• 关于

    组合爆炸问题怎么解决

    的搜索结果

问题

《云周刊》第62期:2015广州·云栖大会火热报名!

阿里云柳璃 2019-12-01 22:01:15 21624 浏览量 回答数 5

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。

hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

回答

其实从去年已经隐隐约约感觉到数据库的有变化,只是没有想到变得这么快。今年的一些事情实实在在地给了某些数据库重击,如果以前去某数据库还是喊喊,然后该用还用,今年从传统领域刮起的去某数据库的风,已经开始了,并且后面的乌云密布也看得见。 最近看一篇国外的开源产品提供厂商的一篇文字,主要是在询问了他的几百位客户后得出了下图中的2019年数据库的使用趋势。 从图中可以看出,MySQL以38.9%的使用率高居榜首,其次是MongoDB(24.6%)、PostgreSQL(17.4%)、Redis(8.4%)和Cassandra(3.0%)。在这些数据库中,Oracle仅占1.8%,而CouchDB、Berkeley DB、Microsoft SQL Server、Redshift、Firebase、Elasticsearch 整合后的影响力和用户的总和仅为2.4%。 但该调查报告却与DB-engine排名趋势流行度报告大相径庭,Oracle数据库在此报告中排名第一,不过笔者认为,任何文字都是可能是偏颇或有倾向性的,每个人看完后都可能有自己的想法,或认同或反对,就如同最近最热的一句话“人心中的成见是一座大山,任你怎么努力休想搬动”。 MySQL 仍然是排名第一的免费开源数据库,占开源数据库使用量的 30% 以上。这并不奇怪,根据 DB-Engines,MySQL 多年来一直保持在这个位置。根据笔者多年来的从业经验,我认为MySQL数据库确实配得上这个排名,原因如下。 1.完全开源 MySQL最强大的优势之一在于他的数据库管理系统(DBMS,Database Management System)是一个开源系统。当然,开源并不意味着免费,它还是有许多付费功能。但是开源的特点给予用户可以根据自己需要修改DBMS的自由。 MySQL采用了GPL(General Public License),这意味着授权给用户可以阅读,修改和优化源代码,这样即使是免费版的MySQL的功能也足够强大。这也是MySQL如此受欢迎的原因之 一。 2.快速更新和用户友好 在其他数据库(例如Orcale、MSSQL Sever)更新缓慢的时候,MySQL很少让他的用户等待。每当新的版本出来之后,MySQL都会成为大多数服务器的主要数据库。Linux web服务器已经成为现在web服务器的主流,MySQL在linux服务器上面也得到了广泛的应用。 3.WebsitePanel,phpMyAdmin 和MySQl的黄金组合 对于初学者来说,通过虚拟主机商提供的websitepanel控制面板学习MySQL是一个很不错的方法。用户不仅可以观看很多视频教程来学习使用 MySQL,还可以使用PhpMyAdmin通过web方式管理数据库。 PostgreSQL 以 13.4% 的开源数据库用户比例位居第二,紧随其后的是 MongoDB,占 12.2%,位列第三。 如果你经常光顾某些网站,或者大型公众号,你应该知道今年最热的事情有两个,postgresql和大数据,今年算是postgresql在中国的开始发展的元年,知道的人和使用的人也越来越多。 根据DB-engine数据库流行榜发布的数据显示,Oracle与MySQL与去年相比都产生了一定的退步,唯独postgresql呈现上升趋势,比去年同月份提高了85.18%,这进一步说明数据库领域正在涌现出更多的新生力量,与之前将所有鸡蛋都放在一个篮子里的传统策略相比,IT行业的工作者正在使用多种数据库来支持他们的产品,多数据库类型的使用在过去10年出现了爆炸式增长。 在我们的调查中,几乎有一半实际上使用不止一种类型的数据库来支持他们的应用程序,而不是单个数据库,使用多个数据库的比例为44.3%,使用一个数据库的比例为55.7%,他们喜欢的数据库组合如下。 现在,让我们仔细研究一下在单个应用程序中最常用的数据库类型。 在下面的图表中,左边列中的数据库表示该数据库类型的样本量,上面列出的数据库表示与该数据库类型组合的百分比。蓝色显示的单元格表示 100% 的部署组合,而黄色表示 0% 的组合。 因此,如下面的数据库组合热图所示,MySQL 是我们与其他数据库类型结合最频繁的数据库。但是,虽然其他数据库类型经常与 MySQL 一起使用,但这并不意味着 MySQL 部署总是使用另一种数据库类型。这可以在 MySQL 的第一行看到,其颜色为浅蓝到黄色,相比之下,MySQL 第一列的颜色要和表示 100% 组合的蓝色的匹配度高许多。 用黑色边框突出显示的单元格表示仅利用这一种数据库类型的部署,其中仅使用 MySQL 的单元格占部署总数的 23%。 其实,这些数据也比较精准的反映了国内的情况,从2005年开始,IT企业在数据库的发展方向上就已经有了一些变化。 2007年开始阿里巴巴的IT开销史无前例,一度成为IBM、Oracle中国的标杆客户,淘宝、阿里巴巴B2B和支付宝等公司,98%以上的软件系统和业务都是采用Oracle数据库提供数据服务。2009年淘宝更是上了全球排名前几位的大RAC集群,据说当年有16个节点。每天早上CPU还是跑到98%。换句话来说,三年几千万买Oracle产品+服务也没办法支撑阿里成长的速度,只能开启自研模式,于是就有了Oracle全面转向MySQL的进程。 拆分Oracle数据库+Hadoop其实也可以撑一撑,但是这样的话,还要向Oracle购买更多的License(再花几千万,不是没钱,是即便花钱也不能彻底解决问题)。因此,阿里巴巴B2B将中文站压力和数据容量最大的Offer数据库,成功从Oracle数据库+IBM小型机+EMC2存储设备,迁移到MySQL数据库+PC Server的模式,所以淘宝2013年下线了最后一个Oracle,2014年支付宝交易替换了Oracle,2016年支付宝总账全面用OceanBase替换Oracle。 发展趋势: 1.“去Oracle化”。一方面是Oracle采用scale up而不是scale out的方案;另外一个重要原因是价格。网易和阿里巴巴都曾经以Oracle作为主要的数据库解决方案,投资几千万来采购License。阿里巴巴曾经还自称是互联网企业中Oracle的最大用户。Oracle最大的优势是运维简单,应用开发方便,但是和昂贵的价格相比,这一点不再具备吸引力。 2.优化MySQL数据库。这些互联网企业采用了大量的MySQL服务器集群,最大集群在150台服务器左右。承载了包括博客、电子商务等应用。采用的优化包括: 传统的SQL优化,如减少某个查询涉及到的列,控制索引数量等 闪存介质(SSD或者Flash卡)。这是几乎所有互联网企业都采用的方法,由于测试场景各不相同,因此没法比较谁家的方案更好。大体上分成直接使用闪存介质作为存储系统;优化闪存介质访问方式进一步优化 设计MySQL存储引擎 3.NoSQL数据库。NoSQL对应用养发提出了较高的要求,在项目中不是那么容易推广,一致性要求被放松,但是“原子性”支持需要被保证。一般是为了满足高并发需要才引入。如盛大采用MongoDB,淘宝自研了Tair数据库(已经开源) 4.分布式数据库。众所周知,使用不同的SQL优化与执行方式,数据库的访问性能可能会存在上千上万倍的差距。计算存储分离的核心思想便是在数据存储层面进行一体化存储,而计算层面则有效利用每种执行引擎的特点,针对不同的业务场景进行选择和优化。 所以,如果具有超强的研发团队和运维团队,在云时代还是有机会替代Oracle的,我们也看到伴随着人口红利,在软件开发领域的我国实力已今非昔比,大部分企业的 “去IOE”的进程更多的是自发的因系统架构优化而进行,同时各种数据库技术与产品也蓬勃发展,所以,在技术上看Oracle并非不能取代,更多的是出于综合成本(改造与建设成本、分享)的考量,需要的是时间和意志。 一千个人眼里就有一千个哈姆雷特,在每个开发者和企业的眼中,只有适合自己的数据库才是最好的。

问问小秘 2020-01-06 14:58:56 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

一、系统迁移捅了13亿用户的娄子 故事,是从一桩“离婚再嫁”的案子开始的。 离婚再嫁的主角,是英国银行TSB。 2015年,TSB银行结束了与劳埃德银行(Lloyds Bank)长达20年的“婚姻”,从他们合并的集团中拆分出来,并卖身给了新欢、西班牙公司萨瓦德尔(Sabadell)集团,收购价17亿英镑,按当时的汇率大概是158亿人民币。 然而,过去的20年,世界变了太多,银行业也进步了太多。20年的“婚姻”留给TSB银行的,还有和“前夫”剪不断理还乱的IT系统。 TSB银行540万客户的数十亿记录,都还留在“前夫”劳埃德银行的系统里,而且因为缘分已断,不能白嫖人家的系统,每年还要给前夫交1亿英镑(大约9.3亿人民币)的费用。 这就好像肉身虽然已经和“新欢”在一起,但支付宝和微信账号还是跟“前夫”共用一套,而且还要给“前夫”付账号租金,自然令人不爽。 于是,在筹备了许久之后,2018年,他们终于要行动了:把“前夫”IT系统里的客户信息记录,迁移到“新欢”专门为TSB银行准备的新系统里。 他们把迁移的日子,定在了4月22日星期日的晚上,先把银行的IT系统离线,迁移完之后再上线,恢复客户访问自己银行账户的权限。 为了这场迁移,他们已经投入了超过2500人年的人力成本,西班牙“新欢”集团的CEO在前一年的圣诞节就大声放话:这是全欧洲史无前例的大项目,我们投入了1000多名专业人才,将极大地促进我们在英国的增长。 不过,虽然大佬们在台上豪言壮语,实际上负责迁移的员工们心里却慌得一逼。这个迁移项目本来要筹备18个月,结果时间超了,预算也超了,事情难办的很。 Flag果然不能立太早,打脸的结果很快就来了。 迁移结束,客户的访问权限,他们以为万无一失,但就在20分钟后,收到了问题报告: 有的客户发现自己的钱不见了; 有的客户花了一点小钱,账户里却记录成了花费数千美元; 有的客户登录上去之后,发现不是自己的账户,而是看到了别人的银行账户。 13亿客户的账户记录都出了问题,于是,他们把TSB银行骂成狗,金融监管机构们则连夜找银行喝茶。 而此后的几个星期,银行都在拼命的恢复系统,但数以百万计的客户们已经人心惶惶,拼命的把自己存在TSB银行的钱取出来。 TSB银行,被自己捅的篓子扔进了地狱模式。 而问题的根源,在于测试。 英国金融监管机构金融行为监管局(FCA)首席执行官Andrew Bailey在事故几周后对外公开表示,造成系统混乱的很大原因在于缺少测试,而TSB银行请来救急的IBM专家也发现,TSB银行没有采用严格的上线标准。 而且由于地球上的金融体系都是相连的,事故所造成的错误被永久的保留在了金融体系里,不可逆转。 这起弥天大祸,也让TSB银行赔了很多钱。为了赔偿客户、解决系统出问题后浑水摸鱼的交易、找第三方帮忙总共花了3.302亿英镑,按当时汇率算大约28.4亿人民币。 而TSB的乙方、IT提供商Sabis也因为这起事故收到了1.53亿英镑(超过13亿人民币)的赔偿账单。 而受此影响,TSB银行当年亏损了1.054亿英镑(9.2亿人民币),CEO Paul Pester引咎辞职。 业绩这么差,银行的经营也难以为继,今年11月底TSB关闭了英国86个分行,至少400个工作岗位也因此消失。 二、银行系统很复杂 信息化时代,银行的IT系统也变得越来越复杂。 六十年前,人们只能选择在柜台存取现金,普通客户并没有机会直接接触计算机系统。当时,银行虽然也启用了巨型计算机,但它们只会在一天或一周交易结束的时候对纸质数据进行汇总。 也就是说,银行的IT系统仅由银行员工使用,银行与客户在柜台上的交互用的还是纸质工具。 这种情况在1967年发生了改变。 这一年,世界上第一台自动柜员机(ATM)在英国诞生,并被安装到伦敦北部的巴克莱银行Enfield分行。从此,银行和客户交互的方式发生重大变革。 ITRS Group首席执行官盖伊·沃伦(Guy Warren)解释说: 直到真正的ATM和在线银行业务出现,公众才可以直接访问银行的IT系统。 这还仅仅是个开始。 全球互联的时代,互联网和移动银行的发展进一步拉近了客户和银行IT系统之间的距离,而这样的系统,也越来越成为银行赖以运营的关键所在。 或许你会觉得,登个支付宝/微信,亮出付款码,让小钱钱在银行跟银行之间发生小小的流动,并没有什么难度。但事实上,每一次信息的加载和刷新背后,都发生了复杂的数据移动: 每一次动作可能关联到许多个单独的系统,所有这些系统都必须彼此交互,并与核心大型计算机连通。系统要现在后端复制数据,将现金从一个账户转移到另一个账户,保持同步更新。 而这样的运算量,还要乘以数十亿倍。 根据世界银行的数据,现在,全球至少有69%的成年人都拥有银行账户。人们每一天都在通过银行账户支付账单、贷款还款、订阅各种服务……并且,这些活动常常是跨行,甚至跨国进行的。 一家银行内部的多个IT系统(移动银行、ATM等),不仅需要彼此交互,甚至还必须跟其他国家的银行建立联系。比如我在国内办了一张visa信用卡,在美国也要能消费才行。 三、迁移问题很麻烦 TSB正是栽在了这样的高度复杂性上。 IBM在为TSB编写的报告中指出:新应用程序的组合,对先进微服务的应用和双活数据中心的使用,导致了TSB生产中的复合风险。 如何正确地处理银行IT系统迁移中出现的问题,对于任何一个银行来说,都是不小的挑战。 其中,大量的事前规划和测试工作是不可避免的。 像汇丰银行这样的跨国银行,具有高度复杂、相互关联的系统,这些系统会定期进行测试、迁移和更新。 即使在这方面如此经验丰富,汇丰银行的前IT主管兰开斯特仍坦承:诀窍就是让员工在这件事上付出更多的时间。 他还指出,TSB的IT系统迁移是一件很复杂的事: 我不确定他们是不是真的意识到了这件事的复杂程度。他们甚至没有完全想好要怎么去测试系统。 FCA首席执行官Andrew Bailey则表示: TSB的这一事故反映出他们缺少强大的回归测试。 注:回归测试是软件测试的一种,旨在检验软件原有功能在修改后是否保持完整 而最新的事故报告也引起了hacker news上网友们的热烈讨论。 有网友表示,如果TSB能选择小规模多次迁移,而不是在某一天进行大爆炸式迁移,那这种严重的事故可能就不会发生。 花几周/几个月的时间在生产过程中进行检查,以确保旧数据库和新数据库返回的结构相同。最终,将数据都转移到新数据库中,并在一段时间之后再关闭旧的数据库。这样做效果是比较好的。 而对测试不足导致了银行系统瘫痪的这一调查结论,有人吐槽说: 作为测试工程师,我一点也不意外。花费更多的时间、投入更多的人员来打造更好的测试架构,对于很多公司来说都是“可以节省的成本”。 经理们总是在设定的上线日期前问:“测试咋能花那么多时间?!”真要出事了他们又开始甩锅了。 也有网友严厉批评道:TSB的问题不应该说是测试不足,而是在多个层面上都测试不足,并且缺少可恢复的备份。 也有人指出,避免出错最简单的办法就是减少变化。 问题在于,无论是银行还是其他领域的公司,业务都是在不断进化的。 根据FCA发布的数据,从2017年到2018年,英国金融服务部门报告的技术中断增加了187%。 盖伊·沃伦就认为:系统停机不会消失。问题在于,可接受的度在哪里? 你怎么看呢?在评论区留下你的看法~

有只黑白猫 2020-01-20 11:22:13 0 浏览量 回答数 0

回答

01「思维陷阱」是一个人职场平庸的根本原因 有没有人想过:为什么有些人在职场显得能力特别差? 我们生活在一个容易让人焦虑的时代,每天都需要主动或者被动地接受大量的信息,但少有人清醒地知道,这些信息悄悄改变了我们的“思维方式”乃至“行为”,引导我们走进陷阱。 如果你不能意识到,你可能正在被“思维陷阱”拖入平庸和焦虑的痛苦中。 为了方便理解,我下面列出三种最常见的陷入“思维陷阱”的人,对照看看自己是不是: 热衷快餐知识,却不能清醒知道自己无知的人 习惯什么都“靠自己”的人 无法一眼看透事物发展背后本质的人 **1. 热衷快餐知识 ** 却不能清醒知道自己无知的人 伴随着知识付费的崛起,近几年出现了大量热衷快餐知识的人_他们是朋友圈的“概念狂人”,对权威、意见领袖的观点非常追捧,关于最新的话题他总能发表看法,他们热衷于走捷径,转发的文章总是散发着贩卖焦虑的气味。 但如果与他们深入交流,你会发现:除了这些二手的快餐知识,他们对常识和经典无知的可怕。 这些人最大的特点是不知道自己的无知——认为自己脑子中的想法是什么样,世界就是什么样。这种人在职场有一个很难缠的习惯:很喜欢先入为主一个自己坚持的观点,然后再围绕这个观点去寻找支持论据。 如果这种人有较高的执行力,那就太可怕了——因为在他们很努力地将片面的理解付诸行动时,你根本无法说服他,一切都要等他让所有人都撞得头破血流停下来才能进行调整。 **2. 习惯 ** 什么都“靠自己”的人 如果一个人看多了鸡汤文里“什么都不如自己可靠”的口号,或者片面理解了近几年常说的“为结果负责”这句话,那他就会走入“靠自己”的思维陷阱。 这些人最大的特点就是害怕麻烦别人,害怕拒绝——认为目前事物无法圆满完成的原因,主要是自身实力或资源还不够,所以会一味地增强自身资源以期望达到目标。 他们既不能看到别人那里多余的可协作资源,也不能将自己的资源为别人所用。 因为害怕暴露出错,他们也不擅长分享和求助。 他们会觉得自己深刻理解了“责任”的意义,但是却总是感到每天的工作压力山大,那些习惯在办公室里加班到凌晨但效率低下的员工往往是这种人。 **3. 无法一眼看透事物发展背后矛盾本质的人 ** 《教父》最有名的一句话是“花半秒钟就看透事物本质的人,和一生都看不清事物本质的人,注定是截然不同的命运。” 那什么是“事物的本质”呢? 其实就是位于事物发展中底层的矛盾。 如果一个人看事物或者解决工作难题的时候,没有思考背后的矛盾和规律的习惯,就容易流于表面,他们可能洞察力不错,比起一般人能关注那些细节,但是却缺乏全局观,容易纠结在自己的小世界里。 注意:没有日常观察思考“事物发展背后的矛盾”习惯的人,注定无法成长为团队的领导者! 在职场,他们是需要反复指导和争论,耗费团队沟通成本的下属,在解决问题时,他们是无法快速清晰找到问题抓手的那群人;在生活中,他们往往又会陷入“拎不清”或“选择困难”的麻烦中。 02 那些互联网大神 是如何跳出“思维陷阱”的? “思维陷阱”就藏在人性的弱点中,它是如此可怕和不易察觉,我们必须保持一些日常思考习惯来对抗它对我们的影响。 也许你能从下面三位阿里巴巴高管身上拥有的特质中找到答案,这些习惯帮助他们克服“思维陷阱”在中国最复杂的商业经济体——阿里巴巴中取得了事业上的巨大成就。 他们是那些经历过绝望后谷底反弹的人,那些长期默默坚持而又一鸣惊人的人,那些在危急关头敢于独自按下刹车键的人,他们分别是钉钉创始人无招、盒马鲜生创始人侯毅,以及现在的淘宝天猫总裁蒋凡。 **1. 钉钉创始人无招 ** 抛下已知去“观察”外界的习惯 “无招”是花名,如果结合他在阿里的经历看,会发现很有意思。 钉钉创始人无招 2014年,阿里经历了强推社交产品“来往”的巨大挫折;在智能手机全国开始普及的年代,因为社交用户基数大,而且极度高频的入口级特性,社交产品所能带来的安全感是各大互联网厂商都极度渴望的,所以你可以理解为什么马化腾会把微信横空出世称为:抢到第一张移动互联网船票。 而陈航和他所在的团队,就是试图通过挑战微信,为阿里赢得安全感的一群人。 用再造一个“微信”来挑战微信,结果就是无招需要和团队把一场惨痛的失败消化下来。 但有没有人想过:这样的严重挫败陷入的低谷,对一个产品型的团队领导者也许是一件好事——因为绝望会让一个人抛弃原有的脑子里对世界所有的理解,进入一种彻底放空和内省状态,这时候才能静下心来观察和阅读世界真正的需要。 这与悟道的逻辑不谋而合。 作为一个产品经理可能会反思:任何大而广的东西一定有弱点,如果说微信的社交面是一条横线,需要观察寻找的,是哪里可以诞生一条尚未挖掘的纵线。 那么这条纵线是什么呢? 静心向内看就会有答案,那就是阿里生态圈的万千小B企业。 如果你进入用户的心中去“观察”他们的想法,你就会用心眼看到后面的答案。 之后被外界评价“反人性”的钉钉迅速破圈微信获得了成功,而鹅厂主打“温度”的企业微信却一直不温不火,这个现象背后原因是什么? 很多人认为是因为钉钉抓住了老板的强压执行力需求,自上而下地推动市场,所以在微信办公的大环境下撕开了一个缺口。还有人同时认为无招是个冷酷的人。 但我现在却不这样认为。 在仔细阅读和研究了关于钉钉2015年来,所有无招在公开场合的发言和对钉钉产品的理解后,我认为他是国内少有的具备高度同理心的产品经理型CEO之一。 他身上有一种放下固有认知,虚心“观察”用户内心所需的能力,而且这几乎融入了他和团队的日常习惯中。 可能连使用者自己都不知道,钉钉的成功最深处,是在碎片化办公的大环境下,人性中饱含的对深度工作专注和效率的追求。而在这一点上,无论是老板还是员工,只要他还算是 “想做事的人” 那就是共通的! 人们只会说自己要一匹更快的马,但亨利福特却能观察到人心深处对速度的追求,为人们造出汽车。 “观察”的不是表面,而应该是人的内心! 在这个状态中,最重要的是要保持不带任何预设立场的“空”,不先入为主,不画地为牢,带着无知观察世界。 你不能带着“已知”去看待市场;不能孤立地,刻板地去读那些所谓的“大数据”,也不能光靠人云亦云来判断用户真正的需求,而要用“无知”的心态去接近和观察用户——那些一个个自然人的情绪和需要,以人为本。 不然,就会像百度沉迷于搜索引擎的修补,放出了头条;腾讯放弃了对用户工作外时间使用的的观察,做大了抖音。 如果他们的产品经理愿意走出北上广高大上的写字楼,走到他们真正需要服务的“群众”中去,结合数据和实践,也许就会“观察”到——哦~原来世界不是自己坐在角落里想象的那样。 钉钉所有的员工,入职后第一课就是被要求放下已知,带着空杯进入那些小B企业中,同工同吃,“观察”和阅读用户内心真正的需要。 “无”招胜有招——《笑傲江湖》里风清扬传给令狐冲的第一句话。 **2. 盒马鲜生创始人侯毅 ** 保持“关联性”思考的习惯 说完钉钉的无招,我们再看看盒马的侯毅。 盒马鲜生创始人侯毅 侯毅这个人很有意思,因为他最早是刘强东的“兄弟”,在京东长期希望推动一个类似盒马的前瞻O2O项目,无奈一直没有人关注;最后被逍遥子识才,多次劝说后,决定加入阿里,盒马鲜生是这么来的(这里不得不说:老逍简直比老萧还厉害)。 盒马鲜生是带火了“新零售”这个概念的明星企业,但很多人其实不懂“新零售”是什么。 所谓新零售的准确定义,其实就是在各种资源的关联和协同组合中,寻求一种能大大节约成本,提高价值的新组合。 为什么代表人物会是侯毅? 你可以理解成:因为长年专注在线下线上相结合的领域,侯毅的脑子有了一个叫“资源相互联系”的魔方,每天他都需要转动几次,去寻找数个变量组合资源中,无限接近“提高价值降低成本”的最优解。 所以这样看盒马和侯毅,你就可以突然看懂了:为什么可以推出“盒区房”这种以小博大的品牌亮点,通过捆绑房地产这个敏感话题,达到巨大宣传效果;以及明白为什么在今年的艰难时期,盒马能够快速反应,第一个推出了大显身手的“共享员工”模式了。 盒马的品牌是围绕着社区服务来的,线下线上配合的打法中,作为领导者的侯毅永远不能孤立地去思考,如果只想着依靠自己的力量去发展,那就坏事了。 保持日常的关联性思考,也有助于让一般人看竞争时,不陷入二元对立的表面理解。 用“关联性”的思维来理解阿里的战略,你会发现:任何与阿里展开竞争的企业,他们需要面对的是整个的阿里军团。 比如美团面对的是饿了么和口碑吗?那么盒马呢?大润发呢?银泰呢?支付宝呢?阿里云呢?天猫超市呢? 所以作为普通人,你可以学到的是永远不要只想着只用自己的资源和能力去做事。 一定要懂得资源之间的“关联性”,不要怕麻烦别人,也许你也能给别人创造价值呢?所以,你也可以在大脑中培养一个“关联性”思考事物的魔方。 **3. 淘宝天猫总裁蒋凡 ** 思索事物发展背后矛盾的习惯 当宣布蒋凡挑大梁的时候,很多人会问:为什么张勇和马云会选择一个少壮派? 淘宝天猫总裁蒋凡 也许张勇最能理解蒋凡:因为他们都是那种“在关键时刻孤独地扮演过‘扳道工’角色的人”——无论当时对他们来说,自己在不在最重要的位置上。 在蒋凡身上,有着外界所说的“一眼看穿底层逻辑”的能力;也是当下信息爆炸的时代,一种透过乱七八糟的消息迷雾,看到复杂事物中最简单的常识的能力。 这种能力,就是要看透推动事物发展背后的矛盾。 一个外表复杂的事物,它的本质其实是常识,就像新闻联播里每天在说的“当下主要矛盾已经转化为人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾”。 到底什么是“消费升级”? 必须要用矛盾的观点看: 我们这些五环内白领在双11抢不到戴森吸尘器的不是真正的主要矛盾,你看不到的地方,“国内的大多数”的小镇青年想买一件耐克配国潮,而自己所处的城镇既没有CBD和没有大商场,下班时间甚至都不知道怎么打发——这才是主要矛盾。 去拼多多拼个9块9的手纸,被五环内用户嘲讽为“消费降级”,可你要知道拼多多的手纸不是为你准备的,是为广大“中国的大多数”准备的——这,才是真正的消费升级! 但在那个年代,并不是所有人都能认清主要矛盾。 当时即使在阿里内部,长年的竞争也让一部分人陷入了思维陷阱,认为京东是天猫最大的追赶者。 那时候也有人知道小镇青年的重要性,可是当时大家的理解还停留在跑到农村去刷墙。 拼多多为什么能够在阿里眼皮下迅速崛起呢!? 如果说是把握了下沉市场还是流于表面,你用矛盾的观点看本质: 第一点,2015~2017年间,大量阿里生态内的小小B端的角色,如底层商家、淘客、羊毛党因为阿里战略调整,对外发生了外溢,这些互联网游牧民走到哪,哪里就形成了新的细小供应链——这些人离开阿里要吃饭啊,这是最主要矛盾。 第二点,低价智能机和微信支付相结合,带来了小镇青年整体电商用户盘子扩大——这些人的日常时间要怎么打发,身边可能连个高级商场都没有,这是次主要矛盾。 这些东西,身处五环内的你在那个年代里,光看数据是不会马上发现的,只有靠细微的洞察才能感知到: 快递小哥的包裹里是不是开始有了别的平台的商品? 老家父母亲戚的朋友圈,是不是很多东西变了? 地方台的的综艺节目里面,广告赞助商是不是出现了不认识的牌子?(可惜很多北上广人不看电视) 那些像游牧民族一样的羊毛党,被你屏蔽朋友圈的微商妈妈又在忙什么? 透过现象看本质,拼多多就是抓住了这些要素悄悄长大的。 蒋凡上任后面对这个需要被再次重视的市场,是怎么抓“主要矛盾”的? 首先是重新平衡天猫、淘宝的重心,平衡“大多数用户”和B端之间的消费和供给——这不是拿捏尺度的平面问题,而是一个对顶层架构重新分析、设计的立体问题。 选用模式更适合五环外市场的聚划算做渠道下沉,向低线城市渗透、并且覆盖全年龄段,尽快封堵挤压拼多多的继续扩张 发力短视频、抖音、网红,直播这些内容场景,再通过大数据精准推送,通过占领用户时间,赢得市场,让B端人群比如主播网红下沉去填补C端的使用手机时间。 带领品牌商家下沉。之前很多品牌集中在打一二线市场,原有的渠道网络对于下沉市场是滞后的。但随着阿里的强势运营,优质的中部商家做敲门砖品牌迅速得以下沉——提前占住山头,让对手仰攻。 随着最近淘宝特价推出,结合淘宝、聚划算、天猫、淘小铺全面出击,阿里军团的刀枪剑戟朝向了同一个方向:B端搭建架构,C端占领时间,蒋凡完成了对北上广人群和下沉市场的一记全垒打! 目前我们还不知道拼多多的黄铮会如何接下蒋凡这一记硬球——因为占据了品牌优势,拼多多对阿里会长期处于一种“仰攻”状态。 这就难受了,毕竟狮子猛回头扑向一只咬自己尾巴的鬣狗很容易,但鬣狗要一口吃下一只狮子却很难。 03 你该如何训练“三种思维” 获得职场成功! 写到这里,你也许会说:似乎这些思维习惯也没有多么的深奥啊?这些难道不是常识吗? 你说的没错,但那些高手恰恰是将尝试变成了一种日常习惯去反复练习——因为“思维陷阱”会无时无刻存在,人必须通过训练保持觉知才行,所以我们需要复习一下这三种思维习惯: **1. 如何训练 ** 带着无知“观察”的思维习惯? 日常中,很多人会觉得自己的情商和同理心不足,不知道对方心里想什么,要怎么办? 这就可以先从“观察”自己的内心的练习开始。 练习“观察”的方式: 保持空无,抛下预设 ▼ 用客体视角觉察出自己内心与行为的关系 ▼ 再试着深入“阅读”他人内心与行为的关系 ▼ 结合规律,分析出外界真实的需要 ▼ 在生活与工作中做出策略调整或反应 ▼ 保持练习,达到情商和洞察力的提高 如果观察熟练,可以用这个方法去看世界和他人的情绪,进而搞明白对方真正的需要,即使是对方没有清晰表达出来的。 打个比方:春节时期,网上那种对于钟南山敬佩和对湖北一些事情愤怒的两极声音,如果你用心观察,你会发现他们的底层其实是同一种情绪“恐惧”——恐惧引发了行为,无论是愤怒还是寻找安全感。 再打个比方:如你单位中有一个人,别人都说这个人是自私自利的小人;你通过“观察”发现,原来对方只是个内心缺乏安全感的可怜人,所以也就可以在职场打交道中理解和推测出对方的想法和行为,读出对方真正的内心需要。 做市场运营,产品经理,品牌定位,尤其需要这种“观察”他人内心真正需要的能力。 **2. 如何训练 ** 保持“关联性”思考的习惯? 如何培养“关联性”思维,在职场拿到资源,产生更好的协作? 练习“关联性”思维的方式: 抛开过去那种任何事都想着“自己干”的想法,问自己三个问题: 我现在要做的事情,有没有利他性? 可以不可以与他人形成合力? 最终取得的成果,能不能多方共享? 如果三个问题想清楚了没问题,那么不怕拒绝,厚着脸皮干就完了! 如果三个问题想清楚了没问题,那么不怕拒绝,厚着脸皮干就完了! 日常要留心,自己和他人身上,有哪些可以“做成事”的资源,这并不是要人学会自利,而是需要培养自己的协作性;自己的专业知识,钱,甚至体力,时间,人脉圈,都是能一起互相协作的资源。 除了人与人的资源关联性,还可以培养物与物相互跨界联系的能力。 比如在阿里,训练公关的新闻策划能力,就有一种称之为“两只试管法”的日常思考方法。 你可以想象成左手握一个产品试管,右手握一个情绪试管,然后两种试剂倒在了一起,产生神奇的化学反应。 比如: 盒马鲜生(线下的果蔬生鲜服务设施/一种都市快节奏生活方式)+ 房价(情绪饱满的高敏感民生话题)= 品牌概念:盒区房 进口水果 + 北上广的生活压力(情绪饱满的消费焦虑)= 热门话题:车厘子自由 “关联性”思维练习配合“观察”运用在策划和创意里,是不是非常有趣? **3. 如何训练 ** “看穿事物底层矛盾”的思维习惯? 看事物的底层逻辑,也同样需要上面的两种思维。 日常可以多读读经典,少接触如今的“时髦概念书”以免被先入为主污染,枕头边可以放一本《毛选》,其中《矛盾论》和《实践论》是精华。 日常遇到争议性的事情,不要着急下判断,也不要站队;就站在旁观者的角度,思考思考为什么双方会这么想,他们各自有哪些需要没有被满足? 渐渐地,在别人眼中,你成了一开口就可以直击问题本质的人。 等到熟练之后,再拿来看一个人群或者一片市场,思考和实践调研他们真正的供需中,有哪些地方是目前供需所不平衡的,在这样不平衡产生的痛点中,出现了什么替代方案? 以上就是我所分享的练习方法。 最后补充一点:如果有一件事你觉得一定会如此,那么保险起见尝试从相反的方向推论看有没有漏洞。 你还可以经常对外分享自己的心得和观点(我自己就在用这种方式保持二次学习和修正提炼),不要担心出错,通过理性的交流和思辨,通过他人的认知进行思辨和修正。 通过这种方式收获了解,你会发现:自己其实并不孤独。 参考: 《毛选》 《行为》罗伯特·M·萨波斯基 《智能的结构》霍华德·加德纳 《硬球》克里斯·马修斯 《合作的进化》罗伯特.阿克塞尔罗德 《笑傲江湖》金庸 作者:舒扬,笔名舍予兄(个人WX:shuyang9451)休养前担任阿里健康高级公关专家,目前是一名 长跑 和 行为心理学 爱好者,著有畅销书《共鸣》,一个喜欢深夜在朋友圈发长篇思考的人。事业目标是成为最好的公关,在这条路上将永远是一个学生。

剑曼红尘 2020-04-13 11:47:20 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 阿里云双十一主会场 阿里云双十一新人会场 1024程序员加油包 阿里云双十一拼团会场 场景化解决方案 阿里云双十一直播大厅