• 关于 人工智能编程语言问题怎么解决 的搜索结果

回答

有编程能力和数据挖掘能力的工程师最火,包括:数据挖掘工程师、机器学习工程师,算法工程师。 今年3月份时,谷歌开发的人工智能AlphaGo打败了全球最顶尖的围棋高手,轰动全世界,AI时代正式拉开序幕。实际上,人工智能这一概念早在上世纪一大批科幻小说陆续发表时,就已被人们接受,而随着科技的发展,人工智能的发展前景更是日益清晰。一个人工智能的诞生需要无数个工程师挥洒汗水。其中,负责开发学习算法、使机器能像人类一样思考问题的数据挖掘工程师更是无比重要。什么人能完成人工智能的开发任务呢。必须指出,人工智能和一般的计算机程序有极大的差别,它应当具有“能够自主学习知识”这一特点,这一特点也被称为“机器学习”。而自学习模型(或者说机器学习能力开发)正是数据挖掘工程师的强项,人工智能的诞生和普及需要一大批数据挖掘工程师。  那么在AI时代,如何才能掌握相关的技能,成为企业需要的数据挖掘人才呢。 第一个门槛是数学 首先,机器学习的第一个门槛是数学知识。机器学习算法需要的数学知识集中在微积分、线性代数和概率与统计当中,具有本科理工科专业的同学对这些知识应该不陌生,如果你已经还给了老师,我还是建议你通过自学或大数据学习社区补充相关知识。所幸的是如果只是想合理应用机器学习算法,而不是做相关方向高精尖的研究,需要的数学知识啃一啃教科书还是基本能理解下来的。 第二个门槛是编程 跨过了第一步,就是如何动手解决问题。所谓工欲善其事必先利其器,如果没有工具,那么所有的材料和框架、逻辑、思路都给你,也寸步难行。因此我们还是得需要合适的编程语言、工具和环境帮助自己在数据集上应用机器学习算法。对于有计算机编程基础的初学者而言,Python是很好的入门语言,很容易上手,同时又活跃的社区支持,丰富的工具包帮助我们完成想法。没有编程基础的同学掌握R或者平台自带的一些脚本语言也是不错的选择。 Make your hands dirty 接下来就是了解机器学习的工作流程和掌握常见的算法。一般机器学习步骤包括: 数据建模:将业务问题抽象为数学问题; 数据获取:获取有代表性的数据,如果数据量太大,需要考虑分布式存储和管理; 特征工程:包括特征预处理与特征选择两个核心步骤,前者主要是做数据清洗,好的数据清洗过程可以使算法的效果和性能得到显著提高,这一步体力活多一些,也比较耗时,但也是非常关键的一个步骤。特征选择对业务理解有一定要求,好的特征工程会降低对算法和数据量的依赖。 模型调优:所谓的训练数据都是在这个环节处理的,简单的说就是通过迭代分析和参数优化使上述所建立的特征工程是最优的。 这些工作流程主要是工程实践上总结出的一些经验。并不是每个项目都包含完整的一个流程,只有大家自己多实践,多积累项目经验,才会有自己更深刻的认识。 翻过了数学和编程两座大山,就是如何实践的问题,其中一个捷径就是积极参加国内外各种数据挖掘竞赛。国外的Kaggle和国内的阿里天池比赛都是很好的平台,你可以在上面获取真实的数据和队友们一起学习和进行竞赛,尝试使用已经学过的所有知识来完成这个比赛本身也是一件很有乐趣的事情。 另外就是企业实习,可以先从简单的统计分析和数据清洗开始做起,积累自己对数据的感觉,同时了解企业的业务需求和生产环境。我们通常讲从事数据科学的要”Make your hands dirty”,就是说要通过多接触数据加深对数据和业务的理解,好厨子都是食材方面的专家,你不和你的“料”打交道,怎么能谈的上去应用好它。 摆脱学习的误区 初学机器学习可能有一个误区,就是一上来就陷入到对各种高大上算法的追逐当中。动不动就讨论我能不能用深度学习去解决这个问题啊。实际上脱离业务和数据的算法讨论是毫无意义的。上文中已经提到,好的特征工程会大大降低对算法和数据量的依赖,与其研究算法,不如先厘清业务问题。任何一个问题都可以用最传统的的算法,先完整的走完机器学习的整个工作流程,不断尝试各种算法深挖这些数据的价值,在运用过程中把数据、特征和算法搞透。真正积累出项目经验才是最快、最靠谱的学习路径。 自学还是培训 很多人在自学还是参加培训上比较纠结。我是这么理解的,上述过程中数学知识需要在本科及研究生阶段完成,离开学校的话基本上要靠自学才能补充这方面的知识,所以建议那些还在学校里读书并且有志于从事数据挖掘工作的同学在学校把数学基础打好,书到用时方恨少,希望大家珍惜在学校的学习时间。 除了数学以外,很多知识的确可以通过网络搜索的方式自学,但前提是你是否拥有超强的自主学习能力,通常拥有这种能力的多半是学霸,他们能够跟据自己的情况,找到最合适的学习资料和最快学习成长路径。如果你不属于这一类人,那么参加职业培训也许是个不错的选择,在老师的带领下可以走少很多弯路。另外任何学习不可能没有困难,也就是学习道路上的各种沟沟坎坎,通过老师的答疑解惑,可以让你轻松迈过这些障碍,尽快实现你的“小”目标。 机器学习这个领域想速成是不太可能的,但是就入门来说,如果能有人指点一二还是可以在短期内把这些经典算法都过一遍,这番学习可以对机器学习的整体有个基本的理解,从而尽快进入到这个领域。师傅领进门,修行靠个人,接下来就是如何钻进去了,好在现在很多开源库给我们提供了实现的方法,我们只需要构造基本的算法框架就可以了,大家在学习过程中应当尽可能广的学习机器学习的经典算法。 学习资料 至于机器学习的资料网上很多,大家可以找一下,我个人推荐李航老师的《统计机器学习》和周志华老师的《机器学习》这两门书,前者理论性较强,适合数学专业的同学,后者读起来相对轻松一些,适合大多数理工科专业的同学。

管理贝贝 2019-12-02 01:21:46 0 浏览量 回答数 0

问题

【大咖问答】D2前端大神云集,问答专场

问问小秘 2019-12-01 21:57:29 2686 浏览量 回答数 9

问题

【大咖问答】第十四届D2前端技术论坛专场问答

问问小秘 2019-12-01 21:56:43 36 浏览量 回答数 0

智能视觉生产免费体验

图像视频分割、图像编辑、图像分析,互娱、电商行业必备

问题

2018python技术问答集锦,希望能给喜欢python的同学一些帮助

技术小能手 2019-12-01 19:31:10 2040 浏览量 回答数 2

回答

在PaaS层中一个复杂的通用应用就是大数据平台。大数据是如何一步一步融入云计算的呢?首先我们来看一下大数据里面的数据,就分三种类型,一种叫结构化的数据,一种叫非结构化的数据,还有一种叫半结构化的数据。 大数据拥抱云计算 在PaaS层中一个复杂的通用应用就是大数据平台。大数据是如何一步一步融入云计算的呢? 1 数据不大也包含智慧 一开始这个大数据并不大。原来才有多少数据?现在大家都去看电子书,上网看新闻了,在我们80后小时候,信息量没有那么大,也就看看书、看看报,一个星期的报纸加起来才有多少字?如果你不在一个大城市,一个普通的学校的图书馆加起来也没几个书架,是后来随着信息化的到来,信息才会越来越多。 首先我们来看一下大数据里面的数据,就分三种类型,一种叫结构化的数据,一种叫非结构化的数据,还有一种叫半结构化的数据。 结构化的数据:即有固定格式和有限长度的数据。例如填的表格就是结构化的数据,国籍:中华人民共和国,民族:汉,性别:男,这都叫结构化数据。 非结构化的数据:现在非结构化的数据越来越多,就是不定长、无固定格式的数据,例如网页,有时候非常长,有时候几句话就没了;例如语音,视频都是非结构化的数据。 半结构化数据:是一些XML或者HTML的格式的,不从事技术的可能不了解,但也没有关系。 其实数据本身不是有用的,必须要经过一定的处理。例如你每天跑步带个手环收集的也是数据,网上这么多网页也是数据,我们称为Data。数据本身没有什么用处,但数据里面包含一个很重要的东西,叫做信息(Information)。 数据十分杂乱,经过梳理和清洗,才能够称为信息。信息会包含很多规律,我们需要从信息中将规律总结出来,称为知识(Knowledge),而知识改变命运。信息是很多的,但有人看到了信息相当于白看,但有人就从信息中看到了电商的未来,有人看到了直播的未来,所以人家就牛了。如果你没有从信息中提取出知识,天天看朋友圈也只能在互联网滚滚大潮中做个看客。 所以数据的应用分这四个步骤:数据、信息、知识、智慧。 最终的阶段是很多商家都想要的。你看我收集了这么多的数据,能不能基于这些数据来帮我做下一步的决策,改善我的产品。例如让用户看视频的时候旁边弹出广告,正好是他想买的东西;再如让用户听音乐时,另外推荐一些他非常想听的其他音乐。 用户在我的应用或者网站上随便点点鼠标,输入文字对我来说都是数据,我就是要将其中某些东西提取出来、指导实践、形成智慧,让用户陷入到我的应用里面不可自拔,上了我的网就不想离开,手不停地点、不停地买。 很多人说双十一我都想断网了,我老婆在上面不断地买买买,买了A又推荐B,老婆大人说,“哎呀,B也是我喜欢的啊,老公我要买”。你说这个程序怎么这么牛,这么有智慧,比我还了解我老婆,这件事情是怎么做到的呢? 2 数据如何升华为智慧 数据的处理分几个步骤,完成了才最后会有智慧。 第一个步骤叫数据的收集。首先得有数据,数据的收集有两个方式: 第一个方式是拿,专业点的说法叫抓取或者爬取。例如搜索引擎就是这么做的:它把网上的所有的信息都下载到它的数据中心,然后你一搜才能搜出来。比如你去搜索的时候,结果会是一个列表,这个列表为什么会在搜索引擎的公司里面?就是因为他把数据都拿下来了,但是你一点链接,点出来这个网站就不在搜索引擎它们公司了。比如说新浪有个新闻,你拿百度搜出来,你不点的时候,那一页在百度数据中心,一点出来的网页就是在新浪的数据中心了。 第二个方式是推送,有很多终端可以帮我收集数据。比如说小米手环,可以将你每天跑步的数据,心跳的数据,睡眠的数据都上传到数据中心里面。 第二个步骤是数据的传输。一般会通过队列方式进行,因为数据量实在是太大了,数据必须经过处理才会有用。可系统处理不过来,只好排好队,慢慢处理。 第三个步骤是数据的存储。现在数据就是金钱,掌握了数据就相当于掌握了钱。要不然网站怎么知道你想买什么?就是因为它有你历史的交易的数据,这个信息可不能给别人,十分宝贵,所以需要存储下来。 第四个步骤是数据的处理和分析。上面存储的数据是原始数据,原始数据多是杂乱无章的,有很多垃圾数据在里面,因而需要清洗和过滤,得到一些高质量的数据。对于高质量的数据,就可以进行分析,从而对数据进行分类,或者发现数据之间的相互关系,得到知识。 比如盛传的沃尔玛超市的啤酒和尿布的故事,就是通过对人们的购买数据进行分析,发现了男人一般买尿布的时候,会同时购买啤酒,这样就发现了啤酒和尿布之间的相互关系,获得知识,然后应用到实践中,将啤酒和尿布的柜台弄的很近,就获得了智慧。 第五个步骤是对于数据的检索和挖掘。检索就是搜索,所谓外事不决问Google,内事不决问百度。内外两大搜索引擎都是将分析后的数据放入搜索引擎,因此人们想寻找信息的时候,一搜就有了。 另外就是挖掘,仅仅搜索出来已经不能满足人们的要求了,还需要从信息中挖掘出相互的关系。比如财经搜索,当搜索某个公司股票的时候,该公司的高管是不是也应该被挖掘出来呢?如果仅仅搜索出这个公司的股票发现涨的特别好,于是你就去买了,其实其高管发了一个声明,对股票十分不利,第二天就跌了,这不坑害广大股民么?所以通过各种算法挖掘数据中的关系,形成知识库,十分重要。 3 大数据时代,众人拾柴火焰高 当数据量很小时,很少的几台机器就能解决。慢慢的,当数据量越来越大,最牛的服务器都解决不了问题时,怎么办呢?这时就要聚合多台机器的力量,大家齐心协力一起把这个事搞定,众人拾柴火焰高。 对于数据的收集:就IoT来讲,外面部署这成千上万的检测设备,将大量的温度、湿度、监控、电力等数据统统收集上来;就互联网网页的搜索引擎来讲,需要将整个互联网所有的网页都下载下来。这显然一台机器做不到,需要多台机器组成网络爬虫系统,每台机器下载一部分,同时工作,才能在有限的时间内,将海量的网页下载完毕。 对于数据的传输:一个内存里面的队列肯定会被大量的数据挤爆掉,于是就产生了基于硬盘的分布式队列,这样队列可以多台机器同时传输,随你数据量多大,只要我的队列足够多,管道足够粗,就能够撑得住。 对于数据的存储:一台机器的文件系统肯定是放不下的,所以需要一个很大的分布 式文件系统来做这件事情,把多台机器的硬盘打成一块大的文件系统。 对于数据的分析:可能需要对大量的数据做分解、统计、汇总,一台机器肯定搞不定,处理到猴年马月也分析不完。于是就有分布式计算的方法,将大量的数据分成小份,每台机器处理一小份,多台机器并行处理,很快就能算完。例如著名的Terasort对1个TB的数据排序,相当于1000G,如果单机处理,怎么也要几个小时,但并行处理209秒就完成了。 所以说什么叫做大数据?说白了就是一台机器干不完,大家一起干。可是随着数据量越来越大,很多不大的公司都需要处理相当多的数据,这些小公司没有这么多机器可怎么办呢? 4 大数据需要云计算,云计算需要大数据 说到这里,大家想起云计算了吧。当想要干这些活时,需要很多的机器一块做,真的是想什么时候要就什么时候要,想要多少就要多少。 例如大数据分析公司的财务情况,可能一周分析一次,如果要把这一百台机器或者一千台机器都在那放着,一周用一次非常浪费。那能不能需要计算的时候,把这一千台机器拿出来;不算的时候,让这一千台机器去干别的事情? 谁能做这个事儿呢?只有云计算,可以为大数据的运算提供资源层的灵活性。而云计算也会部署大数据放到它的PaaS平台上,作为一个非常非常重要的通用应用。因为大数据平台能够使得多台机器一起干一个事儿,这个东西不是一般人能开发出来的,也不是一般人玩得转的,怎么也得雇个几十上百号人才能把这个玩起来。 所以说就像数据库一样,其实还是需要有一帮专业的人来玩这个东西。现在公有云上基本上都会有大数据的解决方案了,一个小公司需要大数据平台的时候,不需要采购一千台机器,只要到公有云上一点,这一千台机器都出来了,并且上面已经部署好了的大数据平台,只要把数据放进去算就可以了。 云计算需要大数据,大数据需要云计算,二者就这样结合了。 人工智能拥抱大数据 机器什么时候才能懂人心 虽说有了大数据,人的欲望却不能够满足。虽说在大数据平台里面有搜索引擎这个东西,想要什么东西一搜就出来了。但也存在这样的情况:我想要的东西不会搜,表达不出来,搜索出来的又不是我想要的。 例如音乐软件推荐了一首歌,这首歌我没听过,当然不知道名字,也没法搜。但是软件推荐给我,我的确喜欢,这就是搜索做不到的事情。当人们使用这种应用时,会发现机器知道我想要什么,而不是说当我想要时,去机器里面搜索。这个机器真像我的朋友一样懂我,这就有点人工智能的意思了。 人们很早就在想这个事情了。最早的时候,人们想象,要是有一堵墙,墙后面是个机器,我给它说话,它就给我回应。如果我感觉不出它那边是人还是机器,那它就真的是一个人工智能的东西了。 让机器学会推理 怎么才能做到这一点呢?人们就想:我首先要告诉计算机人类的推理的能力。你看人重要的是什么?人和动物的区别在什么?就是能推理。要是把我这个推理的能力告诉机器,让机器根据你的提问,推理出相应的回答,这样多好? 其实目前人们慢慢地让机器能够做到一些推理了,例如证明数学公式。这是一个非常让人惊喜的一个过程,机器竟然能够证明数学公式。但慢慢又发现其实这个结果也没有那么令人惊喜。因为大家发现了一个问题:数学公式非常严谨,推理过程也非常严谨,而且数学公式很容易拿机器来进行表达,程序也相对容易表达。 教给机器知识 因此,仅仅告诉机器严格的推理是不够的,还要告诉机器一些知识。但告诉机器知识这个事情,一般人可能就做不来了。可能专家可以,比如语言领域的专家或者财经领域的专家。 语言领域和财经领域知识能不能表示成像数学公式一样稍微严格点呢?例如语言专家可能会总结出主谓宾定状补这些语法规则,主语后面一定是谓语,谓语后面一定是宾语,将这些总结出来,并严格表达出来不就行了吗?后来发现这个不行,太难总结了,语言表达千变万化。 人工智能这个阶段叫做专家系统。专家系统不易成功,一方面是知识比较难总结,另一方面总结出来的知识难以交给计算机。因为你自己还迷迷糊糊,觉得似乎有规律,就是说不出来,又怎么能够通过编程教给计算机呢? 算了,教不会你自己学吧 于是人们想到:机器是和人完全不一样的物种,干脆让机器自己学习好了。

茶什i 2019-12-31 13:13:50 0 浏览量 回答数 0

回答

 TTS</B>是Text To Speech的缩写,即“从文本到语音”。它是同时运用语言学和心理学的杰出之作,在内置芯片的支持之下,通过神经网络的设计,把文字智能地转化为自然语音流。TTS技术对文本文件进行实时转换,转换时间之短可以秒计算。在其特有智能语音控制器作用下,文本输出的语音音律流畅,使得听者在听取信息时感觉自然,毫无机器语音输出的冷漠与生涩感。TTS语音合成技术即将覆盖国标一、二级汉字,具有英文接口,自动识别中、英文,支持中英文混读。所有声音采用真人普通话为标准发音,实现了120-150个汉字/秒的快速语音合成,朗读速度达3-4个汉字/秒,使用户可以听到清晰悦耳的音质和连贯流畅的语调。现在有少部分MP3随身听具有了TTS功能。   TTS是语音合成应用的一种,它将储存于电脑中的文件,如帮助文件或者网页,转换成自然语音输出。TTS可以帮助有视觉障碍的人阅读计算机上的信息,或者只是简单的用来增加文本文档的可读性。现在的TTL应用包括语音驱动的邮件以及声音敏感系统。TTS经常与声音识别程序一起使用。现在有很多TTS的产品,包括Read Please 2000, Proverbe Speech Unit,以及Next Up Technology的TextAloud。朗讯、 Elan、以及 AT&T都有自己的语音合成产品。   除了TTS软件之外,很多商家还提供硬件产品,其中包括以色列WizCom Technologies公司的 Quick Link Pen,它是一个笔状的可以扫描也可以阅读文字的设备;还有Ostrich Software公司的Road Runner,一个手持的可以阅读ASCII文本的设备;另外还有美国DEC公司的DecTalk TTS,它是可以替代声卡的外部硬件设备,它包含一个内部软件设备,可以与个人电脑自己的声卡协同工作。 TTS文语转换用途很广,包括电子邮件的阅读、IVR系统的语音提示等等,目前IVR系统已广泛应用于各个行业(如电信、交通运输等)。   TTS所用的关键技术就是语音合成(SpeechSynthesis)。早期的TTS一般采用专用的芯片实现,如德州仪器公司的TMS50C10/TMS50C57、飞利浦的PH84H36等,但主要用在家用电器或儿童玩具中。   而基于微机应用的TTS一般用纯软件实现,主要包括以下几部分:   ●文本分析-对输入文本进行语言学分析,逐句进行词汇的、语法的和语义的分析,以确定句子的低层结构和每个字的音素的组成,包括文本的断句、字词切分、多音字的处理、数字的处理、缩略语的处理等。   ●语音合成-把处理好的文本所对应的单字或短语从语音合成库中提取,把语言学描述转化成言语波形。   ●韵律处理-合成音质(Qualityof Synthetic Speech)是指语音合成系统所输出的语音的质量,一般从清晰度(或可懂度)、自然度和连贯性等方面进行主观评价。清晰度是正确听辨有意义词语的百分率;自然度用来评价合成语音音质是否接近人说话的声音,合成词语的语调是否自然; 连贯性用来评价合成语句是否流畅。   要合成出高质量的语音,所采用的算法是极为复杂的,因此对机器的要求也非常高。算法的复杂度决定了目前微机并发进行多通道TTS的系统容量。 在一般的CTI应用系统中,都会有IVR(交互式语音应答系统)。IVR系统是呼叫中心的重要组成部分,通过IVR系统,用户可以利用音频按健电话输入信息,从系统中获得预先录制的数字或合成语音信息。具有TTS功能的IVR可以加快服务速度,节约服务成本,使IVR为呼叫者提供7*24小时的服务。   目前常见的IVR系统大都是通用的工控机平台上插入语音板卡组成,并支持中文语音合成TTS等技术。   一个典型的包含TTS服务的电话服务流程可分为:   用户电话拨入,系统IVR响应,获得用户按键等信息。   IVR根据用户的按键信息,向数据库服务器申请相关数据。   数据库服务器返回文本数据给IVR。   IVR通过其TCP通讯接口,将需要合成的文本信息发送给TTS服务器。   TTS服务器将用户文本合成的语音数据分段通过TCP通讯接口发送给IVR服务器。   IVR服务器把分段语音数据组装成为独立的语音文件。   IVR播放相应的语音文件给电话用户。   一般的公网接入(IVR)大都采用工控机+语音板卡,而合成的语音数据则通过局域网传给IVR。这种结构只适用于简单的应用场合。 包括中文语音处理和语音合成,利用中文韵律等相关知识对中文语句进行分词、词性判断、注音、数字符号转换,语音合成通过查询中文语音库得到语音。目前中文TTS系统,比较著名的有:IBM,Microsoft,Fujitsu,科大讯飞,捷通华声等研究的系统。目前比较关键的就是中文韵律处理、符号数字、多音字、构词方面有较多的问题,需要不断研究,使得中文语音合成的自然化程度较高。  CTI技术使电信和计算机相互融合,克服了传统电信和计算机服务相对单一的缺点,将两者完美结合了起来。其应用领域非常广泛,任何需要语音、数据通信,特别是那些希望把计算机网与通信网结合起来完成语音数据信息交换的系统都会用到CTI技术。   TTS即语音合成技术(Text To Speech),它涉及声学、语言学、数学信号处理技术、多媒体技术等多个学科技术,是中文信息处理领域的一项前沿技术,实现把计算机中任意出现的文字转换成自然流畅的语音输出。   TTS在CTI系统中可以应用在IVR(交互式语音应答)服务器上,以提供语音交互式平台,为用户电话来访提供语音提示,引导用户选择服务内容和输入电话事务所需的数据,并接受用户在电话拨号键盘上输入的信息,实现对计算机数据库等信息资料的交互式访问。   在IVR中应用TTS可以自动将文本信息转换为语音文件,或者实时地将文本信息合成语音并通过电话发布。实现文本与语音自动双向转换,以达到人与系统的自动交互,随时随地为客户服务。维护人员不必再人工录音,只须将电子文档引入系统中,系统可以自动将电子文档转换为语音信息播放给客户。数据库中存放的大量数据,无需事先进行录音,能够随时根据查询条件查出并合成语音进行播报,从而大大减少了座席人员的工作负担。   那么应如何将TTS功能附加到CTI应用中呢?某些比较先进的交换平台,已经在交换机的内部实现了TTS的功能,并作为标准接口的一部分对外提供,业务开发商只需要简单的调用他们即可以在业务中使用该功能。   对于未实现TTS功能的PBX,就需要业务开发商自己去选择合适的平台,在此基础上进行二次开发,即调用所选TTS平台提供的标准接口,实现语音合成功能。   目前CTI已经成为全球发展最为迅猛的产业之一,每年以50%的速度增长,CTI如同计算机产业一样是一个金字塔形的产业链,从上到下会以至少20倍的幅度增值。TTS作为一种诱人的新技术,如果能很好的嵌入到增值业务的应用中去,必将形成一个更好的应用前景。   杭州音通软件有限公司是由国家教育部和浙江省人民政府联办并依托浙江大学而成立的高新技术公司,音通公司主要致力于计算机语音技术的研发并逐步开拓语音识别、语音流媒体传输等其它语音领域的研究。其核心技术(Intone_TTS)是具有自主知识产权的中文语音合成技术,在由浙江省科技厅组织的鉴定中被专家一致鉴定为国内领先地位,并已申请多项国家专利。   Intone_TTS是一套把文本信息转换为语音信息的开发工具包,为系统集成商、软件开发商提供了完备的接口函数和编程示例,使用户能够灵活的进行调用,并集成到其它应用系统中。接口需要语音合成运行库的支持,适合多种开发环境。开发者可以根据具体的应用场合进行选择。   它能够对所有的汉字、英文、阿拉伯数字进行语音合成;   支持繁体字及多音字的编辑;   合成效果:自然、平滑;   规范的函数调用接口,同时支持微软SAPI的调用;支持同步调用和异步调用方式;   支持PCM Wave,uLaw/aLaw Wave,ADPCM,Dialogic Vox等多种语音格式;   支持GB2312码(简体中文)、BIG5码(繁体)、UNICODE码;   支持多路通道同时合成;   支持Dialogic、东进、三汇等主流语音板卡; TTS就是Text To Speech,文本转语音,文本朗读,差不多是一个意思。在语音系统开发中经常要用到。   目前市场上的TTS很多,实现方式也各式各样,有的很昂贵,如科大讯飞,据说当初得到863计划的资助,有很高的技术;有的相对便宜,如捷通华声, InfoTalk;也有免费的,如微软的TTS产品。   相对于ASR(Automatic Speech Recognition,自动语音识别)来说,实现一个TTS产品所需要的技术难度不算大,在我看来也就是个力气活。   要是让我们来做一个能够把汉语句子朗读出来的TTS,我们会怎么做呢?   有一种最简单的TTS,就是把每个字都念出来,你会问,岂不要录制6千多个汉字的语音?幸运的是,汉语的音节很少,很多同音字。我们最多只是需要录制: 声母数×韵母数×4,(其实不是每个读音都有4声),这样算来,最多只需要录制几百个语音就可以了。   在合成的时候需要一张汉字对应拼音的对照表,汉字拼音输入法也依赖这张表,可以在网上找到,不过通常没有4声音调,大不了自己加上,呵呵,要不怎么说是力气活呢。   这样做出来的TTS效果也还可以,特别是朗读一些没有特别含义的如姓名,家庭住址,股票代码等汉语句子,听起来足够清晰。这要归功于我们伟大的母语通常都是单音节,从古代的时候开始,每个汉字就有一个词,表达一个意思。而且汉字不同于英语,英语里面很多连读,音调节奏变化很大,汉字就简单多了。   当然,你仍然要处理一些细节,比如多音字,把“银行”读成“yin xing”就不对了;再比如,标点符号的处理,数字、字母的处理,这些问题对于写过很多程序的你,当然不难了。   国内的一些语音板卡带的TTS,不管是卖钱的还是免费的,大体都是这样做出来的,也就是这样的效果。   如果要把TTS的效果弄好一点,再来点力气活,把基本的词录制成语音,如常见的两字词,四字成语等,再做个词库和语音库的对照表,每次需要合成时到词库里面找。这样以词为单位,比以字为单位,效果自然是好多了。当然,这里面还是有个技术,就是分词的技术,要把复杂的句子断成合理的词序列,也有点技术。这也要怪新文化那些先驱们,当初倡导白话文,引进西文的横排格式、标点符号的时候,没有引进西文中的空格分词。不过即使分词算法那么不高效,不那么准确,也问题不大,如前面所说,汉字是单音节词,把声音合起来,大体上不会有错。   当然,科大讯飞的力气活又干的多了些,据说已经进化到以常用句子为单位来录音了,大家可以想像,这要耗费更多的力气,换来更好的效果。   至于增加一些衔接处的“词料”,弄一些修饰性的音调,我认为是无关紧要的,对整体的效果改进不是太大。   市面上商品化TTS一般还支持粤语,请个粤语播音员录音,把上面的力气活重做一遍就是了。   再说句题外话,很多人觉得录音最好找电台、电视台的播音员,其实找个你周围的女同事来录制,只要吐字清晰就可以了。在某种情况下,寻常声音比字正腔圆的新闻联播来得可爱。   再来说说文本的标识,对于复杂文本,某些内容程序没有办法处理,需要标识出来。比如,单纯的数字“128”,是应该念成“一百二十八”还是“一二八”?解决办法通常是加入XML标注,如微软的TTS:"<context ID = "number_cardinal">128</context>"念成“一百二十八”,"<context ID = "number_digit">128</context>"将念成“一二八”。TTS引擎可以去解释这些标注。遗憾的是,语音XML标注并没有形成大家都完全认可的标准,基本上是各自一套。   再说说TTS应用编程,微软的TTS编程接口叫SAPI,是COM接口,开发起来还是有点麻烦,还好MSDN的网站上资料很全面。微软的TTS虽然免费,但其中文角色目前是个男声,声音略嫌混浊,感觉不爽。   国内一般的厂家提供API调用接口,相对比较简单,可以方便地嵌入应用程序中去。   商品化的TTS还有个并发许可限制,就是限制同时合成的并发线程数,我觉得这个限制用处不大。无论哪种TTS,都可以将文本文件转换成语音文件,供语音卡播放。大部分应用句子比较短小,一般不会超过100个汉字,合成的时间是非常短的,弄个线程专门负责合成,其它应用向该线程请求就是了,万一句子很长,把它分解成多个短句子就是了,播放的速度总是比合成的速度慢。   也很多应用是脱机合成,没有实时性要求,就更不必买多个许可了。   更多情况下,我们甚至没有必要购买TTS,比如语音开发中常见的费用催缴,拨通后播放:“尊敬的客户,您本月的费用是:212元”,前面部分对所有客户都一样,录一个语音文件就是了,而数字的合成是很简单的,你只要录制好10个数字语音,再加上十,百,千,万,再加上金钱的单位“元”。   TTS(Training+Tool+Scheme)超越计划   针对目前成长型企业遇到的人力资源问题,立体化解决人力资源瓶颈、通过企业与专家共建、实现人才强企的人力资源方向的重大智业项目。为企业培养人力资源高级管理人才,提供先进人力资源管理工具,并协助企业建立现代人力资源战略规划。通过“培训(Training)+工具(Tool)+方案(Scheme)”的办法,为企业系统解决人力资源难点问题,进而搭建科学、完善的人力资源管理体系。   TTS TIANJIN TERMINAL SURCHARGE   天津港口附加费。09年从日韩经过的船所收的一个费用 答案来源网络,供参考,希望对您有帮助

问问小秘 2019-12-02 03:05:12 0 浏览量 回答数 0

问题

盘点年度 Python 类库 Top 10

珍宝珠 2020-01-09 13:39:35 77 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播