是个小数目了。 有一个外包公司的朋友,技术总监,招人时培训公司出来都不要,原因就是干活能力不行。当然这仅代表个例,但大家需要注意的是,业界并不认为培训是一件光彩的事,千万不要搞错了!!! 5、培训班防骗三十六计 现在太多的培训机构,一个个把自己吹的天花乱坠,我也建议过小伙伴去培训,但小孩子交完钱培训一个月就退费了,深感自己好心做了坏事,这里建议大家培训市场,鱼龙混杂,一定要提前做好防骗准备。 谎言之所以真实是因为年青的心太不甘寂寞,太急于求成! 从网上找了,培训班防骗三十六计,供大家参考: “借刀杀人”:培训班间竞争激烈,彼此勾心斗角,正好为我所用。去培训班甲问乙如何,到培训班乙打听甲。Ha.Ha..,狗咬狗开始了,一时间内幕迭报:乙设备不全,很多实验不能做;甲的那个号称CCIE的老师只过了笔试,没过实验室,假的! “声东击西”:与甲约好星期六考察学校,结果星期X跑去(1=< X <= 5)。   “你怎么来了?”   “我星期六有事,所以提前来看看……” “抛砖引玉”:有时候,拿不定注意或者培训班在外地,实地考察有难度,何不到论坛发个帖子征求意见,要是能得到已经培训过的前辈的释疑,那你绝对是不虚此帖了! “假痴不癫”:有时候你可能偶然拥有一些内幕消息,不如试试他们的诚实度。   “听说你们的教师是CCIE!”   “那当然,技术首屈一指,……”   此时此刻,看着乙那得意样样的小样,不知是好笑,还是可气。不过记住:一个没有诚信的公司是什么都干的出来的! “反间计”:一个卑鄙的培训班后面一般都有一个卑鄙的流氓大亨,他不仅千方百计的从学员那里榨取钱财,对自己的手下也不会心慈手软,本着人们内部矛盾的原则发展一个或多个间谍。 “走为上计”:经过一番打探,知道他们都不是东西,还犹豫什么?宁缺毋滥,走人! 最后,如论怎么选,自终也只是入门阶段,为了找到一份工作。对于初入职场的你们,给一条最终建议:学校不行靠实力,实力不行靠态度。记得帮我点赞哦。 ———————————————— 版权声明:本文为CSDN博主「启舰」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/harvic880925/article/details/103413853

问问小秘 2020-01-07 10:55:15 0 浏览量 回答数 0

问题

初识Hadoop:报错

kun坤 2020-06-07 00:57:43 0 浏览量 回答数 1

回答

在这个信息时代高速发展的情况下,很多人会对自己该往哪个方向发展感到迷茫,下面我就浅显的给大家介绍一下五大流行区域的发展前景。大数据的发展前景:当前大数据行业真的是人才稀缺吗?学了几年后,大数据行业会不会产能过剩?大数据行业最终需要什么样的人才?接下来就带你们看看分析结果:当前大数据行业真的是人才稀缺吗?对!未来人才缺口150万,数据分析人才最稀缺。先看大数据人才缺口有多大?根据LinkedIn(领英)发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中数据分析人才最为稀缺、供给指数最低。同时,数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月。而清华大学计算机系教授武永卫去年透露了一组数据:未来3-5年,中国需要180万数据人才,但目前只有约30万人。大数据行业未来会产能过剩吗?提供大数据技术与应用服务的第三方公司面临调整,未来发展会趋集中关于“大数据概念是否被过度炒作”的讨论,其实2013年的夏季达沃斯就有过。彼时支持“炒作”观点的现场观众达54.5%。对此,持反对意见的北京大学光华管理学院副教授苏萌提出了三个理由:不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;数据分析人才仍然极度匮乏。4年之后,舆论热点已经逐渐从大数据转向人工智能,大数据行业也历经整合。近一年间,一些大数据公司相继出现裁员、业务大调整等情况,部分公司出现亏损。那都是什么公司面临危机呢?基于数据归属,涉及大数据业务的公司其实有两类:一类是自身拥有数据的甲方公司,如亚马逊、阿里巴巴等;另一类是整合数据资源,提供大数据技术与应用服务的第三方公司。目前行业整合出现盈利问题的公司多集中在第三方服务商。对此,LinkedIn(领英)中国技术副总裁王迪表示,第三方服务商提供的更多的是技术或平台,大数据更多还是让甲方公司获益。在王迪看来,大数据业务要产生规模效益,至少要具备三点:算法、计算平台以及数据本身。“第三方大数据创业公司在算法上有一技之长,而计算能力实际上已经匀化了,传统企业如果用好了,和大数据创业公司没有区别,甚至计算能力更强,而数据获取方面,很多数据在传统行业内部并没有共享出来,第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高。”说白了,数据为王。在2013年,拿到千万级A轮融资的大数据企业不足10家,到2015年,拿到千万级以上A轮融资的企业已经超过30家。直到2016年互联网资本寒冬,大数据行业投资热度有所减退,大数据行业是否也存在产能过剩?王迪认为,目前的行业整合属于正常现象,“经过市场的优胜劣汰,第三方服务领域会出现一些做得比较好的公司,其他公司可能被淘汰或转型做一些垂直行业应用。从社会来看,总的需求量一定是增加的,而对于供给侧,经过行业自然的洗牌,最终会集中在几家优秀的行业公司。”需要什么样的大数据人才?今年3月份,教育部公布了第二批获准开设“数据科学与大数据技术”的高校名单,加上第一批获批的北京大学、对外经济贸易大学、中南大学,一共35所高校获批该专业。今年开始,部分院校将招收第一届大数据专业本科生。大数据人才培养涉及到两方面问题:交叉性学科的人才培养方案是否与市场需求相匹配;学科建设的周期与行业快速更新之间的差距怎样弥合。对于第一个问题,“电商热”时期开设的电子商务专业是一个可吸取经验的样本。2000年,教育部高教司批准了第一批高校开设电子商务本科专业。作为一个复合型专业,电子商务的本科教学涵盖了管理、技术、营销三方面的课程。电子商务领域人才需求量大,但企业却无法从电子商务专业中找到合适的人才,原因何在?职业规划专家姜萌认为,并不是某一个专业对应一个行业热点,而是一个专业集群对应一个行业热点。“比如电子商务专业,我们到电子商务公司里会发现,不是学电子商务的人在做这些工作,而是每个专业各司其职,比如计算机、设计、物流管理、营销、广告、金融等等。现在行业的复合型工作都是由一个专业集群来完成的,而不是一个人来复合一堆专业特点。”大数据专业的人才培养也同样走复合型路线,复旦大学大数据学院的招生简章显示,学院本科人才培养以统计学、计算机科学和数学为三大基础支撑性学科,以生物学、医学、环境科学、经济学、社会学、管理学等为应用拓展性学科,具备典型的交叉学科特征。LinkedIn(领英)中国技术副总裁王迪指出,“从企业应用的角度来看,大数据行业里从事相关职能的同学背景是各异的,大数据作为一个人才培养方向还在探索中,在这个阶段,高校尝试开设硕士课程是很好的实践,但开设一类的本科专业还为时过早。”另一方面,专业人才培养的周期较长,而行业热点不断更新轮替,中间产生的时间差使得新兴专业的志愿填报具备了一定风险。王迪认为,“从今天的产业实践上看,大数据领域依然是从现有专业中挑选人才,教育和市场发展总是有一定差距的,学生本科四年,加上硕士阶段已经是七年之后的事情了,产业已经演进了很多,而教学大纲并不会跟进得那么快。”因此,尽管大数据的应用前景毋庸置疑,但在人才培养层面,复合型人才培养方案会不会重走电子商务专业的老路?学校教育如何赶上行业发展速度?这些都是值得进一步商榷的问题。面对热门专业,志愿填报需要注意啥?了解了大数据行业、公司和大数据专业后,姜萌对于考生填报像大数据相关的热门专业,提出了几条建议:报考热的专业和就业热的专业并不一定是重合的,比如软件、计算机、金融,这些专业的就业率实际并没有那么高,地质勘探、石油、遥感等专业,虽然报考上是冷门,但行业需求大,就业率更高。选择热门专业,更需要考虑就业质量。专业就业好,是统计学意义,指的是平均收入水平高,比如金融专业的收入,比其他纯文科专业的平均收入较高,但落实到个体层面,就业情况就不一样了,尤其像金融专业是典型的名校高学历好就业,但对于考试成绩较低的同学来说,如果去一些普通院校、专科院校学习金融,最后就业情况可能还不如会计专业。志愿填报,除了专业,城市因素也很重要:如果想从事金融、互联网的工作,更适合去一线城市,如果是去三、四线城市的学生可以考虑应用面比较广的专业,就是各行各业都能用到的专业,比如会计专业,专科层次的会计和985层次的会计都有就业渠道。如果先选择报考城市,也可以针对所在城市的行业特点选择专业,比如沿海城市外贸相对发达,选择国际贸易、外语类专业就业情况更好,比如武汉有光谷,选择光电类专业更好就业。最终家长和考生更需要考虑个人与专业匹配的问题,金融、计算机等热门专业不是所有人都适合学,好专业不见得对所有个体都是好的。java的发展前景:由于Java的诸多优点,Java的发展前景十分广泛。比如,在我们中国的市场,Java无论在企业级应用,还是在面向大众的服务方面都取得了不少进展,在中国的电信、金融等关键性业务中发挥着举足轻重的作用。由于SUN、TBM、Oracle等国际厂商相继推出各种基于Java技术的应用服务器以及各种应用软件,推动了Java在金融、电信、制造等领域日益广泛的应用,如清华大学计算机系利用Java、XML和Web技术研制开发了多个软件平台,东方科技的TongWeb、中创的Inforweb等J2EE应用服务器。由此可见,在巨大市场需求下,企业对于Java人才的渴求已经是不争的事实。你问我火了这么多年的Java语言的发展前景怎么样?那来看看吧Java在WEB、移动设备以及云计算方面前景广阔,随着云计算以及移动领域的扩张,更多的企业在考虑将其应用部署在Java平台上。无论是本地主机,公共云,Java都是目前最适合的选择。;另外在Oracle的技术投资担保下,Java也是企业在云应用方面回避微软平台、在移动应用方面回避苹果公司的一个最佳选择。Java可以参与制作大部分网络应用程序系统,而且与如今流行的WWW浏览器结合很好,这一优点将促进Java的更大范围的推广。因为在未来的社会,信息将会传送的更加快速,这将推动程序向WEB程序方向发展,由于Java具有编写WEB程序的能力,并且Java与浏览器结合良好,这将使得Java前景充满光明的发展。Python的发展前景:Python程序员的发展前景是怎样的?随着Python的技术的流行, Python在为人们带来工作与生活上的便捷后,关注者们开始慢慢关心Python的发展前景与方向。从自身特性看Python发展Python自身强大的优势决定其不可限量的发展前景。Python作为一种通用语言,几乎可以用在任何领域和场合,角色几乎是无限的。Python具有简单、易学、免费、开源、可移植、可扩展、可嵌入、面向对象等优点,它的面向对象甚至比java和C#、.net更彻底。它是一种很灵活的语言,能帮你轻松完成编程工作。强大的类库支持,使编写文件处理、正则表达式,网络连接等程序变得相当容易。能运行在多种计算机平台和操作系统中,如各位unix,windows,MacOS,OS/2等等,并可作为一种原型开发语言,加快大型程序的开发速度。从企业应用来看Python发展Python被广泛的用在Web开发、运维自动化、测试自动化、数据挖掘等多个行业和领域。一项专业调查显示,75%的受访者将Python视为他们的主要开发语言,反之,其他25%受访者则将其视为辅助开发语言。将Python作为主要开发语言的开发者数量逐年递增,这表明Python正在成为越来越多开发者的开发语言选择。目前,国内不少大企业都已经使用Python如豆瓣、搜狐、金山、腾讯、盛大、网易、百度、阿里、淘宝、热酷、土豆、新浪、果壳等;国外的谷歌、NASA、YouTube、Facebook、工业光魔、红帽等都在应用Python完成各种各样的任务。从市场需求与薪资看Python发展Python得到越来越多公司的青睐,使得Python人才需求逐年增加,从市场整体需求来看,Python在招聘市场上的流行程度也是在逐步上升的,工资水平也是水涨船高。据统计Python平均薪资水平在12K,随着经验的提升,薪资也是逐年增长。学习Python的程序员,除去Python开发工程师、Python高级工程师、Python自动化测试外,也能够朝着Python游戏开发工程师、SEO工程师、Linux运维工程师等方向发展,发展方向较为多元化。随着Python的流行,带动的是它的普及以及市场需求量,所以现在学习Python是个不错的时机。区块链的发展前景:区块链开发 ? 155---0116---2665 ?可是区块链技术到底是什么,大多数人都是模糊没有概念。通俗来讲,如果我们把数据库假设成一本账本,读写数据库就可以看做一种记账的行为,区块链技术的原理就是在一段时间内找出记账最快最好的人,由这个人来记账,然后将账本的这一页信息发给整个系统里的其他所有人。区块链技术也称分布式账本(或账簿)技术,属于互联网数据库技术,由参与者共同完成数据库记录,特点是去中心化和公开透明。此外,在每个区块的信息写入并获得认可后,整个区块链数据库完整保存在互联网的节点中,难以被修改,因此数据库的安全性极高。人们普遍认为,区块链技术是实现数字产品(如货币和知识产权)快速、安全和透明地对等(P2P)转账或转让的重要手段。在以色列Zen Protocol公司,区块链应用软件开发专家阿希尔·曼宁介绍说,他们公司正在开发Zen区块链平台,其将用于支持金融产品在无中介的环境下自动和自由交易。通常,人们将钱存放在银行,依靠银行管理自己的资金。但是,在支配资金时往往会受到银行规定的限制,或在汇款时存在耗时长、费用高等问题。区块链技术平台将让人们首次拥有自己管理和支配钱财的能力,他相信去中心化金融管理体系具有广阔的市场,有望极大地改变传统的金融市场。2018年伊始这一轮区块链的热潮,主要起源于虚拟货币的炒作热情。站在风口,区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。很多人不禁要问“区块链又和比特币又是什么关系?”记者查询了大量资料发现,比特币2009年被一位名叫中本聪的人提出,之后比特币这套去中心化的机制一直稳定运行,这引起很多人对这套历史上并不存在的运行机制强烈关注。于是人们把从比特币技术抽象提取出来的技术运用于其他领域,称之为区块链。这过程就好像人们先发明了面条,然后人们发现其背后面粉不仅可以做面条还可以做馒头、面包。比特币是面条,区块链是面粉。也就是说,区块链和比特币的关系即比特币算是区块链技术的一种应用,或者说一种使用了区块链技术的产品形态。而说到区块链不得不说的就是ICO,它是一种公开发行的初始数字货币。对于投资人来说,出于对市场信号的敏感和长期关注价值投资项目,目前炙手可热的区块链也成为诸多投资人关注的新兴项目之一。“区块链对于我们来说就是省去了中间环节,节约了交易成本,节省了交易时间,但是目前来看各方面环境还不够成熟,有待观望。”一位投资人这样说道。记者发现,在春节期间,不少互金圈的朋友熬夜到凌晨进入某个探讨区块链的微信群热聊,此群还吸引了不少知名人士,诸如明星加入,同时还有大咖在群里解读区块链的投资方式和未来发展等等。一时间,关于区块链的讨论群接二连三出现,也引发了各个行业对区块链的关注。出于对于区块链技术懵懂的状态,记者追问了身边的一些互金圈的朋友,为何如此痴迷区块链?多数朋友认为“区块链能赚钱,抱着试试看的心态,或许能像之前比特币一样从中获取收益。”显然,区块链技术具有广阔的应用潜力,但是在其逐步进入社会改善民众生活的过程中,也面临许多的问题,需要积极去寻求相应的对策,最终让其发挥出潜力。只有这样,10年或20年后人们才能真正享受区块链技术创造的美好环境。人工智能的发展前景:人工智能产业是智能产业发展的核心,是其他智能科技产品发展的基础,国内外的高科技公司以及风险投资机构纷纷布局人工智能产业链。科技部部长万钢3月10日表示,加快实施新一代人工智能科学基础的关键技术系统集成研发,使那些研发成果尽快能够进入到开放平台,在开放使用中再一次把它增强完善。万钢称,马上就要发布人工智能项目指南和细则,来突破基础前沿理论关键部分的技术。人工智能发展趋势据前瞻产业研究院《人工智能行业市场前瞻与投资战略规划分析报告》指出,2017年中国人工智能核心产业规模超过700亿元,随着国家规划的出台,各地人工智能相关建设将逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,增长率达到26.2%。报告认为,从产业投资回报率分析,智能安防、智能驾驶等领域的快速发展都将刺激计算机视觉分析类产品的需求,使得计算机视觉领域具备投资价值;而随着中国软件集成水平和人们生活水平的提高,提供教育、医疗、娱乐等专业化服务的服务机器人和智能无人设备具备投资价值。人工智能现状当前,人工智能受到的关注度持续提升,大量的社会资本和智力、数据资源的汇集驱动人工智能技术研究不断向前推进。从发展层次来看,人工智能技术可分为计算智能、感知智能和认知智能。当前,计算智能和感知智能的关键技术已经取得较大突破,弱人工智能应用条件基本成熟。但是,认知智能的算法尚未突破,前景仍不明朗。今年,随着智力资源的不断汇集,人工智能核心技术的研究重点可能将从深度学习转为认知计算,即推动弱人工智能向强人工智能不断迈进。一方面,在人工智能核心技术方面,在百度等大型科技公司和北京大学、清华大学等重点院校的共同推动下,以实现强人工智能为目标的类脑智能有望率先突破。另一方面,在人工智能支撑技术方面,量子计算、类脑芯片等核心技术正处在从科学实验向产业化应用的转变期,以数据资源汇集为主要方向的物联网技术将更加成熟,这些技术的突破都将有力推动人工智能核心技术的不断演进。工业大数据2022 年我国工业大数据有望突破 1200 亿元, 复合增速 42%。 工业大数据是提升制造智能化水平,推动中国制造业转型升级的关键动力,具体包括企业信息化数据、工业物联网数据,以及外部跨界数据。其中,企业信息化和工业物联网中机器产生的海量时序数据是工业数据的主要来源。工业大数据不仅可以优化现有业务,实现提质增效,而且还有望推动企业业务定位和盈利模式发生重大改变,向个性化定制、智能化生产、网络化协同、服务化延伸等智能化场景转型。预计到 2022 年,中国工业大数据市场规模有望突破 1200亿元,年复合增速 42%。IT的未来是人工智能这是一个指数级增长的时代。过去几十年,信息技术的进步相当程度上归功于芯片上晶体管数目的指数级增加,及由此带来的计算力的极大提升。这就是所谓的摩尔定律。在互联网时代,互联的终端数也是超线性的增长,而网络的效力大致与联网终端数的平方成正比。今天,大数据时代产生的数据正在呈指数级增加。在指数级增长的时代,我们可能会高估技术的短期效应,而低估技术的长期效应。历史的经验告诉我们,技术的影响力可能会远远的超过我们的想象。未来的计算能力人工智能需要强大的计算能力。计算机的性能过去30年提高了一百万倍。随着摩尔定律逐渐趋于物理极限,未来几年,我们期待一些新的技术突破。先谈一下类脑计算。传统计算机系统,长于逻辑运算,不擅长模式识别与形象思维。构建模仿人脑的类脑计算机芯片,我们今天可以以极低的功耗,模拟100万个神经元,2亿5千万个神经突触。未来几年,我们会看到类脑计算机的进一步的发展与应用随着互联网的普及、传感器的泛在、大数据的涌现、电子商务的发展、信息社区的兴起,数据和知识在人类社会、物理空间和信息空间之间交叉融合、相互作用,人工智能发展所处信息环境和数据基础发展了巨大的变化。伴随着科学基础和实现载体取得新的突破,类脑计算、深度学习、强化学习等一系列的技术萌芽预示着内在动力的成长,人工智能的发展已进入一个新的阶段。发展发展前景好,代表你现在学习会比后来者起步快,占有更大的优势,当然,你也要明白兴趣是最好的老师,选择自己感兴趣的相信你学的会更加而牢固。记住,最重要的一点:方向最重要!!!希望大家多多关注. ,加微信zhanglindashuju 可以获取更多资料哦作者:失色的瞳孔链接:https://juejin.im/post/5b1a6531e51d45067e6fc24a来源:掘金著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

孟志昂 2019-12-02 01:45:13 0 浏览量 回答数 0

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 34170 浏览量 回答数 10

问题

10个迷惑新手的Cocoa,Objective-c开发难点和问题? 400 报错

爱吃鱼的程序员 2020-05-31 00:44:29 0 浏览量 回答数 1

问题

荆门开诊断证明-scc

游客5k2abgdj3m2ti 2019-12-01 22:09:00 1 浏览量 回答数 0

回答

转自:思否 话说当下技术圈的朋友,一起聚个会聊个天,如果不会点大数据的知识,感觉都融入不了圈子,为了以后聚会时让你有聊有料,接下来就跟随我的讲述,一起与大数据混个脸熟吧,不过在“撩”大数据之前,还是先揭秘一下研发这些年我们都经历了啥? 缘起:应用系统架构的从 0 到 1 揭秘:研发这些年我们都经历了啥? 大道至简。生活在技术圈里,大家静下来想想,无论一个应用系统多庞大、多复杂,无非也就是由一个漂亮的网站门面 + 一个丑陋的管理模块 + 一个闷头干活的定时任务三大板块组成。 我们负责的应用系统当然也不例外,起初设计的时候三大模块绑在一起(All in one),线上跑一个 Tomcat 轻松就搞定,可谓是像极了一个大泥球。 衍化至繁。由于网站模块、管理平台、定时任务三大模块绑定在一起,开发协作会比较麻烦,时不时会有代码合并冲突出现;线上应用升级时,也会导致其它模块暂时不能使用,例如如果修改了一个定时任务的配置,可能会导致网站、管理平台的服务暂时不能用。面对诸多的不便,就不得不对 All in one 的大泥球系统进行拆解。 随着产品需求的快速迭代,网站 WEB 功能逐渐增多,我们起初设计时雄心勃勃(All in one 的单体架构),以为直接按模块设计叠加实现就好了,谁成想系统越发显得臃肿(想想也是走弯路啦!)。所以不得不改变实现思路,让模块服务下沉,分布式思想若现——让原来网站 WEB 一个系统做的事,变成由子系统分担去完成。 应用架构的演变,服务模块化拆分,随之而来的就是业务日志、业务数据散落在各处。随着业务的推广,业务量逐日增多,沉淀的数据日益庞大,在业务层面、运维层面上的很多问题,逐渐开始暴露。 在业务层面上,面对监管机构的监管,整合提取散落在各地的海量数据稍显困难;海量数据散落,想做个统计分析报表也非常不易。在运维层面上,由于缺少统一的日志归档,想基于日志做快速分析也比较困难;如果想从散落在各模块的日志中,进行调用链路的分析也是相当费劲。 面对上述问题,此时一个硕大的红色问号出现在我们面前,到底该如何解决? 面对结构化的业务数据,不妨先考虑采用国内比较成熟的开源数据库中间件 Sharding-JDBC、MyCat 看是否能够解决业务问题;面对日志数据,可以考虑采用 ELK 等开源组件。如果以上方案或者能尝试的方式都无法帮我们解决,尝试搬出大数据吧。 那到底什么时候需要用大数据呢?大数据到底能帮我们解决什么问题呢?注意,前方高能预警,门外汉“撩”大数据的正确姿势即将开启。 邂逅:一起撬开大数据之门 槽点:门外汉“撩”大数据的正确姿势 与大数据的邂逅,源于两个头痛的问题。第一个问题是海量数据的存储,如何解决?第二个问题是海量数据的计算,如何解决? 面对这两个头痛的问题,不得不提及谷歌的“三驾马车”(分布式文件系统 GFS、MapReduce 和 BigTable),谷歌“三驾马车”的出现,奠定了大数据发展的基石,毫不夸张地说,没有谷歌的“三驾马车”就没有大数据,所以接下来很有必要逐一认识。 大家都知道,谷歌搜索引擎每天要抓取数以亿计的网页,那么抓取的海量数据该怎么存储? 谷歌痛则思变,重磅推出分布式文件系统 GFS。面对谷歌推出的分布式文件系统 GFS 架构,如 PPT 中示意,参与角色着实很简单,主要分为 GFS Master(主服务器)、GFS Chunkserver(块存储服务器)、GFS Client(客户端)。 不过对于首次接触这个的你,可能还是一脸懵 ,大家心莫慌,接下来容我抽象一下。 GFS Master 我们姑且认为是古代的皇上,统筹全局,运筹帷幄。主要负责掌控管理所有文件系统的元数据,包括文件和块的命名空间、从文件到块的映射、每个块所在的节点位置。说白了,就是要维护哪个文件存在哪些文件服务器上的元数据信息,并且定期通过心跳机制与每一个 GFS Chunkserver 通信,向其发送指令并收集其状态。 GFS Chunkserver 可以认为是宰相,因为宰相肚子里面能撑船,能够海纳百川。主要提供数据块的存储服务,以文件的形式存储于 Chunkserver 上。 GFS Client 可以认为是使者,对外提供一套类似传统文件系统的 API 接口,对内主要通过与皇帝通信来获取元数据,然后直接和宰相交互,来进行所有的数据操作。 为了让大家对 GFS 背后的读写流程有更多认识,献上两首歌谣。 到这里,大家应该对分布式文件系统 GFS 不再陌生,以后在饭桌上讨论该话题时,也能与朋友交涉两嗓子啦。 不过这还只是了解了海量数据怎么存储,那如何从海量数据存储中,快速计算出我们想要的结果呢? 面对海量数据的计算,谷歌再次创新,推出了 MapReduce 编程模型及实现。 MapReduce 主要是采取分而治之的思想,通俗地讲,主要是将一个大规模的问题,分成多个小规模的问题,把多个小规模问题解决,然后再合并小规模问题的结果,就能够解决大规模的问题。 也有人说 MapReduce 就像光头强的锯子和锤子,世界上的万事万物都可以先锯几下,然后再锤几下,就能轻松搞定,至于锯子怎么锯,锤子怎么锤,那就是个人的手艺了。 这么解释不免显得枯燥乏味,我们不妨换种方式,走进生活真实感受 MapReduce。 斗地主估计大家都玩过,每次开玩之前,都会统计一副牌的张数到底够不够,最快的步骤莫过于:分几份给大家一起数,最后大家把数累加,算总张数,接着就可以愉快地玩耍啦... ...这不就是分而治之的思想吗?!不得不说架构思想来源于人们的生活! 再举个不太贴切的例子来感受MapReduce 背后的运转流程,估计很多人掰过玉米,每当玉米成熟的季节,地主家就开始忙碌起来。 首先地主将一亩地的玉米分给处于空闲状态的长工来处理;专门负责掰玉米的长工领取任务,开始掰玉米操作(Map 操作),并把掰好的玉米放到在麻袋里(缓冲区),麻袋装不下时,会被装到木桶中(溢写),木桶被划分为蓝色的生玉米木桶、红色的熟玉米木桶(分区),地主通知二当家来“收”属于自己的那部分玉米,二当家收到地主的通知后,就到相应的长工那儿“拿回”属于自己的那部分玉米(Fetch 操作),二当家对收取的玉米进行处理(Reduce 操作),并把处理后的结果放入粮仓。 一个不太贴切的生活体验 + 一张画得不太对的丑图 = 苦涩难懂的技术,也不知道这样解释,你了解了多少?不过如果以后再谈大数据,知道 MapReduce 这个词的存在,那这次的分享就算成功(哈哈)。 MapReduce 解决了海量数据的计算问题,可谓是力作,但谷歌新的业务需求一直在不断出现。众所周知,谷歌要存储爬取的海量网页,由于网页会不断更新,所以要不断地针对同一个 URL 进行爬取,那么就需要能够存储一个 URL 不同时期的多个版本的网页内容。谷歌面临很多诸如此类的业务场景,面对此类头痛的需求,该怎么办? 谷歌重磅打造了一款类似以“URL + contents + time stamp”为 key,以“html 网页内容”为值的存储系统,于是就有了 BigTable 这个键值系统的存在(本文不展开详述)。 至此,两个头痛的问题就算解决了。面对海量数据存储难题,谷歌推出了分布式文件系统 GFS、结构化存储系统 BigTable;面对海量数据的计算难题,谷歌推出了 MapReduce。 不过静下来想想,GFS 也好、MapReduce 也罢,无非都是秉承了大道至简、一人掌权、其它人办事、人多力量大的设计理念。另外画龙画虎难画骨,建议闲暇之余也多些思考:为什么架构要这么设计?架构设计的目标到底是如何体现的? 基于谷歌的“三驾马车”,出现了一大堆开源的轮子,不得不说谷歌的“三驾马车”开启了大数据时代。了解了谷歌的“三驾马车”的设计理念后,再去看这些开源的轮子,应该会比较好上手。 好了,门外汉“撩”大数据就聊到这儿吧,希望通过上文的分享能够了解几个关键词:大道至简、衍化至繁、谷歌三驾马车(GFS、MapReduce、BigTable)、痛则思变、开源轮子。 白头:番外篇 扯淡:不妨换一种态度 本文至此也即将接近尾声,最后是番外篇~ 首先,借用日本剑道学习心诀“守、破、离”,希望我们一起做一个精进的人。 最后,在有限的时间内要多学习,不要停下学习的脚步,在了解和使用已经有的成熟技术之时,更要多思考,开创适合自己工作场景的解决方案。 文章来源:宜信技术学院 & 宜信支付结算团队技术分享第6期-宜信支付结算部支付研发团队高级工程师许赛赛《揭秘:“撩”大数据的正确姿势》 分享者:宜信支付结算部支付研发团队高级工程师许赛赛 原文首发于公号-野指针

茶什i 2020-01-10 15:19:51 0 浏览量 回答数 0

回答

12月17日更新 请问下同时消费多个topic的情况下,在richmap里面可以获取到当前消息所属的topic吗? 各位大佬,你们实时都是怎样重跑数据的? 有木有大神知道Flink能否消费多个kafka集群的数据? 这个问题有人遇到吗? 你们实时读取广业务库到kafka是通过什么读的?kafka connector 的原理是定时去轮询,这样如果表多了,会不会影响业务库的性能?甚至把业务库搞挂? 有没有flink 1.9 连接 hive的例子啊?官网文档试了,没成功 请问各位是怎么解决实时流数据倾斜的? 请问一下,对于有状态的任务,如果任务做代码升级的时候,可否修改BoundedOutOfOrdernessTimestampExtractor的maxOutOfOrderness呢?是否会有影响数据逻辑的地方呢? 老哥们有做过统计从0点开始截止到现在时刻的累计用户数吗? 比如五分钟输出一次,就是7点输出0点到7点的累计用户,7:05输出0点到7:05的累计用户。 但是我这里有多个维度,现在用redis来做的。 想知道有没有更好的姿势? 实时数仓用什么存储介质来存储维表,维表有大有小,大的大概5千万左右。 各位大神有什么建议和经验分享吗? 请教个问题,就是flink的窗口触发必须是有数据才会触发吗?我现在有个这样的需求,就是存在窗口内没有流数据进入,但是窗口结束是要触发去外部系统获取上一个窗口的结果值作为本次窗口的结果值!现在没有流数据进入窗口结束时如何触发? kafkaSource.setStartFromTimestamp(timestamp); 发现kafkasource从指定时间开始消费,有些topic有效,有效topic无效,大佬们有遇到过吗? 各位大佬,flink两个table join的时候,为什么打印不出来数据,已经赋了关联条件了,但是也不报错 各位大佬 请教一下 一个faile的任务 会在这里面存储展示多久啊? 各位大佬,我的程序每五分钟一个窗口做了基础指标的统计,同时还想统计全天的Uv,这个是用State就能实现吗? 大佬们,flink的redis sink是不是只适用redis2.8.5版本? 有CEP 源码中文注释的发出来学习一下吗? 有没有拿flink和tensorflow集成的? 那位大神,给一个java版的flink1.7 读取kafka数据,做实时监控和统计的功能的代码案例。 请问下风控大佬,flink为风控引擎做数据支撑的时候,怎么应对风控规则的不断变化,比如说登录场景需要实时计算近十分钟内登录次数超过20次用户,这个规则可能会变成计算近五分钟内登录次数超过20次的。 想了解一下大家线上Flink作业一般开始的时候都分配多少内存?广播没办法改CEP flink支持多流(大于2流)join吗? 谁能帮忙提供一下flink的多并行度的情况下,怎么保证数据有序 例如map并行度为2 那就可能出现数据乱序的情况啊 请教下现在从哪里可以可以看单任务的运行状况和内存占用情况,flink页面上能看单个任务的内存、cpu 大佬们 flink1.9 停止任务手动保存savepoint的命令是啥? flink 一个流计算多个任务和 还是一个流一个任务好? flink 1.9 on yarn, 自定义个connector里面用了jni, failover以后 就起不来了, 报错重复load so的问题。 我想问一下 这个,怎么解决。 难道flink 里面不能用jni吗。 ide里面调试没有问题,部署到集群就会报错了,可能什么问题? 请教一下对于长时间耗内存很大的任务,大家都是开checkpoint机制,采用rocksdb做状态后端吗? 请问下大佬,flink jdbc读取mysql,tinyin字段类型自动转化为Boolean有没有好的解决方法 Flink 1.9版本的Blink查询优化器,Hive集成,Python API这几个功能好像都是预览版,请问群里有大佬生产环境中使用这些功能了吗? 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 各位大佬,在一个 Job 计算过程中,查询 MySQL 来补全额外数据,是一个好的实践嘛?还是说流处理过程中应该尽量避免查询额外的数据? Flink web UI是jquery写的吗? 12月9日更新 成功做完一次checkpoint后,会覆盖上一次的checkpoint吗? 数据量较大时,flink实时写入hbase能够异步写入吗? flink的异步io,是不是只是适合异步读取,并不适合异步写入呀? 请问一下,flink将结果sink到redis里面会不会对存储的IO造成很大的压力,如何批量的输出结果呢? 大佬们,flink 1.9.0版本里DataStream api,若从kafka里加载完数据以后,从这一个流中获取数据进行两条业务线的操作,是可以的吗? flink 中的rocksdb状态怎么样能可视化的查看有大佬知道吗? 感觉flink 并不怎么适合做hive 中的计算引擎来提升hive 表的查询速度 大佬们,task端rocksdb状态 保存路径默认是在哪里的啊?我想挂载个新磁盘 把状态存到那里去 flink 的state 在窗口滑动到下一个窗口时候 上一个窗口销毁时候 state会自己清除吗? 求助各位大佬,一个sql里面包含有几个大的hop滑动窗口,如15个小时和24个小时,滑动步长为5分钟,这样就会产生很多overlap 数据,导致状态会很快就达到几百g,然后作业内存也很快达到瓶颈就oom了,然后作业就不断重启,很不稳定,请问这个业务场景有什么有效的解决方案么? 使用jdbcsink的时候,如果连接长时间不使用 就会被关掉,有人遇到过吗?使用的是ddl的方式 如何向云邪大佬咨询FLink相关技术问题? 请问各位公司有专门开发自己的实时计算平台的吗? 请问各位公司有专门开发自己的实时计算平台的吗? 有哪位大佬有cdh集成安装flink的文档或者手册? 有哪位大佬有cdh集成安装flink的文档或者手册? 想问下老哥们都是怎么统计一段时间的UV的? 是直接用window然后count嘛? Flink是不是也是这样的? 请问现在如有个实时程序,根据一个mysql的维表来清洗,但是我这个mysql表里面就只有几条信息且可能会变。 我想同一个定时器去读mysql,然后存在对象中,流清洗的时候读取这个数据,这个想法可行吗?我目前在主类里面定义一个对象,然后往里面更新,发现下面的map方法之类的读不到我更新进去的值 有大佬做过flink—sql的血缘分析吗? 12月3日更新 请教一下,为什么我flume已经登录成功了keytab认证的kafka集群,但是就是消费不到数据呢? flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink timestamp转换为date类型,有什么函数吗 Run a single Flink job on YARN 我采用这种模式提交任务,出现无法找到 开启 HA 的ResourceManager Failed to connect to server: xxxxx:8032: retries get failed due to exceeded maximum allowed retries number: 0 有大佬遇到过吗 ? 各位大佬,请问有Flink写S3的方案吗? flink 连接hbase 只支持1.4.3版本? onnector: type: hbase version: "1.4.3" 请问 flink1.9能跑在hadoop3集群上吗? 滑动窗口 排序 报错这个是什么原因呢? 这个pravega和kafka有啥区别? flink 开发里数据源配置了RDS,但是在RDS里没有看到创建的表,是为什么呢? Tumbling Window里的数据,是等窗口期内的数据到齐之后一次性处理,还是到了一条就处理一条啊 双流join后再做time window grouping. 但是双流join会丢失时间属性,请问大家如何解决 stream processing with apache flink,这本书的中译版 现在可以买吗? flink on yarn时,jm和tm占用的内存最小是600M,这个可以修改吗? 各位大佬,使用默认的窗口Trigger,在什么情况下会触发两次啊?窗口关闭后,然后还来了这个窗口期内的数据,并且开了allowedLateness么? flink web里可以像storm那样 看每条数据在该算子中的平均耗时吗? 各位大佬,flink任务的并发数调大到160+以后,每隔几十分钟就会出现一次TM节点连接丢失的异常,导致任务重启。并发在100时运行比较稳定,哪位大佬可以提供下排查的思路? 感觉stateful function 是下一个要发力的点,这个现在有应用案例吗? 我有2个子网(a子网,b子网)用vpn联通,vpn几周可能会断一次。a子网有一个kafka集群,b子网运行我自己的flink集群和应用,b子网的flink应用连接到a子网的kafka集群接收消息来处理入库到数仓去。我的问题是,如果vpn断开,flink consumer会异常整个作业退出吗?如果作业退出,我重连vpn后,能从auto checkpoint再把flink应用恢复到出错时flink kafka consumer应该读取的partition/offset位置吗?flink的checkpoint除了保存自己开发的算子里的state,kafkaconsumer里的partition/offset也会保存和恢复吗? flink的反压为什么不加入metrics呢 hdfs是不是和flink共用一个集群? flink消费kafka,可以从指定时间消费的吗?目前提供的接口只是根据offset消费?有人知道怎么处理? flink 的Keyby是不是只是repartition而已?没有将key相同的数据放到一个组合里面 电商大屏 大家推荐用什么来做吗? 我比较倾向用数据库,因为有些数据需要join其他表,flink充当了什么角色,对这个有点迷,比如统计当天订单量,卖了多少钱,各个省的销量,销售金额,各个品类的销售量销售金额 开源1.9的sql中怎么把watermark给用起来,有大神知道吗? 有没有人能有一些flink的教程 代码之类的分享啊 采用了checkpoint,程序停止了之后,什么都不改,直接重启,还是能接着继续运行吗?如果可以的话,savepoint的意义又是什么呢? 有人做过flink 的tpc-ds测试吗,能不能分享一下操作的流程方法 checkpoint是有时间间隔的,也就可以理解为checkpoint是以批量操作的,那如果还没进行ckecnpoint就挂了,下次从最新的一次checkpoint重启,不是重复消费了? kafka是可以批量读取数据,但是flink是一条一条处理的,应该也可以一条一条提交吧。 各位大佬,flink sql目前是不是不支持tumbling window join,有人了解吗? 你们的HDFS是装在taskmanager上还是完全分开的,请问大佬们有遇到这种情况吗? 大佬们flink检查点存hdfs的话怎么自动清理文件啊 一个128M很快磁盘就满了 有谁遇到过这个问题? 请教一下各位,这段代码里面,我想加一个trigger,实现每次有数据进window时候,就输出,而不是等到window结束再输出,应该怎么加? 麻烦问下 flink on yarn 执行 客户端启动时 报上面错,是什么原因造成的 求大佬指点 ERROR org.apache.flink.client.program.rest.RestClusterClient - Error while shutting down cluster java.util.concurrent.ExecutionException: org.apache.flink.runtime.concurrent.FutureUtils$RetryException: Could not complete the operation. Number of retries has been exhausted. 大家怎么能动态的改变 flink WindowFunction 窗口数据时间 flink on yarn之后。yarn的日志目录被写满,大家如配置的? Flink1.9 启动 yarn-session报这个错误 怎么破? yarn 模式下,checkpoint 是存在 JobManager的,提交任务也是提交给 JobManager 的吧? heckpoint机制,会不会把window里面的数据全部放checkpoint里面? Flink On Yarn的模式下,如果通过REST API 停止Job,并触发savepiont呢 jenkins自动化部署flink的job,一般用什么方案?shell脚本还是api的方式? 各位大佬,开启增量checkpoint 情况下,这个state size 是总的checkpoint 大小,还是增量上传的大小? 想用状态表作为子表 外面嵌套窗口 如何实现呢 因为状态表group by之后 ctime会失去时间属性,有哪位大佬知道的? 你们有试过在同样的3台机器上部署两套kafka吗? 大家有没有比较好的sql解析 组件(支持嵌套sql)? richmapfuntion的open/close方法,和处理数据的map方法,是在同一个线程,还是不同线程调用的? flink on yarn 提交 参数 -p 20 -yn 5 -ys 3 ,我不是只启动了5个container么? Flink的乱序问题怎么解决? 我对数据流先进行了keyBy,print的时候是有数据的,一旦进行了timeWindow滑动窗口就没有数据了,请问是什么情况呢? 搭建flinksql平台的时候,怎么处理udf的呀? 怎么查看sentry元数据里哪些角色有哪些权限? 用java api写的kafka consumer能消费到的消息,但是Flink消费不到,这是为啥? 我state大小如果为2G左右 每次checkpoint会不会有压力? link-table中的udaf能用deltaTrigger么? flink1.7.2,场景是一分钟为窗口计算每分钟传感器的最高温度,同时计算当前分钟与上一分钟最高温 001 Flink集群支持kerberos认证吗?也就是说flink客户端需要向Flink集群进行kerberos认证,认证通过之后客户端才能提交作业到Flink集群运行002 Flink支持多租户吗? 如果要对客户端提交作业到flink进行访问控制,你们有类似的这种使用场景吗? flink可以同时读取多个topic的数据吗? Flink能够做实时ETL(oracle端到oracle端或者多端)么? Flink是否适合普通的关系型数据库呢? Flink是否适合普通的关系型数据库呢? 流窗口关联mysql中的维度表大佬们都是怎么做的啊? 怎么保证整个链路的exactly one episode精准一次,从source 到flink到sink? 在SQL的TUMBLE窗口的统计中,如果没数据进来的,如何让他也定期执行,比如进行count计算,让他输出0? new FlinkKafkaConsumer010[String]("PREWARNING",new JSONKeyValueDeserializationSchema(true), kafkaProps).setStartFromGroupOffsets() ) 我这样new 它说要我传个KeyedDeserializationSchema接口进去 flink里面broadcast state想定时reload怎么做?我用kafka里的stream flink独立模式高可用搭建必需要hadoop吗? 有人用增量cleanupIncrementally的方式来清理状态的嘛,感觉性能很差。 flink sink to hbase继承 RichOutputFormat运行就报错 kafka 只有低级 api 才拿得到 offset 吗? 有个问题咨询下大家,我的flinksql中有一些参数是要从mysql中获取的,比如我flink的sql是select * from aa where cc=?,这个问号的参数需要从mysql中获取,我用普通的jdbc进行连接可以获的,但是有一个问题,就是我mysql的数据改了之后必须重启flink程序才能解决这个问题,但这肯定不符合要求,请问大家有什么好的办法吗? flink里怎样实现多表关联制作宽表 flink写es,因为半夜es集群做路由,导致写入容易失败,会引起source的反压,然后导致checkpoint超时任务卡死,请问有没有办法在下游es处理慢的时候暂停上游的导入来缓解反压? flink 写parquet 文件,使用StreamingFileSink streamingFileSink = StreamingFileSink.forBulkFormat( new Path(path), ParquetAvroWriters.forReflectRecord(BuyerviewcarListLog.class)). withBucketAssigner(bucketAssigner).build(); 报错 java.lang.UnsupportedOperationException: Recoverable writers on Hadoop are only supported for HDFS and for Hadoop version 2.7 or newer 1.7.2 NoWindowInnerJoin这个实现,我看实现了CleanupState可更新过期时间删除当前key状态的接口,是不是这个1.7.2版本即使有个流的key一直没有被匹配到他的状态也会被清理掉,就不会存在内存泄漏的问题了? flink1.7.2 想在Table的UDAF中使用State,但是发现UDAF的open函数的FunctionContext中对于RuntimeContext是一个private,无法使用,大佬,如何在Table的UDAF中使用State啊? Flink有什么性能测试工具吗? 项目里用到了了KafkaTableSourceSinkFactory和JDBCTableSourceSinkFactory。maven打包后,META-INF里只会保留第一个 标签的org.apache.flink.table.factories.TableFactory内容。然后执行时就会有找不到合适factory的报错,请问有什么解决办法吗? 为什么这个这段逻辑 debug的时候 是直接跳过的 各位大佬,以天为单位的窗口有没有遇到过在八点钟的时候会生成一条昨天的记录? 想问一下,我要做一个规则引擎,需要动态改变规则,如何在flink里面执行? flink-1.9.1/bin/yarn-session.sh: line 32: construc 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 一般公司的flink job有没有进程进行守护?有专门的工具或者是自己写脚本?这种情况针对flink kafka能不能通过java获取topic的消息所占空间大小? Flink container was removed这个咋解决的。我有时候没有数据的时候也出现这 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更 问大家个Hive问题,新建的hive外部分区表, 怎么把HDFS数据一次性全部导入hive里 ? flink里面的broadcast state值,会出现broad流的数据还没put进mapstat Flink SQL DDL 创建表时,如何定义字段的类型为proctime? 请问下窗口计算能对历史数据进行处理吗?比如kafka里的写数据没停,窗口计算的应用停掉一段时间再开起 请问下,想统计未退费的订单数量,如果一个订单退费了(发过来一个update流),flink能做到对结果进行-1吗,这样的需求sql支持吗? 使用Flink sql时,对table使用了group by操作。然后将结果转换为流时是不是只能使用的toRetractStream方法不能使用toAppendStream方法。 百亿数据实时去重,有哪位同学实践过吗? 你们的去重容许有误差?因为bloom filter其实只能给出【肯定不存在】和【可能存在】两种结果。对于可能存在这种结果,你们会认为是同一条记录? 我就运行了一个自带的示例,一运行就报错然后web页面就崩了 flink定时加载外部数据有人做过吗? NoSuchMethodError: org.apache.flink.api.java.Utils.resolveFactory(Ljava/lang/ThreadLocal;Ljava/lang/Object;)Ljava/util/Optional 各位知道这个是那个包吗? flink 可以把大量数据写入mysql吗?比如10g flink sql 解析复杂的json可以吗? 在页面上写规则,用flink执行,怎么传递给flink? 使用cep时,如何动态添加规则? 如何基于flink 实现两个很大的数据集的交集 并集 差集? flink的应用场景是?除了实时 各位好,请教一下,滑动窗口,每次滑动都全量输出结果,外部存储系统压力大,是否有办法,只输出变化的key? RichSinkFunction close只有任务结束时候才会去调用,但是数据库连接一直拿着,最后成了数据库连接超时了,大佬们有什么好的建议去处理吗?? 为啥我的自定义函数注册,然后sql中使用不了? 请问一下各位老师,flink flapmap 中的collector.collect经常出现Buffer pool is destroyed可能是什么原因呢? 用asyncIO比直接在map里实现读hbase还慢,在和hbase交互这块儿,每个算子都加了时间统计 请教一下,在yarn上运行,会找不到 org.apache.flink.streaming.util 请问下大佬,flink1.7.2对于sql的支持是不是不怎么好啊 ,跑的数据一大就会报错。 各位大佬,都用什么来监控flink集群? flink 有那种把多条消息聚合成一条的操作吗,比如说每五十条聚合成一条 如何可以让checkpoint 跳过对齐呢? 请问 阿里云实时计算(Blink)支持这4个源数据表吗?DataHub Kafka MQ MaxCompute? 为啥checkpoint时间会越来越长,请问哪位大佬知道是因为啥呢? 请问Flink的最大并行度跟kafka partition数量有关系吗? source的并行度应该最好是跟partition数量一致吧,那剩下的算子并行度呢? Flink有 MLIB库吗,为什么1.9中没有了啊? 请教一下,有没有flink ui的文章呢?在这块内存配置,我给 TM 配置的内存只有 4096 M,但是这里为什么对不上呢?请问哪里可以看 TM 内存使用了多少呢? 请教个问题,fink RichSinkFunction的invoke方法是什么时候被调用的? 请教一下,flink的window的触发条件 watermark 小于 window 的 end_time。这个 watermark 为什么是针对所有数据的呢?没有设计为一个 key 一个 watermark 呢? 就比如说有 key1、key2、key3,有3个 watermark,有 3个 window interval不支持left join那怎么可以实现把窗口内左表的数据也写到下游呢? 各位 1、sink如何只得到最终的结果而不是也输出过程结果 ;2、不同的运算如何不借助外部系统的存储作为另外一个运算的source 请教各位一个问题,flink中设置什么配置可以取消Generic这个泛型,如图报错: 有大佬在吗,线上遇到个问题,但是明明内存还有200多G,然后呢任务cancel不了,台也取消不了程序 flink遇到The assigned slot container_1540803405745_0094_01_000008_1 was removed. 有木有大佬遇到过。在flink on yarn上跑 这个报错是什么意思呢?我使用滑动窗口的时候出现报错 flink 双流union状态过期不清理有遇到的吗? 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更,如果订单表与商品明细join查询,就会出现n条重复数据,这样数据就不准了,flink 这块有没有比较好的实战经验的。 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink 有办法 读取 pytorch的 模型文件吗? 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink timestamp转换为date类型,有什么函数吗 flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink 有办法 读取 pytorch的 模型文件吗? 有没有大佬知道实时报表怎么做?就是统计的结果要实时更新,热数据。 刚接触flink 1.9 求问flink run脚本中怎么没有相关提交到yarn的命令了 请教一下,flink里怎么实现batch sink的操作而不导致数据丢失

问问小秘 2019-12-02 03:19:17 0 浏览量 回答数 0

问题

SSH面试题

琴瑟 2019-12-01 21:46:22 3489 浏览量 回答数 0

问题

从一道面试题谈谈一线大厂码农应该具备的基本能力 7月16日 【今日算法】

游客ih62co2qqq5ww 2020-07-22 13:45:47 118 浏览量 回答数 1

回答

在这个问题中,我们集中讨论根据特殊语法去解析文本的问题。为了这样做,你首先要以BNF或者EBNF形式指定一个标准语法。比如,一个简单数学表达式语法可能像下面这样: expr ::= expr + term | expr - term | term term ::= term * factor | term / factor | factor factor ::= ( expr ) | NUM 或者,以EBNF形式: expr ::= term { (+|-) term }* term ::= factor { (|/) factor } factor ::= ( expr ) | NUM 在EBNF中,被包含在 {...}* 中的规则是可选的。*代表0次或多次重复(跟正则表达式中意义是一样的)。 现在,如果你对BNF的工作机制还不是很明白的话,就把它当做是一组左右符号可相互替换的规则。一般来讲,解析的原理就是你利用BNF完成多个替换和扩展以匹配输入文本和语法规则。为了演示,假设你正在解析形如 3 + 4 * 5 的表达式。这个表达式先要通过使用2.18节中介绍的技术分解为一组令牌流。结果可能是像下列这样的令牌序列: NUM + NUM * NUM 在此基础上, 解析动作会试着去通过替换操作匹配语法到输入令牌: expr expr ::= term { (+|-) term }* expr ::= factor { (|/) factor } { (+|-) term }* expr ::= NUM { (|/) factor } { (+|-) term }* expr ::= NUM { (+|-) term }* expr ::= NUM + term { (+|-) term }* expr ::= NUM + factor { (|/) factor } { (+|-) term }* expr ::= NUM + NUM { (|/) factor} { (+|-) term }* expr ::= NUM + NUM * factor { (|/) factor } { (+|-) term }* expr ::= NUM + NUM * NUM { (|/) factor } { (+|-) term }* expr ::= NUM + NUM * NUM { (+|-) term }* expr ::= NUM + NUM * NUM 下面所有的解析步骤可能需要花点时间弄明白,但是它们原理都是查找输入并试着去匹配语法规则。第一个输入令牌是NUM,因此替换首先会匹配那个部分。一旦匹配成功,就会进入下一个令牌+,以此类推。当已经确定不能匹配下一个令牌的时候,右边的部分(比如 { (/) factor } )就会被清理掉。在一个成功的解析中,整个右边部分会完全展开来匹配输入令牌流。 有了前面的知识背景,下面我们举一个简单示例来展示如何构建一个递归下降表达式求值程序: #!/usr/bin/env python -- encoding: utf-8 -- """ Topic: 下降解析器 Desc : """ import re import collections Token specification NUM = r'(?P \d+)' PLUS = r'(?P +)' MINUS = r'(?P -)' TIMES = r'(?P *)' DIVIDE = r'(?P /)' LPAREN = r'(?P ()' RPAREN = r'(?P ))' WS = r'(?P \s+)' master_pat = re.compile('|'.join([NUM, PLUS, MINUS, TIMES, DIVIDE, LPAREN, RPAREN, WS])) Tokenizer Token = collections.namedtuple('Token', ['type', 'value']) def generate_tokens(text): scanner = master_pat.scanner(text) for m in iter(scanner.match, None): tok = Token(m.lastgroup, m.group()) if tok.type != 'WS': yield tok Parser class ExpressionEvaluator: ''' Implementation of a recursive descent parser. Each method implements a single grammar rule. Use the ._accept() method to test and accept the current lookahead token. Use the ._expect() method to exactly match and discard the next token on on the input (or raise a SyntaxError if it doesn't match). ''' def parse(self, text): self.tokens = generate_tokens(text) self.tok = None # Last symbol consumed self.nexttok = None # Next symbol tokenized self._advance() # Load first lookahead token return self.expr() def _advance(self): 'Advance one token ahead' self.tok, self.nexttok = self.nexttok, next(self.tokens, None) def _accept(self, toktype): 'Test and consume the next token if it matches toktype' if self.nexttok and self.nexttok.type == toktype: self._advance() return True else: return False def _expect(self, toktype): 'Consume next token if it matches toktype or raise SyntaxError' if not self._accept(toktype): raise SyntaxError('Expected ' + toktype) # Grammar rules follow def expr(self): "expression ::= term { ('+'|'-') term }*" exprval = self.term() while self._accept('PLUS') or self._accept('MINUS'): op = self.tok.type right = self.term() if op == 'PLUS': exprval += right elif op == 'MINUS': exprval -= right return exprval def term(self): "term ::= factor { ('*'|'/') factor }*" termval = self.factor() while self._accept('TIMES') or self._accept('DIVIDE'): op = self.tok.type right = self.factor() if op == 'TIMES': termval *= right elif op == 'DIVIDE': termval /= right return termval def factor(self): "factor ::= NUM | ( expr )" if self._accept('NUM'): return int(self.tok.value) elif self._accept('LPAREN'): exprval = self.expr() self._expect('RPAREN') return exprval else: raise SyntaxError('Expected NUMBER or LPAREN') def descent_parser(): e = ExpressionEvaluator() print(e.parse('2')) print(e.parse('2 + 3')) print(e.parse('2 + 3 * 4')) print(e.parse('2 + (3 + 4) * 5')) # print(e.parse('2 + (3 + * 4)')) # Traceback (most recent call last): # File " ", line 1, in # File "exprparse.py", line 40, in parse # return self.expr() # File "exprparse.py", line 67, in expr # right = self.term() # File "exprparse.py", line 77, in term # termval = self.factor() # File "exprparse.py", line 93, in factor # exprval = self.expr() # File "exprparse.py", line 67, in expr # right = self.term() # File "exprparse.py", line 77, in term # termval = self.factor() # File "exprparse.py", line 97, in factor # raise SyntaxError("Expected NUMBER or LPAREN") # SyntaxError: Expected NUMBER or LPAREN if name == 'main': descent_parser() 讨论 文本解析是一个很大的主题, 一般会占用学生学习编译课程时刚开始的三周时间。如果你在找寻关于语法,解析算法等相关的背景知识的话,你应该去看一下编译器书籍。很显然,关于这方面的内容太多,不可能在这里全部展开。 尽管如此,编写一个递归下降解析器的整体思路是比较简单的。开始的时候,你先获得所有的语法规则,然后将其转换为一个函数或者方法。因此如果你的语法类似这样: expr ::= term { ('+'|'-') term }* term ::= factor { (''|'/') factor } factor ::= '(' expr ')' | NUM 你应该首先将它们转换成一组像下面这样的方法: class ExpressionEvaluator: ... def expr(self): ... def term(self): ... def factor(self): ... 每个方法要完成的任务很简单 - 它必须从左至右遍历语法规则的每一部分,处理每个令牌。从某种意义上讲,方法的目的就是要么处理完语法规则,要么产生一个语法错误。为了这样做,需采用下面的这些实现方法: 如果规则中的下个符号是另外一个语法规则的名字(比如term或factor),就简单的调用同名的方法即可。这就是该算法中”下降”的由来 - 控制下降到另一个语法规则中去。有时候规则会调用已经执行的方法(比如,在 factor ::= '('expr ')' 中对expr的调用)。这就是算法中”递归”的由来。 如果规则中下一个符号是个特殊符号(比如(),你得查找下一个令牌并确认是一个精确匹配)。如果不匹配,就产生一个语法错误。这一节中的 _expect() 方法就是用来做这一步的。 如果规则中下一个符号为一些可能的选择项(比如 + 或 -),你必须对每一种可能情况检查下一个令牌,只有当它匹配一个的时候才能继续。这也是本节示例中 _accept() 方法的目的。它相当于_expect()方法的弱化版本,因为如果一个匹配找到了它会继续,但是如果没找到,它不会产生错误而是回滚(允许后续的检查继续进行)。 对于有重复部分的规则(比如在规则表达式 ::= term { ('+'|'-') term }* 中),重复动作通过一个while循环来实现。循环主体会收集或处理所有的重复元素直到没有其他元素可以找到。 一旦整个语法规则处理完成,每个方法会返回某种结果给调用者。这就是在解析过程中值是怎样累加的原理。比如,在表达式求值程序中,返回值代表表达式解析后的部分结果。最后所有值会在最顶层的语法规则方法中合并起来。 尽管向你演示的是一个简单的例子,递归下降解析器可以用来实现非常复杂的解析。比如,Python语言本身就是通过一个递归下降解析器去解释的。如果你对此感兴趣,你可以通过查看Python源码文件Grammar/Grammar来研究下底层语法机制。看完你会发现,通过手动方式去实现一个解析器其实会有很多的局限和不足之处。 其中一个局限就是它们不能被用于包含任何左递归的语法规则中。比如,加入你需要翻译下面这样一个规则: items ::= items ',' item | item 为了这样做,你可能会像下面这样使用 items() 方法: def items(self): itemsval = self.items() if itemsval and self._accept(','): itemsval.append(self.item()) else: itemsval = [ self.item() ] 唯一的问题是这个方法根本不能工作,事实上,它会产生一个无限递归错误。 关于语法规则本身你可能也会碰到一些棘手的问题。比如,你可能想知道下面这个简单扼语法是否表述得当: expr ::= factor { ('+'|'-'|''|'/') factor } factor ::= '(' expression ')' | NUM 这个语法看上去没啥问题,但是它却不能察觉到标准四则运算中的运算符优先级。比如,表达式 "3 + 4 * 5" 会得到35而不是期望的23.分开使用”expr”和”term”规则可以让它正确的工作。 对于复杂的语法,你最好是选择某个解析工具比如PyParsing或者是PLY。下面是使用PLY来重写表达式求值程序的代码: from ply.lex import lex from ply.yacc import yacc Token list tokens = [ 'NUM', 'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'LPAREN', 'RPAREN' ] Ignored characters t_ignore = ' \t\n' Token specifications (as regexs) t_PLUS = r'+' t_MINUS = r'-' t_TIMES = r'*' t_DIVIDE = r'/' t_LPAREN = r'(' t_RPAREN = r')' Token processing functions def t_NUM(t): r'\d+' t.value = int(t.value) return t Error handler def t_error(t): print('Bad character: {!r}'.format(t.value[0])) t.skip(1) Build the lexer lexer = lex() Grammar rules and handler functions def p_expr(p): ''' expr : expr PLUS term | expr MINUS term ''' if p[2] == '+': p[0] = p[1] + p[3] elif p[2] == '-': p[0] = p[1] - p[3] def p_expr_term(p): ''' expr : term ''' p[0] = p[1] def p_term(p): ''' term : term TIMES factor | term DIVIDE factor ''' if p[2] == '*': p[0] = p[1] * p[3] elif p[2] == '/': p[0] = p[1] / p[3] def p_term_factor(p): ''' term : factor ''' p[0] = p[1] def p_factor(p): ''' factor : NUM ''' p[0] = p[1] def p_factor_group(p): ''' factor : LPAREN expr RPAREN ''' p[0] = p[2] def p_error(p): print('Syntax error') parser = yacc() 这个程序中,所有代码都位于一个比较高的层次。你只需要为令牌写正则表达式和规则匹配时的高阶处理函数即可。而实际的运行解析器,接受令牌等等底层动作已经被库函数实现了。 下面是一个怎样使用得到的解析对象的例子: parser.parse('2') 2 parser.parse('2+3') 5 parser.parse('2+(3+4)*5') 37

景凌凯 2020-04-16 19:33:06 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播