• 关于

    分配型业务是什么

    的搜索结果

回答

Re什么是中间件,中间件是什么意思? 中间件(Middleware)通常是指在一个大型分布式的系统中,负责各个不同组件(Component)/服务(Service)之间管理以及交互数据的。举个例子,在分布式系统中,数据库往往是N多个,不同的数据库可能是按照数据ID的hash,也可能根据业务模块来分配的。而且这种分配可能随着数据增长或者业务变更而改变。这个时候,你想修改某条数据,显然就不太可能直接访问数据库了,而是需要访问数据访问层,由它来负责对最终的数据库的读写,乃至负责多个数据库之间的事务一致性。

驻足云端 2019-12-02 00:16:51 0 浏览量 回答数 0

问题

什么是数据库/表组/表/分区?

nicenelly 2019-12-01 21:25:03 1067 浏览量 回答数 0

问题

什么是数据库/表组/表/分区?

nicenelly 2019-12-01 21:10:08 1371 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

什么是负载均衡实例

行者武松 2019-12-01 21:35:43 1247 浏览量 回答数 0

问题

面向服务的ERP可重构开发模型

hua2012h 2019-12-01 20:13:41 7876 浏览量 回答数 0

回答

智能构建云上数仓,提高战略决策效率 场景:某集团在全国经营多家连锁超市,线上线下零售渠道及形态众多。 痛点:因为业务系统多、数据来源多,经营所需的数据需求高频且多样化。但数据体系复杂、数据不统一,数据分析速度和数据准确一致性难保障,战略决策与数据化运营受阻。 解决方案: • 数据融合:通过数据引入功能,将业务系统数据集成、融合一体,统一基础数据。 • 数据建模:通过规范建模功能,结合业务发展需求,自顶向下设计标准的数据模型,统一公共数据。 • 数据生产:基于建模后系统代码自动化托管生产功能,快速响应业务需求。模型设计输出后,自动化生成代码、周期性调度产出任务。 价值: • 数据建设统一:数据标准规范定义。 • 数据研发提效:自动化代码生成。 • 战略决策高效:数据分析准确,数据需求响应及时。 推荐搭配组合:Dataphin + MaxCompute MaxCompute详情请参见什么是MaxCompute。 输出主题式数据服务,提高数据化运营效率 场景:某公司是一家大型跨省直营餐饮品牌公司,具有线上线下多个客户触达渠道,以爆款思维策划公司品牌。 痛点:因业务扩张快,用户数据丰富,拉新留存效率、营销及转化效果急需提高。但各个获客渠道的用户数据分散,会员管理体系单一,推荐准确度不高,会员营销方式有限。 解决方案: • 数据融合:通过数据引入功能,将各渠道数据沉淀至数据仓库内,丰富基础数据。 • 数据建模:通过数据建模及代码自动化生成功能,以会员为中心,构建完整的会员数据模型,集成会员属性、统计指标等数据。 • 主题服务:通过数仓即席查询功能,面向应用,自动输出会员主题的汇总数据模型,高效完成进一步的会员日报分析、会员门户搭建等。 价值: • 数据建设统一:数据标准规范定义。 • 数据研发提效:自动化代码生成。 • 资产管理便利:数据丰富融通,主题化服务更智能。 推荐搭配组合:Dataphin + Quick BI + MaxCompute • Quick BI详情请参见什么是Quick BI。 • MaxCompute详情请参见什么是MaxCompute。 业务板块 定义数据仓库的名称和业务空间,以企业内一个相对独立的业务为分配单元。例如,如果业务涉及零售、文娱,且系统间相对独立,则需要构建两个业务板块,即零售、文娱。如果业务仅涉及零售,且业务内的系统间隔离较少,则只需要构建一个业务板块,即零售。 公共定义 定义企业构建数据所需的全局概念对象或参数,以保证全局概念统一。当定义完成后,系统内其他指标(例如派生指标)可以按需统一、通用化引用这些对象,例如统计周期。 项目管理 项目是一种物理空间上的划分。项目管理,即用户在数据中台建设过程中,对物理资源及开发人员进行隔离化管理。一个业务板块可以包含多个项目,每个系统成员可以加入多个不同的项目。 物理数据源 存储数据的物理数据库即物理数据源。物理数据源可以作为数据同步传输的上游数据来源,也可以作为数据同步传输的目标数据存储介质。 维度 维度即进行统计的对象。通常情况下,维度是实际存在、不因事件发生就存在的实体。创建维度,即从顶层规范业务中的实体(主数据),并保证实体的唯一性。 业务过程 业务过程即业务活动中的所有事件。创建业务过程,即从顶层规范业务中事务内容的类型及唯一性。 维度逻辑表 维度逻辑表与维度一一对应,是通过丰富维度中的属性信息构建形成的。创建维度逻辑表,即完成公共对象明细数据设计及加工处理,从而便于提取业务中对象的明细数据。 事实逻辑表 事实逻辑表与业务过程对应,是通过丰富业务过程的属性及度量信息构建形成的。创建事实逻辑表,即完成公共事务明细数据设计及加工处理,从而便于提取业务中事务的明细数据。 业务限定 统计的业务范围,筛选出符合业务规则的记录(类似于SQL中where后的条件,不包括时间区间)。 指标 指标分为原子指标和派生指标。 • 原子指标:对指标统计口径(即计算逻辑)、具体算法的一个抽象,例如支付金额。 • 派生指标:业务中常用的统计指标。派生指标=原子指标+业务限定+统计周期+统计粒度。例如,自然周、会员、采用优惠券支付的订单。 统计粒度 统计分析的对象或视角,定义数据需要汇总的程度,可以理解为聚合运算时的分组条件(类似于SQL中group by的对象)。粒度是维度的一个组合,指明您的统计范围。例如,某个指标是某个卖家在某个省份的成交额,则粒度就是卖家、省份这两个维度的组合。

LiuWH 2020-03-23 13:33:52 0 浏览量 回答数 0

问题

如何更优雅的使用VPC专有网络

李博 bluemind 2019-12-01 21:57:12 3256 浏览量 回答数 1

问题

如何更优雅的使用VPC专有网络

李博 bluemind 2019-12-01 21:57:11 3369 浏览量 回答数 0

问题

【精品问答】130+大数据面试汇总

问问小秘 2019-12-01 21:52:42 1644 浏览量 回答数 2

回答

第一讲打卡 A1 B A2 云平台相对传统的虚拟化容器来讲,有强大的技术支持,完全将底层硬件设备归为整体,再其之上进行整合处理,很好的利用当前系统内的资源,同时进行分配资源 A3 SaaS、PaaS、IaaS都属于云计算服务,也就是云计算+服务 IaaS:用户可以在云服务提供商提供的基础设施上部署和运行任何软件,包括操作系统和应用软件 PaaS:PaaS给用户提供的能力是使用由云服务提供商支持的编程语言、库、服务以及开发工具来创建、开发应用程序并部署在相关的基础设施上 SaaS:SaaS给用户提供的能力是使用在云基础架构上运行的云服务提供商的应用程序。 A4 Java,Devops。 第二讲打卡 A1 不需要 A2 轻量级web服务器/反向代理服务器 四层/七层负载均衡 占用内存少,并发强丰富的插件功能模块 ###A3 不可以,SLB的四层采用的是LVS A4 一次连接:对数据仅做转发作用 二次连接:要增加与后端服务的连接 应用场景:一次连接会使得整个负载均衡的性能得到一定的高度,而二次连接较一次连接多一中间一次数据包的处理以及增加一次tcp连接,性能方面不如一次的,但是安全等等应该会有所保障。(个人觉得适用场景:一次可以类似于udp一样的存在,二次相当于tcp一样存在) A5 I/O 5分钟法则,什么情况下适用:::个人看法觉得高访问数据,热点数据都需要放在缓存中,当然注意缓存时效性以及缓存穿透。 A6 关系型数据库(ACID模型)、BASE模型、非关系型数据库 关系型:Oracle、MySQL、SQL Server非关系:Redis、Memcache A7 2* 8C16G 15M 第三讲打卡 A1 云平台能够更好的进行业务的水平方向扩展,并且能够跟随业务的特性能够动态伸缩。 A2 DNS + 跨地域/跨平台 + 容器化 分布式架构 A3 四层。后端项目ECS、nginx配置都需要一致 A4 系统数据:Rsync,快照 文件数据:NFS,OSS 数据库:主从 A5 IO读写相关压力 单表数据量过大查询不便 第四讲打卡 A1 云端配置选型 云端网络架构云端负载均衡云端静态资源访问云端运维管理 A2 Zabbix的Server端数据是以关系型数据库为主,对云容器支持不太好; Prometheus属于容器监控体系技术,对云产品、站点、日志、代码监控问题无法解决; A3 云监控会成为未来监控的主要趋势。 云平台把常见的开源环境,Web、缓存、数据库等进行封装产品化,统一对外提供基础功能入口。 A4 轻量级容器启动可以秒级完成发布; 对固定的ECS没有依赖;Docker容器资源自定义配置,最大化提升资源利用率;可以结合JIRA+Confluence做项目管理及知识库管理;可以更好的进行服务的水平扩增;容器之间环境配置可以进行很好的隔离; A5 使用Docker+K8S+DNS+Rancher 第五讲打卡 A1 不可以,WAF针对的是OSI七层模型中的HTTP层的防御。 A2 SLB ###A3 DDoS+WAF A4 DDoS+ WAF+CDN+SLB+ECS(水平方向多节点)

montos 2020-06-09 23:42:12 0 浏览量 回答数 0

问题

荆门开诊断证明-scc

游客5k2abgdj3m2ti 2019-12-01 22:09:00 1 浏览量 回答数 0

回答

您可以通过阿里云RDS管理控制台或API创建RDS实例。本文介绍如何通过控制台创建RDS MySQL实例。 其他引擎创建实例请参见: 创建RDS SQL Server实例 创建RDS PostgreSQL实例 创建RDS PPAS实例 创建RDS MariaDB实例 除了新版本的创建实例页面,您也可以切换回旧版创建实例页面。操作详情请参见: 创建RDS实例(新版) 创建RDS实例(旧版) 优惠活动 首购折扣价:首次购买RDS MySQL享受折扣价。详情请参见优惠活动。 计费说明 关于实例计费说明,请参见计费方式。 前提条件 已注册阿里云账号。具体操作请参见注册阿里云账号。 若您要创建按量付费的实例,请确保您的阿里云账号的余额大于等于100元。 注意事项 包年包月实例无法转为按量付费实例。 按量付费实例可以转为包年包月实例,请参见按量付费转包年包月。 同一个主账号,最多可以创建30个按量付费的RDS实例。如需提高此限额,请提交工单申请。 创建RDS实例(新版) 进入RDS实例创建页面。 说明 您也可以在当前创建RDS实例页面上方单击返回旧版切换到旧版创建RDS实例页面。 设置以下参数。 类别 说明 计费方式 包年包月:属于预付费,即在新建实例时需要支付费用。适合长期需求,价格比按量付费更实惠,且购买时长越长,折扣越多。 按量付费:属于后付费,即按小时扣费。适合短期需求,用完可立即释放实例,节省费用。 地域 实例所在的地域,即实例所在的地理位置。 购买后无法更换地域。 请根据目标用户所在的地理位置就近选择地域,提升用户访问速度。 请确保RDS实例与需要连接的ECS实例创建于同一个地域,否则它们无法通过内网互通,只能通过外网互通,无法发挥最佳性能。 类型 数据库引擎的类型和版本,这里选择MySQL。 当前支持MySQL 5.5、5.6、5.7、8.0。 说明 不同地域支持的数据库类型不同,请以实际界面为准。 系列 基础版:单节点,计算与存储分离,性价比高。 高可用版:一个主节点和一个备节点,经典高可用架构。 三节点企业版(原金融版):一个主节点和两个备节点,位于同一地域的三个不同的可用区,提供金融级可靠性。 说明 不同地域和数据库版本支持的系列不同,请以实际界面为准。关于各个系列的详细介绍,请参见产品系列概述。 存储类型 本地SSD盘:与数据库引擎位于同一节点的SSD盘。将数据存储于本地SSD盘,可以降低I/O延时。 ESSD云盘:增强型(Enhanced)SSD云盘,是阿里云全新推出的超高性能云盘产品。ESSD云盘基于新一代分布式块存储架构,结合25GE网络和RDMA技术,为您提供单盘高达100万的随机读写能力和更低的单路时延。ESSD云盘分为如下三类: ESSD云盘:PL1性能级别的ESSD云盘。 ESSD PL2云盘:相比PL1,PL2性能级别的ESSD云盘大约可提升2倍IOPS和吞吐量。 ESSD PL3云盘:相比PL1,PL3性能级别的ESSD云盘最高可提升20倍IOPS、11倍吞吐量,适合对极限并发I/O性能要求极高、读写时延极稳定的业务场景。 SSD云盘:基于分布式存储架构的弹性块存储设备。将数据存储于SSD云盘,即实现了计算与存储分离。 更多信息,请参见存储类型。 可用区 可用区是地域中的一个独立物理区域,主节点可用区指主实例所在可用区,备节点可用区指备实例所在可用区。 您可以设置实例为单可用区部署或多可用区部署: 单可用区部署指主节点可用区和备节点可用区都处于相同可用区。 多可用区部署指主节点可用区和备节点可用区处于不同可用区,此时您只需要选择主节点可用区,系统会自动选择备节点可用区。 相比单可用区部署,多可用区部署能提供可用区级别的容灾,建议您使用多可用区部署。 可用区 实例规格 入门级:通用型的实例规格,独享被分配的内存和I/O资源,与同一服务器上的其他通用型实例共享CPU和存储资源。 企业级:独享或独占型的实例规格。独享型指独享被分配的CPU、内存、存储和I/O资源。独占型是独享型的顶配,独占整台服务器的CPU、内存、存储和I/O资源。 说明 每种规格都有对应的CPU核数、内存、最大连接数和最大IOPS。详情请参见主实例规格列表。 存储空间 存储空间包括数据空间、系统文件空间、Binlog文件空间和事务文件空间。调整存储空间时最小单位为5GB。 说明 部分本地SSD盘的存储空间大小与实例规格绑定,ESSD/SSD云盘不受此限制。详情请参见主实例规格列表。 单击下一步:网络和资源组。 设置以下参数。 类别 说明 网络类型 经典网络:传统的网络类型。 专有网络:也称为VPC(Virtual Private Cloud)。VPC是一种隔离的网络环境,安全性和性能均高于传统的经典网络。选择专有网络时您需要选择对应的VPC和主节点交换机。 说明 请确保RDS实例与需要连接的ECS实例网络类型一致(如果选择专有网络,还需要保证VPC一致),否则它们无法通过内网互通。 存储引擎 设置实例的默认存储引擎。当前仅MySQL 8.0高可用版(本地SSD盘)实例支持此选项。 关于阿里自研的X-Engine引擎详情请参见X-Engine简介。 说明 X-Engine兼容InnoDB,而且拥有更好的性能表现,建议您使用X-Engine作为默认存储引擎。 参数模板 设置实例参数模板。当前仅高可用版(本地SSD盘)实例支持此选项。 说明 您可以选择系统参数模板或自定义参数模板,详情请参见使用参数模板。 时区 设置实例时区。当前仅本地SSD盘实例支持此选项。 表名大小写 设置实例表名是否区分大小写。当本地数据库区分大小时,您可以选择区分大小写,便于您迁移数据。当前仅本地SSD盘实例支持此选项。 资源组 实例所属的资源组。 单击下一步:确认订单。 确认参数配置,选择购买量和购买时长(仅包年包月实例),勾选服务协议,单击去支付完成支付。 创建RDS实例(旧版) 进入旧版RDS实例创建页面。 选择计费方式。 按量付费:属于后付费,即按小时扣费。适合短期需求,用完可立即释放实例,节省费用。 包年包月:属于预付费,即在新建实例时需要支付费用。适合长期需求,价格比按量付费更实惠,且购买时长越长,折扣越多。 设置以下参数。 参数 说明 地域 实例所在的地理位置。购买后无法更换地域。 请根据目标用户所在的地理位置就近选择地域,提升用户访问速度。 请确保RDS实例与需要连接的ECS实例创建于同一个地域,否则它们无法通过内网互通,只能通过外网互通,无法发挥最佳性能。 资源组 实例所属的资源组。 数据库类型 即数据库引擎的类型,这里选择MySQL。 说明 不同地域支持的数据库类型不同,请以实际界面为准。 版本 指MySQL的版本。当前支持MySQL 5.5、5.6、5.7、8.0。 说明 不同地域所支持的版本不同,请以实际界面为准。 系列 基础版:单节点,计算与存储分离,性价比高。 高可用版:一个主节点和一个备节点,经典高可用架构。 三节点企业版(原金融版):一个主节点和两个备节点,位于同一地域的三个不同的可用区,提供金融级可靠性。仅4个地域提供三节点企业版实例:华东1、华东2、华南1、华北2。 说明 不同数据库版本支持的系列不同,请以实际界面为准。关于各个系列的详细介绍,请参见产品系列概述。 存储类型 本地SSD盘:与数据库引擎位于同一节点的SSD盘。将数据存储于本地SSD盘,可以降低I/O延时。 SSD云盘:基于分布式存储架构的弹性块存储设备。将数据存储于SSD云盘,即实现了计算与存储分离。 说明 SSD云盘支持云盘加密,能够最大限度保护您的数据安全,您的业务和应用程序无需做额外的改动。详情请参见云盘加密。 ESSD云盘:增强型(Enhanced)SSD云盘,是阿里云全新推出的超高性能云盘产品。ESSD云盘基于新一代分布式块存储架构,结合25GE网络和RDMA技术,为您提供单盘高达100万的随机读写能力和更低的单路时延。 更多信息,请参见存储类型。 密钥 云盘加密所使用的的密钥。密钥的创建请参见管理密钥。 可用区 可用区是地域中的一个独立物理区域,不同可用区之间没有实质性区别。您可以选择将RDS实例的主备节点创建在同一可用区或不同可用区。 相比单可用区,多可用区能提供可用区级别的容灾。 网络类型 经典网络:传统的网络类型。 专有网络(推荐):也称为VPC(Virtual Private Cloud)。VPC是一种隔离的网络环境,安全性和性能均高于传统的经典网络。 说明 请确保RDS实例与需要连接的ECS实例网络类型一致,否则它们无法通过内网互通。 规格 每种规格都有对应的CPU核数、内存、最大连接数和最大IOPS。详情请参见主实例规格列表。 RDS实例有以下规格族: 通用型:独享被分配的内存和I/O资源,与同一服务器上的其他通用型实例共享CPU和存储资源。 独享型:独享被分配的CPU、内存、存储和I/O资源。 独占物理机型:是独享型的顶配,独占整台服务器的CPU、内存、存储和I/O资源。 例如,8核32GB是通用型实例规格,8核32GB(独享套餐)是独享型实例规格,30核220GB(独占主机)是独占物理机型实例规格。 存储空间 该存储空间包括数据空间、系统文件空间、Binlog文件空间和事务文件空间。 设置购买时长(仅针对包年包月实例)和实例数量,然后单击右侧的立即购买。 说明 购买包年包月实例时,可以勾选自动续费,系统将根据您的购买时长进行自动续费。例如,您购买3个月的实例并勾选自动续费,则每次自动续费时会缴纳3个月的费用。 对于包年包月实例,您也可以单击加入购物车将实例加入到购物车中,最后单击购物车进行结算。 在订单确认页面,勾选相关协议,根据提示完成支付。 下一步 在控制台左上角,选择实例所在的地域即可查看到刚刚创建的实例。选择地域 创建实例后,您需要设置白名单和创建账号,如果是通过外网连接,还需要申请外网地址。然后就可以连接实例。 如果连接实例失败,请参见解决无法连接实例问题。 常见问题 为什么创建实例后无反应,实例列表也看不到创建中的实例? 看不到创建中的实例可能有如下两个原因: 地域错误 可能您所在地域和您创建实例时选择的地域不一致。您可以在页面左上角切换地域。 选择地域 可用区内资源不足 由于可用区资源是动态分配的,可能您下单后可用区内资源不足,所以会创建失败,建议您更换可用区重试。创建失败您可以在订单列表里看到退款。 如何授权子账号管理RDS实例? 答:请参见云数据库 RDS 授权。 相关API API 描述 CreateDBInstance 创建RDS实例。 操作视频 RDS实例创建

游客yl2rjx5yxwcam 2020-03-09 10:46:09 0 浏览量 回答数 0

问题

【精品问答】大数据计算技术1000问

问问小秘 2019-12-01 21:57:13 6895 浏览量 回答数 2

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 39926 浏览量 回答数 17

问题

【精品问答】Java必备核心知识1000+(附源码)

问问小秘 2019-12-01 22:00:28 870 浏览量 回答数 1

问题

云服务器简介

爷们儿 2019-12-01 21:54:32 7421 浏览量 回答数 2

问题

Go语言编程有哪些利与弊?编程时如何判断是否应该用Go?

有只黑白猫 2020-01-06 13:37:29 15 浏览量 回答数 1

回答

云服务器(Elastic Compute Service,简称ECS)是阿里云提供的性能卓越、稳定可靠、弹性扩展的IaaS(Infrastructure as a Service)级别云计算服务。云服务器ECS免去了您采购IT硬件的前期准备,让您像使用水、电、天然气等公共资源一样便捷、高效地使用服务器,实现计算资源的即开即用和弹性伸缩。阿里云ECS持续提供创新型服务器,解决多种业务需求,助力您的业务发展。 为什么选择云服务器ECS 选择云服务器ECS,您可以轻松构建具有以下优势的计算资源: 无需自建机房,无需采购以及配置硬件设施。 分钟级交付,快速部署,缩短应用上线周期。 快速接入部署在全球范围内的数据中心和BGP机房。 成本透明,按需使用,支持根据业务波动随时扩展和释放资源。 提供GPU和FPGA等异构计算服务器、弹性裸金属服务器以及通用的x86架构服务器。 支持通过内网访问其他阿里云服务,形成丰富的行业解决方案,降低公网流量成本。 提供虚拟防火墙、角色权限控制、内网隔离、防病毒攻击及流量监控等多重安全方案。 提供性能监控框架和主动运维体系。 提供行业通用标准API,提高易用性和适用性。 更多选择理由,请参见云服务器ECS的优势和应用场景。 产品架构 云服务器ECS主要包含以下功能组件: 实例:等同于一台虚拟服务器,内含CPU、内存、操作系统、网络配置、磁盘等基础的计算组件。实例的计算性能、内存性能和适用业务场景由实例规格决定,其具体性能指标包括实例vCPU核数、内存大小、网络性能等。 镜像:提供实例的操作系统、初始化应用数据及预装的软件。操作系统支持多种Linux发行版和多种Windows Server版本。 块存储:块设备类型产品,具备高性能和低时延的特性。提供基于分布式存储架构的云盘、共享块存储以及基于物理机本地存储的本地盘。 快照:某一时间点一块云盘或共享块存储的数据状态文件。常用于数据备份、数据恢复和制作自定义镜像等。 安全组:由同一地域内具有相同保护需求并相互信任的实例组成,是一种虚拟防火墙,用于设置实例的网络访问控制。 网络: 专有网络(Virtual Private Cloud):逻辑上彻底隔离的云上私有网络。您可以自行分配私网IP地址范围、配置路由表和网关等。 经典网络:所有经典网络类型实例都建立在一个共用的基础网络上。由阿里云统一规划和管理网络配置。 更多功能组件详情,请参见云服务器ECS产品详情页。 以下为云服务器ECS的产品组件架构图,图中涉及的功能组件的详细介绍请参见相应的帮助文档。whatIsECS 产品定价 云服务器ECS支持包年包月、按量付费、预留实例券、抢占式实例等多种账单计算模式。更多详情,请参见计费概述和云产品定价页。 管理工具 通过注册阿里云账号,您可以在任何地域下,通过阿里云提供的以下途径创建、使用或者释放云服务器ECS: ECS管理控制台:具有交互式操作的Web服务页面。关于管理控制台的操作,请参见常用操作导航。 ECS API:支持GET和POST请求的RPC风格API。关于API说明,请参见API参考。以下为调用云服务器ECS API的常用开发者工具: 命令行工具CLI:基于阿里云API建立的灵活且易于扩展的管理工具。您可基于命令行工具封装阿里云的原生API,扩展出您需要的功能。 OpenAPI Explorer:提供快速检索接口、在线调用API和动态生成SDK示例代码等服务。 阿里云SDK:提供Java、Python、PHP等多种编程语言的SDK。 资源编排(Resource Orchestration Service):通过创建一个描述您所需的所有阿里云资源的模板,然后资源编排将根据模板,自动创建和配置资源。 运维编排服务(Operation Orchestration Service):自动化管理和执行运维任务。您可以在执行模板中定义执行任务、执行顺序、执行输入和输出等,通过执行模板达到自动化完成运维任务的目的。 Terraform:能够通过配置文件在阿里云以及其他支持Terraform的云商平台调用计算资源,并对其进行版本控制的开源工具。 阿里云App:移动端类型的管理工具。 Alibaba Cloud Toolkit:阿里云针对IDE平台为开发者提供的一款插件,用于帮助您高效开发并部署适合在云端运行的应用。 部署建议 您可以从以下维度考虑如何启动并使用云服务器ECS: 地域和可用区 地域指阿里云的数据中心,地域和可用区决定了ECS实例所在的物理位置。一旦成功创建实例后,其元数据(仅专有网络VPC类型ECS实例支持获取元数据)将确定下来,并无法更换地域。您可以从用户地理位置、阿里云产品发布情况、应用可用性、以及是否需要内网通信等因素选择地域和可用区。例如,如果您同时需要通过阿里云内网使用云数据库RDS,RDS实例和ECS实例必须处于同一地域中。更多详情,请参见地域和可用区。 高可用性 为保证业务处理的正确性和服务不中断,建议您通过快照实现数据备份,通过跨可用区、部署集、负载均衡(Server Load Balancer)等实现应用容灾。 网络规划 阿里云推荐您使用专有网络VPC,可自行规划私网IP,全面支持新功能和新型实例规格。此外,专有网络VPC支持多业务系统隔离和多地域部署系统的使用场景。更多详情,请参见专有网络(Virtual Private Cloud)。 安全方案 您可以使用云服务器ECS的安全组,控制ECS实例的出入网访问策略以及端口监听状态。对于部署在云服务器ECS上的应用,阿里云为您提供了免费的DDoS基础防护和基础安全服务,此外您还可以使用阿里云云盾,例如: 通过DDoS高防IP保障源站的稳定可靠。更多详情,请参见DDoS高防IP文档。 通过云安全中心保障云服务器ECS的安全。更多详情,请参见云安全中心文档。 相关服务 使用云服务器ECS的同时,您还可以选择以下阿里云服务: 根据业务需求和策略的变化,使用弹性伸缩(Auto Scaling)自动调整云服务器ECS的数量。更多详情,请参见弹性伸缩。 使用专有宿主机(Dedicated Host)部署ECS实例,可让您独享物理服务器资源、降低上云和业务部署调整的成本、满足严格的合规和监管要求。更多详情,请参见专有宿主机DDH。 使用容器服务Kubernetes版在一组云服务器ECS上通过Docker容器管理应用生命周期。更多详情,请参见容器服务Kubernetes版。 通过负载均衡(Server Load Balancer)对多台云服务器ECS实现流量分发的负载均衡目的。更多详情,请参见负载均衡。 通过云监控(CloudMonitor)制定实例、系统盘和公网带宽等的监控方案。更多详情,请参见云监控。 在同一阿里云地域下,采用关系型云数据库(Relational Database Service)作为云服务器ECS的数据库应用是典型的业务访问架构,可极大降低网络延时和公网访问费用,并实现云数据库RDS的最佳性能。云数据库RDS支持多种数据库引擎,包括MySQL、SQL Server、PostgreSQL、PPAS和MariaDB。更多详情,请参见关系型云数据库。 在云市场获取由第三方服务商提供的基础软件、企业软件、网站建设、代运维、云安全、数据及API、解决方案等相关的各类软件和服务。您也可以成为云市场服务供应商,提供软件应用及服务。更多详情,请参见云市场文档。 更多方案,请参见阿里云解决方案。

1934890530796658 2020-03-24 14:03:02 0 浏览量 回答数 0

回答

1、 描述下应用架构的发展历程 目前,架构的发展历程是从单体架构、分布式架构、SOA架构,再到如今流行的微服务架构 2、单体架构的优点、缺点 优点: I 易于开发,开发人员可在短时间内开发完成单体应用 II 易于测试 III 易于部署 缺点: I 灵活程度不够,一旦修改,自上而下需要整体部署,才可以展现出效果,同时开发效率低,降低团队灵活性 II 降低系统的性能 III 系统启动、重启缓慢 IV 扩展性差 3、 什么是传统的分布式架构 简单来说,就是按照业务垂直切分,每个应用都是一个单体架构,通过API接口互相调用 好处是,依赖解耦,理解清晰,开发便捷速度,缺点是调用存在风险,技术复杂,可靠性降低 4、 SOA架构的优点、缺点 面向服务的SOA架构,根据不同的业务建立不同的服务,优点,模块拆分,开发聚合,降低了耦合度,增加功能,增加子项目即可,方便部署,灵活的分布式部署 缺点,调用、交互采用远程通信,接口开发增加工作量 5、 什么是微服务技术 微服务架构在某种程度上是SOA架构的发展。微服务是一种架构风格,对于一个大型的复杂的业务应用系统,业务功能可以拆分为多个独立的微服务,各个服务间是松耦合的,通过各种远程通信协议,实现交互,各个服务可以独立部署、扩容、升降级 6、 目前流行的微服务解决方案 目前最常见的,包括两种,一种基于SpringCloud中间件的微服务解决方案,选型比较中立,内部组件,可以自由更换搭配使用,大致上三种,服务发现,一种Eureka,一种Consul,一种etcd或者阿里nacos,共用组件,服务调用组件Feign。负载均衡ribbon,熔断器hystrix,网关,zuul,gateway,等,配置中心,携程阿波罗,nacos,Config;全链路监控,zipkin,pinpoint,skywalking,其他组件 另一种基于Dubbo实现微服务解决方案,可以Dubbo,nacos,其他 7、 什么是中间件 中间件,是在操作系统之上,应用软件之下的中间层软件。本质上归结为技术架构。常见的中间件,包括服务治理中间件、配置中心、链路监控、分布式事务、分布式定时任务、分布式缓存、消息中间件、API网关、数据库中间件等 8、 什么是Spring Cloud 也是一个中间件,由Spring官方开发维护,基于SpringBoot技术框架,提供了一整套的微服务解决方案。包括服务注册与发现、配置中心、全链路监控、API网关、熔断器等组件,可以随需扩展或替换使用 9、 SpringCloud项目模块 注册中心 Eureka 第一代网关 Zuul 多语言 Sidecar 负载均衡 Ribbon 熔断器 Hystrix 第二代网关 gateway 集群监控 Turbine 声明式HTTP客户端 Feign 注册中心 consul 链路追踪 sleuth 配置中心 config 服务总线 Bus 等 10、 SpringCloud与服务治理中间件 服务治理中间件包含服务注册与发现、服务路由、复杂均衡、自我保护、丰富的治理管理机制等功能。服务路由包含服务上下线、在线测试、就近选择、A/B测试、灰度发布等,负载均衡支持根据状态权重进行负载。自我保护,服务降级、优雅降级、流量控制,Spring Cloud中使用了相关 11、 Springcloud与配置中心中间件 单体应用中,属性配置和代码采用硬编码形式放在一起,简单方便,但是在分布式系统中,多个服务实例,需要分别管理每个服务下对应的配置项,往往配置项项目一致,内容存在偏差,则上线需要检查所有的配置项,如果修改配置项,就要重启等,开发管理相当麻烦,另外还会涉及安全性的问题,比如数据库密码等的存放。分布式系统中,需要我们统一管理,负责管理的中间件,就是配置中心。配置中心,应该具备的功能,分别是支持各种复杂的配置场景,与公司的运维体系和权限体系集成一体,各种配置兼容支持。 SpringCloud Config是配置中心中间件,将应用原本放在本地的配置,统一放置到中心服务器,拥有了更好地管理发布能力,基于应用、环境、版本三个维度管理,配置存储支持git等。无缝支持Spring技术的Environment和PropertySource接口 12、 Springcloud与网关中间件 API是在系统边界上,面向API的串行集中式强管控服务,至少具备如下功能 I 统一接入功能,提供一个高性能、高并发、高可靠的网关服务,也要支持负载均衡、异地多活、容灾切换 Ii 协议适配功能,因为网关是集中式强管控,必须要提供满足各个请求协议,能够协议适配 Iii 流量管控 Iv 安全防护、权限校验 SpringCloud第一代网关采用zuul,根据默认或者配置的路由规则,进行负载或者路由,只能支持基本功能,如果想要实现高度定制更多功能,就需要,进行开发filter过滤器 SpringCloud第二代网关采用Gateway,zuul采用每个请求分配一个线程的方式,不能支持高并发,gateway采用netty框架,具有强大的高并发处理能力,且实现了网管基本功能,例如安全,监控,限流等 13、 Springcloud与全链路监控中间件 分布式系统下,对于日志追踪等,有迫切的需求,需要一个可视化展示监控平台,进行汇集。全链路监控中间件基本功能如下,定位慢调用:各种web服务调用,慢sql执行,定位各种错误,定位各种异常,展现服务依赖,展现调用链路,应用告警SpringCloud采用sleuth 14、 Springcloud与分布式事务 微服务架构之后,困难,在于,1)系统拆分后,服务间调用通信、故障处理变得复杂2)微服务化后,服务调用的分布式事务问题突出3)数量众多,测试部署运维复杂,那么随着Docker容器技术、Devops技术的发展,各种PAAS平台工具的退出,变得愈加容易。分布式事务没有统一方案 15、 Springcloud与领域驱动 微服务作为一种架构风格,提供了快速开发微服务应用的能力,但是对于业务如何开发,业务架构如何治理,架构如何防腐,还需要方法论进行指导,领域驱动作为业务治理和架构防腐的方法论,结合起来,才能更好地提供企业使用 16、 SpringCloud与gRPC协议 通过SpringCloud进行搭建微服务应用,服务间得通信往往采用的是Feign中间件形式,实现简单快捷的调用,底层采用的http形式,相对于gRPC协议或者RPC协议的调用来说,性能相对低下,因此,可以切换开源技术框架gRPC实现 17、 SpringCloud与Dubbo生态融合 SpringCloud与Dubbo在本质上不在一个领域没有可比性。Dubbo是一个基于RPC协议的通信框架,而SpringCloud是实现微服务中间件,随着发展,两者生态也在不断融合,目前已经开源了Spring-cloud-dubbo的项目

huc_逆天 2020-02-24 21:01:42 0 浏览量 回答数 0

回答

1、 描述下应用架构的发展历程 目前,架构的发展历程是从单体架构、分布式架构、SOA架构,再到如今流行的微服务架构 2、单体架构的优点、缺点 优点: I 易于开发,开发人员可在短时间内开发完成单体应用 II 易于测试 III 易于部署 缺点: I 灵活程度不够,一旦修改,自上而下需要整体部署,才可以展现出效果,同时开发效率低,降低团队灵活性 II 降低系统的性能 III 系统启动、重启缓慢 IV 扩展性差 3、 什么是传统的分布式架构 简单来说,就是按照业务垂直切分,每个应用都是一个单体架构,通过API接口互相调用 好处是,依赖解耦,理解清晰,开发便捷速度,缺点是调用存在风险,技术复杂,可靠性降低 4、 SOA架构的优点、缺点 面向服务的SOA架构,根据不同的业务建立不同的服务,优点,模块拆分,开发聚合,降低了耦合度,增加功能,增加子项目即可,方便部署,灵活的分布式部署 缺点,调用、交互采用远程通信,接口开发增加工作量 5、 什么是微服务技术 微服务架构在某种程度上是SOA架构的发展。微服务是一种架构风格,对于一个大型的复杂的业务应用系统,业务功能可以拆分为多个独立的微服务,各个服务间是松耦合的,通过各种远程通信协议,实现交互,各个服务可以独立部署、扩容、升降级 6、 目前流行的微服务解决方案 目前最常见的,包括两种,一种基于SpringCloud中间件的微服务解决方案,选型比较中立,内部组件,可以自由更换搭配使用,大致上三种,服务发现,一种Eureka,一种Consul,一种etcd或者阿里nacos,共用组件,服务调用组件Feign。负载均衡ribbon,熔断器hystrix,网关,zuul,gateway,等,配置中心,携程阿波罗,nacos,Config;全链路监控,zipkin,pinpoint,skywalking,其他组件 另一种基于Dubbo实现微服务解决方案,可以Dubbo,nacos,其他 7、 什么是中间件 中间件,是在操作系统之上,应用软件之下的中间层软件。本质上归结为技术架构。常见的中间件,包括服务治理中间件、配置中心、链路监控、分布式事务、分布式定时任务、分布式缓存、消息中间件、API网关、数据库中间件等 8、 什么是Spring Cloud 也是一个中间件,由Spring官方开发维护,基于SpringBoot技术框架,提供了一整套的微服务解决方案。包括服务注册与发现、配置中心、全链路监控、API网关、熔断器等组件,可以随需扩展或替换使用 9、 SpringCloud项目模块 注册中心 Eureka 第一代网关 Zuul 多语言 Sidecar 负载均衡 Ribbon 熔断器 Hystrix 第二代网关 gateway 集群监控 Turbine 声明式HTTP客户端 Feign 注册中心 consul 链路追踪 sleuth 配置中心 config 服务总线 Bus 等 10、 SpringCloud与服务治理中间件 服务治理中间件包含服务注册与发现、服务路由、复杂均衡、自我保护、丰富的治理管理机制等功能。服务路由包含服务上下线、在线测试、就近选择、A/B测试、灰度发布等,负载均衡支持根据状态权重进行负载。自我保护,服务降级、优雅降级、流量控制,Spring Cloud中使用了相关 11、 Springcloud与配置中心中间件 单体应用中,属性配置和代码采用硬编码形式放在一起,简单方便,但是在分布式系统中,多个服务实例,需要分别管理每个服务下对应的配置项,往往配置项项目一致,内容存在偏差,则上线需要检查所有的配置项,如果修改配置项,就要重启等,开发管理相当麻烦,另外还会涉及安全性的问题,比如数据库密码等的存放。分布式系统中,需要我们统一管理,负责管理的中间件,就是配置中心。配置中心,应该具备的功能,分别是支持各种复杂的配置场景,与公司的运维体系和权限体系集成一体,各种配置兼容支持。 SpringCloud Config是配置中心中间件,将应用原本放在本地的配置,统一放置到中心服务器,拥有了更好地管理发布能力,基于应用、环境、版本三个维度管理,配置存储支持git等。无缝支持Spring技术的Environment和PropertySource接口 12、 Springcloud与网关中间件 API是在系统边界上,面向API的串行集中式强管控服务,至少具备如下功能 I 统一接入功能,提供一个高性能、高并发、高可靠的网关服务,也要支持负载均衡、异地多活、容灾切换 Ii 协议适配功能,因为网关是集中式强管控,必须要提供满足各个请求协议,能够协议适配 Iii 流量管控 Iv 安全防护、权限校验 SpringCloud第一代网关采用zuul,根据默认或者配置的路由规则,进行负载或者路由,只能支持基本功能,如果想要实现高度定制更多功能,就需要,进行开发filter过滤器 SpringCloud第二代网关采用Gateway,zuul采用每个请求分配一个线程的方式,不能支持高并发,gateway采用netty框架,具有强大的高并发处理能力,且实现了网管基本功能,例如安全,监控,限流等 13、 Springcloud与全链路监控中间件 分布式系统下,对于日志追踪等,有迫切的需求,需要一个可视化展示监控平台,进行汇集。全链路监控中间件基本功能如下,定位慢调用:各种web服务调用,慢sql执行,定位各种错误,定位各种异常,展现服务依赖,展现调用链路,应用告警SpringCloud采用sleuth 14、 Springcloud与分布式事务 微服务架构之后,困难,在于,1)系统拆分后,服务间调用通信、故障处理变得复杂2)微服务化后,服务调用的分布式事务问题突出3)数量众多,测试部署运维复杂,那么随着Docker容器技术、Devops技术的发展,各种PAAS平台工具的退出,变得愈加容易。分布式事务没有统一方案 15、 Springcloud与领域驱动 微服务作为一种架构风格,提供了快速开发微服务应用的能力,但是对于业务如何开发,业务架构如何治理,架构如何防腐,还需要方法论进行指导,领域驱动作为业务治理和架构防腐的方法论,结合起来,才能更好地提供企业使用 16、 SpringCloud与gRPC协议 通过SpringCloud进行搭建微服务应用,服务间得通信往往采用的是Feign中间件形式,实现简单快捷的调用,底层采用的http形式,相对于gRPC协议或者RPC协议的调用来说,性能相对低下,因此,可以切换开源技术框架gRPC实现 17、 SpringCloud与Dubbo生态融合 SpringCloud与Dubbo在本质上不在一个领域没有可比性。Dubbo是一个基于RPC协议的通信框架,而SpringCloud是实现微服务中间件,随着发展,两者生态也在不断融合,目前已经开源了Spring-cloud-dubbo的项目

huc_逆天 2020-02-25 11:08:12 0 浏览量 回答数 0

问题

HBase查询优化

pandacats 2019-12-20 21:09:28 0 浏览量 回答数 0

问题

性能优化总结:CPU和Load、NIO以及多线程:报错

kun坤 2020-06-07 21:31:24 0 浏览量 回答数 1

问题

为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?【Java问答】41期

剑曼红尘 2020-06-19 13:47:21 0 浏览量 回答数 0

问题

HBase数据模型解析和基本的表设计分析

pandacats 2019-12-20 21:05:54 0 浏览量 回答数 0

回答

12月17日更新 请问下同时消费多个topic的情况下,在richmap里面可以获取到当前消息所属的topic吗? 各位大佬,你们实时都是怎样重跑数据的? 有木有大神知道Flink能否消费多个kafka集群的数据? 这个问题有人遇到吗? 你们实时读取广业务库到kafka是通过什么读的?kafka connector 的原理是定时去轮询,这样如果表多了,会不会影响业务库的性能?甚至把业务库搞挂? 有没有flink 1.9 连接 hive的例子啊?官网文档试了,没成功 请问各位是怎么解决实时流数据倾斜的? 请问一下,对于有状态的任务,如果任务做代码升级的时候,可否修改BoundedOutOfOrdernessTimestampExtractor的maxOutOfOrderness呢?是否会有影响数据逻辑的地方呢? 老哥们有做过统计从0点开始截止到现在时刻的累计用户数吗? 比如五分钟输出一次,就是7点输出0点到7点的累计用户,7:05输出0点到7:05的累计用户。 但是我这里有多个维度,现在用redis来做的。 想知道有没有更好的姿势? 实时数仓用什么存储介质来存储维表,维表有大有小,大的大概5千万左右。 各位大神有什么建议和经验分享吗? 请教个问题,就是flink的窗口触发必须是有数据才会触发吗?我现在有个这样的需求,就是存在窗口内没有流数据进入,但是窗口结束是要触发去外部系统获取上一个窗口的结果值作为本次窗口的结果值!现在没有流数据进入窗口结束时如何触发? kafkaSource.setStartFromTimestamp(timestamp); 发现kafkasource从指定时间开始消费,有些topic有效,有效topic无效,大佬们有遇到过吗? 各位大佬,flink两个table join的时候,为什么打印不出来数据,已经赋了关联条件了,但是也不报错 各位大佬 请教一下 一个faile的任务 会在这里面存储展示多久啊? 各位大佬,我的程序每五分钟一个窗口做了基础指标的统计,同时还想统计全天的Uv,这个是用State就能实现吗? 大佬们,flink的redis sink是不是只适用redis2.8.5版本? 有CEP 源码中文注释的发出来学习一下吗? 有没有拿flink和tensorflow集成的? 那位大神,给一个java版的flink1.7 读取kafka数据,做实时监控和统计的功能的代码案例。 请问下风控大佬,flink为风控引擎做数据支撑的时候,怎么应对风控规则的不断变化,比如说登录场景需要实时计算近十分钟内登录次数超过20次用户,这个规则可能会变成计算近五分钟内登录次数超过20次的。 想了解一下大家线上Flink作业一般开始的时候都分配多少内存?广播没办法改CEP flink支持多流(大于2流)join吗? 谁能帮忙提供一下flink的多并行度的情况下,怎么保证数据有序 例如map并行度为2 那就可能出现数据乱序的情况啊 请教下现在从哪里可以可以看单任务的运行状况和内存占用情况,flink页面上能看单个任务的内存、cpu 大佬们 flink1.9 停止任务手动保存savepoint的命令是啥? flink 一个流计算多个任务和 还是一个流一个任务好? flink 1.9 on yarn, 自定义个connector里面用了jni, failover以后 就起不来了, 报错重复load so的问题。 我想问一下 这个,怎么解决。 难道flink 里面不能用jni吗。 ide里面调试没有问题,部署到集群就会报错了,可能什么问题? 请教一下对于长时间耗内存很大的任务,大家都是开checkpoint机制,采用rocksdb做状态后端吗? 请问下大佬,flink jdbc读取mysql,tinyin字段类型自动转化为Boolean有没有好的解决方法 Flink 1.9版本的Blink查询优化器,Hive集成,Python API这几个功能好像都是预览版,请问群里有大佬生产环境中使用这些功能了吗? 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 各位大佬,在一个 Job 计算过程中,查询 MySQL 来补全额外数据,是一个好的实践嘛?还是说流处理过程中应该尽量避免查询额外的数据? Flink web UI是jquery写的吗? 12月9日更新 成功做完一次checkpoint后,会覆盖上一次的checkpoint吗? 数据量较大时,flink实时写入hbase能够异步写入吗? flink的异步io,是不是只是适合异步读取,并不适合异步写入呀? 请问一下,flink将结果sink到redis里面会不会对存储的IO造成很大的压力,如何批量的输出结果呢? 大佬们,flink 1.9.0版本里DataStream api,若从kafka里加载完数据以后,从这一个流中获取数据进行两条业务线的操作,是可以的吗? flink 中的rocksdb状态怎么样能可视化的查看有大佬知道吗? 感觉flink 并不怎么适合做hive 中的计算引擎来提升hive 表的查询速度 大佬们,task端rocksdb状态 保存路径默认是在哪里的啊?我想挂载个新磁盘 把状态存到那里去 flink 的state 在窗口滑动到下一个窗口时候 上一个窗口销毁时候 state会自己清除吗? 求助各位大佬,一个sql里面包含有几个大的hop滑动窗口,如15个小时和24个小时,滑动步长为5分钟,这样就会产生很多overlap 数据,导致状态会很快就达到几百g,然后作业内存也很快达到瓶颈就oom了,然后作业就不断重启,很不稳定,请问这个业务场景有什么有效的解决方案么? 使用jdbcsink的时候,如果连接长时间不使用 就会被关掉,有人遇到过吗?使用的是ddl的方式 如何向云邪大佬咨询FLink相关技术问题? 请问各位公司有专门开发自己的实时计算平台的吗? 请问各位公司有专门开发自己的实时计算平台的吗? 有哪位大佬有cdh集成安装flink的文档或者手册? 有哪位大佬有cdh集成安装flink的文档或者手册? 想问下老哥们都是怎么统计一段时间的UV的? 是直接用window然后count嘛? Flink是不是也是这样的? 请问现在如有个实时程序,根据一个mysql的维表来清洗,但是我这个mysql表里面就只有几条信息且可能会变。 我想同一个定时器去读mysql,然后存在对象中,流清洗的时候读取这个数据,这个想法可行吗?我目前在主类里面定义一个对象,然后往里面更新,发现下面的map方法之类的读不到我更新进去的值 有大佬做过flink—sql的血缘分析吗? 12月3日更新 请教一下,为什么我flume已经登录成功了keytab认证的kafka集群,但是就是消费不到数据呢? flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink timestamp转换为date类型,有什么函数吗 Run a single Flink job on YARN 我采用这种模式提交任务,出现无法找到 开启 HA 的ResourceManager Failed to connect to server: xxxxx:8032: retries get failed due to exceeded maximum allowed retries number: 0 有大佬遇到过吗 ? 各位大佬,请问有Flink写S3的方案吗? flink 连接hbase 只支持1.4.3版本? onnector: type: hbase version: "1.4.3" 请问 flink1.9能跑在hadoop3集群上吗? 滑动窗口 排序 报错这个是什么原因呢? 这个pravega和kafka有啥区别? flink 开发里数据源配置了RDS,但是在RDS里没有看到创建的表,是为什么呢? Tumbling Window里的数据,是等窗口期内的数据到齐之后一次性处理,还是到了一条就处理一条啊 双流join后再做time window grouping. 但是双流join会丢失时间属性,请问大家如何解决 stream processing with apache flink,这本书的中译版 现在可以买吗? flink on yarn时,jm和tm占用的内存最小是600M,这个可以修改吗? 各位大佬,使用默认的窗口Trigger,在什么情况下会触发两次啊?窗口关闭后,然后还来了这个窗口期内的数据,并且开了allowedLateness么? flink web里可以像storm那样 看每条数据在该算子中的平均耗时吗? 各位大佬,flink任务的并发数调大到160+以后,每隔几十分钟就会出现一次TM节点连接丢失的异常,导致任务重启。并发在100时运行比较稳定,哪位大佬可以提供下排查的思路? 感觉stateful function 是下一个要发力的点,这个现在有应用案例吗? 我有2个子网(a子网,b子网)用vpn联通,vpn几周可能会断一次。a子网有一个kafka集群,b子网运行我自己的flink集群和应用,b子网的flink应用连接到a子网的kafka集群接收消息来处理入库到数仓去。我的问题是,如果vpn断开,flink consumer会异常整个作业退出吗?如果作业退出,我重连vpn后,能从auto checkpoint再把flink应用恢复到出错时flink kafka consumer应该读取的partition/offset位置吗?flink的checkpoint除了保存自己开发的算子里的state,kafkaconsumer里的partition/offset也会保存和恢复吗? flink的反压为什么不加入metrics呢 hdfs是不是和flink共用一个集群? flink消费kafka,可以从指定时间消费的吗?目前提供的接口只是根据offset消费?有人知道怎么处理? flink 的Keyby是不是只是repartition而已?没有将key相同的数据放到一个组合里面 电商大屏 大家推荐用什么来做吗? 我比较倾向用数据库,因为有些数据需要join其他表,flink充当了什么角色,对这个有点迷,比如统计当天订单量,卖了多少钱,各个省的销量,销售金额,各个品类的销售量销售金额 开源1.9的sql中怎么把watermark给用起来,有大神知道吗? 有没有人能有一些flink的教程 代码之类的分享啊 采用了checkpoint,程序停止了之后,什么都不改,直接重启,还是能接着继续运行吗?如果可以的话,savepoint的意义又是什么呢? 有人做过flink 的tpc-ds测试吗,能不能分享一下操作的流程方法 checkpoint是有时间间隔的,也就可以理解为checkpoint是以批量操作的,那如果还没进行ckecnpoint就挂了,下次从最新的一次checkpoint重启,不是重复消费了? kafka是可以批量读取数据,但是flink是一条一条处理的,应该也可以一条一条提交吧。 各位大佬,flink sql目前是不是不支持tumbling window join,有人了解吗? 你们的HDFS是装在taskmanager上还是完全分开的,请问大佬们有遇到这种情况吗? 大佬们flink检查点存hdfs的话怎么自动清理文件啊 一个128M很快磁盘就满了 有谁遇到过这个问题? 请教一下各位,这段代码里面,我想加一个trigger,实现每次有数据进window时候,就输出,而不是等到window结束再输出,应该怎么加? 麻烦问下 flink on yarn 执行 客户端启动时 报上面错,是什么原因造成的 求大佬指点 ERROR org.apache.flink.client.program.rest.RestClusterClient - Error while shutting down cluster java.util.concurrent.ExecutionException: org.apache.flink.runtime.concurrent.FutureUtils$RetryException: Could not complete the operation. Number of retries has been exhausted. 大家怎么能动态的改变 flink WindowFunction 窗口数据时间 flink on yarn之后。yarn的日志目录被写满,大家如配置的? Flink1.9 启动 yarn-session报这个错误 怎么破? yarn 模式下,checkpoint 是存在 JobManager的,提交任务也是提交给 JobManager 的吧? heckpoint机制,会不会把window里面的数据全部放checkpoint里面? Flink On Yarn的模式下,如果通过REST API 停止Job,并触发savepiont呢 jenkins自动化部署flink的job,一般用什么方案?shell脚本还是api的方式? 各位大佬,开启增量checkpoint 情况下,这个state size 是总的checkpoint 大小,还是增量上传的大小? 想用状态表作为子表 外面嵌套窗口 如何实现呢 因为状态表group by之后 ctime会失去时间属性,有哪位大佬知道的? 你们有试过在同样的3台机器上部署两套kafka吗? 大家有没有比较好的sql解析 组件(支持嵌套sql)? richmapfuntion的open/close方法,和处理数据的map方法,是在同一个线程,还是不同线程调用的? flink on yarn 提交 参数 -p 20 -yn 5 -ys 3 ,我不是只启动了5个container么? Flink的乱序问题怎么解决? 我对数据流先进行了keyBy,print的时候是有数据的,一旦进行了timeWindow滑动窗口就没有数据了,请问是什么情况呢? 搭建flinksql平台的时候,怎么处理udf的呀? 怎么查看sentry元数据里哪些角色有哪些权限? 用java api写的kafka consumer能消费到的消息,但是Flink消费不到,这是为啥? 我state大小如果为2G左右 每次checkpoint会不会有压力? link-table中的udaf能用deltaTrigger么? flink1.7.2,场景是一分钟为窗口计算每分钟传感器的最高温度,同时计算当前分钟与上一分钟最高温 001 Flink集群支持kerberos认证吗?也就是说flink客户端需要向Flink集群进行kerberos认证,认证通过之后客户端才能提交作业到Flink集群运行002 Flink支持多租户吗? 如果要对客户端提交作业到flink进行访问控制,你们有类似的这种使用场景吗? flink可以同时读取多个topic的数据吗? Flink能够做实时ETL(oracle端到oracle端或者多端)么? Flink是否适合普通的关系型数据库呢? Flink是否适合普通的关系型数据库呢? 流窗口关联mysql中的维度表大佬们都是怎么做的啊? 怎么保证整个链路的exactly one episode精准一次,从source 到flink到sink? 在SQL的TUMBLE窗口的统计中,如果没数据进来的,如何让他也定期执行,比如进行count计算,让他输出0? new FlinkKafkaConsumer010[String]("PREWARNING",new JSONKeyValueDeserializationSchema(true), kafkaProps).setStartFromGroupOffsets() ) 我这样new 它说要我传个KeyedDeserializationSchema接口进去 flink里面broadcast state想定时reload怎么做?我用kafka里的stream flink独立模式高可用搭建必需要hadoop吗? 有人用增量cleanupIncrementally的方式来清理状态的嘛,感觉性能很差。 flink sink to hbase继承 RichOutputFormat运行就报错 kafka 只有低级 api 才拿得到 offset 吗? 有个问题咨询下大家,我的flinksql中有一些参数是要从mysql中获取的,比如我flink的sql是select * from aa where cc=?,这个问号的参数需要从mysql中获取,我用普通的jdbc进行连接可以获的,但是有一个问题,就是我mysql的数据改了之后必须重启flink程序才能解决这个问题,但这肯定不符合要求,请问大家有什么好的办法吗? flink里怎样实现多表关联制作宽表 flink写es,因为半夜es集群做路由,导致写入容易失败,会引起source的反压,然后导致checkpoint超时任务卡死,请问有没有办法在下游es处理慢的时候暂停上游的导入来缓解反压? flink 写parquet 文件,使用StreamingFileSink streamingFileSink = StreamingFileSink.forBulkFormat( new Path(path), ParquetAvroWriters.forReflectRecord(BuyerviewcarListLog.class)). withBucketAssigner(bucketAssigner).build(); 报错 java.lang.UnsupportedOperationException: Recoverable writers on Hadoop are only supported for HDFS and for Hadoop version 2.7 or newer 1.7.2 NoWindowInnerJoin这个实现,我看实现了CleanupState可更新过期时间删除当前key状态的接口,是不是这个1.7.2版本即使有个流的key一直没有被匹配到他的状态也会被清理掉,就不会存在内存泄漏的问题了? flink1.7.2 想在Table的UDAF中使用State,但是发现UDAF的open函数的FunctionContext中对于RuntimeContext是一个private,无法使用,大佬,如何在Table的UDAF中使用State啊? Flink有什么性能测试工具吗? 项目里用到了了KafkaTableSourceSinkFactory和JDBCTableSourceSinkFactory。maven打包后,META-INF里只会保留第一个 标签的org.apache.flink.table.factories.TableFactory内容。然后执行时就会有找不到合适factory的报错,请问有什么解决办法吗? 为什么这个这段逻辑 debug的时候 是直接跳过的 各位大佬,以天为单位的窗口有没有遇到过在八点钟的时候会生成一条昨天的记录? 想问一下,我要做一个规则引擎,需要动态改变规则,如何在flink里面执行? flink-1.9.1/bin/yarn-session.sh: line 32: construc 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 一般公司的flink job有没有进程进行守护?有专门的工具或者是自己写脚本?这种情况针对flink kafka能不能通过java获取topic的消息所占空间大小? Flink container was removed这个咋解决的。我有时候没有数据的时候也出现这 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更 问大家个Hive问题,新建的hive外部分区表, 怎么把HDFS数据一次性全部导入hive里 ? flink里面的broadcast state值,会出现broad流的数据还没put进mapstat Flink SQL DDL 创建表时,如何定义字段的类型为proctime? 请问下窗口计算能对历史数据进行处理吗?比如kafka里的写数据没停,窗口计算的应用停掉一段时间再开起 请问下,想统计未退费的订单数量,如果一个订单退费了(发过来一个update流),flink能做到对结果进行-1吗,这样的需求sql支持吗? 使用Flink sql时,对table使用了group by操作。然后将结果转换为流时是不是只能使用的toRetractStream方法不能使用toAppendStream方法。 百亿数据实时去重,有哪位同学实践过吗? 你们的去重容许有误差?因为bloom filter其实只能给出【肯定不存在】和【可能存在】两种结果。对于可能存在这种结果,你们会认为是同一条记录? 我就运行了一个自带的示例,一运行就报错然后web页面就崩了 flink定时加载外部数据有人做过吗? NoSuchMethodError: org.apache.flink.api.java.Utils.resolveFactory(Ljava/lang/ThreadLocal;Ljava/lang/Object;)Ljava/util/Optional 各位知道这个是那个包吗? flink 可以把大量数据写入mysql吗?比如10g flink sql 解析复杂的json可以吗? 在页面上写规则,用flink执行,怎么传递给flink? 使用cep时,如何动态添加规则? 如何基于flink 实现两个很大的数据集的交集 并集 差集? flink的应用场景是?除了实时 各位好,请教一下,滑动窗口,每次滑动都全量输出结果,外部存储系统压力大,是否有办法,只输出变化的key? RichSinkFunction close只有任务结束时候才会去调用,但是数据库连接一直拿着,最后成了数据库连接超时了,大佬们有什么好的建议去处理吗?? 为啥我的自定义函数注册,然后sql中使用不了? 请问一下各位老师,flink flapmap 中的collector.collect经常出现Buffer pool is destroyed可能是什么原因呢? 用asyncIO比直接在map里实现读hbase还慢,在和hbase交互这块儿,每个算子都加了时间统计 请教一下,在yarn上运行,会找不到 org.apache.flink.streaming.util 请问下大佬,flink1.7.2对于sql的支持是不是不怎么好啊 ,跑的数据一大就会报错。 各位大佬,都用什么来监控flink集群? flink 有那种把多条消息聚合成一条的操作吗,比如说每五十条聚合成一条 如何可以让checkpoint 跳过对齐呢? 请问 阿里云实时计算(Blink)支持这4个源数据表吗?DataHub Kafka MQ MaxCompute? 为啥checkpoint时间会越来越长,请问哪位大佬知道是因为啥呢? 请问Flink的最大并行度跟kafka partition数量有关系吗? source的并行度应该最好是跟partition数量一致吧,那剩下的算子并行度呢? Flink有 MLIB库吗,为什么1.9中没有了啊? 请教一下,有没有flink ui的文章呢?在这块内存配置,我给 TM 配置的内存只有 4096 M,但是这里为什么对不上呢?请问哪里可以看 TM 内存使用了多少呢? 请教个问题,fink RichSinkFunction的invoke方法是什么时候被调用的? 请教一下,flink的window的触发条件 watermark 小于 window 的 end_time。这个 watermark 为什么是针对所有数据的呢?没有设计为一个 key 一个 watermark 呢? 就比如说有 key1、key2、key3,有3个 watermark,有 3个 window interval不支持left join那怎么可以实现把窗口内左表的数据也写到下游呢? 各位 1、sink如何只得到最终的结果而不是也输出过程结果 ;2、不同的运算如何不借助外部系统的存储作为另外一个运算的source 请教各位一个问题,flink中设置什么配置可以取消Generic这个泛型,如图报错: 有大佬在吗,线上遇到个问题,但是明明内存还有200多G,然后呢任务cancel不了,台也取消不了程序 flink遇到The assigned slot container_1540803405745_0094_01_000008_1 was removed. 有木有大佬遇到过。在flink on yarn上跑 这个报错是什么意思呢?我使用滑动窗口的时候出现报错 flink 双流union状态过期不清理有遇到的吗? 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更,如果订单表与商品明细join查询,就会出现n条重复数据,这样数据就不准了,flink 这块有没有比较好的实战经验的。 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink 有办法 读取 pytorch的 模型文件吗? 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink timestamp转换为date类型,有什么函数吗 flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink 有办法 读取 pytorch的 模型文件吗? 有没有大佬知道实时报表怎么做?就是统计的结果要实时更新,热数据。 刚接触flink 1.9 求问flink run脚本中怎么没有相关提交到yarn的命令了 请教一下,flink里怎么实现batch sink的操作而不导致数据丢失

问问小秘 2019-12-02 03:19:17 0 浏览量 回答数 0

回答

微服务 (MicroServices) 架构是当前互联网业界的一个技术热点,圈里有不少同行朋友当前有计划在各自公司开展微服务化体系建设,他们都有相同的疑问:一个微服务架构有哪些技术关注点 (technical concerns)?需要哪些基础框架或组件来支持微服务架构?这些框架或组件该如何选型?笔者之前在两家大型互联网公司参与和主导过大型服务化体系和框架建设,同时在这块也投入了很多时间去学习和研究,有一些经验和学习心得,可以和大家一起分享。 服务注册、发现、负载均衡和健康检查和单块 (Monolithic) 架构不同,微服务架构是由一系列职责单一的细粒度服务构成的分布式网状结构,服务之间通过轻量机制进行通信,这时候必然引入一个服务注册发现问题,也就是说服务提供方要注册通告服务地址,服务的调用方要能发现目标服务,同时服务提供方一般以集群方式提供服务,也就引入了负载均衡和健康检查问题。根据负载均衡 LB 所在位置的不同,目前主要的服务注册、发现和负载均衡方案有三种: 第一种是集中式 LB 方案,如下图 Fig 1,在服务消费者和服务提供者之间有一个独立的 LB,LB 通常是专门的硬件设备如 F5,或者基于软件如 LVS,HAproxy 等实现。LB 上有所有服务的地址映射表,通常由运维配置注册,当服务消费方调用某个目标服务时,它向 LB 发起请求,由 LB 以某种策略(比如 Round-Robin)做负载均衡后将请求转发到目标服务。LB 一般具备健康检查能力,能自动摘除不健康的服务实例。服务消费方如何发现 LB 呢?通常的做法是通过 DNS,运维人员为服务配置一个 DNS 域名,这个域名指向 LB。 Fig 1, 集中式 LB 方案 集中式 LB 方案实现简单,在 LB 上也容易做集中式的访问控制,这一方案目前还是业界主流。集中式 LB 的主要问题是单点问题,所有服务调用流量都经过 LB,当服务数量和调用量大的时候,LB 容易成为瓶颈,且一旦 LB 发生故障对整个系统的影响是灾难性的。另外,LB 在服务消费方和服务提供方之间增加了一跳 (hop),有一定性能开销。 第二种是进程内 LB 方案,针对集中式 LB 的不足,进程内 LB 方案将 LB 的功能以库的形式集成到服务消费方进程里头,该方案也被称为软负载 (Soft Load Balancing) 或者客户端负载方案,下图 Fig 2 展示了这种方案的工作原理。这一方案需要一个服务注册表 (Service Registry) 配合支持服务自注册和自发现,服务提供方启动时,首先将服务地址注册到服务注册表(同时定期报心跳到服务注册表以表明服务的存活状态,相当于健康检查),服务消费方要访问某个服务时,它通过内置的 LB 组件向服务注册表查询(同时缓存并定期刷新)目标服务地址列表,然后以某种负载均衡策略选择一个目标服务地址,最后向目标服务发起请求。这一方案对服务注册表的可用性 (Availability) 要求很高,一般采用能满足高可用分布式一致的组件(例如 Zookeeper, Consul, Etcd 等)来实现。 Fig 2, 进程内 LB 方案 进程内 LB 方案是一种分布式方案,LB 和服务发现能力被分散到每一个服务消费者的进程内部,同时服务消费方和服务提供方之间是直接调用,没有额外开销,性能比较好。但是,该方案以客户库 (Client Library) 的方式集成到服务调用方进程里头,如果企业内有多种不同的语言栈,就要配合开发多种不同的客户端,有一定的研发和维护成本。另外,一旦客户端跟随服务调用方发布到生产环境中,后续如果要对客户库进行升级,势必要求服务调用方修改代码并重新发布,所以该方案的升级推广有不小的阻力。 进程内 LB 的案例是 Netflix 的开源服务框架,对应的组件分别是:Eureka 服务注册表,Karyon 服务端框架支持服务自注册和健康检查,Ribbon 客户端框架支持服务自发现和软路由。另外,阿里开源的服务框架 Dubbo 也是采用类似机制。 第三种是主机独立 LB 进程方案,该方案是针对第二种方案的不足而提出的一种折中方案,原理和第二种方案基本类似,不同之处是,他将 LB 和服务发现功能从进程内移出来,变成主机上的一个独立进程,主机上的一个或者多个服务要访问目标服务时,他们都通过同一主机上的独立 LB 进程做服务发现和负载均衡,见下图 Fig 3。 Fig 3 主机独立 LB 进程方案 该方案也是一种分布式方案,没有单点问题,一个 LB 进程挂了只影响该主机上的服务调用方,服务调用方和 LB 之间是进程内调用,性能好,同时,该方案还简化了服务调用方,不需要为不同语言开发客户库,LB 的升级不需要服务调用方改代码。该方案的不足是部署较复杂,环节多,出错调试排查问题不方便。 该方案的典型案例是 Airbnb 的 SmartStack 服务发现框架,对应组件分别是:Zookeeper 作为服务注册表,Nerve 独立进程负责服务注册和健康检查,Synapse/HAproxy 独立进程负责服务发现和负载均衡。Google 最新推出的基于容器的 PaaS 平台 Kubernetes,其内部服务发现采用类似的机制。 服务前端路由微服务除了内部相互之间调用和通信之外,最终要以某种方式暴露出去,才能让外界系统(例如客户的浏览器、移动设备等等)访问到,这就涉及服务的前端路由,对应的组件是服务网关 (Service Gateway),见图 Fig 4,网关是连接企业内部和外部系统的一道门,有如下关键作用: 服务反向路由,网关要负责将外部请求反向路由到内部具体的微服务,这样虽然企业内部是复杂的分布式微服务结构,但是外部系统从网关上看到的就像是一个统一的完整服务,网关屏蔽了后台服务的复杂性,同时也屏蔽了后台服务的升级和变化。安全认证和防爬虫,所有外部请求必须经过网关,网关可以集中对访问进行安全控制,比如用户认证和授权,同时还可以分析访问模式实现防爬虫功能,网关是连接企业内外系统的安全之门。限流和容错,在流量高峰期,网关可以限制流量,保护后台系统不被大流量冲垮,在内部系统出现故障时,网关可以集中做容错,保持外部良好的用户体验。监控,网关可以集中监控访问量,调用延迟,错误计数和访问模式,为后端的性能优化或者扩容提供数据支持。日志,网关可以收集所有的访问日志,进入后台系统做进一步分析。 Fig 4, 服务网关 除以上基本能力外,网关还可以实现线上引流,线上压测,线上调试 (Surgical debugging),金丝雀测试 (Canary Testing),数据中心双活 (Active-Active HA) 等高级功能。 网关通常工作在 7 层,有一定的计算逻辑,一般以集群方式部署,前置 LB 进行负载均衡。 开源的网关组件有 Netflix 的 Zuul,特点是动态可热部署的过滤器 (filter) 机制,其它如 HAproxy,Nginx 等都可以扩展作为网关使用。 在介绍过服务注册表和网关等组件之后,我们可以通过一个简化的微服务架构图 (Fig 5) 来更加直观地展示整个微服务体系内的服务注册发现和路由机制,该图假定采用进程内 LB 服务发现和负载均衡机制。在下图 Fig 5 的微服务架构中,服务简化为两层,后端通用服务(也称中间层服务 Middle Tier Service)和前端服务(也称边缘服务 Edge Service,前端服务的作用是对后端服务做必要的聚合和裁剪后暴露给外部不同的设备,如 PC,Pad 或者 Phone)。后端服务启动时会将地址信息注册到服务注册表,前端服务通过查询服务注册表就可以发现然后调用后端服务;前端服务启动时也会将地址信息注册到服务注册表,这样网关通过查询服务注册表就可以将请求路由到目标前端服务,这样整个微服务体系的服务自注册自发现和软路由就通过服务注册表和网关串联起来了。如果以面向对象设计模式的视角来看,网关类似 Proxy 代理或者 Façade 门面模式,而服务注册表和服务自注册自发现类似 IoC 依赖注入模式,微服务可以理解为基于网关代理和注册表 IoC 构建的分布式系统。 Fig 5, 简化的微服务架构图 服务容错当企业微服务化以后,服务之间会有错综复杂的依赖关系,例如,一个前端请求一般会依赖于多个后端服务,技术上称为 1 -> N 扇出 (见图 Fig 6)。在实际生产环境中,服务往往不是百分百可靠,服务可能会出错或者产生延迟,如果一个应用不能对其依赖的故障进行容错和隔离,那么该应用本身就处在被拖垮的风险中。在一个高流量的网站中,某个单一后端一旦发生延迟,可能在数秒内导致所有应用资源 (线程,队列等) 被耗尽,造成所谓的雪崩效应 (Cascading Failure,见图 Fig 7),严重时可致整个网站瘫痪。 Fig 6, 服务依赖 Fig 7, 高峰期单个服务延迟致雪崩效应 经过多年的探索和实践,业界在分布式服务容错一块探索出了一套有效的容错模式和最佳实践,主要包括: Fig 8, 弹性电路保护状态图 电路熔断器模式 (Circuit Breaker Patten), 该模式的原理类似于家里的电路熔断器,如果家里的电路发生短路,熔断器能够主动熔断电路,以避免灾难性损失。在分布式系统中应用电路熔断器模式后,当目标服务慢或者大量超时,调用方能够主动熔断,以防止服务被进一步拖垮;如果情况又好转了,电路又能自动恢复,这就是所谓的弹性容错,系统有自恢复能力。下图 Fig 8 是一个典型的具备弹性恢复能力的电路保护器状态图,正常状态下,电路处于关闭状态 (Closed),如果调用持续出错或者超时,电路被打开进入熔断状态 (Open),后续一段时间内的所有调用都会被拒绝 (Fail Fast),一段时间以后,保护器会尝试进入半熔断状态 (Half-Open),允许少量请求进来尝试,如果调用仍然失败,则回到熔断状态,如果调用成功,则回到电路闭合状态。舱壁隔离模式 (Bulkhead Isolation Pattern),顾名思义,该模式像舱壁一样对资源或失败单元进行隔离,如果一个船舱破了进水,只损失一个船舱,其它船舱可以不受影响 。线程隔离 (Thread Isolation) 就是舱壁隔离模式的一个例子,假定一个应用程序 A 调用了 Svc1/Svc2/Svc3 三个服务,且部署 A 的容器一共有 120 个工作线程,采用线程隔离机制,可以给对 Svc1/Svc2/Svc3 的调用各分配 40 个线程,当 Svc2 慢了,给 Svc2 分配的 40 个线程因慢而阻塞并最终耗尽,线程隔离可以保证给 Svc1/Svc3 分配的 80 个线程可以不受影响,如果没有这种隔离机制,当 Svc2 慢的时候,120 个工作线程会很快全部被对 Svc2 的调用吃光,整个应用程序会全部慢下来。限流 (Rate Limiting/Load Shedder),服务总有容量限制,没有限流机制的服务很容易在突发流量 (秒杀,双十一) 时被冲垮。限流通常指对服务限定并发访问量,比如单位时间只允许 100 个并发调用,对超过这个限制的请求要拒绝并回退。回退 (fallback),在熔断或者限流发生的时候,应用程序的后续处理逻辑是什么?回退是系统的弹性恢复能力,常见的处理策略有,直接抛出异常,也称快速失败 (Fail Fast),也可以返回空值或缺省值,还可以返回备份数据,如果主服务熔断了,可以从备份服务获取数据。Netflix 将上述容错模式和最佳实践集成到一个称为 Hystrix 的开源组件中,凡是需要容错的依赖点 (服务,缓存,数据库访问等),开发人员只需要将调用封装在 Hystrix Command 里头,则相关调用就自动置于 Hystrix 的弹性容错保护之下。Hystrix 组件已经在 Netflix 经过多年运维验证,是 Netflix 微服务平台稳定性和弹性的基石,正逐渐被社区接受为标准容错组件。 服务框架微服务化以后,为了让业务开发人员专注于业务逻辑实现,避免冗余和重复劳动,规范研发提升效率,必然要将一些公共关注点推到框架层面。服务框架 (Fig 9) 主要封装公共关注点逻辑,包括: Fig 9, 服务框架 服务注册、发现、负载均衡和健康检查,假定采用进程内 LB 方案,那么服务自注册一般统一做在服务器端框架中,健康检查逻辑由具体业务服务定制,框架层提供调用健康检查逻辑的机制,服务发现和负载均衡则集成在服务客户端框架中。监控日志,框架一方面要记录重要的框架层日志、metrics 和调用链数据,还要将日志、metrics 等接口暴露出来,让业务层能根据需要记录业务日志数据。在运行环境中,所有日志数据一般集中落地到企业后台日志系统,做进一步分析和处理。REST/RPC 和序列化,框架层要支持将业务逻辑以 HTTP/REST 或者 RPC 方式暴露出来,HTTP/REST 是当前主流 API 暴露方式,在性能要求高的场合则可采用 Binary/RPC 方式。针对当前多样化的设备类型 (浏览器、普通 PC、无线设备等),框架层要支持可定制的序列化机制,例如,对浏览器,框架支持输出 Ajax 友好的 JSON 消息格式,而对无线设备上的 Native App,框架支持输出性能高的 Binary 消息格式。配置,除了支持普通配置文件方式的配置,框架层还可集成动态运行时配置,能够在运行时针对不同环境动态调整服务的参数和配置。限流和容错,框架集成限流容错组件,能够在运行时自动限流和容错,保护服务,如果进一步和动态配置相结合,还可以实现动态限流和熔断。管理接口,框架集成管理接口,一方面可以在线查看框架和服务内部状态,同时还可以动态调整内部状态,对调试、监控和管理能提供快速反馈。Spring Boot 微框架的 Actuator 模块就是一个强大的管理接口。统一错误处理,对于框架层和服务的内部异常,如果框架层能够统一处理并记录日志,对服务监控和快速问题定位有很大帮助。安全,安全和访问控制逻辑可以在框架层统一进行封装,可做成插件形式,具体业务服务根据需要加载相关安全插件。文档自动生成,文档的书写和同步一直是一个痛点,框架层如果能支持文档的自动生成和同步,会给使用 API 的开发和测试人员带来极大便利。Swagger 是一种流行 Restful API 的文档方案。当前业界比较成熟的微服务框架有 Netflix 的 Karyon/Ribbon,Spring 的 Spring Boot/Cloud,阿里的 Dubbo 等。 运行期配置管理服务一般有很多依赖配置,例如访问数据库有连接字符串配置,连接池大小和连接超时配置,这些配置在不同环境 (开发 / 测试 / 生产) 一般不同,比如生产环境需要配连接池,而开发测试环境可能不配,另外有些参数配置在运行期可能还要动态调整,例如,运行时根据流量状况动态调整限流和熔断阀值。目前比较常见的做法是搭建一个运行时配置中心支持微服务的动态配置,简化架构如下图 (Fig 10): Fig 10, 服务配置中心 动态配置存放在集中的配置服务器上,用户通过管理界面配置和调整服务配置,具体服务通过定期拉 (Scheduled Pull) 的方式或者服务器推 (Server-side Push) 的方式更新动态配置,拉方式比较可靠,但会有延迟同时有无效网络开销 (假设配置不常更新),服务器推方式能及时更新配置,但是实现较复杂,一般在服务和配置服务器之间要建立长连接。配置中心还要解决配置的版本控制和审计问题,对于大规模服务化环境,配置中心还要考虑分布式和高可用问题。 配置中心比较成熟的开源方案有百度的 Disconf,360 的 QConf,Spring 的 Cloud Config 和阿里的 Diamond 等。 Netflix 的微服务框架Netflix 是一家成功实践微服务架构的互联网公司,几年前,Netflix 就把它的几乎整个微服务框架栈开源贡献给了社区,这些框架和组件包括: Eureka: 服务注册发现框架Zuul: 服务网关Karyon: 服务端框架Ribbon: 客户端框架Hystrix: 服务容错组件Archaius: 服务配置组件Servo: Metrics 组件Blitz4j: 日志组件下图 Fig 11 展示了基于这些组件构建的一个微服务框架体系,来自 recipes-rss。 Fig 11, 基于 Netflix 开源组件的微服务框架 Netflix 的开源框架组件已经在 Netflix 的大规模分布式微服务环境中经过多年的生产实战验证,正逐步被社区接受为构造微服务框架的标准组件。Pivotal 去年推出的 Spring Cloud 开源产品,主要是基于对 Netflix 开源组件的进一步封装,方便 Spring 开发人员构建微服务基础框架。对于一些打算构建微服务框架体系的公司来说,充分利用或参考借鉴 Netflix 的开源微服务组件 (或 Spring Cloud),在此基础上进行必要的企业定制,无疑是通向微服务架构的捷径。 原文地址:https://www.infoq.cn/article/basis-frameworkto-implement-micro-service#anch130564%20%EF%BC%8C

auto_answer 2019-12-02 01:55:22 0 浏览量 回答数 0

回答

简介 如果您听说过 Node,或者阅读过一些文章,宣称 Node 是多么多么的棒,那么您可能会想:“Node 究竟是什么东西?”尽管不是针对所有人的,但 Node 可能是某些人的正确选择。 为试图解释什么是 Node.js,本文探究了它能解决的问题,它如何工作,如何运行一个简单应用程序,最后,Node 何时是和何时不是一个好的解决方案。本文不涉及如何编写一个复杂的 Node 应用程序,也不是一份全面的 Node 教程。阅读本文应该有助于您决定是否应该学习 Node,以便将其用于您的业务。 Node 旨在解决什么问题? Node 公开宣称的目标是 “旨在提供一种简单的构建可伸缩网络程序的方法”。当前的服务器程序有什么问题?我们来做个数学题。在 Java™ 和 PHP 这类语言中,每个连接都会生成一个新线程,每个新线程可能需要 2 MB 配套内存。在一个拥有 8 GB RAM 的系统上,理论上最大的并发连接数量是 4,000 个用户。随着您的客户端基础的增长,您希望您的 web 应用程序支持更多用户,这样,您必须添加更多服务器。当然,这会增加业务成本,尤其是服务器成本、运输成本和人工成本。除这些成本上升外,还有一个技术问题:用户可能针对每个请求使用不同的服务器,因此,任何共享资源都必须在所有服务器之间共享。例如,在 Java 中,静态变量和缓存需要在每个服务器上的 JVMs 之间共享。这就是整个 web 应用程序架构中的瓶颈:一个服务器能够处理的并发连接的最大数量。 Node 解决这个问题的方法是:更改连接连接到服务器的方式。每个连接都创建一个进程,该进程不需要配套内存块,而不是为每个连接生成一个新的 OS 线程(并向其分配一些配套内存)。Node 声称它绝不会死锁,因为它根本不允许使用锁,它不会直接阻塞 I/O 调用。Node 还宣称,运行它的服务器能支持数万个并发连接。事实上,Node 通过将整个系统中的瓶颈从最大连接数量更改到单个系统的流量来改变服务器面貌。 现在您有了一个能处理数万条并发连接的程序,那么您能通过 Node 实际构建什么呢?如果您有一个 web 应用程序需要处理这么多连接,那将是一件很 “恐怖” 的事!那是一种 “如果您有这个问题,那么它根本不是问题” 的问题。在回答上面的问题之前,我们先看看 Node 如何工作以及它被设计的如何运行。 Node 肯定不是什么 没错,Node 是一个服务器程序。但是,它肯定不 像 Apache 或 Tomcat。那些服务器是独立服务器产品,可以立即安装并部署应用程序。通过这些产品,您可以在一分钟内启动并运行一个服务器。Node 肯定不是这种产品。Apache 能添加一个 PHP 模块来允许开发人员创建动态 web 页,使用 Tomcat 的程序员能部署 JSPs 来创建动态 web 页。Node 肯定不是这种类型。 在 Node 的早期阶段(当前是 version 0.4.6),它还不是一个 “运行就绪” 的服务器程序,您还不能安装它,向其中放置文件,拥有一个功能齐全的 web 服务器。即使是要实现 web 服务器在安装完成后启动并运行这个基本功能,也还需要做大量工作。 Node 如何工作 Node 本身运行 V8 JavaScript。等等,服务器上的 JavaScript?没错,您没有看错。服务器端 JavaScript 是一个相对较新的概念,这个概念是大约两年前在 developerWorks 上讨论 Aptana Jaxer 产品时提到的(参见 参考资料)。尽管 Jaxer 一直没有真正流行,但这个理念本身并不是遥不可及的 — 为何不能在服务器上使用客户机上使用的编程语言? 什么使 V8?V8 JavaScript 引擎是 Google 用于他们的 Chrome 浏览器的底层 JavaScript 引擎。很少有人考虑 JavaScript 在客户机上实际做了些什么?实际上,JavaScript 引擎负责解释并执行代码。使用 V8,Google 创建了一个以 C++ 编写的超快解释器,该解释器拥有另一个独特特征;您可以下载该引擎并将其嵌入任何 应用程序。它不仅限于在一个浏览器中运行。因此,Node 实际上使用 Google 编写的 V8 JavaScript 引擎并将其重建为在服务器上使用。太完美了!既然已经有一个不错的解决方案可用,为何还要创建一种新语言呢? 事件驱动编程 许多程序员接受的教育使他们认为,面向对象编程是完美的编程设计,而对其他编程方法不屑一顾。Node 使用一个所谓的事件驱动编程模型。 清单 1. 客户端上使用 jQuery 的事件驱动编程 复制代码 代码如下: // jQuery code on the client-side showing how Event-Driven programming works // When a button is pressed, an Event occurs - deal with it // directly right here in an anonymous function, where all the // necessary variables are present and can be referenced directly $("#myButton").click(function(){ if ($("#myTextField").val() != $(this).val()) alert("Field must match button text"); }); 实际上,服务器端和客户端没有任何区别。没错,这没有按钮点击操作,也没有向文本字段键入的操作,但在一个更高的层面上,事件正在 发生。一个连接被建立 — 事件!数据通过连接接收 — 事件!数据通过连接停止 — 事件! 为什么这种设置类型对 Node 很理想?JavaScript 是一种很棒的事件驱动编程语言,因为它允许匿名函数和闭包,更重要的是,任何写过代码的人都熟悉它的语法。事件发生时调用的回调函数可以在捕获事件处编写。这样,代码容易编写和维护,没有复杂的面向对象框架,没有接口,没有在上面架构任何内容的潜能。只需监听事件,编写一个回调函数,然后,事件驱动编程将照管好一切! 示例 Node 应用程序 最后,我们来看一些代码!让我们将讨论过的所有内容综合起来,创建我们的第一个 Node 应用程序。由于我们已经知道,Node 对于处理高流量应用程序很理想,我们就来创建一个非常简单的 web 应用程序 — 一个为实现最大速度而构建的应用程序。下面是 “老板” 交代的关于我们的样例应用程序的具体要求:创建一个随机数字生成器 RESTful API。这个应用程序应该接受一个输入:一个名为 “number” 的参数。然后,应用程序返回一个介于 0 和该参数之间的随机数字,并将生成的数字返回调用者。由于 “老板” 希望它成为一个广泛流行的应用程序,因此它应该能处理 50,000 个并发用户。我们来看看代码: 清单 2. Node 随机数字生成器 复制代码 代码如下: // these modules need to be imported in order to use them. // Node has several modules. They are like any #include // or import statement in other languages var http = require("http"); var url = require("url"); // The most important line in any Node file. This function // does the actual process of creating the server. Technically, // Node tells the underlying operating system that whenever a // connection is made, this particular callback function should be // executed. Since we're creating a web service with REST API, // we want an HTTP server, which requires the http variable // we created in the lines above. // Finally, you can see that the callback method receives a 'request' // and 'response' object automatically. This should be familiar // to any PHP or Java programmer. http.createServer(function(request, response) { // The response needs to handle all the headers, and the return codes // These types of things are handled automatically in server programs // like Apache and Tomcat, but Node requires everything to be done yourself response.writeHead(200, {"Content-Type": "text/plain"}); // Here is some unique-looking code. This is how Node retrives // parameters passed in from client requests. The url module // handles all these functions. The parse function // deconstructs the URL, and places the query key-values in the // query object. We can find the value for the "number" key // by referencing it directly - the beauty of JavaScript. var params = url.parse(request.url, true).query; var input = params.number; // These are the generic JavaScript methods that will create // our random number that gets passed back to the caller var numInput = new Number(input); var numOutput = new Number(Math.random() * numInput).toFixed(0); // Write the random number to response response.write(numOutput); // Node requires us to explicitly end this connection. This is because // Node allows you to keep a connection open and pass data back and forth, // though that advanced topic isn't discussed in this article. response.end(); // When we create the server, we have to explicitly connect the HTTP server to // a port. Standard HTTP port is 80, so we'll connect it to that one. }).listen(80); // Output a String to the console once the server starts up, letting us know everything // starts up correctly console.log("Random Number Generator Running..."); 将上面的代码放到一个名为 “random.js” 的文件中。现在,要启动这个应用程序并运行它(进而创建 HTTP 服务器并监听端口 80 上的连接),只需在您的命令提示中输入以下命令:% node random.js。下面是服务器已经启动并运行时它看起来的样子: 复制代码 代码如下: root@ubuntu:/home/moila/ws/mike# node random.js Random Number Generator Running... 访问应用程序 应用程序已经启动并运行。Node 正在监听任何连接,我们来测试一下。由于我们创建了一个简单的 RESTful API,我们可以使用我们的 web 浏览器来访问这个应用程序。键入以下地址(确保您完成了上面的步骤):localhost/?number=27。 您的浏览器窗口将更改到一个介于 0 到 27 之间的随机数字。单击浏览器上的 “重新载入” 按钮,将得到另一个随机数字。就是这样,这就是您的第一个 Node 应用程序! Node 对什么有好处? 到此为止,应该能够回答 “Node 是什么” 这个问题了,但您可能还不清楚什么时候应该使用它。这是一个需要提出的重要问题,因为 Node 对有一些东西有好处,但相反,对另一些东西而言,目前 Node 可能不是一个好的解决方案。您需要小心决定何时使用 Node,因为在错误的情况下使用它可能会导致一个多余编码的 LOT。 它对什么有好处? 正如您此前所看到的,Node 非常适合以下情况:您预计可能有很高的流量,而在响应客户端之前服务器端逻辑和处理所需不一定是巨大的。Node 表现出众的典型示例包括: 1.RESTful API 提供 RESTful API 的 web 服务接收几个参数,解析它们,组合一个响应,并返回一个响应(通常是较少的文本)给用户。这是适合 Node 的理想情况,因为您可以构建它来处理数万条连接。它还不需要大量逻辑;它只是从一个数据库查找一些值并组合一个响应。由于响应是少量文本,入站请求时少量文本,因此流量不高,一台机器甚至也可以处理最繁忙的公司的 API 需求。 2.Twitter 队列 想像一下像 Twitter 这样的公司,它必须接收 tweets 并将其写入一个数据库。实际上,每秒几乎有数千条 tweets 达到,数据库不可能及时处理高峰时段需要的写入数量。Node 成为这个问题的解决方案的重要一环。如您所见,Node 能处理数万条入站 tweets。它能迅速轻松地将它们写入一个内存排队机制(例如 memcached),另一个单独进程可以从那里将它们写入数据库。Node 在这里的角色是迅速收集 tweet 并将这个信息传递给另一个负责写入的进程。想象一下另一种设计 — 一个常规 PHP 服务器自己试图处理对数据库的写入 — 每个 tweet 将在写入数据库时导致一个短暂的延迟,这是因为数据库调用正在阻塞通道。由于数据库延迟,一台这样设计的机器每秒可能只能处理 2000 条入站 tweets。每秒 100 万条 tweets 需要 500 个服务器。相反,Node 能处理每个连接而不会阻塞通道,从而能捕获尽可能多的 tweets。一个能处理 50,000 条 tweets 的 Node 机器只需要 20 个服务器。 3.映像文件服务器 一个拥有大型分布式网站的公司(比如 Facebook 或 Flickr)可能会决定将所有机器只用于服务映像。Node 将是这个问题的一个不错的解决方案,因为该公司能使用它编写一个简单的文件检索器,然后处理数万条连接。Node 将查找映像文件,返回文件或一个 404 错误,然后什么也不用做。这种设置将允许这类分布式网站减少它们服务映像、.js 和 .css 文件等静态文件所需的服务器数量。 它对什么有坏处? 当然,在某些情况下,Node 并非理想选择。下面是 Node 不擅长的领域: 1.动态创建的页 目前,Node 没有提供一种默认方法来创建动态页。例如,使用 JavaServer Pages (JSP) 技术时,可以创建一个在这样的 JSP 代码段中包含循环的 index.jsp 页。Node 不支持这类动态的、HTML 驱动的页面。同样,Node 不太适合作为 Apache 和 Tomcat 这样的网页服务器。因此,如果您想在 Node 中提供这样一个服务器端解决方案,必须自己编写整个解决方案。PHP 程序员不想在每次部署 web 应用程序时都编写一个针对 Apache 的 PHP 转换器,当目前为止,这正是 Node 要求您做的。 2. 关系数据库重型应用程序 Node 的目的是快速、异步和非阻塞。数据库并不一定分享这些目标。它们是同步和阻塞的,因为读写时对数据库的调用在结果生成之前将一直阻塞通道。因此,一个每个请求都需要大量数据库调用、大量读取、大量写入的 web 应用程序非常不适合 Node,这是因为关系数据库本身就能抵销 Node 的众多优势。(新的 NoSQL 数据库更适合 Node,不过那完全是另一个主题了。) 结束语 问题是 “什么是 Node.js?” 应该已经得到解答。阅读本文之后,您应该能通过几个清晰简洁的句子回答这个问题。如果这样,那么您已经走到了许多编码员和程序员的前面。我和许多人都谈论过 Node,但它们对 Node 究竟是什么一直很迷惑。可以理解,他们具有的是 Apache 的思维方式 — 服务器是一个应用程序,将 HTML 文件放入其中,一切就会正常运转。而 Node 是目的驱动的。它是一个软件程序,使用 JavaScript 来允许程序员轻松快速地创建快速、可伸缩的 web 服务器。Apache 是运行就绪的,而 Node 是编码就绪的。 Node 完成了它提供高度可伸缩服务器的目标。它并不分配一个 “每个连接一个线程” 模型,而是使用一个 “每个连接一个流程” 模型,只创建每个连接需要的内存。它使用 Google 的一个非常快速的 JavaScript 引擎:V8 引擎。它使用一个事件驱动设计来保持代码最小且易于阅读。所有这些因素促成了 Node 的理想目标 — 编写一个高度可伸缩的解决方案变得比较容易。 与理解 Node 是 什么同样重要的是,理解它不是 什么。Node 并不是 Apache 的一个替代品,后者旨在使 PHP web 应用程序更容易伸缩。事实确实如此。在 Node 的这个初始阶段,大量程序员使用它的可能性不大,但在它能发挥作用的场景中,它的表现非常好。 将来应该期望从 Node 得到什么呢?这也许是本文引出的最重要的问题。既然您知道了它现在的作用,您应该会想知道它下一步将做什么。在接下来的一年中,我期待着 Node 提供与现有的第三方支持库更好地集成。现在,许多第三方程序员已经研发了用于 Node 的插件,包括添加文件服务器支持和 MySQL 支持。希望 Node 开始将它们集成到其核心功能中。最后,我还希望 Node 支持某种动态页面模块,这样,您就可以在 HTML 文件中执行在 PHP 和 JSP(也许是一个 NSP,一个 Node 服务器页)中所做的操作。最后,希望有一天会出现一个 “部署就绪” 的 Node 服务器,可以下载和安装,只需将您的 HTML 文件放到其中,就像使用 Apache 或 Tomcat 那样。Node 现在还处于初始阶段,但它发展得很快,可能不久就会出现在您的视野中。 答案来源于网络

养狐狸的猫 2019-12-02 02:17:03 0 浏览量 回答数 0

问题

VPC网络架构助力媒体数字化转型

福利达人 2019-12-01 21:09:15 3511 浏览量 回答数 0

问题

程序员的3年之痒改变的不止薪水

小柒2012 2019-12-01 21:08:36 19089 浏览量 回答数 18

问题

企业运营对DevOps的「傲慢与偏见」

忆远0711 2019-12-01 21:32:29 9823 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板