• 关于

    搜索策略未响应

    的搜索结果

回答

域名不能正确解析可以更换其它的dns服务器,在百度搜索“公用dns”,选一个就行了 IIS状态代码的含义 概要 当用户试图通过HTTP或文件传输协议(FTP)访问一台正在运行Internet信息服务(IIS)的服务器上的内容时,IIS返回一个表示该请求的状态的数字代码。该状态代码记录在IIS日志中,同时也可能在Web浏览器或FTP客户端显示。状态代码可以指明具体请求是否已成功,还可以揭示请求失败的确切原因。 更多信息 日志文件的位置 在默认状态下,IIS把它的日志文件放在%WINDIR\System32\Logfiles文件夹中。每个万维网(WWW)站点和FTP站点在该目录下都有一个单独的目录。在默认状态下,每天都会在这些目录下创建日志文件,并用日期给日志文件命名(例如,exYYMMDD.log)。 HTTP 1xx-信息提示 这些状态代码表示临时的响应。客户端在收到常规响应之前,应准备接收一个或多个1xx响应。 100-继续。 101-切换协议。 2xx-成功 这类状态代码表明服务器成功地接受了客户端请求。 200-确定。客户端请求已成功。 201-已创建。 202-已接受。 203-非权威性信息。 204-无内容。 205-重置内容。 206-部分内容。 3xx-重定向 客户端浏览器必须采取更多操作来实现请求。例如,浏览器可能不得不请求服务器上的不同的页面,或通过代理服务器重复该请求。 301-对象已永久移走,即永久重定向。 302-对象已临时移动。 304-未修改。 307-临时重定向。 4xx-客户端错误 发生错误,客户端似乎有问题。例如,客户端请求不存在的页面,客户端未提供有效的身份验证信息。400-错误的请求。 401-访问被拒绝。IIS定义了许多不同的401错误,它们指明更为具体的错误原因。这些具体的错误代码在浏览器中显示,但不在IIS日志中显示: 401.1-登录失败。 401.2-服务器配置导致登录失败。 401.3-由于ACL对资源的限制而未获得授权。 401.4-筛选器授权失败。 401.5-ISAPI/CGI应用程序授权失败。 401.7–访问被Web服务器上的URL授权策略拒绝。这个错误代码为IIS6.0所专用。 403-禁止访问:IIS定义了许多不同的403错误,它们指明更为具体的错误原因: 403.1-执行访问被禁止。 403.2-读访问被禁止。 403.3-写访问被禁止。 403.4-要求SSL。 403.5-要求SSL128。 403.6-IP地址被拒绝。 403.7-要求客户端证书。 403.8-站点访问被拒绝。 403.9-用户数过多。 403.10-配置无效。 403.11-密码更改。 403.12-拒绝访问映射表。 403.13-客户端证书被吊销。 403.14-拒绝目录列表。 403.15-超出客户端访问许可。 403.16-客户端证书不受信任或无效。 403.17-客户端证书已过期或尚未生效。 403.18-在当前的应用程序池中不能执行所请求的URL。这个错误代码为IIS6.0所专用。 403.19-不能为这个应用程序池中的客户端执行CGI。这个错误代码为IIS6.0所专用。 403.20-Passport登录失败。这个错误代码为IIS6.0所专用。 404-未找到。 404.0-(无)–没有找到文件或目录。 404.1-无法在所请求的端口上访问Web站点。 404.2-Web服务扩展锁定策略阻止本请求。 404.3-MIME映射策略阻止本请求。 405-用来访问本页面的HTTP谓词不被允许(方法不被允许) 406-客户端浏览器不接受所请求页面的MIME类型。 407-要求进行代理身份验证。 412-前提条件失败。 413–请求实体太大。 414-请求URI太长。 415–不支持的媒体类型。 416–所请求的范围无法满足。 417–执行失败。 423–锁定的错误。 5xx-服务器错误 服务器由于遇到错误而不能完成该请求。 500-内部服务器错误。 500.12-应用程序正忙于在Web服务器上重新启动。 500.13-Web服务器太忙。 500.15-不允许直接请求Global.asa。 500.16–UNC授权凭据不正确。这个错误代码为IIS6.0所专用。 500.18–URL授权存储不能打开。这个错误代码为IIS6.0所专用。 500.100-内部ASP错误。 501-页眉值指定了未实现的配置。 502-Web服务器用作网关或代理服务器时收到了无效响应。 502.1-CGI应用程序超时。 502.2-CGI应用程序出错。application. 503-服务不可用。这个错误代码为IIS6.0所专用。 504-网关超时。 505-HTTP版本不受支持。 FTP 1xx-肯定的初步答复 这些状态代码指示一项操作已经成功开始,但客户端希望在继续操作新命令前得到另一个答复。 110重新启动标记答复。 120服务已就绪,在nnn分钟后开始。 125数据连接已打开,正在开始传输。 150文件状态正常,准备打开数据连接。 2xx-肯定的完成答复 一项操作已经成功完成。客户端可以执行新命令。200命令确定。 202未执行命令,站点上的命令过多。 211系统状态,或系统帮助答复。 212目录状态。 213文件状态。 214帮助消息。 215NAME系统类型,其中,NAME是AssignedNumbers文档中所列的正式系统名称。 220服务就绪,可以执行新用户的请求。 221服务关闭控制连接。如果适当,请注销。 225数据连接打开,没有进行中的传输。 226关闭数据连接。请求的文件操作已成功(例如,传输文件或放弃文件)。 227进入被动模式(h1,h2,h3,h4,p1,p2)。 230用户已登录,继续进行。 250请求的文件操作正确,已完成。 257已创建“PATHNAME”。 3xx-肯定的中间答复 该命令已成功,但服务器需要更多来自客户端的信息以完成对请求的处理。331用户名正确,需要密码。 332需要登录帐户。 350请求的文件操作正在等待进一步的信息。 4xx-瞬态否定的完成答复 该命令不成功,但错误是暂时的。如果客户端重试命令,可能会执行成功。421服务不可用,正在关闭控制连接。如果服务确定它必须关闭,将向任何命令发送这一应答。 425无法打开数据连接。 426Connectionclosed;transferaborted. 450未执行请求的文件操作。文件不可用(例如,文件繁忙)。 451请求的操作异常终止:正在处理本地错误。 452未执行请求的操作。系统存储空间不够。 5xx-永久性否定的完成答复 该命令不成功,错误是永久性的。如果客户端重试命令,将再次出现同样的错误。500语法错误,命令无法识别。这可能包括诸如命令行太长之类的错误。 501在参数中有语法错误。 502未执行命令。 503错误的命令序列。 504未执行该参数的命令。 530未登录。 532存储文件需要帐户。 550未执行请求的操作。文件不可用(例如,未找到文件,没有访问权限)。 551请求的操作异常终止:未知的页面类型。 552请求的文件操作异常终止:超出存储分配(对于当前目录或数据集)。 553未执行请求的操作。不允许的文件名。 常见的FTP状态代码及其原因 150-FTP使用两个端口:21用于发送命令,20用于发送数据。状态代码150表示服务器准备在端口20上打开新连接,发送一些数据。 226-命令在端口20上打开数据连接以执行操作,如传输文件。该操作成功完成,数据连接已关闭。 230-客户端发送正确的密码后,显示该状态代码。它表示用户已成功登录。 331-客户端发送用户名后,显示该状态代码。无论所提供的用户名是否为系统中的有效帐户,都将显示该状态代码。 426-命令打开数据连接以执行操作,但该操作已被取消,数据连接已关闭。 530-该状态代码表示用户无法登录,因为用户名和密码组合无效。如果使用某个用户帐户登录,可能键入错误的用户名或密码,也可能选择只允许匿名访问。如果使用匿名帐户登录,IIS的配置可能拒绝匿名访问。 550-命令未被执行,因为指定的文件不可用。例如,要GET的文件并不存在,或试图将文件PUT到您没有写入权限的目录。 答案来源网络,供参考,希望对您有帮助

问问小秘 2019-12-02 03:01:30 0 浏览量 回答数 0

问题

某政务网站性能优化

猫饭先生 2019-12-01 21:25:38 1412 浏览量 回答数 0

问题

【推荐】Windows Update补丁更新失败应该如何处理

boxti 2019-12-01 22:07:16 1737 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

Java之JVM垃圾回收 内存结构以及垃圾回收算法前言:由于小组技术分享的需要,懂的不是很多所以我就找了这个我自己感兴趣的知识点给大家做个简单的介绍。由于是新人,算不了很懂,只是总结性的讲了些概念性的东西。给大家分享的同时,算是给自己做个笔记吧。作为Java语言的核心之一,JVM垃圾回收帮我们解决了让我们很头疼的垃圾回收问题。我们不需要像VC++一样,作为内存管理的统治者需要我们对我们分配的每一块内存进行回收,否则就会造成内存泄露问题。是不是只要有JVM存在我们就不会出现内存泄露问题,出现内存泄露问题我们又该怎么办,如果我们想提高我们程序的稳定性和其他性能我们能从什么地方下手!!!相信这些问题是我们程序过程中不可逾越的。了解JVM的内存分配及其相应的垃圾回收机制,不仅仅是可以了解底层的JVM运行机制,而且对于程序性能的优化和提升还是很有必要的。一、JVM内存分配区域结构图一从图一可以看出JVM中的内存分配包括PC Register(PC寄存器) JVM栈 堆(Heap) 方法区域(MethodArea)运行时常量池(RuntimeConstant Pool) 本地方法堆栈(NativeMethod Stacks),这几部分区域但是从程序员的角度来看我们只关注JVM Heap和JVM Stack,因为这两部分是直接关系程序运行期间的内存状态,所以我会主要介绍这两部分内存,其他的我只是给出了简单的一些概念性解释:PC Register(Program Counter 寄存器):主要作用是记录当前线程所执行的字节码的行号。方法区域(MethodArea):方法区域存放了所加载的类的信息(名称、修饰符等)、类中的静态变量、类中定义为final类型的常量、类中的Field信息、类中的方法信息,法区域也是全局共享的,它在虚拟机启动时在一定的条件下它也会被GC,当方法区域需要使用的内存超过其允许的大小时,会抛出OutOfMemory的错误信息。运行时常量池(RuntimeConstant Pool):存放的为类中的固定的常量信息、方法和Field的引用信息等,其空间从方法区域中分配。本地方法堆栈(NativeMethod Stacks):JVM采用本地方法堆栈来支持native方法的执行,此区域用于存储每个native方法调用的状态。JVM栈:主要存放一些基本类型的变量和对象的引用变量。JVM堆:用来存放由 new 创建的对象和数组Java 虚拟机的自动垃圾回收器来管理(注意数组也是对象,所以说数组也是存放在JVM堆中)。由于栈中存放的是主要存放一些基本类型的变量和对象的引用变量,所以当过了变量的作用区域或者是当程序运行结束后它所占用的内存会自动的释放掉,所以不用来关心,下面我们主要来说的是堆内存的分配以及回收的算法。二、JVM堆内存介绍工欲善其事,必先利其器。所以了解堆内存的内部结构是很必要的。在Jvm中堆空间划分为三个代:年轻代(Young Generation)、年老代(Old Generation)和永久代(Permanent Generation)。年轻带主要是动态的存储,年轻带主要储存新产生的对象,年老代储存年龄大些的对象,永久带主要是存储的是java的类信息,包括解析得到的方法、属性、字段等。永久带基本不参与垃圾回收。所以说我们说的垃圾回收主要是针对年轻代和年老代。图二年轻代又分成3个部分,一个eden区和两个相同的survior区。刚开始创建的对象都是放置在eden区的。分成这样3个部分,主要是为了生命周期短的对象尽量留在年轻带。当eden区申请不到空间的时候,进行minorGC,把存活的对象拷贝到survior。年老代主要存放生命周期比较长的对象,比如缓存对象。(经过IBM的一个研究机构研究数据表明,基本上80%-98%的对象都会在年轻代的Eden区死掉从而本回收掉,所以说真正进入到老年代的对象很少,这也是为什么MinorGC比MajorGC更加频繁的原因)具体JVM内存垃圾回收过程描述如下 :1、对象在Eden区完成内存分配2、当Eden区满了,再创建对象,会因为申请不到空间,触发minorGC,进行young(eden+1survivor)区的垃圾回收3、minorGC时,Eden不能被回收的对象被放入到空的survivor(Eden肯定会被清空),另一个survivor里不能被GC回收的对象也会被放入这个survivor,始终保证一个survivor是空的4、当做第3步的时候,如果发现survivor满了,则这些对象被copy到old区,或者survivor并没有满,但是有些对象已经足够Old,也被放入Old区 XX:MaxTenuringThreshold5、当Old区被放满的之后,进行fullGC补充: MinorGC:年轻代所进行的垃圾回收,非常频繁,一般回收速度也比较快。 MajorGC:老年代进行的垃圾回收,发生一次MajorGC至少伴随一次MinorGC,一般比MinorGC速度慢十倍以上。 FullGC:整个堆内存进行的垃圾回收,很多时候是MajorGC 以后就是堆内存结构已经大致的垃圾回收过程。三、对象分配原则1.对象优先分配在Eden区,如果Eden区没有足够的空间时,虚拟机执行一次Minor GC。2.大对象直接进入老年代(大对象是指需要大量连续内存空间的对象)。这样做的目的是避免在Eden区和两个Survivor区之间发生大量的内存拷贝(新生代采用复制算法收集内存)。3.长期存活的对象进入老年代。虚拟机为每个对象定义了一个年龄计数器,如果对象经过了1次Minor GC那么对象会进入Survivor区,之后每经过一次Minor GC那么对象的年龄加1,知道达到阀值对象进入老年区。4.动态判断对象的年龄。如果Survivor区中相同年龄的所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象可以直接进入老年代。5.空间分配担保。每次进行Minor GC时,JVM会计算Survivor区移至老年区的对象的平均大小,如果这个值大于老年区的剩余值大小则进行一次Full GC,如果小于检查HandlePromotionFailure设置,如果true则只进行Monitor GC,如果false则进行Full GC。四、垃圾收集器作为JVM中的核心之一垃圾收集器,主要完成的功能包括:(1)发现无用信息对象;(2)回收被无用对象占用的内存空间,使该空间可被程序再次使用。所以说我们在实现垃圾收集器的同时就要实现两个算法一个是发现无用的对象第二就是回收该对象的内存。收集器主要分为引用计数器和跟踪收集器两种,Sun JDK中采用跟踪收集器作为GC实现策略。发现无用对象只要的实现算法包括引用计数法和根搜索算法,引用计数法主要是JVM的早期实现方法,因为引用计数无法解决循环引用的问题,所以现在JVM实现的主要是根搜索算法,引用计数法:堆中的每个对象对应一个引用计数器。当每一次创建一个对象并赋给一个变量时,引用计数器置为1。当对象被赋给任意变量时,引用计数器每次加1当对象出了作用域后(该对象丢弃不再使用),引用计数器减1,一旦引用计数器为0,对象就不可用从而可以被回收。 根搜索算法:通过一系列的名为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。目前的收集器主要有三种:串行收集器:使用单线程处理所有垃圾回收工作,因为无需多线程交互,所以效率比较高并行收集器:对年轻代进行并行垃圾回收,因此可以减少垃圾回收时间。一般在多线程多处理器机器上使用并发收集器:可以保证大部分工作都并发进行(应用不停止),垃圾回收只暂停很少的时间,此收集器适合对响应时间要求比较高的中、大规模应用五、垃圾收集器的回收算法Copying算法:算法:复制采用的方式为从根集合扫描出存活的对象,并将找到的存活对象复制到一块新的完全未使用的空间中。 过程: 此算法把内存空间划为两个相等的区域,每次只使用其中一个区域。垃圾回收时,遍历当前使用区域,把正在使用中的对象复制到另外一个区域中。次算法每次只处理正在使用中的对象,因此复制成本比较小,同时复制过去以后还能进行相应的内存整理,不过出现“碎片”问题。当然,此算法的缺点也是很明显的,就是需要两倍内存空间。Mark-Sweep算法: 算法:标记-清除采用的方式为从根集合开始扫描,对存活的对象进行标记,标记完毕后,再扫描整个空间中未标记的对象,并进行回收。 过程: 第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除。它停止所有工作,收集器从根开始访问每一个活跃的节点,标记它所访问的每一个节点。走过所有引用后,收集就完成了,然后就对堆进行清除(即对堆中的每一个对象进行检查),所有没有标记的对象都作为垃圾回收并返回空闲列表。Mark-Compact算法: 算法:标记阶段与“Mark-Sweep”算法相同,但在清除阶段有所不同。在回收不存活对象所占用的内存空间后,会将其他所有存活对象都往左端空闲的空间进行移动,并更新引用其对象指针。过程:此算法结合了“标记-清除”和“复制”两个算法的优点。也是分两阶段,第一阶段从根节点开始标记所有被引用对象,第二阶段遍历整个堆,把清除未标记对象并且把存活对象“压缩”到堆的其中一块,按顺序排放。此算法避免了“标记-清除”的碎片问题,同时也避免了“复制”算法的空间问题。Sun JDK GC策略:新生代算法实现:Copying,Copying,Copying旧生代算发实现:Mark-Sweep-Compact,Mark –Compact,Mark –Sweep!!六、JvisuaVM 工具如果我们想优化自己的程序,那么我们就必须清楚的了解不同代码程序所消耗的性能多少,作为JDK的一部分,这个工具给我们提供了很大的帮助。这个工具可以在JDK的bin目录下找到,功能很强大,可以注意利用

auto_answer 2019-12-02 01:56:35 0 浏览量 回答数 0

问题

Accordion:HBase一种内存压缩算法

pandacats 2019-12-18 16:06:15 1 浏览量 回答数 0

问题

iredis 一款python语言撰写支持自动补全、语法高亮、命令提示等的 Redis 命令行客户端

huc_逆天 2020-05-21 17:19:52 23 浏览量 回答数 1

问题

方法追踪有哪几种?

猫饭先生 2019-12-01 21:03:55 875 浏览量 回答数 0

问题

【企业IT管理员必读】WanaCrypt0r 2.0和ONION等勒索软件病毒应急处置方案

正禾 2019-12-01 21:59:41 8997 浏览量 回答数 4

回答

本入门教程采用ecs.g6.large实例规格,在CentOS 8.0系统上配置了Apache服务,结合ECS管理控制台展示如何快速使用云服务器ECS。 准备工作 创建账号,以及完善账号信息。 注册阿里云账号,并完成实名认证。具体操作,请参见阿里云账号注册流程。 本入门教程创建的是按量付费实例,您的账号的可用余额(含现金、代金券、优惠券等)不得少于100元人民币。充值方式请参见如何充值。 可选: 阿里云提供一个默认的专有网络VPC,如果您不想使用默认的,可以在目标地域创建一个专有网络和交换机。 具体操作,请参见搭建IPv4专有网络。 可选: 阿里云提供一个默认的安全组,如果您不想使用默认的,可以在目标地域创建一个安全组。 具体操作,请参见创建安全组。 步骤一:创建ECS实例 前往实例创建页。 在购买页面的前四个配置页面,完成实例启动配置。 本入门教程采用以下配置,未提及的配置保持默认选项。 配置页面 配置项 示例 说明 基础配置 付费模式 按量付费 按量付费模式操作相对灵活。详情请参见计费概述。 说明 如果您需要为网站域名备案,必须选择包年包月。 地域与可用区 地域:华东1(杭州) 可用区:随机分配 实例创建后,无法直接更改地域和可用区,请谨慎选择。 实例 规格族:通用型g6 规格:ecs.g6.large 可供选择的实例规格由您所选择的地域以及库存供应决定。 您可以前往ECS实例可购买地域,查看实例的可购情况。 镜像 类型:公共镜像 版本:CentOS 8.0 64位 实例启动后,系统盘将完整复制镜像的操作系统和应用数据。 网络和安全组 专有网络 [默认]vpc-bp1opxu1zkhn00g****** 带[默认]前缀的资源由ECS控制台自动创建。 分配公网IPv4地址 勾选 勾选后,自动分配一个公网IP(v4)地址。 带宽计费模式 按使用流量 按使用流量模式只需为所消耗的公网流量付费。详情请参见公网带宽计费方式。 峰值带宽 2 Mbps 无。 安全组 安全组:[默认]sg-bp1bhjjsoiyx44****** 安全组规则:勾选ICMP协议、SSH 22、RDP 3389、HTTP 80和HTTPS 443端口 带[默认]前缀的资源由ECS控制台自动创建。 系统配置 登录凭证 自定义密码 请记录该配置,连接ECS实例时,您需要输入root密码。 实例名称 EcsQuickStart 本文中的实例一律使用EcsQuickStart指代。 分组设置 标签 ECS:Documentation 有多台实例时,建议添加标签,方便管理。 单击下一步:确认订单,在该页面确认所选配置,或者单击编辑图标编辑-图标返回修改配置。 快速入门-Linux版 可选: 单击保存为启动模板,然后设置模板名称和描述。 快速入门-启动模板 说明 将当前实例所选配置保存为启动模板,方便您下次通过模板一键下单。 勾选《云服务器ECS服务条款》,然后单击创建实例。 单击创建成功提示框里的管理控制台,前往实例列表页面查看创建进度。 实例状态进入运行中后表示已成功创建。复制实例的公网IP地址,便于下文连接ECS实例时使用。快速入门-Linux版-创建成功 步骤二:添加安全组规则 如果创建ECS实例时,您没有在默认安全组中勾选添加安全组规则,或者ECS实例加入的是一个全新的安全组,请按以下步骤继续操作。 单击实例ID,进入实例详情页。 在左侧导航栏,单击本实例安全组,然后单击安全组ID,进入安全组详情页。 在安全组规则页面的右上角,单击快速创建规则。 按以下设置添加安全组规则,未提及的配置保持页面默认选项。 规则方向 授权策略 常用端口 授权类型 授权对象 入方向 允许 SSH 22 RDP 3389 HTTP 80 HTTPS 443 IPv4地址段访问 0.0.0.0/0 说明 常用端口处勾选的是ECS实例上运行的应用需开放的端口。例如步骤四:配置Apache服务时使用的SSH服务和Apache服务,未开启SSH 22端口和HTTP 80端口会导致实例无响应。 0.0.0.0/0表示允许全网段设备访问指定的端口。如果您知晓请求端的IP地址,建议设置为具体的IP范围。 快速入门-Linux版-添加安全组规则 单击确定。 步骤三:连接ECS实例 单击下一步骤中的cloud-shell-try-it按钮,等待初始化CloudShell客户端。 使用ssh命令连接实例。 试用 ssh root@<实例公网IP地址> 提示ECS实例此次授信登录需要存储密钥指纹时,输入yes。 输入ECS实例的root用户名密码,并回车。 输入密码阶段,password:处保持黑屏,无提示信息。提示以下信息则表示您已连接ECS实例。 Welcome to Alibaba Cloud Elastic Compute Service ! 步骤四:配置Apache服务 安装Apache服务。 试用 yum install -y httpd 启动Apache服务。 试用 systemctl start httpd 设置Apache服务开机自启动。 试用 systemctl enable httpd 查询Apache服务是否处于运行中状态。 试用 systemctl status httpd 返回active (running)则表示已开始运行Apache服务。 在当前浏览器页面,新开启一个网页,在地址栏输入实例的公网IP地址,并回车。 试用 http://<实例公网IP地址> 快速入门-Linux版-测试网站 步骤五:(可选)解析网站域名 直接通过实例公网IP地址访问Apache服务会降低服务端安全性。如果您已有域名或者想为Apache网站注册一个域名,请参见以下步骤。 注册域名。 详情请参见注册通用域名。 如果域名指向的网站托管在阿里云中国大陆境内节点服务器,您需要备案域名。 首次备案,请参见首次备案,其他情况请参见ICP备案流程概述。 解析域名,将域名指向实例公网IP。 域名解析是使用域名访问您的网站的必备环节。具体操作流程,请参见设置域名解析。 使用解析后的域名访问Apache服务,例如,https://ecs-quickstarts.info。 步骤六:(可选)释放ECS实例 如果您不再需要这台实例,可以将其释放。释放后,实例停止计费,数据不可恢复。 说明 本小节操作仅适用于按量付费实例,不支持手动释放包年包月实例。如果您需要提前释放包年包月实例,请参见退款规则及退款流程。 返回实例列表页面,找到实例EcsQuickStart。 在操作列中,单击更多 > 实例状态 > 释放设置。 选择立即释放,并单击下一步。 确认要释放的实例,并单击确定。 输入您收到的手机验证码,单击确认。 步骤七:查看费用账单 账单明细数据延迟一天更新,且不含万网和云通信数据。 在ECS管理控制台顶部工具栏处,选择费用 > 用户中心。 ECS快速入门-查看费用账单 在左侧导航栏,单击费用账单,然后单击页面中的账单明细页签。 在实例名称处,输入实例名称EcsQuickStart,并回车开始搜索。 后续步骤 了解云服务器ECS在售的实例规格族:实例规格族 了解更多创建ECS实例的方式:创建方式导航 了解镜像的相关概念:镜像概述 了解安全组的相关概念:安全组概述 了解专有网络VPC的相关概念:什么是专有网络 了解云服务器ECS的常见操作:常用操作导航 了解云服务器ECS提供的API:API概览

1934890530796658 2020-03-24 14:02:43 0 浏览量 回答数 0

回答

概述 当客户端访问目标服务器出现ping丢包或ping不通时,可以通过tracert或mtr等工具进行链路测试来判断问题根源。本文介绍如何通过工具进行链路测试和分析。 详细信息 阿里云提醒您: 如果您对实例或数据有修改、变更等风险操作,务必注意实例的容灾、容错能力,确保数据安全。 如果您对实例(包括但不限于ECS、RDS)等进行配置与数据修改,建议提前创建快照或开启RDS日志备份等功能。 如果您在阿里云平台授权或者提交过登录账号、密码等安全信息,建议您及时修改。 本文分别介绍如下链路测试方法。 链路测试工具 测试结果的简要分析 常见的链路异常场景 链路测试步骤 测试完成后的解决方法 链路测试工具 操作系统类型不同,链路测试所使用的工具也有所不同。简要介绍如下。 Linux系统 此处简单介绍两个链路测试工具。 工具一:mtr命令 mtr(My traceroute)几乎是所有Linux发行版本预装的网络测试工具。其将ping和traceroute的功能合并,所以功能更强大。mtr默认发送ICMP数据包进行链路探测。您也可以通过“-u”参数来指定使用UDP数据包进行探测。相对于traceroute只会做一次链路跟踪测试,mtr会对链路上的相关节点做持续探测并给出相应的统计信息。所以,mtr能避免节点波动对测试结果的影响,所以其测试结果更正确,建议优先使用。 用法说明 mtr [-BfhvrwctglxspQomniuT46] [--help] [--version] [--report] [--report-wide] [--report-cycles=COUNT] [--curses] [--gtk] [--csv|-C] [--raw] [--xml] [--split] [--mpls] [--no-dns] [--show-ips] [--address interface] [--filename=FILE|-F] [--ipinfo=item_no|-y item_no] [--aslookup|-z] [--psize=bytes/-s bytes] [--order fields] [--report-wide|-w] [--inet] [--inet6] [--max-ttl=NUM] [--first-ttl=NUM] [--bitpattern=NUM] [--tos=NUM] [--udp] [--tcp] [--port=PORT] [--timeout=SECONDS] [--interval=SECONDS] HOSTNAME 常见可选参数说明 --report:以报告模式显示输出。 --split:将每次追踪的结果分别列出来,而非统计整个结果。 --psize:指定ping数据包的大小。 --no-dns:不对IP地址做域名反解析。 --address:主机有多个IP地址时,设置发送数据包的IP地址。 -4:只使用IPv4协议。 -6:只使用IPv6协议。 另外,也可以在mtr运行过程中,输入类似如下的字母来快速切换模式。 ?或h:显示帮助菜单。 d:切换显示模式。 n:启用或禁用DNS域名解析。 u:切换使用ICMP或UDP数据包进行探测。 命令输出示例 返回结果说明 默认配置下,返回结果中各数据列的说明如下。 第一列(Host):节点IP地址和域名。按 n 键可切换显示。 第二列(Loss%):节点丢包率。 第三列(Snt):每秒发送数据包数。默认值是10,可以通过“-c”参数指定。 第四列(Last):最近一次的探测延迟。 第五、六、七列(Avg、Best、Worst):分别是探测延迟的平均值、最小值和最大值。 第八列(StDev):标准偏差。越大说明相应节点越不稳定。 工具二:traceroute命令 traceroute也是几乎所有Linux发行版本预装的网络测试工具,用于跟踪Internet协议(IP)数据包传送到目标地址时经过的路径。traceroute先发送小的具有最大存活时间值(Max_TTL)的UDP探测数据包,然后侦听从网关开始的整个链路上的ICMP TIME_EXCEEDED响应。探测从TTL=1开始,TTL值逐步增加,直至接收到ICMP PORT_UNREACHABLE消息。ICMP PORT_UNREACHABLE消息用于标识目标主机已经被定位,或命令已经达到允许跟踪的最大TTL值。traceroute默认发送UDP数据包进行链路探测。可以通过“-I”参数来指定使用ICMP数据包进行探测。 用法说明 traceroute [-I] [ -m Max_ttl ] [ -n ] [ -p Port ] [ -q Nqueries ] [ -r ] [ -s SRC_Addr ] [ -t TypeOfService ] [ -f flow ] [ -v ] [ -w WaitTime ] Host [ PacketSize ] 常见可选参数说明 -d:使用Socket层级的排错功能。 -f:设置第一个检测数据包的存活数值TTL的大小。 -F:设置不要分段标识。 -g:设置来源路由网关,最多可设置8个。 -i:主机有多个网卡时,使用指定的网卡发送数据包。 -I:使用ICMP数据包替代UDP数据包进行探测。 -m:设置检测数据包的最大存活数值TTL的大小。 -n:直接使用IP地址而非主机名称(禁用DNS反查)。 -p:设置UDP传输协议的通信端口。 -r:忽略普通的Routing Table,直接将数据包发送到目标主机上。 -s:设置本地主机发送数据包的IP地址。 -t:设置检测数据包的TOS数值。 -v:详细显示指令的执行过程。 -w:设置等待远端主机回包时间。 -x:开启或关闭数据包的正确性检验。 命令输出示例 Windows系统 此处简单介绍两个链路测试工具。 工具一:WinMTR(建议优先使用) WinMTR是mtr工具在Windows环境下的图形化实现,但进行了功能简化,只支持部分mtr的参数。WinMTR默认发送ICMP数据包进行探测,无法切换。和mtr一样,相比tracert,WinMTR能避免节点波动对测试结果的影响,所以测试结果更正确。所以在WinMTR可用的情况下,建议优先使用WinMTR进行链路测试。 用法说明 WinMTR无需安装,直接解压运行即可。操作方法非常简单,说明如下。 如下图所示,运行程序后,在 Host 字段输入目标服务器域名或IP,注意不要包含空格。 单击 Start 开始测试。开始测试后,相应按钮变成了 Stop。 运行一段时间后,单击 Stop 停止测试。 其它选项说明如下。 Copy Text to clipboard:将测试结果以文本格式复制到粘贴板。 Copy HTML to clipboard:将测试结果以HTML格式复制到粘贴板。 Export TEXT:将测试结果以文本格式导出到指定文件。 Export HTML:将测试结果以HTML格式导出到指定文件。 Options:可选参数,包括的可选参数如下。 Interval(sec):每次探测的间隔(过期)时间。默认为1秒。 ping size(bytes):ping探测所使用的数据包大小,默认为64字节。 Max hosts in LRU list:LRU列表支持的最大主机数,默认值为128。 Resolve names:通过反查IP地址,以域名显示相关节点。 返回结果说明 默认配置下,返回结果中各数据列的说明如下。 第一列(Hostname):节点的IP或域名。 第二列(Nr):节点编号。 第三列(Loss%):节点丢包率。 第四列(Sent):已发送的数据包数量。 第五列(Recv):已成功接收的数据包数量。 第六、七、八、九列(Best 、Avg、Worst、Last):分别是到相应节点延迟的最小值、平均值、最大值和最后一次值。 工具二:tracert命令行工具 tracert(Trace Route)是Windows自带的网络诊断命令行程序,用于跟踪Internet协议(IP)数据包传送到目标地址时经过的路径。 tracert通过向目标地址发送 ICMP 数据包来确定到目标地址的路由。在这些数据包中,tracert使用了不同的IP“生存期”,即TTL值。由于要求沿途的路由器在转发数据包前必须至少将TTL减少1,因此TTL实际上相当于一个跃点计数器(hop counter)。当某个数据包的TTL达到0时,相应节点就会向源计算机发送一个ICMP超时的消息。 tracert第一次发送TTL为1的数据包,并在每次后续传输时将TTL增加1,直到目标地址响应或达到TTL的最大值。中间路由器发送回来的ICMP超时消息中包含了相应节点的信息。 用法说明 tracert [-d] [-h maximum_hops] [-j host-list] [-w timeout] [-R] [-S srcaddr] [-4] [-6] target_name 常见可选参数说明 -d:不要将地址解析为主机名(禁用DNS反解)。 -h:maximum_hops,指定搜索目标地址时的最大跃点数。 -j: host-list,指定沿主机列表的松散源路由。 -w:timeout,等待每个回复的超时时间(以毫秒为单位)。 -R:跟踪往返行程路径(仅适用于IPv6)。 -S:srcaddr,要使用的源地址(仅适用于IPv6)。 -4:强制使用IPv4。 -6:强制使用IPv6。 target_host:目标主机域名或IP地址。 命令输出示例 C:> tracert -d 223.5.5.5 通过最多 30 个跃点跟踪到 223.5.5.5 的路由 1 请求超时。 2 9 ms 3 ms 12 ms 192.168.X.X 3 4 ms 9 ms 2 ms X.X.X.X 4 9 ms 2 ms 1 ms XX.XX.XX.XX 5 11 ms 211.XX.X.XX 6 3 ms 2 ms 2 ms 2XX.XX.1XX.XX 7 2 ms 2 ms 1 ms 42.XX.2XX.1XX 8 32 ms 4 ms 3 ms 42.XX.2XX.2XX 9 请求超时。 10 3 ms 2 ms 2 ms 223.5.5.5 跟踪完成。 测试结果的简要分析 由于mtr(WinMTR)有更高的准确性,本文以其测试结果为例,参考如下要点进行分析。此处分析时以如下示例图为基础。 要点一:网络区域 正常情况下,从客户端到目标服务器的整个链路中会包含如下区域。 客户端本地网络,即本地局域网和本地网络提供商网络。如上图中的区域A。如果该区域出现异常,并且是客户端本地网络中的节点出现异常,则需要对本地网络进行相应的排查分析。如果是本地网络提供商网络出现异常,则需要向当地运营商反馈问题。 运营商骨干网络。如上图中的区域B。如果该区域出现异常,可以根据异常节点的IP查询其所属的运营商,直接向对应运营商进行反馈,或者通过阿里云技术支持,向运营商进行反馈。 目标服务器本地网络,即目标服务器所属提供商的网络。如上图中的区域C。如果该区域出现异常,需要向目标服务器所属的网络运营商反馈问题。 要点二:链路负载均衡 如上图中的区域D。如果中间链路某些部分启用了链路负载均衡,则mtr只会对首尾节点进行编号和探测统计。中间节点只会显示相应的IP或域名信息。 要点三:结合Avg(平均值)和StDev(标准偏差)综合判断 由于链路抖动或其它因素的影响,节点的Best和Worst值可能相差很大。Avg统计了自链路测试以来所有探测的平均值,所以能更好的反应出相应节点的网络质量。而StDev越高,则说明数据包在相应节点的延时值越不相同,即越离散。所以标准偏差值可用于协助判断Avg是否真实反应了相应节点的网络质量。例如,如果标准偏差很大,说明数据包的延迟是不确定的。可能某些数据包延迟很小,例如25ms,而另一些延迟却很大,例如350ms,但最终得到的平均延迟反而可能是正常的。所以,此时Avg并不能很好的反应出实际的网络质量情况。 综上,建议的分析标准如下。 如果StDev很高,则同步观察相应节点的Best和Worst,来判断相应节点是否存在异常。 如果StDev不高,则通过Avg来判断相应节点是否存在异常。 注:上述StDev高或者不高,并没有具体的时间范围标准。而需要根据同一节点其它列的延迟值大小来进行相对评估。比如,如果Avg为30ms,那么,当StDev为25ms,则认为是很高的偏差。而如果Avg为325ms,则StDev同样为25ms,反而认为是不高的偏差。 要点四:Loss%(丢包率)的判断 任一节点的Loss%(丢包率)如果不为零,则说明这一跳网络可能存在问题。导致相应节点丢包的原因通常有如下两种。 运营商基于安全或性能需求,限制了节点的ICMP发送速率,导致丢包。 节点确实存在异常,导致丢包。 结合异常节点及其后续节点的丢包情况,并参考如下内容,判定丢包原因。 如果随后节点均没有丢包,则通常表示异常节点丢包是由于运营商策略限制所致。可以忽略相关丢包。如上图中的第2跳所示。 如果随后节点也出现丢包,则通常说明异常节点确实存在网络异常,导致丢包。如上图中的第5跳所示。 另外,上述两种情况可能同时发生,即相应节点既存在策略限速,又存在网络异常。对于这种情况,如果异常节点及其后续节点连续出现丢包,而且各节点的丢包率不同,则通常以最后几跳的丢包率为准。如上图所示,在第 5、6、7跳均出现了丢包。所以,最终丢包情况,以第7跳的40%作为参考。 要点五:关于延迟 关于延迟,有如下两种场景。 场景一:延迟跳变 如果在某一跳之后延迟明显陡增,则通常判断该节点存在网络异常。如上图所示,从第5跳之后的后续节点延迟明显陡增,则推断是第5跳节点出现了网络异常。不过,高延迟并不一定完全意味着相应节点存在异常。如上图所示,第5跳之后,虽然后续节点延迟明显陡增,但测试数据最终仍然正常到达了目的主机。所以,延迟大也有可能是在数据回包链路中引发的。所以,需要结合反向链路测试一并分析。 场景二:ICMP限速导致延迟增加 ICMP策略限速也可能会导致相应节点的延迟陡增,但后续节点通常会恢复正常。如上图所示,第3跳有100%的丢包率,同时延迟也明显陡增。但随后节点的延迟马上恢复了正常。所以判断该节点的延迟陡增及丢包是由于策略限速所致。 常见的链路异常场景 常见的链路异常场景及测试报告如下。 场景一:目标主机网络配置不当 示例数据如下。 [root@mycentos6 ~]# mtr —no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. ??? 2. ??? 3. 1XX.X.X.X 0.0% 10 521.3 90.1 2.7 521.3 211.3 4. 11X.X.X.X 0.0% 10 2.9 4.7 1.6 10.6 3.9 5. 2X.X.X.X 80.0% 10 3.0 3.0 3.0 3.0 0.0 6. 2X.XX.XX.XX 0.0% 10 1.7 7.2 1.6 34.9 13.6 7. 1XX.1XX.XX.X 0.0% 10 5.2 5.2 5.1 5.2 0.0 8. 2XX.XX.XX.XX 0.0% 10 5.3 5.2 5.1 5.3 0.1 9. 173.194.200.105 100.0% 10 0.0 0.0 0.0 0.0 0.0 在该示例中,数据包在目标地址出现了100%的丢包。从数据上看是数据包没有到达,其实很有可能是目标服务器相关安全策略(比如防火墙、iptables 等)禁用了ICMP所致,导致目的主机无法发送任何应答。所以,该场景需要排查目标服务器的安全策略配置。 场景二:ICMP限速 示例数据如下。 [root@mycentos6 ~]# mtr --no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. 63.247.X.X 0.0% 10 0.3 0.6 0.3 1.2 0.3 2. 63.247.X.XX 0.0% 10 0.4 1.0 0.4 6.1 1.8 3. 209.51.130.213 0.0% 10 0.8 2.7 0.8 19.0 5.7 4. aix.pr1.atl.google.com 0.0% 10 6.7 6.8 6.7 6.9 0.1 5. 72.14.233.56 60.0% 10 27.2 25.3 23.1 26.4 2.9 6. 209.85.254.247 0.0% 10 39.1 39.4 39.1 39.7 0.2 7. 64.233.174.46 0.0% 10 39.6 40.4 39.4 46.9 2.3 8. gw-in-f147.1e100.net 0.0% 10 39.6 40.5 39.5 46.7 2.2 在该示例中,在第5跳出现了明显的丢包,但后续节点均未见异常。所以推断是该节点ICMP限速所致。该场景对最终客户端到目标服务器的数据传输不会有影响,所以,分析的时候可以忽略。 场景三:环路 示例数据如下。 [root@mycentos6 ~]# mtr —no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. 63.247.7X.X 0.0% 10 0.3 0.6 0.3 1.2 0.3 2. 63.247.6X.X 0.0% 10 0.4 1.0 0.4 6.1 1.8 3. 209.51.130.213 0.0% 10 0.8 2.7 0.8 19.0 5.7 4. aix.pr1.atl.google.com 0.0% 10 6.7 6.8 6.7 6.9 0.1 5. 72.14.233.56 0.0% 10 0.0 0.0 0.0 0.0 0.0 6. 72.14.233.57 0.0% 10 0.0 0.0 0.0 0.0 0.0 7. 72.14.233.56 0.0% 10 0.0 0.0 0.0 0.0 0.0 8. 72.14.233.57 0.0% 10 0.0 0.0 0.0 0.0 0.0 9 ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 在该示例中,数据包在第5跳之后出现了循环跳转,导致最终无法到达目标服务器。这通常是由于运营商相关节点路由配置异常所致。所以,该场景需要联系相应节点归属运营商处理。 场景四:链路中断 示例数据如下。 [root@mycentos6 ~]# mtr —no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. 63.247.7X.X 0.0% 10 0.3 0.6 0.3 1.2 0.3 2. 63.247.6X.X 0.0% 10 0.4 1.0 0.4 6.1 1.8 3. 209.51.130.213 0.0% 10 0.8 2.7 0.8 19.0 5.7 4. aix.pr1.atl.google.com 0.0% 10 6.7 6.8 6.7 6.9 0.1 5. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 6. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 7. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 8. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 9 ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 在该示例中,数据包在第4跳之后就无法收到任何反馈。这通常是由于相应节点中断所致。建议结合反向链路测试做进一步确认。该场景需要联系相应节点归属运营商处理。 链路测试步骤 通常情况下,链路测试步骤如下图所示。 相关步骤的详情说明如下。 步骤一:获取本地网络对应的公网IP 在客户端本地网络内访问淘宝IP地址库,获取本地网络对应的公网IP地址。 步骤二:正向链路测试(ping和mtr) 从客户端向目标服务器做如下测试。 从客户端向目标服务器域名或IP做持续的ping测试,建议至少ping 100个数据包,记录测试结果。 根据客户端操作系统的不同,使用WinMTR或mtr,设置测试目的地址为目标服务器域名或IP,然后进行链路测试,记录测试结果。 步骤三:反向链路测试(ping和mtr) 进入目标服务器系统内部做如下测试。 从目标服务器向步骤一获取的客户端IP做持续的ping测试,建议至少ping 100个数据包,记录测试结果。 根据目标服务器操作系统的不同,使用WinMTR或mtr,设置测试目的地址为客户端的IP地址,然后进行链路测试,记录测试结果。 步骤四:测试结果分析 参阅测试结果的简要分析,对测试结果进行分析。确认异常节点后,访问如下链接或其他可以查询IP归属地的网站,获取该异常节点的归属运营商信息。如果是客户端本地网络相关节点出现异常,则需要对本地网络进行相应排查分析。如果是运营商相关节点出现异常,则需要向运营商反馈问题。查询结果类似如下。 测试完成后的解决方法 当出现ping丢包或ping不通时,首先请参考云服务器ECS网络故障诊断,排查是否为网络故障。 如果确认是因系统中病毒导致使用ping命令测试ECS实例的IP地址间歇性丢包,则可参考使用ping命令测试ECS实例的IP地址间歇性丢包进行处理。 如果是因删除ECS实例的默认安全组规则导致无法ping通ECS实例,可参考删除ECS实例的默认安全组规则导致无法ping通ECS实例进行处理。 如果在Linux系统内核没有禁PING的情况下,是因系统内部防火墙策略设置导致ECS服务器PING不通。可参考Linux系统的ECS中没有禁PING却PING不通的解决方法。

1934890530796658 2020-03-25 23:17:54 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

问题

【阿里云产品公测】以开发者角度看ACE服务『ACE应用构建指南』

mr_wid 2019-12-01 21:10:06 20092 浏览量 回答数 6

问题

【精品问答】python技术1000问(2)

问问小秘 2019-12-01 22:03:02 68 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站