• 关于

    文件系统结构故障原因

    的搜索结果

回答

http://blog.csdn.net/zdy0_2004/article/details/462881831.概述 在大型软件系统中,为了监测软件运行状况及排查软件故障,一般都会要求软件程序在运行的过程中产生日志文件。在日志文件中存放程序流程中的一些重要信息,包括:变量名称及其值、消息结构定义、函数返回值及其执行情况、脚本执行及调用情况等。通过阅读日志文件,我们能够较快地跟踪程序流程,并发现程序问题。因此,熟练掌握日志系统的编写方法并快速地阅读日志文件,是对一个软件开发工程师的基本要求。 本文详细地介绍了Linux下一个简单的日志系统的设计方法,并给出了其C代码实现。本文为相关开发项目Linux下软件日志系统的编写提供了有益的参考。2.日志系统的框架结构 一个完整的日志系统包括三大部分:配置文件、软件程序和日志文件,它们之间的关系如图1所示。 3.生成日志文件的程序流程 基于日志系统的框架结构,生成日志文件的程序流程如图2所示。 图2 生成日志文件的程序流程 在实际的软件程序中,为了在程序的不同地方打印不同的日志,要将生成日志的代码封装为函数,作为API供程序调用。 如果软件没有成功生成日志,那么就不要让其继续执行后续流程,而是要查找问题的原因,直到日志生成正常为止。4.日志文件命名及日志信息格式 对于日志文件的命名,不同的软件开发项目有不同的规定。一般说来,日志文件都是以log作为后缀,如本文中的日志文件命名为:WriteLog.log。 对于每条日志信息的格式,对于不同的软件来说,也会有所不同。在本文中,日志信息的格式有以下两种(具体使用哪一种通过配置项决定): 第一种:日志生成时间函数名[日志等级]日志具体信息 第二种:日志生成时间日志具体信息5.配置文件说明 本文中使用的配置文件为Config.ini,它包括了两部分信息,如下所示:其中,“EMPLOYEEINFO”段是指员工信息,包含员工姓名和员工年龄两个配置项。程序会将员工姓名和员工年龄读入,并输出到日志文件中。 “LOG”段是指日志信息,包含日志等级、日志代码位置标识和输出日志文件的目录三个配置项。对于“LogLevel”配置项,只有代码中日志等级不低于配置值的日志信息才会被输出到日志文件中(例如,LogLevel=4,那么只有Fatal、Error、Warn、Info和Trace等级的日志会被输出到日志文件中)。“LogPosition”配置项的值用于控制是否在日志文件中显示“文件名/函数名/代码行数”信息,1则显示,0则不显示。“LogDir”配置项的值表示生成的日志文件存放的目录。6.重要程序流程 (1) 从配置文件中读取各个配置项的值 该操作的流程如图3所示,具体请参见《Linux下配置文件读取操作流程及其C代码实现》(http://blog.csdn.net/zhouzhaoxiong1227/article/details/45563263)一文。 图4 向日志文件中写入日志信息程序流程该流程的具体代码请参考本文附录中的完整程序代码中的WriteLogFile函数。7.程序测试设计及文件上传 为了测试本日志系统的功能是否正确,在main函数中设计了以下三类日志信息: 第一类:打印程序的版本号及编译时间。 第二类:打印Fatal、Error、Warn、Info、Trace、Debug、All这七个等级的日志各一条。 第三类:调用GetEmployeeInfo函数打印读取到的员工姓名和年龄。将本程序“WriteLog.c”上传到Linux的“/home/zhou/zhouzx/test”目录下,并在该目录下建立“etc”和“log”目录,将配置文件“Config.ini”上传到“etc”下。文件及目录布局如图5所示。 图5 文件及目录布局8.代码编译及运行 在Linux下使用“gcc -g -o WriteLog WriteLog.c”命令对程序进行编译,生成“WriteLog”文件。 下面来运行程序。 (1) 将配置文件中的各个配置项的值设置如下:对照配置文件和日志文件,我们可以看到,“LogLevel”设置的是为4,因此只有日志等级不低于4的日志被输出到了日志文件中;“LogPosition”设置的是为0,因此在日志文件中不显示“文件名/函数名/代码行数”的信息。为了验证本日志系统功能的正常与否,要对程序进行多组测试,9.总结 本文对Linux下一个简单的日志系统的设计方法进行了详细的介绍(其C代码实现请见附录),代码中的写日志相关函数可作为API供其它需要进行类似操作的程序调用。在使用本日志系统的过程中,有以下注意事项: 第一,配置文件中“LOG”段只包括了日志等级、日志代码位置标识和输出日志文件的目录三个配置项。在实际的软件开发项目中,还会有更多的配置参数,像存放的日志文件的最大个数、每个日志文件的大小阈值、每个已写入完成的日志文件的命名等。可以在本程序的基础上进一步扩展来实现复杂的日志功能。 第二,本文中对日志信息的写入采用的是直接在日志文件后面追加的方式,因此每次测试之前,要在“log”目录下删除上一次产生的“WriteLog.log”文件,否则新的日志信息会写入旧的日志文件中。 第三,由于写日志函数WriteLogFile的入参较多,每次调用的时候编写代码较为繁琐,因此使用一个宏WRITELOGFILE来代替,且只需要带上日志等级和日志消息两个参数即可,其它的如代码文件名、函数名和代码行数直接使用系统自定义的宏即可。附录:完整的程序代码
杨冬芳 2019-12-02 03:06:27 0 浏览量 回答数 0

问题

运维人员处理云服务器故障方法七七云转载

我们团队为Ucloud云计算服务提供专家技术支持,每天都要碰到无数的用户故障,毕竟IAAS涉及比较底层的东西,不管设计的是大客户也好还是小客户,有了问题就必须要解决,也要要是再赶上修复时间紧、奇葩的技术平台、缺少信息和文档,基...
杨经理 2019-12-01 22:03:10 9677 浏览量 回答数 2

问题

如何快速定位云主机的故障

作为一名从事Linux运维行业多年的运维人员,分享一下曾经在运维过程中遇到过的荆手的故障分析,供大家分享,如果你在使用云计算中有什么问题,可以根据以下方式来查找 遇到服务器故障,问题出现的原因很少可以一下就想到。我基本上都会从...
firstsko 2019-12-01 21:43:10 10637 浏览量 回答数 1

阿里云爆款特惠专场,精选爆款产品低至0.95折!

爆款ECS云服务器8.1元/月起,云数据库低至1.5折,限时抢购!

问题

怎样实现数据存储的管理维护

    如何确保所有数据能够得到可靠备份,及时进行灾难恢复是存储管理软件的核心任务。此外数据存储的管理维护软件还存在以下一些基本功能,诸如改进系统和应用I/O性能及存储管理能力,提高数据和应用系统的...
elinks 2019-12-01 21:14:17 9098 浏览量 回答数 0

回答

Redis常见的几种主要使用方式: Redis 单副本 Redis 多副本(主从) Redis Sentinel(哨兵) Redis Cluster(集群) Redis 自研 Redis各种使用方式的优缺点: 1 Redis单副本 Redis各种使用方式的优缺点: Redis 多副本,采用主从(replication)部署结构,相较于单副本而言最大的特点就是主从实例间数据实时同步,并且提供数据持久化和备份策略。主从实例部署在不同的物理服务器上,根据公司的基础环境配置,可以实现同时对外提供服务和读写分离策略。 优点: 1、高可靠性,一方面,采用双机主备架构,能够在主库出现故障时自动进行主备切换,从库提升为主库提供服务,保证服务平稳运行。另一方面,开启数据持久化功能和配置合理的备份策略,能有效的解决数据误操作和数据异常丢失的问题。 2、读写分离策略,从节点可以扩展主库节点的读能力,有效应对大并发量的读操作。 缺点: 1、故障恢复复杂,如果没有RedisHA系统(需要开发),当主库节点出现故障时,需要手动将一个从节点晋升为主节点,同时需要通知业务方变更配置,并且需要让其他从库节点去复制新主库节点,整个过程需要人为干预,比较繁琐。 2、主库的写能力受到单机的限制,可以考虑分片 3、主库的存储能力受到单机的限制,可以考虑Pika 4、原生复制的弊端在早期的版本也会比较突出,如:Redis复制中断后,Slave会发起psync,此时如果同步不成功,则会进行全量同步,主库执行全量备份的同时可能会造成毫秒或秒级的卡顿;又由于COW机制,导致极端情况下的主库内存溢出,程序异常退出或宕机;主库节点生成备份文件导致服务器磁盘IO和CPU(压缩)资源消耗;发送数GB大小的备份文件导致服务器出口带宽暴增,阻塞请求。建议升级到最新版本。 使用场景 对 Redis 协议兼容性要求较高的业务 标准版完全兼容 Redis 协议,业务可以平滑迁移。 Redis 作为持久化数据存储使用的业务 标准版提供持久化机制及备份恢复机制,极大地保证数据可靠性。 单个 Redis 性能压力可控 由于 Redis 原生采用单线程机制,性能在10万 QPS 以下的业务建议使用。如果需要更高的性能要求,请选用集群版本。 Redis 命令相对简单,排序、计算类命令较少 由于 Redis 的单线程机制,CPU 会成为主要瓶颈。如排序、计算类较多的业务建议选用集群版配置。 2 Redis多副本(主从) Redis 多副本,采用主从(replication)部署结构,相较于单副本而言最大的特点就是主从实例间数据实时同步,并且提供数据持久化和备份策略。主从实例部署在不同的物理服务器上,根据公司的基础环境配置,可以实现同时对外提供服务和读写分离策略。 优点: 1、高可靠性,一方面,采用双机主备架构,能够在主库出现故障时自动进行主备切换,从库提升为主库提供服务,保证服务平稳运行。另一方面,开启数据持久化功能和配置合理的备份策略,能有效的解决数据误操作和数据异常丢失的问题。 2、读写分离策略,从节点可以扩展主库节点的读能力,有效应对大并发量的读操作。 缺点: 1、故障恢复复杂,如果没有RedisHA系统(需要开发),当主库节点出现故障时,需要手动将一个从节点晋升为主节点,同时需要通知业务方变更配置,并且需要让其他从库节点去复制新主库节点,整个过程需要人为干预,比较繁琐。 2、主库的写能力受到单机的限制,可以考虑分片 3、主库的存储能力受到单机的限制,可以考虑Pika 4、原生复制的弊端在早期的版本也会比较突出,如:Redis复制中断后,Slave会发起psync,此时如果同步不成功,则会进行全量同步,主库执行全量备份的同时可能会造成毫秒或秒级的卡顿;又由于COW机制,导致极端情况下的主库内存溢出,程序异常退出或宕机;主库节点生成备份文件导致服务器磁盘IO和CPU(压缩)资源消耗;发送数GB大小的备份文件导致服务器出口带宽暴增,阻塞请求。建议升级到最新版本。 使用场景 对 Redis 协议兼容性要求较高的业务 标准版完全兼容 Redis 协议,业务可以平滑迁移。 Redis 作为持久化数据存储使用的业务 标准版提供持久化机制及备份恢复机制,极大地保证数据可靠性。 单个 Redis 性能压力可控 由于 Redis 原生采用单线程机制,性能在10万 QPS 以下的业务建议使用。如果需要更高的性能要求,请选用集群版本。 Redis 命令相对简单,排序、计算类命令较少 由于 Redis 的单线程机制,CPU 会成为主要瓶颈。如排序、计算类较多的业务建议选用集群版配置。 3 Redis Sentinel(哨兵) Redis Sentinel是社区版本推出的原生高可用解决方案,Redis Sentinel部署架构主要包括两部分:Redis Sentinel集群和Redis数据集群,其中Redis Sentinel集群是由若干Sentinel节点组成的分布式集群。可以实现故障发现、故障自动转移、配置中心和客户端通知。Redis Sentinel的节点数量要满足2n+1(n>=1)的奇数个。 优点: 1、Redis Sentinel集群部署简单 2、能够解决Redis主从模式下的高可用切换问题 3、很方便实现Redis数据节点的线形扩展,轻松突破Redis自身单线程瓶颈,可极大满足对Redis大容量或高性能的业务需求。 4、可以实现一套Sentinel监控一组Redis数据节点或多组数据节点 缺点: 1、部署相对Redis 主从模式要复杂一些,原理理解更繁琐 2、资源浪费,Redis数据节点中slave节点作为备份节点不提供服务 3、Redis Sentinel主要是针对Redis数据节点中的主节点的高可用切换,对Redis的数据节点做失败判定分为主观下线和客观下线两种,对于Redis的从节点有对节点做主观下线操作,并不执行故障转移。 4、不能解决读写分离问题,实现起来相对复杂 建议: 1、如果监控同一业务,可以选择一套Sentinel集群监控多组Redis数据节点的方案,反之选择一套Sentinel监控一组Redis数据节点的方案 2、sentinel monitor 配置中的 建议设置成Sentinel节点的一半加1,当Sentinel部署在多个IDC的时候,单个IDC部署的Sentinel数量不建议超过(Sentinel数量 – quorum)。 3、合理设置参数,防止误切,控制切换灵敏度控制 quorum down-after-milliseconds 30000 failover-timeout 180000 maxclient timeout 4、部署的各个节点服务器时间尽量要同步,否则日志的时序性会混乱 5、Redis建议使用pipeline和multi-keys操作,减少RTT次数,提高请求效率 6、自行搞定配置中心(zookeeper),方便客户端对实例的链接访问 4 Redis Cluster(集群) Redis Cluster是社区版推出的Redis分布式集群解决方案,主要解决Redis分布式方面的需求,比如,当遇到单机内存,并发和流量等瓶颈的时候,Redis Cluster能起到很好的负载均衡的目的。Redis Cluster集群节点最小配置6个节点以上(3主3从),其中主节点提供读写操作,从节点作为备用节点,不提供请求,只作为故障转移使用。Redis Cluster采用虚拟槽分区,所有的键根据哈希函数映射到0~16383个整数槽内,每个节点负责维护一部分槽以及槽所印映射的键值数据。 优点: 1、无中心架构 2、数据按照slot存储分布在多个节点,节点间数据共享,可动态调整数据分布。 3、可扩展性,可线性扩展到1000多个节点,节点可动态添加或删除。 4、高可用性,部分节点不可用时,集群仍可用。通过增加Slave做standby数据副本,能够实现故障自动failover,节点之间通过gossip协议交换状态信息,用投票机制完成Slave到Master的角色提升。 5、降低运维成本,提高系统的扩展性和可用性。 缺点: 1、Client实现复杂,驱动要求实现Smart Client,缓存slots mapping信息并及时更新,提高了开发难度,客户端的不成熟影响业务的稳定性。目前仅JedisCluster相对成熟,异常处理部分还不完善,比如常见的“max redirect exception”。 2、节点会因为某些原因发生阻塞(阻塞时间大于clutser-node-timeout),被判断下线,这种failover是没有必要的。 3、数据通过异步复制,不保证数据的强一致性。 4、多个业务使用同一套集群时,无法根据统计区分冷热数据,资源隔离性较差,容易出现相互影响的情况。 5、Slave在集群中充当“冷备”,不能缓解读压力,当然可以通过SDK的合理设计来提高Slave资源的利用率。 6、key批量操作限制,如使用mset、mget目前只支持具有相同slot值的key执行批量操作。对于映射为不同slot值的key由于keys 不支持跨slot查询,所以执行mset、mget、sunion等操作支持不友好。 7、key事务操作支持有限,只支持多key在同一节点上的事务操作,当多个key分布于不同的节点上时无法使用事务功能。 8、key作为数据分区的最小粒度,因此不能将一个很大的键值对象如hash、list等映射到不同的节点。 9、不支持多数据库空间,单机下的redis可以支持到16个数据库,集群模式下只能使用1个数据库空间,即db 0。 10、复制结构只支持一层,从节点只能复制主节点,不支持嵌套树状复制结构。 11、避免产生hot-key,导致主库节点成为系统的短板。 12、避免产生big-key,导致网卡撑爆、慢查询等。 13、重试时间应该大于cluster-node-time时间 14、Redis Cluster不建议使用pipeline和multi-keys操作,减少max redirect产生的场景。 使用场景 数据量较大 Redis 集群版可以有效的扩展数据规模,相比标准版支持存储量更大的64、128、256 GB 集群版,可以有效的满足数据扩展需求。 QPS 压力较大 标准版 Redis 无法支撑较大的 QPS,需要采用多节点的部署方式来冲破 Redis 单线程的性能瓶颈。 吞吐密集型应用 相比标准版,Redis 集群版的内网吞吐限制相对较低,针对热点数据读取、大吞吐类型的业务可以友好的支持。 对 Redis 协议不敏感的应用 由于集群版的架构引入了多个组件,在 Redis 协议支持上相比标准版有一定限制。
剑曼红尘 2020-04-27 14:41:57 0 浏览量 回答数 0

回答

以前上网很快,最近1周网速突然很慢,我是3个人共用一个路由器的,以前3个人用时也是很快。现在是我看视频很卡,用了优化大师优化,c盘文件及桌面文件都清理了,用360也清理了垃圾文件,用小红伞杀毒也没杀出病毒,就是老样子。现在两个人用一个,也是很慢,到半夜了在搜狐视频或是酷六什么那看电影,只剩我一个人在用,还是卡。 请问高手能帮我诊断下怎么回事,或是怎么设置下改变下状况。另一个人也是发现网速慢了,我们都是一个样子,可能是被盗了吗? 我用360查看网络连接,system id process 的连接很多,显示是没有连接上,状态是等待,都是端口80,目标归属地什么北京联通,大连联通,深圳联通的,有7个左右,我qq也没开啊,想结束也结束不了,只是在迅雷看看里看电影,没有装他的插件。把它关了还是有。向高手请教?插件只有搜狗输入法,迅雷,360,迅雷看看没有其他的 " 网速变慢的原因有很多可能,比如网络本身的问题、网卡硬件问题,有或者是系统问题等等。可以通过其他联网设备确认下是否有网速变慢的情况;如果网络本身没有问题(其他设备可以正常连接),问题就出现电脑本身: 1,、疑难解答 可以先试试更新网卡驱动,若无效,我们可以利用系统自身提供的【疑难解答】功能来寻求解决。直接搜索进入【疑难解答】然后点击右侧的对应项目,选择【运行疑难解答】,按照向导提示进行操作即可,看是否能够解决网络连接问题。 <img src=""https://gss0.baidu.com/-fo3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=f415cd6cda3f8794d3aa4028e22b22cc/a6efce1b9d16fdfac901e83aba8f8c5495ee7bf0.jpg""> <img src=""https://gss0.baidu.com/-Po3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=1695c9ff00f41bd5da06e0f261eaadf3/f2deb48f8c5494ee9b9421cd23f5e0fe98257eab.jpg""> 2、网络重置 上述均不能解决的话,最后可通过进行网络重置来彻底解决。路径:【开始】—【设置】—【网络和Internet】—【状态】,在右侧列表中找到【网络重置】并点击,按提示完成操作即可。 <img src=""https://gss0.baidu.com/-Po3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=e6034daa9c58d109c4b6a1b4e168e087/11385343fbf2b211a844ab9ac48065380dd78eff.jpg""> 另外,在有限的硬件条件下,想让现有的网速能够快一些,具体可以参考以下步骤: 步骤1. Win+R组合键后输入gpedit.msc进入组策略编辑器,依次进入“计算机配置-Windows设置”后,再右侧找到“基于策略的Qos”的这个选项。 <img src=""https://gss0.baidu.com/-Po3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=c08ee009a564034f0f98ca009ff35509/a71ea8d3fd1f41341c7f2baa2b1f95cad0c85e9d.jpg""> 步骤2. 在“基于策略的Qos”上点击鼠标右键,选择“高级QoS设置”,在入站TCP流量选项卡中,勾选”制定入站TCP吞吐量级别“,选择最后那个”级别3“。 <img src=""https://gss0.baidu.com/9fo3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=f340223fb8fd5266a77e34129b28bb13/e1fe9925bc315c604623453b83b1cb13485477ab.jpg""> 注意的:如果在更改完设置后发现上网时系统出现假死、卡顿等问题,可以把上面的“制定入站TCP吞吐量级别“设置调整到“级别2”,减少数据处理对系统硬件的压力(内存小于4GB,则建议使用默认最小吞吐量)。 “高级QoS设置“是什么呢? 通过高级服务质量 (QoS) 设置,您可以管理带宽使用以及计算机处理应用程序和服务设置的 DSCP 标记(而不是组策略设置的标记)的方式。高级 QoS 设置仅可在计算机级别应用,而 QoS 策略在计算机级别和用户级别均可应用。 若要更改吞吐量级别,选中“指定入站 TCP 吞吐量级别”复选框,然后根据下表选择吞吐量级别。吞吐量级别可以等于或小于最大值,具体取决于网络条件。 <img src=""https://gss0.baidu.com/9vo3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=eea0cfe33bfae6cd0ce1a3673f83231c/ca1349540923dd542fc589bcdf09b3de9d8248ab.jpg"">" 一、网络自身问题 您想要连接的目标网站所在的服务器带宽不足或负载过大。处理办法很简单,请换个时间段再上或者换个目标网站。 二、网线问题导致网速变慢 我们知道,双绞线是由四对线按严格的规定紧密地绞和在一起的,用来减少串扰和背景噪音的影响。同时,在T568A标准和T568B标准中仅使用了双绞线的 1、2和3、6四条线,其中,1、2用于发送,3、6用于接收,而且1、2必须来自一个绕对,3、6必须来自一个绕对。只有这样,才能最大限度地避免串扰,保证数据传输。本人在实践中发现不按正确标准(T586A、T586B)制作的网线,存在很大的隐患。表现为:一种情况是刚开始使用时网速就很慢;另一种情况则是开始网速正常,但过了一段时间后,网速变慢。后一种情况在台式电脑上表现非常明显,但用笔记本电脑检查时网速却表现为正常。对于这一问题本人经多年实践发现,因不按正确标准制作的网线引起的网速变慢还同时与网卡的质量有关。一般台式计算机的网卡的性能不如笔记本电脑的,因此,在用交换法排除故障时,使用笔记本电脑检测网速正常并不能排除网线不按标准制作这一问题的存在。我们现在要求一律按T586A、T586B标准来压制网线,在检测故障时不能一律用笔记本电脑来代替台式电脑。 三、网络中存在回路导致网速变慢 当网络涉及的节点数不是很多、结构不是很复杂时,这种现象一般很少发生。但在一些比较复杂的网络中,经常有多余的备用线路,如无意间连上时会构成回路。比如网线从网络中心接到计算机一室,再从计算机一室接到计算机二室。同时从网络中心又有一条备用线路直接连到计算机二室,若这几条线同时接通,则构成回路,数据包会不断发送和校验数据,从而影响整体网速。这种情况查找比较困难。为避免这种情况发生,要求我们在铺设网线时一定养成良好的习惯:网线打上明显的标签,有备用线路的地方要做好记载。当怀疑有此类故障发生时,一般采用分区分段逐步排除的方法。 四、网络设备硬件故障引起的广播风暴而导致网速变慢 作为发现未知设备的主要手段,广播在网络中起着非常重要的作用。然而,随着网络中计算机数量的增多,广播包的数量会急剧增加。当广播包的数量达到30%时,网络的传输效率将会明显下降。当网卡或网络设备损坏后,会不停地发送广播包,从而导致广播风暴,使网络通信陷于瘫痪。因此,当网络设备硬件有故障时也会引起网速变慢。当怀疑有此类故障时,首先可采用置换法替换集线器或交换机来排除集线设备故障。如果这些设备没有故障,关掉集线器或交换机的电源后,DOS下用 “Ping”命令对所涉及计算机逐一测试,找到有故障网卡的计算机,更换新的网卡即可恢复网速正常。网卡、集线器以及交换机是最容易出现故障引起网速变慢的设备。 五、网络中某个端口形成了瓶颈导致网速变慢 实际上,路由器广域网端口和局域网端口、交换机端口、集线器端口和服务器网卡等都可能成为网络瓶颈。当网速变慢时,我们可在网络使用高峰时段,利用网管软件查看路由器、交换机、服务器端口的数据流量;也可用 Netstat命令统计各个端口的数据流量。据此确认网络数据流通瓶颈的位置,设法增加其带宽。具体方法很多,如更换服务器网卡为100M或1000M、安装多个网卡、划分多个VLAN、改变路由器配置来增加带宽等,都可以有效地缓解网络瓶颈,可以最大限度地提高数据传输速度。 六、蠕虫病毒的影响导致网速变慢 通过E-mail散发的蠕虫病毒对网络速度的影响越来越严重,危害性极大。这种病毒导致被感染的用户只要一上网就不停地往外发邮件,病毒选择用户个人电脑中的随机文档附加在用户机子的通讯簿的随机地址上进行邮件发送。成百上千的这种垃圾邮件有的排着队往外发送,有的又成批成批地被退回来堆在服务器上。造成个别骨干互联网出现明显拥塞,网速明显变慢,使局域网近于瘫痪。因此,我们必须及时升级所用杀毒软件;计算机也要及时升级、安装系统补丁程序,同时卸载不必要的服务、关闭不必要的端口,以提高系统的安全性和可靠性。 七、防火墙的过多使用 防火墙的过多使用也可导致网速变慢,处理办法不必多说,卸载下不必要的防火墙只保留一个功能强大的足以。 八、系统资源不足 您可能加载了太多的运用程序在后台运行,请合理的加载软件或删除无用的程序及文件,将资源空出,以达到提高网速的目的。 您好,如您的宽带出现故障,可关注“中国联通”微信公众号,点击“客户服务>宽带报障>常见故障指引”,查看对应故障的处理方式。 如仍无法解决,可通过以下方式自助报障: 【方式一】关注“中国联通”微信公众号,点击“客户服务>宽带报障>在线报障”; 【方式二】登录中国联通手机营业厅APP,点击“服务>宽带>宽带办理服务>宽带报障”。 1...用360安全卫士查一下启动项,可能是垃圾插件太多了。现在P2P插件很吸血的。优化一下。 2...把3台电脑恢复系统,还有问题就是线路的问题了。 你把路由器 关掉重启 或者 重装 网卡驱动 试试吧。 最好还是重装。 重装还不好使 就是 宽带问题。
保持可爱mmm 2019-12-02 02:14:41 0 浏览量 回答数 0

问题

OracleASM管理

Oracle ASM 管理 16.1 什么是ASM 自动存储管理即ASM(Automatic Storage Management),是Oracle提供的一项管理磁盘的功能,它是一种以纯软件方式实现...
男刊 2019-12-01 21:33:34 7934 浏览量 回答数 2

问题

服务器急救

遇到服务器故障,出现问题的原因很少能一目了然。raksmart基本上都会从以下步骤入手:尽可能搞清楚问题的前因后果,不要一下子就扎到服务器前面,你需要先搞明白对这台服务器有多少已知的情...
fuwuqi1 2019-12-01 21:29:02 1556 浏览量 回答数 1

问题

在服务器上排除问题的头五分钟

遇到服务器故障,问题出现的原因很少可以一下就想到。我们基本上都会从以下步骤入手:一、尽可能搞清楚问题的前因后果不要一下子就扎到服务器前面,你需要先搞明白对这台服务器有多少已知的情况,还...
五弊三缺 2019-12-01 21:41:11 9114 浏览量 回答数 1

问题

HBase 优化实战

转载自:http://www.hbase.group/article/39 背景 Datastream一直以来在使用HBase分流日志,每天的数据量很大,日均大概在80亿条,10T...
pandacats 2019-12-20 21:12:25 0 浏览量 回答数 0

回答

进程是操作系统中最基本、重要的概念,是多道程序系统出现后,为了刻画系统内部出现的动态情况,描述系统内部各道程序的活动规律引进的一个概念,所有多道程序设计操作系统都建立在进程的基础上。狭义上讲,进程是正在运行的程序的实例;广义上讲,进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。它是操作系统进行资源分配和调度、动态执行的基本单元,是操作系统结构的基础,在传统的操作系统中,进程既是基本的分配单元,也是基本的执行单元。其概念主要有两点:(1)进程是一个实体。每一个进程都有它自己的地址空间,一般情况下,包括文本区域、数据区域和堆栈。文本区域存储处理器执行的代码;数据区域存储变量和进程执行期间使用的动态分配的内存;堆栈区域存储着活动过程调用的指令和本地变量。(2)进程是一个“执行中的程序”。只有在操作系统、处理器执行程序时,它才能成为一个活动的实体,我们称其为进程。从理论角度看,进程是对正在运行的程序过程的抽象;从实现角度看,它是一种数据结构,目的在于清晰地刻画动态系统的内在规律,有效管理和调度进入计算机系统主存储器运行的程序。 一、进程具有以下特点: (1)动态性:进程的实质是程序在多道程序系统中的一次执行过程,进程是动态产生、动态消亡的。 (2)并发性:任何进程都可以与其他进程一起并发执行。 (3)独立性:进程是一个能独立运行的基本单位,同时也是系统分配资源和调度的独立单位。 (4)异步性:由于进程间的相互制约,使进程具有执行的间断性,即进程按各自独立的、不可预知的速度向前推进。 (5)结构特征:进程由程序、数据和进程控制块三部分组成。 二、进程、线程和程序的联系: 通常在一个进程中可以包含若干个线程,它们可以利用进程所拥有的资源,在引入线程的操作系统中,通常都是把进程作为分配资源的基本单位,而把线程作为独立运行和独立调度的基本单位,由于线程比进程更小,基本上不拥有系统资源,故对它的调度所付出的开销就会小得多,能更高效的提高系统内多个程序间并发执行的程度。此外多个不同的进程可以包含相同的程序:一个程序在不同的数据集里就构成不同的进程,能得到不同的结果;但是执行过程中,程序不能发生改变。同一程序同时运行于若干个数据集合上,它将属于若干个不同的进程,也就是说同一程序可以对应多个进程。 三、进程和程序的区别: (1)程序是指令和数据的有序集合,其本身没有任何运行的含义,是一个静态的概念,而进程是程序在处理机上的一次执行过程,它是一个动态的概念。 (2)程序可以作为一种软件资料长期存在,而进程是有一定生命期的。 (3)程序是永久的,进程是暂时的。 (4)进程更能真实地描述并发,而程序不能。 (5)进程是由进程控制块、程序段、数据段三部分组成。 (6)进程具有创建其他进程的功能而程序没有。 (7)在传统的操作系统中,程序并不能独立运行,作为资源分配和独立运行的基本单元都是进程。 四、进程具有的三种基本状态 由于进程在执行过程中具有动态性和异步性,因此也就决定了进程可能具有多种状态。 (1)就绪状态(Ready):进程已获得除处理器外的所需资源,等待分配处理器资源;只要分配了处理器进程就可执行。就绪进程可以按多个优先级来划分队列。例如,当一个进程由于时间片用完而进入就绪状态时,排入低优先级队列;当进程由I/O操作完成而进入就绪状态时,排入高优先级队列。 (2)运行状态(Running):进程占用处理器资源;处于此状态的进程的数目小于等于处理器的数目。在没有其他进程可以执行时(如所有进程都在阻塞状态),通常会自动执行系统的空闲进程。 (3)阻塞状态(Blocked):由于进程等待某种条件(如I/O操作或进程同步),在条件满足之前无法继续执行。该事件发生前即使把处理器资源分配给该进程,也无法运行。 五、创建进程的事件 在多道程序环境中,只有作为进程时才能在系统中运行。因此,为了让程序能运行,就必须为它创建进程。一个进程去创建另一个进程的典型事件,可以有以下四类: (1) 用户登录:在分时系统中,用户在终端键入登录命令后,如果是合法用户,系统将为该终端建立一个进程,并把它插入到就绪队列中。 (2)作业调度:在批处理系统中,当作业调度程序按照一定的算法调度到某作业时,便将该作业装入到内存,为它分配必要的资源,并立即为它创建进程,再插入到就绪队列中。 (3) 提供服务:当运行中的用户程序提出某种请求后,系统将专门创建一个进程来提供用户所需要的服务,例如,用户程序要求进行文件打印,操作系统将为它创建一个打印进程,这样,不仅可以使打印进程与该用户进程并发执行,而且还便于计算出为完成打印任务所花费的时间。 (4) 应用请求:在上述三种情况中,都是由系统内核为它创建一个新进程,而这一类事件则是基于应用进程的需求,由它创建一个新的进程,以便使新进程以并发的运行方式完成特定任务。 六、进程的创建过程 一旦操作系统发现了要求创建新进程的事件后,便调用进程创建原语create()按下述步骤创建一个新进程。 (1) 申请空白PCB。为新进程申请获得唯一的数字标识符,并从PCB集合中索取一个空白PCB。 (2) 为新进程分配资源。为新进程的程序和数据以及用户栈分配必要的内存空间。显然,此时操作系统必须知道新进程所需要的内存大小。 (3) 初始化进程控制块。PCB的初始化主要包括:初始化标识信息,将系统分配的标识符和父进程标识符,填入新的PCB中;初始化处理机状态信息,使程序计数器指向程序的入口地址,使栈指针指向栈顶;初始化处理机控制信息,将进程的状态设置为就绪状态或静止就绪状态,对于优先级,通常是将它设置为最低优先级,除非用户以显式的方式提出高优先级要求。 (4) 将新进程插入就绪队列,如果进程就绪队列能够接纳新进程,便将新进程插入到就绪队列中。 七、引起进程终止的事件 (1)正常结束:在任何计算机系统中,都应该有一个表示进程已经运行完成的指示。例如,在批处理系统中,通常在程序的最后安排一条Hold指令或终止的系统调用。当程序运行到Hold指令时,将产生一个中断,去通知OS本进程已经完成。 (2)异常结束:在进程运行期间,由于出现某些错误和故障而迫使进程终止。这类异常事件很多,常见的有:越界错误,保护错,非法指令,特权指令错,运行超时,等待超时,算术运算错,I/O故障。 (3)外界干预:外界干预并非指在本进程运行中出现了异常事件,而是指进程应外界的请求而终止运行。这些干预有:操作员或操作系统干预、父进程请求、父进程终止。 八、进程的终止过程 如果系统发生了上述要求终止进程的某事件后,OS便调用进程终止原语,按如下过程去终止指定的进程。 (1)根据被终止进程的标识符,从PCB集合中检索出该进程的PCB,从中读出该进程状态。 (2)若被终止进程正处于执行状态,应立即终止该进程的执行,并置调度标志为真。用于指示该进程被终止后应重新进行调度。 (3)若该进程还有子孙进程,还应将其所有子孙进程予以终止,以防他们成为不可控的进程。 (4)将被终止的进程所拥有的全部资源,或者归还给其父进程,或者归还给系统。 (5)将被终止进程(它的PCB)从所在队列(或链表)中移出,等待其它程序来搜集信息。 九、阻塞唤醒 1、引起进程阻塞和唤醒的事件 (1)请求系统服务:当正在执行的进程请求操作系统提供服务时,由于某种原因,操作系统并不立即满足该进程的要求时,该进程只能转变为阻塞状态来等待,一旦要求得到满足后,进程被唤醒。 (2)启动某种操作:当进程启动某种操作后,如果该进程必须在该操作完成之后才能继续执行,则必须先使该进程阻塞,以等待该操作完成,该操作完成后,将该进程唤醒。 (3)新数据尚未到达:对于相互合作的进程,如果其中一个进程需要先获得另一(合作)进程提供的数据才能运行以对数据进行处理,则是要其所需数据尚未到达,该进程只有(等待)阻塞,等到数据到达后,该进程被唤醒。 (4)无新工作可做:系统往往设置一些具有某特定功能的系统进程,每当这种进程完成任务后,便把自己阻塞起来以等待新任务到来,新任务到达后,该进程被唤醒。 2.进程阻塞过程 正在执行的进程,当发现上述某事件后,由于无法继续执行,于是进程便通过调用阻塞原语block()把自己阻塞。可见,进程的阻塞是进程自身的一种主动行为。进入block过程后,由于此时该进程还处于执行状态,所以应先立即停止执行,把进程控制块中的现行状态由执行改为阻塞,并将PCB插入阻塞队列。如果系统中设置了因不同事件而阻塞的多个阻塞队列,则应将本进程插入到具有相同事件的阻塞(等待)队列。最后,转调度程序进行重新调度,将处理机分配给另一就绪进程,并进行切换,亦即,保留被阻塞进程的处理机状态(在PCB中),再按新进程的PCB中的处理机状态设置CPU环境。 3. 进程唤醒过程 当被阻塞的进程所期待的事件出现时,如I/O完成或者其所期待的数据已经到达,则由有关进程(比如,用完并释放了该I/O设备的进程)调用唤醒原语wakeup(),将等待该事件的进程唤醒。唤醒原语执行的过程是:首先把被阻塞的进程从等待该事件的阻塞队列中移出,将其PCB中的现行状态由阻塞改为就绪,然后再将该PCB插入到就绪队列中。 答案来源网络,供参考,希望对您有帮助
问问小秘 2019-12-02 03:05:02 0 浏览量 回答数 0

问题

为什么对基础设施的监控变得如此重要?

稍微懂点云计算的人都知道三个概念:IaaS「Infrastructure as a Service」、PaaS「Platform-as-a-Service」和SaaS「Software-as-a-service」,...
忆远0711 2019-12-01 21:46:44 8511 浏览量 回答数 1

回答

负载均衡是由多台服务器以对称的方式组成一个服务器集合,每台服务器都具有等价的地位,都可以单独对外提供服务而无须其他服务器的辅助。通过某种负载分担技术,将外部发送来的请求均匀分配到对称结构中的某一台服务器上,而接收到请求的服务器独立地回应客户的请求。均衡负载能够平均分配客户请求到服务器列阵,籍此提供快速获取重要数据,解决大量并发访问服务问题. 软件负载   基于特定服务器软件的负载均衡   ---- 这种技术是利用网络协议的重定向功能来实现负载均衡的,例如在Http协议中支持定位指令,接收到这个指令的浏览器将自动重定向到该指令指明的另一个URL上。由于和执行服务请求相比,发送定位指令对Web服务器的负载要小得多,因此可以根据这个功能来设计一种负载均衡的服务器。一旦Web服务器认为自己的负载较大,它就不再直接发送回浏览器请求的网页,而是送回一个定位指令,让浏览器去服务器集群中的其他服务器上获得所需要的网页。在这种方式下,服务器本身必须支持这种功能,然而具体实现起来却有很多困难,例如一台服务器如何能保证它重定向过的服务器是比较空闲的,并且不会再次发送定位指令?定位指令和浏览器都没有这方面的支持能力,这样很容易在浏览器上形成一种死循环。因此这种方式实际应用当中并不多见,使用这种方式实现的服务器集群软件也较少。   DNS负载   基于DNS的负载均衡   ---- DNS负载均衡技术是最早的负载均衡解决方案,它是通过DNS服务中的随机名字解析来实现的,在DNS服务器中,可以为多个不同的地址配置同一个名字,而最终查询这个名字的客户机将在解析这个名字时得到其中的一个地址。因此,对于同一个名字,不同的客户机会得到不同的地址,它们也就访问不同地址上的Web服务器,从而达到负载均衡的目的。   ---- 这种技术的优点是,实现简单、实施容易、成本低、适用于大多数TCP/IP应用;但是,其缺点也非常明显,首先这种方案不是真正意义上的负载均衡,DNS服务器将Http请求平均地分配到后台的Web服务器上,而不考虑每个Web服务器当前的负载情况;如果后台的Web服务器的配置和处理能力不同,最慢的Web服务器将成为系统的瓶颈,处理能力强的服务器不能充分发挥作用;其次未考虑容错,如果后台的某台Web服务器出现故障,DNS服务器仍然会把DNS请求分配到这台故障服务器上,导致不能响应客户端。最后一点是致命的,有可能造成相当一部分客户不能享受Web服务,并且由于DNS缓存的原因,所造成的后果要持续相当长一段时间(一般DNS的刷新周期约为24小时)。所以在国外最新的建设中心Web站点方案中,已经很少采用这种方案了。 .基于四层交换技术的负载均衡   ---- 这种技术是在第四层交换机上设置Web服务的虚拟IP地址,这个虚拟IP地址是DNS服务器中解析到的Web服务器的IP地址,对客户端是可见的。当客户访问此Web应用时,客户端的Http请求会先被第四层交换机接收到,它将基于第四层交换技术实时检测后台Web服务器的负载,根据设定的算法进行快速交换。常见的算法有轮询、加权、最少连接、随机和响应时间等。   七层负载   基于七层交换技术的负载均衡   ---- 基于第七层交换的负载均衡技术主要用于实现Web应用的负载平衡和服务质量保证。它与第四层交换机比较起来有许多优势:第七层交换机不仅能检查TCP/IP数据包的TCP和UDP端口号,从而转发给后台的某台服务器来处理,而且能从会话层以上来分析Http请求的URL,根据URL的不同将不同的Http请求交给不同的服务器来处理(可以具体到某一类文件,直至某一个文件),甚至同一个URL请求可以让多个服务器来响应以分担负载(当客户访问某一个URL,发起Http请求时,它实际上要与服务器建立多个会话连接,得到多个对象,例如.txt/.gif/.jpg文档,当这些对象都下载到本地后,才组成一个完整的页面)。  
不语奈何 2020-01-09 18:27:49 0 浏览量 回答数 0

问题

“Ceph浅析”系列之七——关于Ceph的若干想法:报错

本篇文章的内容,主要是笔者在调研分析Ceph过程中产生的一些思考。因为其中的内容比较自由发散,且大多是笔者的个人见解,故此另启一文进行讨论。   7.1    关于Ceph的性能 目...
kun坤 2020-06-08 11:04:40 6 浏览量 回答数 1

问题

Web测试方法

在Web工程过程中,基于Web系统的测试、确认和验收是一项重要而富有挑战性的工作。基于Web的系统测试与传统的软件测试不同,它不但需要检查和验证是否按照设计的要求运行,而且还要测试系统在不同用户的浏...
技术小菜鸟 2019-12-01 21:41:32 7022 浏览量 回答数 1

回答

Layout Go工程项目的整体组织 首先我们看一下整个 Go 工程是怎么组织起来的。 很多同事都在用 GitLab 的,GitLab 的一个 group 里面可以创建很多 project。如果我们进行微服务化改造,以前很多巨石架构的应用可能就拆成了很多个独立的小应用。那么这么多小应用,你是要建 N 个 project 去维护,还是说按照部门或者组来组织这些项目呢?在 B 站的话,我们之前因为是 Monorepo,现在是按照部门去组织管理代码,就是说在单个 GitLab 的 project 里面是有多个 app 的,每一个 app 就表示一个独立的微服务,它可以独立去交付部署。所以说我们看到下面这张图里面,app 的目录里面是有好多个子目录的,比方说我们的评论服务,会员服务。跟 app 同级的目录有一个叫 pkg,可以存放业务有关的公共库。这是我们的一个组织方式。当然,还有一种方式,你可以按照 GitLab 的 project 去组织,但我觉得这样的话可能相对要创建的 project 会非常多。 如果你按部门组织的话,部门里面有很多 app,app 目录怎么去组织?我们实际上会给每一个 app 取一个全局唯一名称,可以理解为有点像 DNS 那个名称。我们对业务的命名也是一样的,我们基本上是三段式的命名,比如账号业务,它是一个账号业务、服务、子服务的三段命名。三段命名以后,在这个 app 目录里面,你也可以按照这三层来组织。比如我们刚刚说的账号目录,我可能就是 account 目录,然后 VIP,在 VIP 目录下可能会放各种各样的不同角色的微服务,比方说可能有一些是做 job,做定时任务或者流式处理的一些任务,有可能是做对外暴露的 API 的一些服务,这个就是我们关于整个大的 app 的组织的一种形式。 微服务中的 app 服务分类 微服务中单个 app 的服务里又分为几类不同的角色。我们基本上会把 app 分为 interface(BFF)、service、job(补充:还有一个 task,偏向定时执行,job 偏向流式) 和 admin。 Interface 是对外的业务网关服务,因为我们最终是面向终端用户的 API,面向 app,面向 PC 场景的,我们把这个叫成业务网关。因为我们不是统一的网关,我们可能是按照大的业务线去独立分拆的一些子网关,这个的话可以作为一个对外暴露的 HTTP 接口的一个目录去组织它的代码,当然也可能是 gRPC 的(参考 B 站对外的 gRPC Moss 分享)。 Service 这个角色主要是面向对内通信的微服务,它不直接对外。也就是说,业务网关的请求会转发或者是会 call 我们的内部的 service,它们之间的通讯可能是使用自己的 RPC,在 b 站我们主要是使用 gRPC。使用 gRPC 通讯以后,service 它因为不直接对外,service 之间可能也可以相互去 call。 Admin 区别于 service,很多应用除了有面向用户的一些接口,实际上还有面向企业内部的一些运营侧的需求,通常数据权限更高,从安全设计角度需要代码物理层面隔离,避免意外。 第四个是 ecode。我们当时也在内部争论了很久,我们的错误码定义到底是放在哪里?我们目前的做法是,一个应用里面,假设你有多种角色,它们可能会复用一些错误码。所以说我们会把我们的 ecode 给单独抽出来,在这一个应用里面是可以复用的。注意,它只在这一个应用里面复用,它不会去跨服跨目录应用,它是针对业务场景的一个业务错误码的组织。 App 目录组织 我们除了一个应用里面多种角色的这种情况,现在展开讲一下具体到一个 service 里面,它到底是怎么组织的。我们的 app 目录下大概会有 api、cmd、configs、 internal 目录,目录里一般还会放置 README、CHANGELOG、OWNERS。 API 是放置 api 定义以及对应的生成的 client 代码,包含基于 pb 定义(我们使用 PB 作为 DSL 描述 API) 生成的 swagger.json。 而 cmd,就是放 main 函数的。Configs 目录主要是放一些服务所需的配置文件,比方说说我们可能会使用 TOML 或者是使用 YAML 文件。 Internal 的话,它里面有四个子目录,分别是 model、dao、service 和 server。Model 的定位职责就是对我们底层存储的持久化层或者存储层的数据的映射,它是具体的 Go 的一个 struct。我们再看 dao,你实际就是要操作 MySQL 或者 Redis,最终返回的就是这些 model(存储映射)。Service 组织起来比较简单,就是我们通过 dao 里面的各个方法来完成一个完整的业务逻辑。我们还看到有个 server,因为我一个微服务有可能企业内部不一定所有 RPC 都统一,那我们处于过渡阶段,所以 server 里面会有两个小目录,一个是 HTTP 目录,暴露的是 HTTP 接口,还有一个是 gRPC 目录,我们会暴露 gRPC 的协议。所以在 server 里面,两个不同的启动的 server,就是说一个服务和启动两个端口,然后去暴露不同的协议,HTTP 接 RPC,它实际上会先 call 到 service,service 再 call 到 dao,dao 实际上会使用 model 的一些数据定义 struct。但这里面有一个非常重要的就是,因为这个结构体不能够直接返回给我们的 api 做外对外暴露来使用,为什么?因为可能从数据库里面取的敏感字段,当我们实际要返回到 api 的时候,可能要隐藏掉一些字段,在 Java 里面,会抽象的一个叫 DTO 的对象,它只是用来传输用的,同理,在我们 Go 里面,实际也会把这些 model 的一些结构体映射成 api 里面的结构体(基于 PB Message 生成代码后的 struct)。 Rob Pike 当时说过的一句话,a little copying is better than a little dependency,我们就遵循了这个理念。在我们这个目录结构里面,有 internal 目录,我们知道 Go 的目录只允许这个目录里面的人去 import 到它,跨目录的人实际是不能直接引用到它的。所以说,我们看到 service 有一个 model,那我的 job 代码,我做一些定时任务的代码或者是我的网关代码有可能会映射同一个 model,那是不是要把这个 model 放到上一级目录让大家共享?对于这个问题,其实我们当时内部也争论过很久。我们认为,每一个微服务应该只对自己的 model 负责,所以我们宁愿去做一小部分的代码 copy,也不会去为了几个服务之间要共享这一点点代码,去把这个 model 提到和 app 目录级别去共用,因为你一改全错,当然了,你如果是拷贝的话,就是每个地方都要去改,那我们觉得,依赖的问题可能会比拷贝代码相对来说还是要更复杂的。 这个是一个标准的 PB 文件,就是我们内部的一个 demo 的 service。最上面的 package 是 PB 的包名,demo.service.v1,这个包使用的是三段式命名,全局唯一的名称。那这个名称为什么不是用 ID?我见过有些公司对内部做的 CMDB 或者做服务树去管理企业内部微服务的时候,是用了一些名称加上 ID 来搞定唯一性,但是我们知道后面那一串 ID 数字是不容易被传播或者是不容易被记住的,这也是 DNS 出来的一个意义,所以我们用绝对唯一的一个名称来表示这个包的名字,在后面带上这一个 PB 文件的版本号 V1。 我们看第二段定义,它有个 Service Demo 代码,其实就表示了我们这个服务要启动的服务的一个名称,我们看到这个服务名称里面有很多个 RPC 的方法,表示最终这一个应用或者这个 service 要对外暴露这几个 RPC 的方法。这里面有个小细节,我们看一下 SayHello 这个方法,实际它有 option 的一个选项。通过这一个 PB 文件,你既可以描述出你要暴露的是 gRPC 协议,又暴露出 HTTP 的一个接口,这个好处是你只需要一个 PB 文件描述你暴露的所有 api。我们回想一下,我们刚刚目录里面有个 api 目录,实际这里面就是放这一个 PB 文件,描述这一个工程到底返回的接口是什么。不管是 gRPC 还是 HTTP 都是这一个文件。还有一个好处是什么?实际上我们可以在 PB 文件里面加上很多的注释。用 PB 文件的好处是你不需要额外地再去写文档,因为写文档和写服务的定义,它本质上是两个步骤,特别容易不一致,接口改了,文档不同步。我们如果基于这一个 PB 文件,它生成的 service 代码或者调用代码或者是文档都是唯一的。 依赖顺序与 api 维护 就像我刚刚讲到的,model 是一个存储层的结构体的一一映射,dao 处理一些数据读写包,比方说数据库缓存,server 的话就是启动了一些 gRPC 或者 HTTP Server,所以它整个依赖顺序如下:main 函数启动 server,server 会依赖 api 定义好的 PB 文件,定义好这些方法或者是服务名之后,实际上生成代码的时候,比方说 protocbuf 生成代码的时候,它会把抽象 interface 生成好。然后我们看一下 service,它实际上是弱依赖的 api,就是说我的 server 启动以后,要注册一个具体的业务代码的逻辑,映射方法,映射名字,实际上是弱依赖的 api 生成的 interface 的代码,你就可以很方便地启动你的 server,把你具体的 service 的业务逻辑给注入到这个 server,和方法进行一一绑定。最后,dao 和 service 实际上都会依赖这个 model。 因为我们在 PB 里面定义了一些 message,这些 message 生成的 Go 的 struct 和刚刚 model 的 struct 是两个不同的对象,所以说你要去手动 copy 它,把它最终返回。但是为了快捷,你不可能每次手动去写这些代码,因为它要做 mapping,所以我们又把 K8s 里类似 DeepCopy 的两个结构体相互拷贝的工具给抠出来了,方便我们内部 model 和 api 的 message 两个代码相互拷贝的时候,可以少写一些代码,减少一些工作量。 上面讲的就是我们关于工程的一些 layout 实践。简单回溯一下,大概分为几块,第一就是 app 是怎么组织的,app 里面有多种角色的服务是怎么组织的,第三就是一个 app 里面的目录是怎么组织的,最后我重点讲了一下 api 是怎么维护的。 Unittest 测试方法论 现在回顾一下单元测试。我们先看这张图,这张图是我从《Google 软件测试之道》这本书里面抠出来的,它想表达的意思就是最小型的测试不能给我们的最终项目的质量带来最大的信心,它比较容易带来一些优秀的代码质量,良好的异常处理等等。但是对于一个面向用户场景的服务,你只有做大型测试,比方做接口测试,在 App 上验收功能的这种测试,你应用交付的信心可能会更足。这个其实要表达的就是一个“721 原则”。我们就是 70% 写小型测试,可以理解为单元测试,因为它相对来说好写,针对方法级别。20% 是做一些中型测试,可能你要连调几个项目去完成你的 api。剩下 10% 是大型测试,因为它是最终面向用户场景的,你要去使用我们的 App,或者用一些测试 App 去测试它。这个就是测试的一些简单的方法论。 单元测试原则 我们怎么去对待 Go 里面的单元测试?在《Google 软件测试之道》这本书里面,它强调的是对于一个小型测试,一个单元测试,它要有几个特质。它不能依赖外部的一些环境,比如我们公司有测试环境,有持续集成环境,有功能测试环境,你不能依赖这些环境构建自己的单元测试,因为测试环境容易被破坏,它容易有数据的变更,数据容易不一致,你之前构建的案例重跑的话可能就会失败。 我觉得单元测试主要有四点要求。第一,快速,你不能说你跑个单元测试要几分钟。第二,要环境一致,也就是说你跑测试前和跑测试后,它的环境是一致的。第三,你写的所有单元测试的方法可以以任意顺序执行,不应该有先后的依赖,如果有依赖,也是在你测试的这个方法里面,自己去 setup 和 teardown,不应该有 Test Stub 函数存在顺序依赖。第四,基于第三点,你可以做并行的单元测试,假设我写了一百个单元测试,一个个跑肯定特别慢。 doker-compose 最近一段时间,我们演进到基于 docker-compose 实现跨平台跨语言环境的容器依赖管理方案,以解决运行 unittest 场景下的容器依赖问题。 首先,你要跑单元测试,你不应该用 VPN 连到公司的环境,好比我在星巴克点杯咖啡也可以写单元测试,也可以跑成功。基于这一点,Docker 实际上是非常好的解决方式。我们也有同学说,其他语言有一些 in-process 的 mock,是不是可以启动 MySQL 的 mock ,然后在 in-process 上跑?可以,但是有一个问题,你每一个语言都要写一个这样的 mock ,而且要写非常多种,因为我们中间件越来越多,MySQL,HBase,Kafka,什么都有,你很难覆盖所有的组件 Mock。这种 mock 或者 in-process 的实现不能完整地代表线上的情况,比方说,你可能 mock 了一个 MySQL,检测到 query 或者 insert ,没问题,但是你实际要跑一个 transaction,要验证一些功能就未必能做得非常完善了。所以基于这个原因,我们当时选择了 docker-compose,可以很好地解决这个问题。 我们对开发人员的要求就是,你本地需要装 Docker,我们开发人员大部分都是用 Mac,相对来说也比较简单,Windows 也能搞定,如果是 Linux 的话就更简单了。本地安装 Docker,本质上的理解就是无侵入式的环境初始化,因为你在容器里面,你拉起一个 MySQL,你自己来初始化数据。在这个容器被销毁以后,它的环境实际上就满足了我们刚刚提的环境一致的问题,因为它相当于被重置了,也可以很方便地快速重置环境,也可以随时随地运行,你不需要依赖任何外部服务,这个外部服务指的是像 MySQL 这种外部服务。当然,如果你的单元测试依赖另外一个 RPC 的 service 的话,PB 的定义会生成一个 interface,你可以把那个 interface 代码给 mock 掉,所以这个也是能做掉的。对于小型测试来说,你不依赖任何外部环境,你也能够快速完成。 另外,docker-compose 是声明式的 API,你可以声明你要用 MySQL,Redis,这个其实就是一个配置文件,非常简单。这个就是我们在单元测试上的一些实践。 我们现在看一下,service 目录里面多了一个 test 目录,我们会在这个里面放 docker-compose 的 YAML 文件来表示这次单元化测试需要初始化哪些资源,你要构建自己的一些测试的数据集。因为是这样的,你是写 dao 层的单元测试的话,可能就需要 database.sql 做一些数据的初始化,如果你是做 service 的单元测试的话,实际你可以把整个 dao 给 mock 掉,我觉得反而还相对简单,所以我们主要针对场景就是在 dao 里面偏持久层的,利用 docker-compose 来解决。 容器的拉起,容器的销毁,这些工作到底谁来做?是开发同学自己去拉起和销毁,还是说你能够把它做成一个 Library,让我们的同学写单元测试的时候比较方便?我倾向的是后者。所以在我们最终写单元测试的时候,你可以很方便地 setup 一个依赖文件,去 setup 你的容器的一些信息,或者把它销毁掉。所以说,你把环境准备好以后,最终可以跑测试代码也非常方便。当然我们也提供了一些命令函,就是 binary 的一些工具,它可以针对各个语言方便地拉起容器和销毁容器,然后再去执行代码,所以我们也提供了一些快捷的方式。 刚刚我也提到了,就是我们对于 service 也好,API 也好,因为依赖下层的 dao 或者依赖下层的 service,你都很方便 mock 掉,这个写单元测试相对简单,这个我不展开讲,你可以使用 GoMock 或者 GoMonkey 实现这个功能。 Toolchain 我们利用多个 docker-compose 来解决 dao 层的单元测试,那对于我刚刚提到的项目的一些规范,单元测试的一些模板,甚至是我写了一些 dao 的一些占位符,或者写了一些 service 代码的一些占位符,你有没有考虑过这种约束有没有人会去遵循?所以我这里要强调一点,工具一定要大于约束和文档,你写了约束,写了文档,那么你最终要通过工具把它落实。所以在我们内部会有一个类似 go tool 的脚手架,叫 Kratos Tool,把我们刚刚说的约定规范都通过这个工具一键初始化。 对于我们内部的工具集,我们大概会分为几块。第一块就是 API 的,就是你写一个 PB 文件,你可以基于这个 PB 文件生成 gRPC,HTTP 的框架代码,你也可以基于这个 PB 文件生成 swagger 的一些 JSON 文件或者是 Markdown 文件。当然了,我们还会生成一些 API,用于 debug 的 client 方便去调试,因为我们知道,gRPC 调试起来相对麻烦一些,你要去写代码。 还有一些工具是针对 project 的,一键生成整个应用的 layout,非常方便。我们还提了 model,就是方便 model 和 DTO,DTO 就是 API 里面定义的 message 的 struct 做 DeepCopy,这个也是一个工具。 对于 cache 的话,我们操作 memcache,操作 Redis 经常会要做什么逻辑?假如我们有一个 cache aside 场景,你读了一个 cache,cache miss 要回原 DB,你要把这个缓存回塞回去,甚至你可能这个回塞缓存想异步化,甚至是你要去读这个 DB 的时候要做归并回源(singleflight),我们把这些东西做成一些工具,让它整个回源到 DB 的逻辑更加简单,就是把这些场景描述出来,然后你通过工具可以一键生成这些代码,所以也是会比较方便。 我们再看最后一个,就是 test 的一些工具。我们会基于项目里面,比方说 dao 或者是 service 定义的 interface 去帮你写好 mock 的代码,我直接在里面填,只要填代码逻辑就行了,所以也会加速我们的生产。 上图是 Kratos 的一个 demo,基本就是支持了一些 command。这里就是一个 kratos new kratos-demo 的一个工程,-d YourPath 把它导到某一个路径去,--proto 顺便把 API 里面的 proto 代码也生成了,所以非常简单,一行就可以很快速启动一个 HTTP 或者 gRPC 服务。 我们知道,一个微服务的框架实际非常重,有很多初始化的方式等等,非常麻烦。所以说,你通过脚手架的方式就会非常方便,工具大于约定和文档这个这个理念就是这么来的。 Configuration 讲完工具以后,最后讲一下配置文件。我为什么单独提一下配置文件?实际它也是工程化的一部分。我们一个线上的业务服务包含三大块,第一,应用程序,第二,配置文件,第三,数据集。配置文件最容易导致线上出 bug,因为你改一行配置,整个行为可能跟 App 想要的行为完全不一样。而且我们的代码的开发交付需要经过哪些流程?需要 commit 代码,需要 review,需要单元测试,需要 CD,需要交付到线上,需要灰度,它的整个流程是非常长的。在一步步的环境里面,你的 bug 需要前置解决,越前置解决,成本越低。因为你的代码的开发流程是这么一个 pipeline,所以 bug 最终流到线上的概率很低,但是配置文件没有经过这么复杂的流程,可能大家发现线上有个问题,决定要改个线上配置,就去配置中心或者配置文件改,然后 push 上线,接着就问题了,这个其实很常见。 从 SRE 的角度来说,导致线上故障的主因就是来自配置变更,所以 SRE 很大的工作是控制变更管理,如果能把变更管理做好,实际上很多问题都不会出现。配置既然在整个应用里面这么重要,那在我们整个框架或者在 Go 的工程化实践里面,我们应该对配置文件做一些什么事情? 我觉得是几个。第一,我们的目标是什么?配置文件不应该太复杂,我见过很多框架,或者是业务的一些框架,它实际功能非常强大,但是它的配置文件超级多。我就发现有个习惯,只要有一个同事写错了这个配置,当我新起一个项目的时候,一定会有人把这个错误的配置拷贝到另外一个系统里面去。然后当发现这个应用出问题的时候,我们一般都会内部说一下,你看看其他同事有没有也配错的,实际这个配错概率非常高。因为你的配置选项越多,复杂性越高,它越容易出错。所以第一个要素就是说,尽量避免复杂的配置文件。配得越多,越容易出错。 第二,实际我们的配置方式也非常多,有些用 JSON,有些用 YAML,有些用 Properties,有些用 INI。那能不能收敛成通用的一种方式呢?无论它是用 Python 的脚本也好,或者是用 JSON 也好,你只要有一种唯一的约定,不需要太多样的配置方式,对我们的运维,对我们的 SRE 同时来说,他跨项目的变更成本会变低。 第三,一定要往简单化去努力。这句话其实包含了几个方面的含义。首先,我们很多配置它到底是必须的还是可选的,如果是可选,配置文件是不是就可以把它踢掉,甚至不要出现?我曾经有一次看到我们 Java 同事的配置 retry 有一个重试默认是零,内部重试是 80 次,直接把 Redis cluster 打故障了,为什么?其实这种事故很低级,所以简单化努力的另外一层含义是指,我们在框架层面,尤其是提供 SDK 或者是提供 framework 的这些同事尽量要做一些防御编程,让这种错配漏配也处于一个可控的范围,比方重试 80 次,你觉得哪个 SDK 会这么做?所以这个是我们要考虑的。但是还有一点要强调的是,我们对于业务开发的同事,我们的配置应该足够的简单,这个简单还包含,如果你的日志基本上都是写在这个目录,你就不要提供这个配置给他,反而不容易出错。但是对于我们内部的一些 infrastructure,它可能需要非常复杂的配置来优化,根据我的场景去做优化,所以它是两种场景,一种是业务场景,足够简单,一种是我要针对我的通用的 infrastructure 去做场景的优化,需要很复杂的配置,所以它是两种场景,所以我们要想清楚你的业务到底是哪一种形态。 还有一个问题就是我们配置文件一定要做好权限的变更和跟踪,因为我们知道上线出问题的时候,我们的第一想法不是查 bug,是先止损,止损先找最近有没有变更。如果发现有变更,一般是先回滚,回滚的时候,我们通常只回滚了应用程序,而忘记回滚了配置。每个公司可能内部的配置中心,或者是配置场景,或者跟我们的二进制的交付上线都不一样,那么这里的理念就是你的应用程序和配置文件一定是同一个版本,或者是某种意义上让他们产生一个版本的映射,比方说你的应用程序 1.0,你的配置文件 2.0,它们之间存在一个强绑定关系,我们在回滚的时候应该是一起回滚的。我们曾经也因为类似的一些不兼容的配置的变更,二进制程序上线,但配置文件忘记回滚,出现过事故,所以这个是要强调的。 另外,配置的变更也要经过 review,如果没问题,应该也是按照 App 发布一样,先灰度,再放量,再全量等等类似的一种方式去推,演进式的这种发布,我们也叫滚动发布,我觉得配置文件也是一样的思路。 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答 原文链接
有只黑白猫 2020-01-09 17:29:54 0 浏览量 回答数 0

回答

ECS磁盘 我想在ECS 跨服务器进行数据拷贝,有没有知道实现方法的? Linux系统服务器重启或初始化系统之后,再登录服务器执行df -h查看磁盘挂载,发现数据不见了。这是为什么?能不能找回来? 重启服务器后发现/alidata目录所有数据丢失。怎么才能找回来呢? ECS Linux扩容格式化磁盘提示magic number in super-block while trying to open /dev/xvdb1 ? Linux 实例初始化系统盘后,怎样才能重新挂载数据盘? 如何在ECS 利用快照创建磁盘实现无损扩容数据盘? ECS云服务器磁盘FAQ云服务器磁盘I/O速度是多少? Linux 购买了数据盘,但是系统中看不到怎么办? ECS系统盘和数据盘二次分区FAQ,系统盘能否再次划分出一个分区用作数据存储? ECS系统盘和数据盘二次分区FAQ,数据盘能否再次划分出一个分区用作数据存储? ECS系统盘和数据盘二次分区FAQ,划分了多个分区的磁盘,做快照时是针对该分区的,还是针对磁盘的? ECS系统盘和数据盘二次分区FAQ,磁盘二次分区有哪些注意事项? ECS系统盘和数据盘二次分区FAQ,数据盘进行二次分区后,此时回滚快照后,数据盘是几个分区? 什么是可用区? 怎么根据服务器应用需求选择可用区? 按量付费云盘和云盘有什么区别? 按量付费云盘和普通云盘的性能和数据安全性一样吗,磁盘性能会有提升吗? 可以使用用户快照创建按量付费云盘吗? 什么是挂载点? 一块按量付费云盘可以挂载到多个 ECS 实例上吗? 一台 ECS 实例能同时挂载多少块按量付费云盘吗? 按量付费云盘能够挂载到包年包月和按量付费 ECS 实例上吗? 为什么挂载按量付费云盘时找不到我想挂载的 ECS 实例? 购买按量付费云盘后,挂载到目标 ECS 实例的挂载点是否还需要执行磁盘挂载操作? 我已经操作过续费变配,在续费变配期内是否还能将普通云盘转为按量付费云盘? ECS快照 为什么我的按量付费云盘没有自动快照了? 重新初始化磁盘时,我的快照会丢失吗? 更换系统盘时,我的快照会丢失吗? 卸载按量付费云盘时,我的磁盘会丢数据吗? 我能够卸载系统盘吗? 什么是独立云磁盘? 什么是可用区? 独立云磁盘跟现在的磁盘有什么区别? 服务器应用与可用区选择的选择关系是怎么样的? 独立云磁盘怎么收费? 独立云磁盘能够挂载到包年包月实例上吗? 独立云磁盘和普通云磁盘的磁盘性能和数据安全性一样吗,磁盘性能会有提升吗? 我的包年包月实例上不需要的磁盘能不能卸载? 为什么我的独立云磁盘和我的实例一起释放了? 为什么独立云磁盘挂载时找不到我想挂载的实例? 为什么我在本实例列表中选择独立云磁盘挂载时找不到我想要挂载的磁盘? 我删除磁盘的时候,快照会被保留吗? 为什么我的独立云磁盘没有自动快照了? 为什么我不能购买独立云磁盘? 一台实例能挂载多少块独立云磁盘? 卸载独立云磁盘时,我的磁盘会丢数据吗? 我的系统盘能够卸载吗? 什么是设备名? 为什么我在控制台上找不到重置磁盘,更换操作系统,回滚快照的操作了? 重新初始化磁盘时,我的快照会丢失吗? 更换系统盘时,我的快照会丢失吗? 为什么我的数据盘不能选择临时磁盘 独立云磁盘服务器的应用场景有哪些? 可以使用用户快照创建独立云磁盘吗? 独立云磁盘购买后挂载到目标实例的挂载点后,是否还需要执行磁盘挂载操作? 本地SSD盘“本地”是指? 本地SSD盘适合的用户场景有哪些? SSD盘相对之前的普通云盘性能提升多少,是否可以提供具体参数? 本地SSD盘是否支持在原ECS上进行添加或者将原云磁盘更换成本地SSD盘? 本地SSD盘购买后是否支持升级? SSD 云盘具备怎样的 I/O 性能? SSD云盘的数据可靠性是怎样的? SSD 云盘适合的应用场景有哪些? SSD 云盘相对普通云盘性能提升多少?是否可以提供具体参数? I/O 优化是什么概念?能将存量的 ECS 实例升级为 I/O 优化的实例吗? 是否支持将原普通云盘更换成 SSD 云盘? 如何购买 SSD 云盘,I/O 优化的实例及 SSD 云盘的价格是多少? 为什么 I/O 优化的实例有时启动比较耗时? 有些自定义镜像不支持创建 I/O 优化的实例,我该如何操作? 购买SSD云盘后是否支持升级? 使用了 I/O 优化实例和 SSD 云盘之后,Linux 系统在分区挂载的时候报错。 为什么我用 fio 测试性能时,会导致实例宕机? 云盘参数和性能测试工具及方法有推荐的吗? 我想扩容系统盘,求详细步骤! 所有块存储都支持系统盘扩容吗?有地域限制吗? 包年包月和按量付费的ECS实例都支持系统盘扩容吗? 新购ECS时,系统盘开始单独收费?老用户存量的系统盘如何收费? 新购ECS时,系统盘开始单独收费?老用户存量的系统盘如何收费?系统盘扩容是否需要停机操作? 系统盘扩容上线后,系统盘的容量范围多少? 哪些镜像支持系统盘扩容? 云服务器续费变配后,不支持更换系统盘时指定系统盘容量? 系统盘扩容之后是否支持再缩容? 扩容系统盘应注意的问题? 回滚磁盘报错,进行快照回滚的时候,出现如下错误提示: 执行回滚磁盘需要停止实例,并确保当前磁盘没有创建中的快照和没有更换过操作系统。 这是什么原因? 普通云盘和SSD云盘添加挂载信息时有哪些要注意的事项? 申请公测资格 什么是共享块存储? 共享块存储适用于哪些行业和业务场景? 为什么需要共享块存储? 如何正确使用共享块存储? 我能跨地域挂载共享块存储吗? 共享块存储产品规格有哪些? 我想知道阿里云产品的售卖模式和公测范围! 公测购买入口是哪,求链接! 有没有谁分享下共享块存储性能测试命令? 数据盘挂载问题导致数据无法访问,我要怎么排查问题? 我要怎样才能在Linux和Windows主机之间挂载ntfs格式云盘? 为什么ECS实例里文件系统和快照空间大小不一致?在ECS实例内删除文件后再打快照,发现快照容量并没有变小。 ECS实例如何优化快照使用成本? 在ECS实例里什么是快照商业化? 在ECS实例里,快照商业化后过渡优惠期是什么时候? 在ECS实例里,快照商业化的用户范围包括有哪些? 在ECS实例里,如果我已经开通了 OSS,快照会自动存到我的 OSS Bucket 吗?是否需要重新再创建一个 Bucket 来存储快照? 已经购买了 OSS 预付费存储包,同时在使用快照和 OSS 服务,那么存储包会优先抵扣哪个产品? 快照商业化之后,我希望继续使用,需要购买哪个产品,云盘还是对象存储OSS资源包? 快照商业化的收费模式是怎样的? 快照费用的计算方法是怎样的? 快照收费后,不停止自动快照是否就开始收取费用? 快照要收费了,之前的快照要被删除吗? 如果不想付费,之前的快照能继续使用吗? 快照收费后,之前创建的手动快照和自动快照都会收费吗? 快照收费前停止快照策略,需手动删除历史快照吗?正式收费后会直接删除我的历史快照吗? 快照收费以后,账户欠费对快照有什么影响? 如果账号欠费,有关联关系(创建过磁盘或者镜像)的快照,在欠费15天之后是否会被删除? 快照服务和块存储服务的关系,在收费方面的关系是什么? 快照容量是如何计算的,是等于磁盘大小吗? ECS实例内删除文件会减少空间占用吗? 为什么快照容量大于文件系统内看到的数据量? 参考快照增量说明,如中间快照被删除,后面的快照能否使用? 如何开通快照服务? 快照和镜像的关系? 如何在保留关联实例和磁盘的情况下,删除快照跟镜像,快照、实例、镜像之间的关系? 快照和块存储、OSS对象存储是什么关系? 一块云盘能否设置多个快照策略? 快照 2.0 服务包括哪些内容? 快照有什么用途? 快照 2.0 服务支持的云盘类型? 快照数量有什么限制? 快照保留时长怎样? 打快照对块存储 I/O 性能有多少影响? 快照怎么收费? 老的自动快照策略什么时候不可用? 老的快照策略产生的快照什么时候删除? 自动快照功能细节有哪些? 用户的自定义快照和自动快照有冲突吗? 我能保留其中想要的自动快照而让系统不删除吗? 如果一个自动快照被引用(用户创建自定义镜像或者磁盘),会导致自动快照策略执行失败吗? 我如果什么都没有设置,自动快照会启动吗? 自动快照能够删除吗? 自动快照具体在什么时间创建能看到吗? 我如何区分哪些快照是自动快照和用户快照? 更换系统盘、云服务器 ECS 到期后或手动释放磁盘时,自动快照会不会释放? 未随磁盘释放和更换系统盘释放的自动快照会一直保留吗? 云服务器 ECS 到期后或手动释放磁盘时,手工快照会不会释放? 我能单独制定某几块磁盘执行或取消自动快照吗? 云服务器 ECS 有没有自动备份? 磁盘无快照是否能够回滚或数据恢复? 快照回滚能否单独回滚某个分区或部分数据? 系统盘快照回滚是否会影响数据盘? 更换系统后,快照能否回滚? 在回滚快照前,有哪些注意事项? 怎样使ECS回滚快照后同步数据? 如何通过API配置定时自定义快照? 超出预付费存储包的流量,会怎么收费? ECS镜像 Aliyun Linux 17.01 特性有哪些,有说明文档吗? 云市场镜像有哪些功能? 镜像能带来哪些便利? 目前镜像支持哪些服务器环境和应用场景? 镜像是否安全? 选择了镜像后能更换吗? 镜像安装使用过程中出问题了怎么办? Docker私有镜像库是什么? 自定义镜像如何查看数据盘? 自定义镜像,如何卸载和删除 disk table 里的数据? 如何确认已经卸载数据盘,并可以新建自定义镜像? ECS 实例释放后,自定义镜像是否还存在? ECS 实例释放后,快照是否还存在? 用于创建自定义镜像的云服务器 ECS 实例到期或释放数据后,创建的自定义镜像是否受影响?使用自定义镜像开通的云服务器 ECS 实例是否受影响? 使用自定义镜像创建的 ECS 实例是否可以更换操作系统?更换系统后原来的自定义镜像是否还可以使用? 更换系统盘时另选操作系统,是否可以使用自定义镜像? 已创建的自定义镜像,是否可以用于更换另一台云服务器 ECS 的系统盘数据? 是否可以升级自定义镜像开通的云服务器 ECS 的 CPU、内存、带宽、硬盘等? 是否可以跨地域使用自定义镜像? 包年包月云服务器 ECS 的自定义镜像,是否可以用于开通按量付费的云服务器 ECS? ECS Windows企业版和标准版区别 什么情况下需要复制镜像? 可以复制哪些镜像? 当前有哪些支持镜像复制功能的地域? 复制一个镜像大概需要多久? 复制镜像怎么收费的? 在复制镜像过程中,源镜像和目标镜像有什么限制? 怎么复制我的云账号的镜像资源到其他云账号的其他地域? 复制镜像有镜像容量限制吗? 如何购买镜像市场镜像? 按次购买的镜像的使用期限是多久? 镜像市场的镜像支持退款吗? 镜像市场商业化后,还有免费的镜像市场镜像吗? 在杭州买了一个镜像市场的镜像,能否在北京创建ECS实例或者更换系统盘? ECS实例使用镜像市场的镜像,升级和续费ECS实例,需要为镜像继续付费吗? ECS实例使用镜像市场的镜像,实例释放后,继续购买ECS实例还可以免费使用该镜像吗? 使用镜像市场镜像创建ECS实例,该实例创建一个自定义镜像,使用该自定义镜像创建ECS实例需要为该镜像付费吗? 来源于镜像市场的镜像复制到其他地域创建ECS实例,是否需要为该镜像付费? 如果把来源于镜像市场的自定义镜像共享给其他账号(B)创建ECS实例,账号B是否需要为该镜像付费? 如果使用镜像市场的镜像或者来源于镜像市场的镜像进行更换系统盘,需要付费吗? ECS实例正在使用镜像市场的镜像,进行重置系统盘需要收费吗? 怎么调用ECS API,使用镜像市场镜像或者来源镜像市场的自定义镜像或者共享镜像,创建ECS实例和更换系统盘? 如果没有购买镜像市场的镜像或者来源于镜像市场的镜像,在调用ECS API 使用该镜像创建ECS实例和更换系统盘,会报错吗? 我的ESS是自动创建机器的,并且量是不固定,设置最小值为10台,最大值为100台,那么使用镜像市场的镜像如何保证我的的需求实例能正常弹出来? 镜像市场的镜像是否支持批量购买? 如果之前使用的镜像市场的镜像,已不存在该商品(如:jxsc000010、jxsc000019),怎能保证已经设置的弹性伸缩组的机器的正常弹出? 1个product code能否支持不同region的镜像? 我买了100 product code同样值的镜像,是否可以支持在所有的地域可用? 为什么有的ECS云服务器无法选择Windows操作系统? 操作系统是否要收费? 我能否自己安装或者升级操作系统? 服务器的登录用户名密码是什么? 能否更换或升级操作系统? 操作系统是否有图形界面? 如何选择操作系统? 操作系统自带 FTP 上传吗? 每个用户最多可以获得多少个共享镜像? 每个镜像最多可以共享给多少个用户? 使用共享镜像是否占用我的镜像名额? 使用共享镜像创建实例的时候存不存在地域限制? 我曾把自己账号中的某个自定义镜像共享给其他账号,现在我可以删除这个镜像吗 我把某个自定义镜像(M)的共享账号(A)给删除了,会有什么影响? 使用共享镜像创建实例存在什么样的风险? 我把自定义镜像共享给其他账号,存在什么风险? 我能把别人共享给我的镜像再共享给他人吗? 我把镜像共享给他人,还能使用该镜像创建实例吗? ECS Windows服务器桌面分辨率过高导致VNC花屏处理方法通过 管理终端 进入服务器后,把 Windows 服务器桌面分辨率设置过高,确定后,WebVNC 出现花屏。 ECS创建自定义镜像创建服务器为何需要注释挂载项 勾选"IO优化实例"选项导致购买ECS实例时无法选择云市场镜像 如何为 Linux 服务器安装 GRUB 历史Linux镜像的问题修复方案 如何处理 CentOS DNS 解析超时? 什么是镜像市场的包年包月和按周付费镜像? 预付费镜像能与哪种 ECS 实例搭配使用? 怎么购买预付费镜像?可以单独购买吗? 预付费镜像怎么付费? 预付费镜像到期了就不能用了吗?怎么继续使用? 购买预付费镜像后,如果我不想再使用这个镜像,能要求退款吗? 退款时,费用怎么结算? 预付费镜像能转换为按量付费镜像吗? 预付费镜像与其它镜像之间能互换吗?更换后费用怎么计算? 在哪里查看并管理我购买的预付费镜像? 使用预付费镜像制作的自定义镜像会收费吗?预付费镜像过期对于自定义镜像有什么影响? ECS 实例操作系统选择说明 阿里云支持哪些 SUSE 版本? SUSE 操作系统提供哪些服务支持? ECS安全组 如何检查 TCP 80 端口是否正常工作? 什么是安全组? 为什么在购买 ECS 实例的时候选择安全组? 安全组配置错误会造成哪些影响? 专有网络实例设置安全组规则时为什么不能设置公网规则? 创建 ECS 实例时我还没创建安全组怎么办? 为什么无法访问 25 端口? 为什么我的安全组里自动添加了很多规则? 为什么有些安全组规则的优先级是 110? 为什么我在安全组里放行了 TCP 80 端口,还是无法访问 80 端口? ECS安全组被添加内网ip地址了,是怎么回事? 能说明下ECS安全组中规则的优先级执行匹配顺序吗? ECS实例安全组默认的公网规则被删除导致无法ping通,ECS 服务器无法ping通,排查防火墙、网卡IP配置无误,回滚系统后仍然无法ping通。 我刚购买了ECS实例,如何选择及配置安全组? 没有添加默认安全组访问规则-导致通过API创建的ECS实例断网,要怎么恢复? 使用ECS安全组工具撤销之前账号间互通的操作 ECS网络 带宽与上传、下载速度峰值的有什么关系? 弹性公网IP在哪里可以查看流量和带宽监控信息? 我用的是ECS Ubuntu系统,要怎么单独禁用和启动内外网卡? ECS 实例子网划分和掩码是什么? ECS 实例网络带宽是否独享? 带宽单线还是双线,电信还是网通? 5 Mbps 带宽怎么理解? 带宽的价格是多少? 不同地域的 ECS 实例之间的内网是通的吗? 为何新建的 ECS 实例就有 200 Kbps 左右入网流量? 我的 ECS 实例经常能在 Web 日志中看到大量的恶意 IP 访问我的网站,疑有刷流量和恶意访问的嫌疑,询问云盾是否有屏蔽 IP 的功能? 包月ECS新购时是否可以选择带宽按照使用流量计费? 包月ECS带宽按流量计费是如何计费的? 目前使用的固定带宽计费,是否可以转换为带宽按流量计费? 是否可以随时调整流量带宽峰值? 续费变更配置时(比如到期时间为2015年3月31日,续费一个月到4月30日),如果将包月ECS按固定带宽计费改成按流量付费计费,操作以后在未生效前(3月31日前),是否还可以升级带宽? 续费变更配置时候将包月ECS带宽按流量计费改成按固定带宽计费,为什么我的带宽服务停掉了? 如果账号没有足够余额,欠费怎么办?ECS实例也会停掉吗? 带宽流量欠费是否有短信通知? 当带宽按照流量计费欠费时,是否可以对实例进行升级 CPU、内存操作? 欠费充值后带宽是自动恢复的吗? 包月带宽转流量计费后,流量价格是多少? ECS 服务器出现了异地登录怎么办? 爱哪里可以查看云服务器 ECS 公网流量统计总和? 我的ECS 实例对外 DDoS 攻击导致被锁定了,要如何处理 ? 什么是云服务器 ECS 的入网带宽和出网带宽? ECS云服务器如何禁用公网IP? ECS 实例停止(关机)后按量付费带宽仍产生流量,ECS 实例在控制台上状态为已停止,但按量付费的带宽每小时仍会产生不小的费用,且此时 ECS 实例正在遭受攻击,云盾控制台中 DDoS 防护中 ECS 的状态为清洗中。 访问ECS服务器的网站提示“由于你访问的URL可能对网站造成安全威胁,您的访问被阻断”,这是什么原因? 服务器黑洞是什么?求科普! 如果想确认该服务器的IP信息和地理位置,要在哪里去查询? 我想知道客户端本地到ECS服务器是不是丢包,要怎么测试? 内网和公共 NTP 服务器是什么?它们两个有什么区别 我能 ping 通但端口不通,这是端口的问题吗? 如何通过防火墙策略限制对外扫描行为? 我想用手机移动端网络路由跟踪探测,可以吗? 云监控中的ECS带宽和ECS控制台中看到的带宽不一致是什么原因? 云服务器ECS三张网卡有什么区别? Ubuntu系统ECS使用“如何通过防火墙策略限制对外扫描行为”脚本之后出现无法远程、数据库连接不上。 什么业务场景需要在专有网络(VPC)类型ECS购买PublicIP? 怎么购买专有网络(VPC)类型分配 PublicIP 的 ECS? 专有网络(VPC)类型 ECS 的 PublicIP 和 EIP 的区别? 专有网络(VPC)类型ECS的 PublicIP 的可以升级带宽吗? 专有网络(VPC)类型ECS的 PublicIP 可以解绑吗? 如果购买网络(VPC)类型 ECS 的时候,没有分配公网 IP,该怎么才能分配一个公网 IP? 怎么查询专有网络(VPC)类型 ECS 的 PublicIP 的监控数据? 怎么查询专有网络(VPC)类型ECS的按流量付费的 PublicIP 的账单? 专有网络和经典网络的 PublicIP 异同? 专有网络(VPC)类型 ECS 购买 PublicIP 的付费方式? ECS API 如何通过 API / SDK 实现不同账号 ECS 实例的内网通信? ECS API绑定公网IP报错:The IP is already in use分析 ECS API修改实例带宽不能指定时间范围吗? 所在可用区不支持相应磁盘类型-导致ECS API创建实例报错 用ECS API创建实例的时候,返回如下错误信息: "Code": "InvalidDataDiskCategory.NotSupported" 如何创建有公网 IP 的 ECS 实例? 通过API或SDK查询安全组规则无法显示所有的规则,这是怎么回事? 如何通过OpenAPI创建ECS实例的流程状态描述? 数据传输服务DTS实时同步功能,我想只同步表结构,要怎么做? 如何获取控制台RequestId? 阿里云中国站部分地域实例什么时候降价? ECS Linux 实例怎么设置 Locale 变量? 克隆ECS服务器的方法 其它国家和地区是否都可以提供经典网络和专有网络的类型呢?网络类型是否可以变更呢? 各个地域的网络覆盖范围是什么呢? 其他相关问题 不同地域的实例,价格一样吗? 如果我使用其它国家和地区的实例搭建了一个网站,我的用户将通过域名访问网站,这个域名需要 ICP 备案吗? 为什么有些实例规格只能在中国大陆地域购买,而在其它国家和地区无法购买? 可否将中国大陆地域的实例迁移到其它国家和地区呢? 如何在其它国家和地区部署 ECS 实例? 我要买其它国家和地区的实例,需要单独申请一个国际站账号吗? ——更多ECS相关问题—— · ECS故障处理百问合集
问问小秘 2020-01-02 15:49:17 0 浏览量 回答数 0

回答

iperf,具体要纤细直接去看文档, 简单给你列条测试:(TCP和UDP知只是两种传输数据的协议) 1)TCP测试    服务器执行:./iperf -s -i 1 -w 1M '这裏是指定windows如果是 iperf -s则windwos默认大小为8kbyte/s    客户端执行:./iperf -c host -i 1 -w 1M   其中-w表示TCP window size,host需替换成服务器地址。    2)UDP测试    服务器执行:./iperf -u -s    客户端执行:./iperf -u -c 10.255.255.251 -b 900M -i 1 -w 1M -t 60   其中-b表示使用多少带宽,1G的线路你可以使用900M进行测试。 不给分不给力 连接速度是个很怪的概念。我们通常用连接带宽和网络延迟来表达网络连接的状态。 带宽可以用一端建立FTP服务器,另一端下载来测试。网络延时可以用PING命令来测试。 希望能帮到你。 行的。 家庭或小型办公室,如果有两台或更多的计算机,很自然地希望将他们组成一个网络。为方便叙述,以下约定将其称为局域网。在家庭环境下,可用这个网络来共享资源、玩那些需要多人参与的游戏、共用一个调制解调器享用Internet连接等等。办公室中,利用这样的网络,主要解决共享外设如打印机等,此外,办公室局域网也是多人协作工作的基础设施。 别看这样小的网络工程,在过去也是需要专业人员来进行组网配置的。那时,大部分操作的都是手工的,一般的用户都不具备相应的知识和经验。正好属于"高不成低不就"的情况,自然限制了它的发展。Windows XP的出现,打破了这种局面,这依赖它内建有强大的网络支持功能和方便的向导。用户完成物理连接后,运行连接向导,可以自己探测出网络硬件、安装相应的驱动程序或协议,并指导用户,完成所有的配置步骤。 本文介绍两种在Windows XP操作系统下的组网方案,并介绍Windows XP用于局域网中的各种很有特色的功能。 一. 目标: 组成家庭局域网:对外,可以连接Internet,允许局域网内的各个计算机共享连接。对内,可以共享网络资源和设备。 二. 采用什么网络形式? 家庭网中的计算机可能有桌面机或便携机,例如掌上电脑或笔记本机等,也可能出现各种传输介质的接口,所以网络形式上,不宜都采用有线网络,无线接口是必须考虑的。但如果可以明确定位在纯粹的有线网上,也可不设无线接口。所以,这里提供两种方案: 1. 有线与无线混合。 2. 有线。 三. 网络硬件选择 网络适配器(网卡)可采用PCI、PC或PCMCIA接口的卡(后两者多用在便携式机或笔记本机上),Windows XP也支持用USB接口的网络适配器。究竟采用那种适配器,取决于接入网络中的计算机。无论那种适配器,都需要注意与现有计算机的接口以及HUB的协调一致,USB接口的适配器可能适应性更强一些,但对于较旧的计算机,又需要注意它是否支持USB接口。 网络连接线,常用的有同轴电缆和双绞线,这都是大家熟悉的东西,不多解释。究竟采用哪一种,就看你怎么想了。 四. 可采用的网络结构和介质 以太结构:这种结构在办公室或商业用户中最为流行,熟悉的人也很多,技术资料和维护人员也容易找到,所以不多赘述。 电话线连接:这种形式主要的特色是成本很低,物理连接也很简单,适用于大部分的家庭用户。 无线电波:利用电磁波信号来传输信号,可以不用任何连线来进行通讯,并可以在移动中使用。但需要在每台计算机上加装无线适配器,成本高是肯定了。在我国,无线形式用在计算机网络通讯的还较少。在美国,用于无线网络的是一个称为IEEE 802.11b的标准协议,用于计算机近距离网络通讯。在该协议支持下,可达到的网速是11 Mbps。 五. 方案之一 这是一个有线、无线混合方案,具体结构可以参看图1。这个例子中,用4台计算机组成了一个混合网络,PC1是主机,它与外部连接有3个通路: 1. 与Internet接连的调制解调器:用于整个网络的各个计算机共享上网之用。 2. 无线适配器:用于和本网络内的无线设备之间的通讯。 3. HUB:用于"带动"本网络内的下游计算机。 该方案中的PC1、PC2机,必须用Windows XP操作系统,有线部分采用的是以太网结构连接。图中的HPNA是home phoneline network adaptor的缩写,表示家庭电话线网络适配器。图中的PC3和移动计算机,并不要求非使用Windows XP操作系统不可,别的windows版本也行。移动计算机和主机之间的网络连接利用的是无线形式。 如果希望建立混合网络,这种方案已经具备典型的功能,并且不需要花费很大就可以扩充网络规模。 关于连通操作: 图1显示的结构只能表示物理连接关系,物理连接完成后,还需要进行连通操作,网络才可真正投入使用。连通操作包括局域网内部各个计算机之间的连通,和局域网与Internet之间的连通。前者连通建立的步骤如下: 1. 鼠标点击 开始,进入控制面板,点击"Network and Internet Connections网络和Internet连接",选择网络连接( Network Connections),进行下一步。 2. 选择进行"两个或多个LAN的连接" 3. 右键点击一个连接. 4. 确定完成连接任务. 局域网之内的连通操作就完成了。 再说局域网与Internet之间的连通,这种情况主要考虑速度与成本两方面的兼顾。多机上网,最省事的办法是每个机器占据一条独立的电话线,但这不是一般用户能承受起的,资源的浪费也太大。另一个办法,可以使用住宅网关,但这样成本需要增加,不是最佳途径。比较好的方法是使用一个计算机作为主机服务器。这不仅技术上可行,还有很多别的优点,如: ①:由于Windows XP有内建的防火墙,主机介于Internet和终端机之间,可以利用主机的防火墙保护局域网中的分机免受来自Internet的攻击。 ②:主机是"隐匿在" Internet和局域网之间的,充当了网关的脚色,在分机上,用户感觉好像自己是直接连在Interne上一样,察觉不到中间还有主机存在。特别是可以使局域网中的每台计算机同时上网。大大减少了设备投资。 ③:除主机必须使用Windows XP操作系统之外,局域网内的计算机可使用早期的windows版本。 ④:如果局域网中需要使用不同的媒体(例如有线和无线混合),可以利用Windows XP作为过渡的网桥。 ⑤:虽然有网络资源和设备的共享功能,但也可以限制别人对私有文件和数据的访问,特别是将文件存放在主机上的时候,更具有这种优势可用。 ⑥:利用"万能即插即用"功能,可以随时扩充局域网的规模。 六. 方案之二 下面是这种方案的结构示意图。该方案适用于小型办公室。与上一个方案比较,主要是去掉了无线部分,主机与分机之间不采用电话线连接,而是采用了电缆或双绞线连接。所有分机都通过一个HUB与主机连接到Internet上,并可以支持打印机共享。这其实就是最常见的那种局域网的结构。 该方案完成物理连接之后,还需要进行下列操作: 1. 打开网络连接文件夹或找到网络连接的图标. 2. 右键点击"connection to the Internet you want to share(共享Internet连接)"然后再右键点击"Properties(属性)" 3. 选择"Advanced(高级)"任务条。 4. 选择"Allow other networkusers to connect through this computer′s Internet connection(允许另外用户通过这个计算机连接到Internet)"检查框,并选定。 5. 点击 OK.结束操作。 启用Windows XP的防火墙,必须进行设置,不设置是不起作用的。设置过程: 1.打开网络连接文件夹或找到网络连接的图标. 2.右键点击"connection to the Internet you want to share(共享Internet连接)"然后再右键点击"Properties(属性)" 3.选择"Advanced(高级)"任务条。 4. 选择"Protect my computer and network by limitingor preventing access to this computer from the Internet(利用这个计算机限制从Internet进入的访问并保护我的计算机和网络" ,在其下面有一个Internet连接防火墙的检查框,鼠标点击选定。 5. 点击 OK.结束操作。 七. 几点说明 A.主机必须采用Windows XP操作系统,局域网内的计算机可以使用早一些的windows版本,如:windows98、windows ME、windows2000等等。 B.这里提供的是典型的情况,想扩充网络规模基本上可以照此叠加。 C.本文是依据英文测试版本进行的试验,不能保证将来的正式版本。特别是中文正式版本的性能与此完全一致。 参考资料: 创建局域网及配置管理 一.概念: (一).局域网的概念: 局域网做为网络的组成部分,发挥了不可忽视的作用。我们可以用Windows 9X把众多的计算机联系在一起,组成一个局域网,在这个局域网中,我们可以在它们之间共享程序、文档等各种资源,而不必再来回传递软盘;还可以通过网络使多台计算机共享同一硬件,如打印机、调制解调器等;同时我们也可以通过网络使用计算机发送和接收传真,方便快捷而且经济。 局域网是一个范围可大可小、简单的只有2台运行着Windows95的计算机连网(以工作组方式工作),也可以是幅员辽阔的高速ATM网和以太网混合使用、运行多种平台的大型企业。 (二).网络的类型: 1、按网络的地理位置分类 a.局域网(LAN):一般限定在较小的区域内,小于10km的范围,通常采用有线的方式连接起来 b.城域网(MAN):规模局限在一座城市的范围内,10~100km的区域。 c.广域网(WAN):网络跨越国界、洲界,甚至全球范围。 目前局域网和广域网是网络的热点。局域网是组成其他两种类型网络的基础,城域网一般都加入了广域网。广域网的典型代表是Internet网。 (二).硬件指南:网络硬件设备 组成小型局域网的主要硬件设备有网卡、集线器等网络传输介质和中继器、网桥、路由器、网关等网络互连设备。以下主要介绍网卡、集线器等网络传输介质和中继器、网桥、路由器、网关等局域网互连设备。 1.网卡 网卡(Network Interface Card,NIC)也叫网络适配器,是连接计算机与网络的硬件设备。网卡插在计算机或服务器扩展槽中,通过网络线(如双绞线、同轴电缆或光纤)与网络交换数据、共享资源。 Realtek 10/100M,这是我们实例中所使用的网卡 二.组网: 返回顶部 (一).硬件配置:服务器:普通PC机,主板:intel 815,硬盘:迈拓40G,CPU:PIII933,内存:512M ,显示器:ACER。 其他:双绞线一箱(300m),16口HUB一个,RJ45头32个,网卡:Realtek 10/100M 16块。。 由于服务器需要安装两块网卡来用SyGate维护管理,两个网卡的设置请参阅如下的动画。 三.网络维护: 返回顶部 SyGate 4.0是一种支持多用户访问因特网的软件,并且是只通过一台计算机,共享因特网帐号,达到上网的目的。使用SyGate 4.0,若干个用户能同时通过一个小型网络(包括您的笔记本电脑),迅速、快捷、经济地访问因特网。SyGate 4.0能在目前诸多流行的操作系统上运行,譬如:Windows95、Windows98、Windows NT, Windows2000等操作系统;同时,SyGate 4.0还支持多数的因特网连接方式,这包括:调制解调器(模拟线路)拨入、ISDN(综合业务数字网)、线缆调制解调器(Cable Modem)、ADSL以及DirectPC等方式。 SyGate 4.0具有以下优势: 易于安装 SyGate在数分钟之内便可以安装完成,并且通常不需要其他外加的设置。和其他代理服务器软件(proxy server)不同的是,SyGate仅安装Server便可以了。 易于使用 SyGate拥有直观的图形化界面,懂得操作Windows的人员均会操作。SyGate启动后便在后台运行,不需要人工的干预。当SyGate检测到局域网内有上网 要求时,它能自动地连接到因特网上,免去了每次需要手工拨号的烦恼。用户可以不间断地、透明地浏览因特网、收发电子邮件、聊天、使用FTP以及操作其他的小程序等等。局域网内非Windows用户,如Macintosh、Solaris和Linux,均能通过TCP/IP协议上网。 四.Windows 对等网创建与维护 返回顶部 (一).建网软件要求 在一个局域网中,Windows 95、98、NT和2000等操作系统可以并存。当然,即使你的电脑是在DOS下面跑的,也可以实现联网。由于Windows操作系统才是广泛应用的系统,本文不准备讨论DOS联网。 建网硬件要求 要组建电脑网络,无疑需要能将电脑连在一起的硬件设备。最简单的办法是,使用特制的电缆,将两台电脑的并口或者串口联接起来,通过Windows的“直接电缆连接”实现联网。这种联接电缆可以自制,也可以到电脑城购买。其缺点是,只能联接两台电脑,联网距离较短、方式古板,实际应用很不方便,通常要求将一台电脑用作服务器,另外一台用作客户端来实现联网。 但更为普遍采用的是网卡加网线的联网方式。从插槽上分,网卡有ISA和PCI两种;从速度上分,网卡又有10MB和100MB甚至传输速度更高的网卡。要求不高的话,一块PCI 10MB网卡就够用了。 五.疑难解答 返回顶部 (一).网卡安装故障检查方法 如果无法安装网卡驱动程序或安装网卡后无法登录网络,请按下述步骤检查处理: 1.选择“控制面板”/“系统”图标,打开“系统属性”窗口; 2.在“系统属性”窗口的“设备管理”标签的“按类型查看设备列表”中,双击“网络适配器”条目前的“ ”号将其展开,其下应当列出当前网卡; 3.如果“设备管理”标签中没有“网络适配器”条目或当前网卡前有一“X”号,说明系统没能识别网卡,可能产生的原因有网卡驱动程序安装不当、网卡硬件安装不当、网卡硬件故障等等; 参考 LAN(局域网)一词指位于同一区域甚至同一建筑物内的中小型计算机网络,字典上的解释是:将计算机和字处理机等电子办公设备连接在一起构成的办公室或建筑物内的网络系统。相信大多数人都在学校里、当地图书馆或朋友家里。接触过局域网。 随着宽带互联网日益流行,许多人家里都有几台计算机,家庭局域网正在形成规范。通过局域网共享宽带互联网访问可降低成本,不需要每台计算机都连接调制解调器和单独的IP地址。但如何构建一个家庭局域网共享宽带互联网访问呢? 网络带宽表示 网络带宽以兆位秒Mbps测量,通常不用兆字节秒MBps表示。一个字节有八个二进制位组成,多数人都熟悉MBps。当前局域网多为10base-T(10Mbps或1.25MBps)和100base-TX(100Mbps或12.5MBps)的以太网,使用类似标准电话线的RJ-45接口,通过网络电缆把集线器(或路由器、交换器)和计算机连接起来就构成了以太网。 网络布线 开始组建家庭局域网之前,应多少了解一些可用网络电缆的区别。这取决你家中PC机需要安排的位置,因为可能需要在墙上打眼,以穿过五类网络电缆。对家里地方不宽敞的人,这可能是令人畏缩的任务,甚至不太可能。如果你想避免穿墙打眼的麻烦,无线局域网也很方便,但应注意,无线局域网通常速度不够快,花费也高的多。另一种选择可考虑10Mbps电话线套件,利用你现成的电话线在计算机之间传送数据,可购买D-Link,Linksys,3Com和Netgear等公司的产品。不想采用无线局域网的人,可选择五类双绞线网络电缆。如果对电缆不熟悉,下面列出了电子工业协会EIA关于电缆分类的解释。根据电缆的速度和质量,可将电缆分为六类: 一、二类电缆:数据传输速度低于10Mbps(普通电话线) 三类电缆:数据传输速度达16 Mbps 四类电缆:数据传输速度达20 Mbps 五类电缆:数据传输速度达100 Mbps 五类电缆增强:数据传输速度达200 Mbps 六类电缆:数据传输速度达600 Mbps 五类电缆十分普通,连接以太网费用也较低。如果你计划穿墙打眼或使用超过50英尺五类电缆,应购买细电缆,自己动手将RJ-45插头接在电缆两端。注意,别忘了电缆穿过墙之后再接RI-45插头。 连接RJ-45插头 五类电缆连接RJ-45插头并不困难,但需要专用连接工具,可从当地五金商店买一把或从朋友处借用。操作时小心剪掉约1/4英寸电缆外塑料皮,露出电缆里面8根彩色线,注意放入RJ-45连接器里面电缆线的次序: 1、白绿 2、绿 3、白橙 4、兰 5、白兰 6、橙 7、白橙 8、棕 应仔细展开8条彩色编码线,放入RJ-45插孔中,用专用工具压紧。有条件时可用RJ-45测试器验证一下是否连接可靠,以免将来麻烦。 需要的硬件 首先确保每台计算机里都安装了网卡,100base-TX或10base-T网卡,型号、尺寸任意。注意,一般选PCI网卡,各网卡速率应一致。100base-TX网卡数据传输率较高,适合于大量数据传输,如数字电影或其它大的多媒体文件。 组建局域网需要使用集线器,交换器或内置集线器的路由器,集线器只不过用于将你所有的计算机连到局域网上。如果你只有2台计算机并且不打算增加数量,可以用一段电缆直接将2台计算机连起来,缺点是你试图共享宽带互联网访问仍然有麻烦。如果你想多台计算机访问宽带互联网,使用路由器是个好主意,可以选购Netgaer,D-Link和Linksys等著名网络公司的产品。 典型的以太网使用集线器或交换器,两种设备都有单独的连接器,用于将每台计算机连接到局域网上。集线器与交换器的主要差别在于吞吐量,集线器在所有在用的端口间分配吞吐量,因此4端口100base-TX集线器每个在用的端口只有25Mbps吞吐量。交换器更贵些,但允许每个端口全速运行。 假如你准备设置一个只有单个宽带互联网连接的局域网,应确保你的DSL或有线电缆供应商给你提供的是外置调制解调器。多数外置调制解调器通过网卡连接到你的计算机,你可把具有调制解调器的那台计算机设置为路由器,虽然这并不推荐。作为一个例子,你将电话插头接入宽带调制解调器,然后经RJ-45(双绞线)电缆连至集线器/交换器/路由器,从此,你的任一台计算机都可连接到互联网上。 设置Windows网络 确保你准备在局域网上使用的每台计算机,都有足够的五类电缆已连到了集线器或路由器。现在你可能已安装了适当的网卡以及相应的驱动程序,右击“网络邻居”,选择“属性”,可以看到当前已经安装的协议和网卡。要设置网络,应确保所用的网卡已安装了TCP/IP协议。如果你使用的微软操作系统是Windows98或更高版本,网络设置相当简单,Windows网络作为操作系统的基本选项之一应该已经安装了。如果你至少在一台计算机上使用的是Windows Me,你可运行家庭网络向导,将一步步引导你完成设置。记住,你需要使用相同的组名设置你网络中的每台计算机。在Windows95/98中,需要进入网络属性,并确保所有设置为缺省。你的互联网服务供应商ISP可能已经告诉你,如何设置TCP/IP,怎样连接到互联网。你可能是静态IP地址,或是动态IP地址,取决于你的ISP。静态IP地址设置需要的时间稍长一点,如果你想给互联网用户提供服务,如FTP,Web服务器或任何其它服务,静态IP地址是不错的。如果你分配的是IP地址,你的TCP/IP协议属性获得的应是自动选择的IP地址。要检查你的计算机是否已被集线器/路由器分配了一个IP地址,可使用Windows TP配置(进入开始 传输大点的东西,用iostat 1 查看io 来源于网络,供您参考
保持可爱mmm 2019-12-02 02:20:25 0 浏览量 回答数 0

回答

Checkpoint介绍 checkpoint机制是Flink可靠性的基石,可以保证Flink集群在某个算子因为某些原因(如 异常退出)出现故障时,能够将整个应用流图的状态恢复到故障之前的某一状态,保 证应用流图状态的一致性。Flink的checkpoint机制原理来自“Chandy-Lamport algorithm”算法。 每个需要checkpoint的应用在启动时,Flink的JobManager为其创建一个 CheckpointCoordinator,CheckpointCoordinator全权负责本应用的快照制作。 CheckpointCoordinator周期性的向该流应用的所有source算子发送barrier。 2.当某个source算子收到一个barrier时,便暂停数据处理过程,然后将自己的当前状 态制作成快照,并保存到指定的持久化存储中,最后向CheckpointCoordinator报告 自己快照制作情况,同时向自身所有下游算子广播该barrier,恢复数据处理 3.下游算子收到barrier之后,会暂停自己的数据处理过程,然后将自身的相关状态制作成快照,并保存到指定的持久化存储中,最后向CheckpointCoordinator报告自身 快照情况,同时向自身所有下游算子广播该barrier,恢复数据处理。 每个算子按照步骤3不断制作快照并向下游广播,直到最后barrier传递到sink算子,快照制作完成。 当CheckpointCoordinator收到所有算子的报告之后,认为该周期的快照制作成功; 否则,如果在规定的时间内没有收到所有算子的报告,则认为本周期快照制作失败 如果一个算子有两个输入源,则暂时阻塞先收到barrier的输入源,等到第二个输入源相 同编号的barrier到来时,再制作自身快照并向下游广播该barrier。具体如下图所示 两个输入源 checkpoint 过程 假设算子C有A和B两个输入源 在第i个快照周期中,由于某些原因(如处理时延、网络时延等)输入源A发出的 barrier先到来,这时算子C暂时将输入源A的输入通道阻塞,仅收输入源B的数据。 当输入源B发出的barrier到来时,算子C制作自身快照并向CheckpointCoordinator报 告自身的快照制作情况,然后将两个barrier合并为一个,向下游所有的算子广播。 当由于某些原因出现故障时,CheckpointCoordinator通知流图上所有算子统一恢复到某 个周期的checkpoint状态,然后恢复数据流处理。分布式checkpoint机制保证了数据仅被 处理一次(Exactly Once)。 持久化存储 目前,Checkpoint持久化存储可以使用如下三种: MemStateBackend 该持久化存储主要将快照数据保存到JobManager的内存中,仅适合作为测试以及 快照的数据量非常小时使用,并不推荐用作大规模商业部署。 FsStateBackend 该持久化存储主要将快照数据保存到文件系统中,目前支持的文件系统主要是 HDFS和本地文件。如果使用HDFS,则初始化FsStateBackend时,需要传入以 “hdfs://”开头的路径(即: new FsStateBackend("hdfs:///hacluster/checkpoint")), 如果使用本地文件,则需要传入以“file://”开头的路径(即:new FsStateBackend("file:///Data"))。在分布式情况下,不推荐使用本地文件。如果某 个算子在节点A上失败,在节点B上恢复,使用本地文件时,在B上无法读取节点 A上的数据,导致状态恢复失败。 RocksDBStateBackend RocksDBStatBackend介于本地文件和HDFS之间,平时使用RocksDB的功能,将数 据持久化到本地文件中,当制作快照时,将本地数据制作成快照,并持久化到 FsStateBackend中(FsStateBackend不必用户特别指明,只需在初始化时传入HDFS 或本地路径即可,如new RocksDBStateBackend("hdfs:///hacluster/checkpoint")或new RocksDBStateBackend("file:///Data"))。 如果用户使用自定义窗口(window),不推荐用户使用RocksDBStateBackend。在自 定义窗口中,状态以ListState的形式保存在StatBackend中,如果一个key值中有多 个value值,则RocksDB读取该种ListState非常缓慢,影响性能。用户可以根据应用 的具体情况选择FsStateBackend+HDFS或RocksStateBackend+HDFS。 语法 ​ val env = StreamExecutionEnvironment.getExecutionEnvironment() // start a checkpoint every 1000 ms env.enableCheckpointing(1000) // advanced options: // 设置checkpoint的执行模式,最多执行一次或者至少执行一次 env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE) // 设置checkpoint的超时时间 env.getCheckpointConfig.setCheckpointTimeout(60000) // 如果在只做快照过程中出现错误,是否让整体任务失败:true是 false不是 env.getCheckpointConfig.setFailTasksOnCheckpointingErrors(false) //设置同一时间有多少 个checkpoint可以同时执行 env.getCheckpointConfig.setMaxConcurrentCheckpoints(1) ​ 例子 需求 假定用户需要每隔1秒钟需要统计4秒中窗口中数据的量,然后对统计的结果值进行checkpoint处理 数据规划 使用自定义算子每秒钟产生大约10000条数据。 
 产生的数据为一个四元组(Long,String,String,Integer)—------(id,name,info,count)。 
 数据经统计后,统计结果打印到终端输出。 
 打印输出的结果为Long类型的数据。 
 开发思路 
 source算子每隔1秒钟发送10000条数据,并注入到Window算子中。 window算子每隔1秒钟统计一次最近4秒钟内数据数量。 每隔1秒钟将统计结果打印到终端 每隔6秒钟触发一次checkpoint,然后将checkpoint的结果保存到HDFS中。 //发送数据形式 case class SEvent(id: Long, name: String, info: String, count: Int) class SEventSourceWithChk extends RichSourceFunction[SEvent]{ private var count = 0L private var isRunning = true private val alphabet = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWZYX0987654321" // 任务取消时调用 override def cancel(): Unit = { isRunning = false } //// source算子的逻辑,即:每秒钟向流图中注入10000个元组 override def run(sourceContext: SourceContext[SEvent]): Unit = { while(isRunning) { for (i <- 0 until 10000) { sourceContext.collect(SEvent(1, "hello-"+count, alphabet,1)) count += 1L } Thread.sleep(1000) } } } /** 该段代码是流图定义代码,具体实现业务流程,另外,代码中窗口的触发时间使 用了event time。 */ object FlinkEventTimeAPIChkMain { def main(args: Array[String]): Unit ={ val env = StreamExecutionEnvironment.getExecutionEnvironment env.setStateBackend(new FsStateBackend("hdfs://hadoop01:9000/flink-checkpoint/checkpoint/")) env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE) env.getCheckpointConfig.setCheckpointInterval(6000) env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) // 应用逻辑 val source: DataStream[SEvent] = env.addSource(new SEventSourceWithChk) source.assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks[SEvent] { // 设置watermark override def getCurrentWatermark: Watermark = { new Watermark(System.currentTimeMillis()) } // 给每个元组打上时间戳 override def extractTimestamp(t: SEvent, l: Long): Long = { System.currentTimeMillis() } }) .keyBy(0) .window(SlidingEventTimeWindows.of(Time.seconds(4), Time.seconds(1))) .apply(new WindowStatisticWithChk) .print() env.execute() } } //该数据在算子制作快照时用于保存到目前为止算子记录的数据条数。 // 用户自定义状态 class UDFState extends Serializable{ private var count = 0L // 设置用户自定义状态 def setState(s: Long) = count = s // 获取用户自定状态 def getState = count } //该段代码是window算子的代码,每当触发计算时统计窗口中元组数量。 class WindowStatisticWithChk extends WindowFunction[SEvent, Long, Tuple, TimeWindow] with ListCheckpointed[UDFState]{ private var total = 0L // window算子的实现逻辑,即:统计window中元组的数量 override def apply(key: Tuple, window: TimeWindow, input: Iterable[SEvent], out: Collector[Long]): Unit = { var count = 0L for (event <- input) { count += 1L } total += count out.collect(count) } // 从自定义快照中恢复状态 override def restoreState(state: util.List[UDFState]): Unit = { val udfState = state.get(0) total = udfState.getState } // 制作自定义状态快照 override def snapshotState(checkpointId: Long, timestamp: Long): util.List[UDFState] = { val udfList: util.ArrayList[UDFState] = new util.ArrayList[UDFState] val udfState = new UDFState udfState.setState(total) udfList.add(udfState) udfList } } flink-SQL Table API和SQL捆绑在flink-table Maven工件中。必须将以下依赖项添加到你的项目才能使用Table API和SQL: org.apache.flink flink-table_2.11 1.5.0 另外,你需要为Flink的Scala批处理或流式API添加依赖项。对于批量查询,您需要添加: org.apache.flink flink-scala_2.11 1.5.0 Table API和SQL程序的结构 Flink的批处理和流处理的Table API和SQL程序遵循相同的模式; 所以我们只需要使用一种来演示即可 要想执行flink的SQL语句,首先需要获取SQL的执行环境: 两种方式(batch和streaming): // *************** // STREAMING QUERY // *************** val sEnv = StreamExecutionEnvironment.getExecutionEnvironment // create a TableEnvironment for streaming queries val sTableEnv = TableEnvironment.getTableEnvironment(sEnv) // *********** // BATCH QUERY // *********** val bEnv = ExecutionEnvironment.getExecutionEnvironment // create a TableEnvironment for batch queries val bTableEnv = TableEnvironment.getTableEnvironment(bEnv) 通过getTableEnvironment可以获取TableEnviromment;这个TableEnviromment是Table API和SQL集成的核心概念。它负责: 在内部目录中注册一个表 注册外部目录 执行SQL查询 注册用户定义的(标量,表格或聚合)函数 转换DataStream或DataSet成Table 持有一个ExecutionEnvironment或一个参考StreamExecutionEnvironment 在内部目录中注册一个表 TableEnvironment维护一个按名称注册的表的目录。有两种类型的表格,输入表格和输出表格。 输入表可以在Table API和SQL查询中引用并提供输入数据。输出表可用于将表API或SQL查询的结果发送到外部系统 输入表可以从各种来源注册: 现有Table对象,通常是表API或SQL查询的结果。 TableSource,它访问外部数据,例如文件,数据库或消息传递系统。 DataStream或DataSet来自DataStream或DataSet程序。 输出表可以使用注册TableSink。 注册一个表 // get a TableEnvironment val tableEnv = TableEnvironment.getTableEnvironment(env) // register the Table projTable as table "projectedX" tableEnv.registerTable("projectedTable", projTable) // Table is the result of a simple projection query val projTable: Table = tableEnv.scan("projectedTable ").select(...) 注册一个tableSource TableSource提供对存储在诸如数据库(MySQL,HBase等),具有特定编码(CSV,Apache [Parquet,Avro,ORC],...)的文件的存储系统中的外部数据的访问或者消息传送系统(Apache Kafka,RabbitMQ,...) // get a TableEnvironment val tableEnv = TableEnvironment.getTableEnvironment(env) // create a TableSource val csvSource: TableSource = new CsvTableSource("/path/to/file", ...) // register the TableSource as table "CsvTable" tableEnv.registerTableSource("CsvTable", csvSource) 注册一个tableSink 注册TableSink可用于将表API或SQL查询的结果发送到外部存储系统,如数据库,键值存储,消息队列或文件系统(使用不同的编码,例如CSV,Apache [Parquet ,Avro,ORC],...) // get a TableEnvironment val tableEnv = TableEnvironment.getTableEnvironment(env) // create a TableSink val csvSink: TableSink = new CsvTableSink("/path/to/file", ...) // define the field names and types val fieldNames: Array[String] = Array("a", "b", "c") val fieldTypes: Array[TypeInformation[_]] = Array(Types.INT, Types.STRING, Types.LONG) // register the TableSink as table "CsvSinkTable" tableEnv.registerTableSink("CsvSinkTable", fieldNames, fieldTypes, csvSink) 例子 //创建batch执行环境 val env = ExecutionEnvironment.getExecutionEnvironment //创建table环境用于batch查询 val tableEnvironment = TableEnvironment.getTableEnvironment(env) //加载外部数据 val csvTableSource = CsvTableSource.builder() .path("data1.csv")//文件路径 .field("id" , Types.INT)//第一列数据 .field("name" , Types.STRING)//第二列数据 .field("age" , Types.INT)//第三列数据 .fieldDelimiter(",")//列分隔符,默认是"," .lineDelimiter("\n")//换行符 .ignoreFirstLine()//忽略第一行 .ignoreParseErrors()//忽略解析错误 .build() //将外部数据构建成表 tableEnvironment.registerTableSource("tableA" , csvTableSource) //TODO 1:使用table方式查询数据 val table = tableEnvironment.scan("tableA").select("id , name , age").filter("name == 'lisi'") //将数据写出去 table.writeToSink(new CsvTableSink("bbb" , "," , 1 , FileSystem.WriteMode.OVERWRITE)) //TODO 2:使用sql方式 // val sqlResult = tableEnvironment.sqlQuery("select id,name,age from tableA where id > 0 order by id limit 2") //// //将数据写出去 // sqlResult.writeToSink(new CsvTableSink("aaaaaa.csv", ",", 1, FileSystem.WriteMode.OVERWRITE)) able和DataStream和DataSet的集成 1:将DataStream或DataSet转换为表格 在上面的例子讲解中,直接使用的是:registerTableSource注册表 对于flink来说,还有更灵活的方式:比如直接注册DataStream或者DataSet转换为一张表。 然后DataStream或者DataSet就相当于表,这样可以继续使用SQL来操作流或者批次的数据 语法: // get TableEnvironment // registration of a DataSet is equivalent Env:DataStream val tableEnv = TableEnvironment.getTableEnvironment(env) val stream: DataStream[(Long, String)] = ... // register the DataStream as Table "myTable" with fields "f0", "f1" tableEnv.registerDataStream("myTable", stream) 例子 object SQLToDataSetAndStreamSet { def main(args: Array[String]): Unit = { // set up execution environment val env = StreamExecutionEnvironment.getExecutionEnvironment val tEnv = TableEnvironment.getTableEnvironment(env) //构造数据 val orderA: DataStream[Order] = env.fromCollection(Seq( Order(1L, "beer", 3), Order(1L, "diaper", 4), Order(3L, "rubber", 2))) val orderB: DataStream[Order] = env.fromCollection(Seq( Order(2L, "pen", 3), Order(2L, "rubber", 3), Order(4L, "beer", 1))) // 根据数据注册表 tEnv.registerDataStream("OrderA", orderA) tEnv.registerDataStream("OrderB", orderB) // union the two tables val result = tEnv.sqlQuery( "SELECT * FROM OrderA WHERE amount > 2 UNION ALL " + "SELECT * FROM OrderB WHERE amount < 2") result.writeToSink(new CsvTableSink("ccc" , "," , 1 , FileSystem.WriteMode.OVERWRITE)) env.execute() } } case class Order(user: Long, product: String, amount: Int) 将表转换为DataStream或DataSet A Table可以转换成a DataStream或DataSet。通过这种方式,可以在Table API或SQL查询的结果上运行自定义的DataStream或DataSet程序 1:将表转换为DataStream 有两种模式可以将 Table转换为DataStream: 1:Append Mode 将一个表附加到流上 2:Retract Mode 将表转换为流 语法格式: // get TableEnvironment. // registration of a DataSet is equivalent // ge val tableEnv = TableEnvironment.getTableEnvironment(env) // Table with two fields (String name, Integer age) val table: Table = ... // convert the Table into an append DataStream of Row val dsRow: DataStream[Row] = tableEnv.toAppendStreamRow // convert the Table into an append DataStream of Tuple2[String, Int] val dsTuple: DataStream[(String, Int)] dsTuple = tableEnv.toAppendStream(String, Int) // convert the Table into a retract DataStream of Row. // A retract stream of type X is a DataStream[(Boolean, X)]. // The boolean field indicates the type of the change. // True is INSERT, false is DELETE. val retractStream: DataStream[(Boolean, Row)] = tableEnv.toRetractStreamRow 例子: object TableTODataSet_DataStream { def main(args: Array[String]): Unit = { //构造数据,转换为table val data = List( Peoject(1L, 1, "Hello"), Peoject(2L, 2, "Hello"), Peoject(3L, 3, "Hello"), Peoject(4L, 4, "Hello"), Peoject(5L, 5, "Hello"), Peoject(6L, 6, "Hello"), Peoject(7L, 7, "Hello World"), Peoject(8L, 8, "Hello World"), Peoject(8L, 8, "Hello World"), Peoject(20L, 20, "Hello World")) val env = StreamExecutionEnvironment.getExecutionEnvironment env.setParallelism(1) val tEnv = TableEnvironment.getTableEnvironment(env) val stream = env.fromCollection(data) val table: Table = tEnv.fromDataStream(stream) //TODO 将table转换为DataStream----[数控等离子切割机](http://www.158cnc.com)[http://www.158cnc.com](http://www.158cnc.com)将一个表附加到流上Append Mode val appendStream: DataStream[Peoject] = tEnv.toAppendStream[Peoject](table) //TODO 将表转换为流Retract Mode true代表添加消息,false代表撤销消息 val retractStream: DataStream[(Boolean, Peoject)] = tEnv.toRetractStream[Peoject](table) retractStream.print() env.execute() } } case class Peoject(user: Long, index: Int, content: String) 将表转换为DataSet 语法格式 // get TableEnvironment // registration of a DataSet is equivalent val tableEnv = TableEnvironment.getTableEnvironment(env) // Table with two fields (String name, Integer age) val table: Table = ... // convert the Table into a DataSet of Row val dsRow: DataSet[Row] = tableEnv.toDataSetRow // convert the Table into a DataSet of Tuple2[String, Int] val dsTuple: DataSet[(String, Int)] = tableEnv.toDataSet(String, Int) 例子: case class Peoject(user: Long, index: Int, content: String) object TableTODataSet{ def main(args: Array[String]): Unit = { //构造数据,转换为table val data = List( Peoject(1L, 1, "Hello"), Peoject(2L, 2, "Hello"), Peoject(3L, 3, "Hello"), Peoject(4L, 4, "Hello"), Peoject(5L, 5, "Hello"), Peoject(6L, 6, "Hello"), Peoject(7L, 7, "Hello World"), Peoject(8L, 8, "Hello World"), Peoject(8L, 8, "Hello World"), Peoject(20L, 20, "Hello World")) //初始化环境,加载table数据 val env = ExecutionEnvironment.getExecutionEnvironment env.setParallelism(1) val tableEnvironment = TableEnvironment.getTableEnvironment(env) val collection: DataSet[Peoject] = env.fromCollection(data) val table: Table = tableEnvironment.fromDataSet(collection) //TODO 将table转换为dataSet val toDataSet: DataSet[Peoject] = tableEnvironment.toDataSet[Peoject](table) toDataSet.print() // env.execute() } }
凹凹凸曼 2020-06-16 19:23:12 0 浏览量 回答数 0

回答

简介 ES是一个基于RESTful web接口并且构建在Apache Lucene之上的开源分布式搜索引擎。 同时ES还是一个分布式文档数据库,其中每个字段均可被索引,而且每个字段的数据均可被搜索,能够横向扩展至数以百计的服务器存储以及处理PB级的数据。 可以在极短的时间内存储、搜索和分析大量的数据。通常作为具有复杂搜索场景情况下的核心发动机。 ES就是为高可用和可扩展而生的。一方面可以通过升级硬件来完成系统扩展,称为垂直或向上扩展(Vertical Scale/Scaling Up)。 另一方面,增加更多的服务器来完成系统扩展,称为水平扩展或者向外扩展(Horizontal Scale/Scaling Out)。尽管ES能够利用更强劲的硬件,但是垂直扩展毕竟还是有它的极限。真正的可扩展性来自于水平扩展,通过向集群中添加更多的节点来分担负载,增加可靠性。ES天生就是分布式的,它知道如何管理多个节点来完成扩展和实现高可用性。意味应用不需要做任何的改动。 Gateway,代表ES索引的持久化存储方式。在Gateway中,ES默认先把索引存储在内存中,然后当内存满的时候,再持久化到Gateway里。当ES集群关闭或重启的时候,它就会从Gateway里去读取索引数据。比如LocalFileSystem和HDFS、AS3等。 DistributedLucene Directory,它是Lucene里的一些列索引文件组成的目录。它负责管理这些索引文件。包括数据的读取、写入,以及索引的添加和合并等。 River,代表是数据源。是以插件的形式存在于ES中。  Mapping,映射的意思,非常类似于静态语言中的数据类型。比如我们声明一个int类型的变量,那以后这个变量只能存储int类型的数据。比如我们声明一个double类型的mapping字段,则只能存储double类型的数据。 Mapping不仅是告诉ES,哪个字段是哪种类型。还能告诉ES如何来索引数据,以及数据是否被索引到等。 Search Moudle,搜索模块,支持搜索的一些常用操作 Index Moudle,索引模块,支持索引的一些常用操作 Disvcovery,主要是负责集群的master节点发现。比如某个节点突然离开或进来的情况,进行一个分片重新分片等。这里有个发现机制。 发现机制默认的实现方式是单播和多播的形式,即Zen,同时也支持点对点的实现。另外一种是以插件的形式,即EC2。 Scripting,即脚本语言。包括很多,这里不多赘述。如mvel、js、python等。    Transport,代表ES内部节点,代表跟集群的客户端交互。包括 Thrift、Memcached、Http等协议 RESTful Style API,通过RESTful方式来实现API编程。 3rd plugins,代表第三方插件。 Java(Netty),是开发框架。 JMX,是监控。 使用案例 1、将ES作为网站的主要后端系统 比如现在搭建一个博客系统,对于博客帖子的数据可以直接在ES上存储,并且使用ES来进行检索,统计。ES提供了持久化的存储、统计和很多其他数据存储的特性。 注意:但是像其他的NOSQL数据存储一样,ES是不支持事务的,如果要事务机制,还是考虑使用其他的数据库做真实库。 2、将ES添加到现有系统 有些时候不需要ES提供所有数据的存储功能,只是想在一个数据存储的基础之上使用ES。比如已经有一个复杂的系统在运行,但是现在想加一个搜索的功能,就可以使用该方案。 3、将ES作为现有解决方案的后端部分 因为ES是开源的系统,提供了直接的HTTP接口,并且现在有一个大型的生态系统在支持他。比如现在我们想部署大规模的日志框架、用于存储、搜索和分析海量的事件,考虑到现有的工具可以写入和读取ES,可以不需要进行任何开发,配置这些工具就可以去运作。 设计结构 1、逻辑设计 文档 文档是可以被索引的信息的基本单位,它包含几个重要的属性: 是自我包含的。一篇文档同时包含字段和他们的取值。 是层次型的。文档中还可以包含新的文档,一个字段的取值可以是简单的,例如location字段的取值可以是字符串,还可以包含其他字段和取值,比如可以同时包含城市和街道地址。 拥有灵活的结构。文档不依赖于预先定义的模式。也就是说并非所有的文档都需要拥有相同的字段,并不受限于同一个模式 {   "name":"meeting",   "location":"office",   "organizer":"yanping" } {   "name":"meeting",   "location":{     "name":"sheshouzuo",        "date":"2019-6-28"   },   "memebers":["leio","shiyi"] } 类型 类型是文档的逻辑容器,类似于表格是行的容器。在不同的类型中,最好放入不同的结构的文档。 字段 ES中,每个文档,其实是以json形式存储的。而一个文档可以被视为多个字段的集合。 映射 每个类型中字段的定义称为映射。例如,name字段映射为String。 索引 索引是映射类型的容器一个ES的索引非常像关系型世界中的数据库,是独立的大量文档集合。   关系型数据库与ES的结构上的对比 2、物理设计 节点 一个节点是一个ES的实例,在服务器上启动ES之后,就拥有了一个节点,如果在另一个服务器上启动ES,这就是另一个节点。甚至可以在一台服务器上启动多个ES进程,在一台服务器上拥有多个节点。多个节点可以加入同一个集群。 当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示: 节点主要有3种类型,第一种类型是client_node,主要是起到请求分发的作用,类似路由。第二种类型是master_node,是主的节点,所有的新增,删除,数据分片都是由主节点操作(elasticsearch底层是没有更新数据操作的,上层对外提供的更新实际上是删除了再新增),当然也能承担搜索操作。第三种类型是date_node,该类型的节点只能做搜索操作,具体会分配到哪个date_node,就是由client_node决定,而data_node的数据都是从master_node同步过来的 分片 一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。   为了解决这个问题,ES提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。 分片之所以重要,主要有两方面的原因:   1、允许你水平分割/扩展你的内容容量 允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量 至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由ES管理的,对于作为用户的你来说,这些都是透明的。   2、在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,ES允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。 复制之所以重要,主要有两方面的原因: (1)在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。 (2)扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行 总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。   默认情况下,ES中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。 3、插件HEAD elasticsearch-head是一个界面化的集群操作和管理工具 ● node:即一个 Elasticsearch 的运行实例,使用多播或单播方式发现 cluster 并加入。 ● cluster:包含一个或多个拥有相同集群名称的 node,其中包含一个master node。 ● index:类比关系型数据库里的DB,是一个逻辑命名空间。 ● alias:可以给 index 添加零个或多个alias,通过 alias 使用index 和根据index name 访问index一样,但是,alias给我们提供了一种切换index的能力,比如重建了index,取名● customer_online_v2,这时,有了alias,我要访问新 index,只需要把 alias 添加到新 index 即可,并把alias从旧的 index 删除。不用修改代码。 ● type:类比关系数据库里的Table。其中,一个index可以定义多个type,但一般使用习惯仅配一个type。 ● mapping:类比关系型数据库中的 schema 概念,mapping 定义了 index 中的 type。mapping 可以显示的定义,也可以在 document 被索引时自动生成,如果有新的 field,Elasticsearch 会自动推测出 field 的type并加到mapping中。 ● document:类比关系数据库里的一行记录(record),document 是 Elasticsearch 里的一个 JSON 对象,包括零个或多个field。 ● field:类比关系数据库里的field,每个field 都有自己的字段类型。 ● shard:是一个Lucene 实例。Elasticsearch 基于 Lucene,shard 是一个 Lucene 实例,被 Elasticsearch 自动管理。之前提到,index 是一个逻辑命名空间,shard 是具体的物理概念,建索引、查询等都是具体的shard在工作。shard 包括primary shard 和 replica shard,写数据时,先写到primary shard,然后,同步到replica shard,查询时,primary 和 replica 充当相同的作用。replica shard 可以有多份,也可以没有,replica shard的存在有两个作用,一是容灾,如果primary shard 挂了,数据也不会丢失,集群仍然能正常工作;二是提高性能,因为replica 和 primary shard 都能处理查询。另外,如上图右侧红框所示,shard数和replica数都可以设置,但是,shard 数只能在建立index 时设置,后期不能更改,但是,replica 数可以随时更改。但是,由于 Elasticsearch 很友好的封装了这部分,在使用Elasticsearch 的过程中,我们一般仅需要关注 index 即可,不需关注shard。   shard、node、cluster 在物理上构成了 Elasticsearch 集群,field、type、index 在逻辑上构成一个index的基本概念,在使用 Elasticsearch 过程中,我们一般关注到逻辑概念就好,就像我们在使用MySQL 时,我们一般就关注DB Name、Table和schema即可,而不会关注DBA维护了几个MySQL实例、master 和 slave 等怎么部署的一样。 ES中的索引原理 (1)传统的关系型数据库 二叉树查找效率是logN,同时插入新的节点不必移动全部节点,所以用树型结构存储索引,能同时兼顾插入和查询的性能。因此在这个基础上,再结合磁盘的读取特性(顺序读/随机读),传统关系型数据库采用了B-Tree/B+Tree这样的数据结构做索引 (2)ES 采用倒排索引 那么,倒排索引是个什么样子呢? 首先,来搞清楚几个概念,为此,举个例子: 假设有个user索引,它有四个字段:分别是name,gender,age,address。画出来的话,大概是下面这个样子,跟关系型数据库一样 Term(单词):一段文本经过分析器分析以后就会输出一串单词,这一个一个的就叫做Term Term Dictionary(单词字典):顾名思义,它里面维护的是Term,可以理解为Term的集合 Term Index(单词索引):为了更快的找到某个单词,我们为单词建立索引 Posting List(倒排列表):倒排列表记录了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。(PS:实际的倒排列表中并不只是存了文档ID这么简单,还有一些其它的信息,比如:词频(Term出现的次数)、偏移量(offset)等,可以想象成是Python中的元组,或者Java中的对象) (PS:如果类比现代汉语词典的话,那么Term就相当于词语,Term Dictionary相当于汉语词典本身,Term Index相当于词典的目录索引) 我们知道,每个文档都有一个ID,如果插入的时候没有指定的话,Elasticsearch会自动生成一个,因此ID字段就不多说了 上面的例子,Elasticsearch建立的索引大致如下: name字段: age字段: gender字段: address字段: Elasticsearch分别为每个字段都建立了一个倒排索引。比如,在上面“张三”、“北京市”、22 这些都是Term,而[1,3]就是Posting List。Posting list就是一个数组,存储了所有符合某个Term的文档ID。 只要知道文档ID,就能快速找到文档。可是,要怎样通过我们给定的关键词快速找到这个Term呢? 当然是建索引了,为Terms建立索引,最好的就是B-Tree索引(MySQL就是B树索引最好的例子)。 我们查找Term的过程跟在MyISAM中记录ID的过程大致是一样的 MyISAM中,索引和数据是分开,通过索引可以找到记录的地址,进而可以找到这条记录 在倒排索引中,通过Term索引可以找到Term在Term Dictionary中的位置,进而找到Posting List,有了倒排列表就可以根据ID找到文档了 (PS:可以这样理解,类比MyISAM的话,Term Index相当于索引文件,Term Dictionary相当于数据文件) (PS:其实,前面我们分了三步,我们可以把Term Index和Term Dictionary看成一步,就是找Term。因此,可以这样理解倒排索引:通过单词找到对应的倒排列表,根据倒排列表中的倒排项进而可以找到文档记录) 为了更进一步理解,用两张图来具现化这一过程: (至于里面涉及的更加高深的数据压缩技巧,以及多个field联合查询利用跳表的数据结构快速做运算来查询,这些大家有兴趣可以自己去了解)
问问小秘 2020-04-29 15:40:48 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 STANDARD-XNZJ004-201130723          在以下条款中,“用户”是指将其网站寄放在阿里云提供的在国际互联网(Internet)上采用共享服务器主机资源技术的万维网(World Wide Web)服务器上并接受相关技术及网络支持服务的个人(包括自然人、个人合伙和个体工商户等)或者单位(包括公司、企业、合伙企业和事业单位等)。       用户在此保证所填写的用户信息真实、准确、完整,并且没有任何引人误解的陈述。       用户同意此虚拟主机条款对用户具有法律约束力。第一条服务项目1-1用户将其网站寄放在阿里云提供的在国际互联网(Internet)上采用共享服务器主机资源技术的万维网(World Wide Web)服务器上(也称“虚拟主机”)并接受相关技术及网络支持服务。第二条双方的权利和义务2-1用户可以自行或者委托阿里云管理其网站,可以利用网站在国际互联网上发布信息,可以自行决定信息的内容和文件的放置结构等。2-2用户运行有关的CGI程序应根据阿里云有效的服务体系列表和服务档次的具体要求执行。对于超出用户购买档次资源的行为,阿里云有权采取相应措施予以制止,包括但不限于关闭虚拟主机、删除有关目录、文件、程序等,由此引起的后果由用户自行负责,同时,用户已经支付的费用将不予退还。2-3用户承诺不进行下列行为:2-3-1散布电子邮件广告、垃圾邮件(SPAM):利用虚拟主机散发大量不受欢迎的或者未经请求的电子邮件、电子广告或包含反动、色情等有害信息的电子邮件;2-3-2将所购买的虚拟主机或磁盘空间再次出租;2-3-3利用阿里云提供的资源和服务上传(Upload)、下载(download)、储存、发布如下信息或者内容,为他人发布该等信息提供任何便利(包括但不限于设置URL、BANNER链接等):·违反国家规定的政治宣传和/或新闻信息;·涉及国家秘密和/或安全的信息;·封建迷信和/或淫秽、色情、下流的信息或教唆犯罪的信息;·博彩有奖、赌博游戏;“私服”、“外挂”等非法互联网出版活动;·违反国家民族和宗教政策的信息;防碍互联网运行安全的信息;·侵害他人合法权益的信息和/或其他有损于社会秩序、社会治安、公共道德的信息或内容;·其他违反法律法规、部门规章或国家政策的内容。2-3-4建立或利用有关设备、配置运行与WEB服务器无关的程序或进程,包括但不限于提供在线聊天室服务、在线音频、视频服务以及其他超出网站应用范围的行为、程序、进程或软件等,导致大量占用服务器内存、CPU资源或者网络带宽资源,给阿里云或者阿里云的其他用户的网络或者服务器(包括但不限于本地及外地和国际的网络、服务器等)带来严重的负荷,影响阿里云与国际互联网或者阿里云与特定网络、服务器及阿里云内部的通畅联系,或者导致阿里云服务器或者阿里云的其他用户网站所在的服务器宕机、死机等;2-3-5进行任何破坏或试图破坏网络安全的行为;2-3-6进行任何改变或试图改变阿里云提供的系统配置或破坏系统安全的行为;2-3-7运行影响网站服务器或者阿里云服务器正常工作的程序、进程等;2-3-8其他超出阿里云服务范围,可能给阿里云带来任何不利影响的行为或者是国家禁止的行为。2-4用户对其违反2-3的规定而引起的法律责任和政治责任,以及给阿里云造成的经济损失承担全部责任,阿里云不对此承担任何责任。用户承认阿里云有权根据阿里云自己谨慎的判断来确定用户是否违反了2-3的规定。如阿里云发现用户违反2-3的规定,有权立即终止服务。2-5用户对自行安装的软件和进行的操作所引起的结果承担全部责任。2-6用户对自己存放在服务器上的数据、以及进入和管理服务器的口令、密码的完整性和保密性负责。因用户维护不当或保密不当致使上述数据、口令、密码等丢失或泄漏所引起的一切损失和后果均由用户自行承担。2-7用户应向阿里云提交执行本服务条款的联系人和管理用户网络和服务器的人员名单和联系方式并提供必要的协助。如以上人员发生变动,用户应自行将变动后的信息进行在线更新并及时通知阿里云。因用户提供的人员的信息不真实、不准确、不完整,以及因以上人员的行为或不作为而产生的结果,均由用户负责。2-8用户承认阿里云向用户提供的任何资料、技术或技术支持、软件、服务等的知识产权均属于阿里云所有,用户无权复制、传播、转让、许可或提供他人使用这些资源,否则应承担相应的责任。2-9如果用户利用阿里云提供的服务进行的经营活动需要获得国家有关部门的认可或批准的,应获得该有关的认可或批准。特别是,用户网站必须办理非经营性ICP备案,并保证所提交的所有备案信息真实有效,在备案信息发生变化时及时在备案系统中提交更新信息。如用户网站为经营性网站,还应自行在当地通信管理部门办理经营性ICP许可证,用户如开办BBS等电子公告服务以及新闻等栏目也需根据相关法规政策要求获得批准或进行登记备案手续。用户违反本条款的,阿里云或相关部门将有权注销用户的备案和/或关闭用户网站。如因用户违反本条款而给阿里云造成损失的(包括但不限于工业和信息化部等有关部门的罚金等),用户还应赔偿。2-10用户所购买的虚拟主机申请成功后并不意味可以立即绑定顶级域名。用户还需进行以下操作:2-10-1在收到阿里云的《虚拟主机申请成功通知书》后及时登录阿里云代备案系统,按照阿里云要求在线提交其网站的备案信息;2-10-2网站备案信息经阿里云和相应的通信管理局审核通过后,用户将获得工业和信息化部颁发的备案号和备案标志,才能绑定已备案的顶级域名。2-11用户须依照《互联网信息服务管理办法》、《互联网电子公告服务管理规定》的规定保留自己网站的访问日志记录,包括发布的信息内容及其发布时间、互联网地址(IP)、域名等,该记录在国家有关机关依法查询时必须提供。用户自行承担由于其未按规定保留相关记录而引起的全部责任。2-12本服务条款中网站所处的服务器的所有权属于阿里云,阿里云为用户提供网站空间并进行网站的日常维护。2-13阿里云可以帮助用户进行日常的数据备份,但不保证完全备份用户网站上的数据,用户应自行备份其网站上的相关数据。用户充分认识到对用户网站数据的备份并非阿里云的义务,阿里云亦不对用户网站的数据备份工作承担任何责任。2-14阿里云将不定期举办培训和技术咨询,帮助用户充分地发挥网站的作用。2-15阿里云将消除用户非人为操作所出现的故障,但因用户原因和/或不可抗力以及非阿里云控制范围之内的事项除外。2-16阿里云将在必要时对用户的主机进行免费升级,或将主机进行机房迁移,升级后的主机能够支持现有主机的功能。阿里云进行上述操作前将提前7日通知用户,特别的,由于进行上述操作均需要修改用户相关域名的DNS,因此如果用户域名是由阿里云提供DNS服务的,阿里云将直接帮助用户对域名DNS进行相应修改;如用户域名不是由阿里云提供DNS服务的,用户需在接到阿里云通知后按照阿里云要求的时间将DNS修改到阿里云指定IP上,否则因此造成网站无法访问的,由用户自行负责。如用户不同意阿里云对主机进行升级和/或迁移机房的,可在收到阿里云通知后7日内解除本服务条款,届时服务期限和费用将按实际服务月份计算(不足一个月的按一个月计),阿里云将按照阿里云网站公示的退款流程向用户退还用户已支付但未发生的服务费(剩余服务费)。第三条费用3-1在接受本服务的同时,用户须已按照阿里云现时有效的虚拟主机价格体系支付所有费用,阿里云的虚拟主机价格体系中的每一套方案都是独立且不可变更的。3-2服务期满双方愿意继续合作的,用户应在服务期满前一个月内支付续费款项,以使服务得以继续进行。如续费时阿里云对产品体系、名称或价格进行调整的,双方同意按照届时有效的新的产品体系、名称或价格履行。3-3阿里云保留在用户未按照约定支付全部费用之前不向用户提供服务和/或技术支持,或者终止服务和/或技术支持的权利。3-4用户完全理解阿里云价格体系中所有的赠送服务项目均为阿里云在正常服务价格之外的一次性特别优惠,优惠内容不包括赠送服务项目的修改、更新及维护费用,并且赠送服务项目不可折价冲抵服务价格。第四条期限4-1服务有效期自阿里云收到用户款项之日起(而非自用户虚拟主机可以绑定顶级域名之日起)计算,并以款项数额为依据确认服务期限。鉴于用户申请虚拟主机后,阿里云将为用户预留空间以备随时开通,用户承认其办理网站经营许可证/网站备案的相关期间将包含在用户购买的服务期之内。4-2本服务条款另有规定的,从其规定。第五条服务终止及责任承担5-1如果用户没有按时支付续约款项,则在本服务有效期结束后,服务即告终止。阿里云届时将关闭用户的使用帐号。关闭帐号之日起7日内,若用户依然没有续费,阿里云将有权删除用户使用帐号内的所有文件,由此带来的后果由用户自行负责。5-2发生下列情形,服务期限提前终止:5-2-1双方协商一致提前终止的;5-2-2用户违反本服务条款,阿里云有权提前终止服务,并不退还用户已经支付的费用;5-2-3用户可以单方提出提前终止服务的要求,但应提前30天书面通知阿里云,此时用户已交纳的费用不再返还。用户擅自终止本服务条款给阿里云造成损失的,还应予以承担。5-3用户理解,鉴于计算机、互联网的特殊性,下述情况不属于阿里云违约:5-3-1阿里云在进行服务器配置、维护时,需要短时间中断服务;5-3-2由于Internet上的通路阻塞造成用户网站访问速度下降;5-3-3因黑客问题、电信部门技术调整和政府管制等引起的事件。5-4如果因阿里云原因造成用户网站不能正常访问的,阿里云以天为单位向用户赔偿损失,即连续24小时不能正常访问的,延长一天的服务期(以此类推)。如果因阿里云原因造成用户网站连续72小时不能正常访问的,用户可以终止接受服务并可以要求赔偿损失,但非阿里云控制之内的原因引起的除外。赔偿总额以该型号虚拟主机年基本费用的总额为上限。5-5如果用户在网站上的应用给服务器带来异常大的负荷,以致影响该网站所在服务器的正常运行或者影响其他用户的正常使用(包括但不限于2-3-4所述的大量占用阿里云服务器内存、CPU资源的行为),阿里云有权关闭用户的网站,终止服务且余款不予退还。5-6阿里云对因第三方的过错或者延误而给用户造成的损失不承担责任,同时,阿里云对通过用户间接接受阿里云服务的第三方的损失不承担责任。第六条争议解决6-1因本虚拟主机服务有关的一切争议,双方当事人应通过友好协商方式解决。6-2如果协商未成,双方同意向杭州市西湖区人民法院起诉。第七条不可抗力7-1因不可抗力或者其他意外事件,使得本服务条款的履行不可能、不必要或者无意义的,遭受不可抗力、意外事件的一方不承担责任。7-2不可抗力、意外事件是指不能预见、不能克服并不能避免且对一方或双方当事人造成重大影响的客观事件,包括但不限于自然灾害如洪水、地震、瘟疫流行等以及社会事件如战争、动乱、政府行为、电信主干线路中断等。第八条其他约定8-1本虚拟主机服务条款适用中华人民共和国法律法规和计算机行业的规范。8-2任何一方对另一方当事人的商业秘密(包括但不限于经营和技术秘密、源代码、数据库等)均负有保密的义务。8-3因阿里云上市、被收购、与第三方合并、名称变更等事由,用户同意阿里云可以将其权利和/或义务转让给相应的阿里云权利/义务的承受者。8-4本虚拟主机服务有关条款或者约定若与双方以前签署的有关条款或者阿里云的有关陈述不一致或者相抵触的,以此为准。8-5阿里云在相关页面上对于虚拟主机服务的服务说明、价格说明、申请表格等是本条款不可分割的一部分,与本条款具有同等法律效力。用户在此再次确认已经完全阅读并理解了上述虚拟主机服务条款,并自愿正式进入虚拟主机申请程序,接受上述条款的约束。  
2019-12-01 23:19:04 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 STANDARD-XNZJ004-201130723          在以下条款中,“用户”是指将其网站寄放在阿里云提供的在国际互联网(Internet)上采用共享服务器主机资源技术的万维网(World Wide Web)服务器上并接受相关技术及网络支持服务的个人(包括自然人、个人合伙和个体工商户等)或者单位(包括公司、企业、合伙企业和事业单位等)。       用户在此保证所填写的用户信息真实、准确、完整,并且没有任何引人误解的陈述。       用户同意此虚拟主机条款对用户具有法律约束力。第一条服务项目1-1用户将其网站寄放在阿里云提供的在国际互联网(Internet)上采用共享服务器主机资源技术的万维网(World Wide Web)服务器上(也称“虚拟主机”)并接受相关技术及网络支持服务。第二条双方的权利和义务2-1用户可以自行或者委托阿里云管理其网站,可以利用网站在国际互联网上发布信息,可以自行决定信息的内容和文件的放置结构等。2-2用户运行有关的CGI程序应根据阿里云有效的服务体系列表和服务档次的具体要求执行。对于超出用户购买档次资源的行为,阿里云有权采取相应措施予以制止,包括但不限于关闭虚拟主机、删除有关目录、文件、程序等,由此引起的后果由用户自行负责,同时,用户已经支付的费用将不予退还。2-3用户承诺不进行下列行为:2-3-1散布电子邮件广告、垃圾邮件(SPAM):利用虚拟主机散发大量不受欢迎的或者未经请求的电子邮件、电子广告或包含反动、色情等有害信息的电子邮件;2-3-2将所购买的虚拟主机或磁盘空间再次出租;2-3-3利用阿里云提供的资源和服务上传(Upload)、下载(download)、储存、发布如下信息或者内容,为他人发布该等信息提供任何便利(包括但不限于设置URL、BANNER链接等):·违反国家规定的政治宣传和/或新闻信息;·涉及国家秘密和/或安全的信息;·封建迷信和/或淫秽、色情、下流的信息或教唆犯罪的信息;·博彩有奖、赌博游戏;“私服”、“外挂”等非法互联网出版活动;·违反国家民族和宗教政策的信息;防碍互联网运行安全的信息;·侵害他人合法权益的信息和/或其他有损于社会秩序、社会治安、公共道德的信息或内容;·其他违反法律法规、部门规章或国家政策的内容。2-3-4建立或利用有关设备、配置运行与WEB服务器无关的程序或进程,包括但不限于提供在线聊天室服务、在线音频、视频服务以及其他超出网站应用范围的行为、程序、进程或软件等,导致大量占用服务器内存、CPU资源或者网络带宽资源,给阿里云或者阿里云的其他用户的网络或者服务器(包括但不限于本地及外地和国际的网络、服务器等)带来严重的负荷,影响阿里云与国际互联网或者阿里云与特定网络、服务器及阿里云内部的通畅联系,或者导致阿里云服务器或者阿里云的其他用户网站所在的服务器宕机、死机等;2-3-5进行任何破坏或试图破坏网络安全的行为;2-3-6进行任何改变或试图改变阿里云提供的系统配置或破坏系统安全的行为;2-3-7运行影响网站服务器或者阿里云服务器正常工作的程序、进程等;2-3-8其他超出阿里云服务范围,可能给阿里云带来任何不利影响的行为或者是国家禁止的行为。2-4用户对其违反2-3的规定而引起的法律责任和政治责任,以及给阿里云造成的经济损失承担全部责任,阿里云不对此承担任何责任。用户承认阿里云有权根据阿里云自己谨慎的判断来确定用户是否违反了2-3的规定。如阿里云发现用户违反2-3的规定,有权立即终止服务。2-5用户对自行安装的软件和进行的操作所引起的结果承担全部责任。2-6用户对自己存放在服务器上的数据、以及进入和管理服务器的口令、密码的完整性和保密性负责。因用户维护不当或保密不当致使上述数据、口令、密码等丢失或泄漏所引起的一切损失和后果均由用户自行承担。2-7用户应向阿里云提交执行本服务条款的联系人和管理用户网络和服务器的人员名单和联系方式并提供必要的协助。如以上人员发生变动,用户应自行将变动后的信息进行在线更新并及时通知阿里云。因用户提供的人员的信息不真实、不准确、不完整,以及因以上人员的行为或不作为而产生的结果,均由用户负责。2-8用户承认阿里云向用户提供的任何资料、技术或技术支持、软件、服务等的知识产权均属于阿里云所有,用户无权复制、传播、转让、许可或提供他人使用这些资源,否则应承担相应的责任。2-9如果用户利用阿里云提供的服务进行的经营活动需要获得国家有关部门的认可或批准的,应获得该有关的认可或批准。特别是,用户网站必须办理非经营性ICP备案,并保证所提交的所有备案信息真实有效,在备案信息发生变化时及时在备案系统中提交更新信息。如用户网站为经营性网站,还应自行在当地通信管理部门办理经营性ICP许可证,用户如开办BBS等电子公告服务以及新闻等栏目也需根据相关法规政策要求获得批准或进行登记备案手续。用户违反本条款的,阿里云或相关部门将有权注销用户的备案和/或关闭用户网站。如因用户违反本条款而给阿里云造成损失的(包括但不限于工业和信息化部等有关部门的罚金等),用户还应赔偿。2-10用户所购买的虚拟主机申请成功后并不意味可以立即绑定顶级域名。用户还需进行以下操作:2-10-1在收到阿里云的《虚拟主机申请成功通知书》后及时登录阿里云代备案系统,按照阿里云要求在线提交其网站的备案信息;2-10-2网站备案信息经阿里云和相应的通信管理局审核通过后,用户将获得工业和信息化部颁发的备案号和备案标志,才能绑定已备案的顶级域名。2-11用户须依照《互联网信息服务管理办法》、《互联网电子公告服务管理规定》的规定保留自己网站的访问日志记录,包括发布的信息内容及其发布时间、互联网地址(IP)、域名等,该记录在国家有关机关依法查询时必须提供。用户自行承担由于其未按规定保留相关记录而引起的全部责任。2-12本服务条款中网站所处的服务器的所有权属于阿里云,阿里云为用户提供网站空间并进行网站的日常维护。2-13阿里云可以帮助用户进行日常的数据备份,但不保证完全备份用户网站上的数据,用户应自行备份其网站上的相关数据。用户充分认识到对用户网站数据的备份并非阿里云的义务,阿里云亦不对用户网站的数据备份工作承担任何责任。2-14阿里云将不定期举办培训和技术咨询,帮助用户充分地发挥网站的作用。2-15阿里云将消除用户非人为操作所出现的故障,但因用户原因和/或不可抗力以及非阿里云控制范围之内的事项除外。2-16阿里云将在必要时对用户的主机进行免费升级,或将主机进行机房迁移,升级后的主机能够支持现有主机的功能。阿里云进行上述操作前将提前7日通知用户,特别的,由于进行上述操作均需要修改用户相关域名的DNS,因此如果用户域名是由阿里云提供DNS服务的,阿里云将直接帮助用户对域名DNS进行相应修改;如用户域名不是由阿里云提供DNS服务的,用户需在接到阿里云通知后按照阿里云要求的时间将DNS修改到阿里云指定IP上,否则因此造成网站无法访问的,由用户自行负责。如用户不同意阿里云对主机进行升级和/或迁移机房的,可在收到阿里云通知后7日内解除本服务条款,届时服务期限和费用将按实际服务月份计算(不足一个月的按一个月计),阿里云将按照阿里云网站公示的退款流程向用户退还用户已支付但未发生的服务费(剩余服务费)。第三条费用3-1在接受本服务的同时,用户须已按照阿里云现时有效的虚拟主机价格体系支付所有费用,阿里云的虚拟主机价格体系中的每一套方案都是独立且不可变更的。3-2服务期满双方愿意继续合作的,用户应在服务期满前一个月内支付续费款项,以使服务得以继续进行。如续费时阿里云对产品体系、名称或价格进行调整的,双方同意按照届时有效的新的产品体系、名称或价格履行。3-3阿里云保留在用户未按照约定支付全部费用之前不向用户提供服务和/或技术支持,或者终止服务和/或技术支持的权利。3-4用户完全理解阿里云价格体系中所有的赠送服务项目均为阿里云在正常服务价格之外的一次性特别优惠,优惠内容不包括赠送服务项目的修改、更新及维护费用,并且赠送服务项目不可折价冲抵服务价格。第四条期限4-1服务有效期自阿里云收到用户款项之日起(而非自用户虚拟主机可以绑定顶级域名之日起)计算,并以款项数额为依据确认服务期限。鉴于用户申请虚拟主机后,阿里云将为用户预留空间以备随时开通,用户承认其办理网站经营许可证/网站备案的相关期间将包含在用户购买的服务期之内。4-2本服务条款另有规定的,从其规定。第五条服务终止及责任承担5-1如果用户没有按时支付续约款项,则在本服务有效期结束后,服务即告终止。阿里云届时将关闭用户的使用帐号。关闭帐号之日起7日内,若用户依然没有续费,阿里云将有权删除用户使用帐号内的所有文件,由此带来的后果由用户自行负责。5-2发生下列情形,服务期限提前终止:5-2-1双方协商一致提前终止的;5-2-2用户违反本服务条款,阿里云有权提前终止服务,并不退还用户已经支付的费用;5-2-3用户可以单方提出提前终止服务的要求,但应提前30天书面通知阿里云,此时用户已交纳的费用不再返还。用户擅自终止本服务条款给阿里云造成损失的,还应予以承担。5-3用户理解,鉴于计算机、互联网的特殊性,下述情况不属于阿里云违约:5-3-1阿里云在进行服务器配置、维护时,需要短时间中断服务;5-3-2由于Internet上的通路阻塞造成用户网站访问速度下降;5-3-3因黑客问题、电信部门技术调整和政府管制等引起的事件。5-4如果因阿里云原因造成用户网站不能正常访问的,阿里云以天为单位向用户赔偿损失,即连续24小时不能正常访问的,延长一天的服务期(以此类推)。如果因阿里云原因造成用户网站连续72小时不能正常访问的,用户可以终止接受服务并可以要求赔偿损失,但非阿里云控制之内的原因引起的除外。赔偿总额以该型号虚拟主机年基本费用的总额为上限。5-5如果用户在网站上的应用给服务器带来异常大的负荷,以致影响该网站所在服务器的正常运行或者影响其他用户的正常使用(包括但不限于2-3-4所述的大量占用阿里云服务器内存、CPU资源的行为),阿里云有权关闭用户的网站,终止服务且余款不予退还。5-6阿里云对因第三方的过错或者延误而给用户造成的损失不承担责任,同时,阿里云对通过用户间接接受阿里云服务的第三方的损失不承担责任。第六条争议解决6-1因本虚拟主机服务有关的一切争议,双方当事人应通过友好协商方式解决。6-2如果协商未成,双方同意向杭州市西湖区人民法院起诉。第七条不可抗力7-1因不可抗力或者其他意外事件,使得本服务条款的履行不可能、不必要或者无意义的,遭受不可抗力、意外事件的一方不承担责任。7-2不可抗力、意外事件是指不能预见、不能克服并不能避免且对一方或双方当事人造成重大影响的客观事件,包括但不限于自然灾害如洪水、地震、瘟疫流行等以及社会事件如战争、动乱、政府行为、电信主干线路中断等。第八条其他约定8-1本虚拟主机服务条款适用中华人民共和国法律法规和计算机行业的规范。8-2任何一方对另一方当事人的商业秘密(包括但不限于经营和技术秘密、源代码、数据库等)均负有保密的义务。8-3因阿里云上市、被收购、与第三方合并、名称变更等事由,用户同意阿里云可以将其权利和/或义务转让给相应的阿里云权利/义务的承受者。8-4本虚拟主机服务有关条款或者约定若与双方以前签署的有关条款或者阿里云的有关陈述不一致或者相抵触的,以此为准。8-5阿里云在相关页面上对于虚拟主机服务的服务说明、价格说明、申请表格等是本条款不可分割的一部分,与本条款具有同等法律效力。用户在此再次确认已经完全阅读并理解了上述虚拟主机服务条款,并自愿正式进入虚拟主机申请程序,接受上述条款的约束。  
2019-12-01 23:19:04 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 STANDARD-XNZJ004-201130723          在以下条款中,“用户”是指将其网站寄放在阿里云提供的在国际互联网(Internet)上采用共享服务器主机资源技术的万维网(World Wide Web)服务器上并接受相关技术及网络支持服务的个人(包括自然人、个人合伙和个体工商户等)或者单位(包括公司、企业、合伙企业和事业单位等)。       用户在此保证所填写的用户信息真实、准确、完整,并且没有任何引人误解的陈述。       用户同意此虚拟主机条款对用户具有法律约束力。第一条服务项目1-1用户将其网站寄放在阿里云提供的在国际互联网(Internet)上采用共享服务器主机资源技术的万维网(World Wide Web)服务器上(也称“虚拟主机”)并接受相关技术及网络支持服务。第二条双方的权利和义务2-1用户可以自行或者委托阿里云管理其网站,可以利用网站在国际互联网上发布信息,可以自行决定信息的内容和文件的放置结构等。2-2用户运行有关的CGI程序应根据阿里云有效的服务体系列表和服务档次的具体要求执行。对于超出用户购买档次资源的行为,阿里云有权采取相应措施予以制止,包括但不限于关闭虚拟主机、删除有关目录、文件、程序等,由此引起的后果由用户自行负责,同时,用户已经支付的费用将不予退还。2-3用户承诺不进行下列行为:2-3-1散布电子邮件广告、垃圾邮件(SPAM):利用虚拟主机散发大量不受欢迎的或者未经请求的电子邮件、电子广告或包含反动、色情等有害信息的电子邮件;2-3-2将所购买的虚拟主机或磁盘空间再次出租;2-3-3利用阿里云提供的资源和服务上传(Upload)、下载(download)、储存、发布如下信息或者内容,为他人发布该等信息提供任何便利(包括但不限于设置URL、BANNER链接等):·违反国家规定的政治宣传和/或新闻信息;·涉及国家秘密和/或安全的信息;·封建迷信和/或淫秽、色情、下流的信息或教唆犯罪的信息;·博彩有奖、赌博游戏;“私服”、“外挂”等非法互联网出版活动;·违反国家民族和宗教政策的信息;防碍互联网运行安全的信息;·侵害他人合法权益的信息和/或其他有损于社会秩序、社会治安、公共道德的信息或内容;·其他违反法律法规、部门规章或国家政策的内容。2-3-4建立或利用有关设备、配置运行与WEB服务器无关的程序或进程,包括但不限于提供在线聊天室服务、在线音频、视频服务以及其他超出网站应用范围的行为、程序、进程或软件等,导致大量占用服务器内存、CPU资源或者网络带宽资源,给阿里云或者阿里云的其他用户的网络或者服务器(包括但不限于本地及外地和国际的网络、服务器等)带来严重的负荷,影响阿里云与国际互联网或者阿里云与特定网络、服务器及阿里云内部的通畅联系,或者导致阿里云服务器或者阿里云的其他用户网站所在的服务器宕机、死机等;2-3-5进行任何破坏或试图破坏网络安全的行为;2-3-6进行任何改变或试图改变阿里云提供的系统配置或破坏系统安全的行为;2-3-7运行影响网站服务器或者阿里云服务器正常工作的程序、进程等;2-3-8其他超出阿里云服务范围,可能给阿里云带来任何不利影响的行为或者是国家禁止的行为。2-4用户对其违反2-3的规定而引起的法律责任和政治责任,以及给阿里云造成的经济损失承担全部责任,阿里云不对此承担任何责任。用户承认阿里云有权根据阿里云自己谨慎的判断来确定用户是否违反了2-3的规定。如阿里云发现用户违反2-3的规定,有权立即终止服务。2-5用户对自行安装的软件和进行的操作所引起的结果承担全部责任。2-6用户对自己存放在服务器上的数据、以及进入和管理服务器的口令、密码的完整性和保密性负责。因用户维护不当或保密不当致使上述数据、口令、密码等丢失或泄漏所引起的一切损失和后果均由用户自行承担。2-7用户应向阿里云提交执行本服务条款的联系人和管理用户网络和服务器的人员名单和联系方式并提供必要的协助。如以上人员发生变动,用户应自行将变动后的信息进行在线更新并及时通知阿里云。因用户提供的人员的信息不真实、不准确、不完整,以及因以上人员的行为或不作为而产生的结果,均由用户负责。2-8用户承认阿里云向用户提供的任何资料、技术或技术支持、软件、服务等的知识产权均属于阿里云所有,用户无权复制、传播、转让、许可或提供他人使用这些资源,否则应承担相应的责任。2-9如果用户利用阿里云提供的服务进行的经营活动需要获得国家有关部门的认可或批准的,应获得该有关的认可或批准。特别是,用户网站必须办理非经营性ICP备案,并保证所提交的所有备案信息真实有效,在备案信息发生变化时及时在备案系统中提交更新信息。如用户网站为经营性网站,还应自行在当地通信管理部门办理经营性ICP许可证,用户如开办BBS等电子公告服务以及新闻等栏目也需根据相关法规政策要求获得批准或进行登记备案手续。用户违反本条款的,阿里云或相关部门将有权注销用户的备案和/或关闭用户网站。如因用户违反本条款而给阿里云造成损失的(包括但不限于工业和信息化部等有关部门的罚金等),用户还应赔偿。2-10用户所购买的虚拟主机申请成功后并不意味可以立即绑定顶级域名。用户还需进行以下操作:2-10-1在收到阿里云的《虚拟主机申请成功通知书》后及时登录阿里云代备案系统,按照阿里云要求在线提交其网站的备案信息;2-10-2网站备案信息经阿里云和相应的通信管理局审核通过后,用户将获得工业和信息化部颁发的备案号和备案标志,才能绑定已备案的顶级域名。2-11用户须依照《互联网信息服务管理办法》、《互联网电子公告服务管理规定》的规定保留自己网站的访问日志记录,包括发布的信息内容及其发布时间、互联网地址(IP)、域名等,该记录在国家有关机关依法查询时必须提供。用户自行承担由于其未按规定保留相关记录而引起的全部责任。2-12本服务条款中网站所处的服务器的所有权属于阿里云,阿里云为用户提供网站空间并进行网站的日常维护。2-13阿里云可以帮助用户进行日常的数据备份,但不保证完全备份用户网站上的数据,用户应自行备份其网站上的相关数据。用户充分认识到对用户网站数据的备份并非阿里云的义务,阿里云亦不对用户网站的数据备份工作承担任何责任。2-14阿里云将不定期举办培训和技术咨询,帮助用户充分地发挥网站的作用。2-15阿里云将消除用户非人为操作所出现的故障,但因用户原因和/或不可抗力以及非阿里云控制范围之内的事项除外。2-16阿里云将在必要时对用户的主机进行免费升级,或将主机进行机房迁移,升级后的主机能够支持现有主机的功能。阿里云进行上述操作前将提前7日通知用户,特别的,由于进行上述操作均需要修改用户相关域名的DNS,因此如果用户域名是由阿里云提供DNS服务的,阿里云将直接帮助用户对域名DNS进行相应修改;如用户域名不是由阿里云提供DNS服务的,用户需在接到阿里云通知后按照阿里云要求的时间将DNS修改到阿里云指定IP上,否则因此造成网站无法访问的,由用户自行负责。如用户不同意阿里云对主机进行升级和/或迁移机房的,可在收到阿里云通知后7日内解除本服务条款,届时服务期限和费用将按实际服务月份计算(不足一个月的按一个月计),阿里云将按照阿里云网站公示的退款流程向用户退还用户已支付但未发生的服务费(剩余服务费)。第三条费用3-1在接受本服务的同时,用户须已按照阿里云现时有效的虚拟主机价格体系支付所有费用,阿里云的虚拟主机价格体系中的每一套方案都是独立且不可变更的。3-2服务期满双方愿意继续合作的,用户应在服务期满前一个月内支付续费款项,以使服务得以继续进行。如续费时阿里云对产品体系、名称或价格进行调整的,双方同意按照届时有效的新的产品体系、名称或价格履行。3-3阿里云保留在用户未按照约定支付全部费用之前不向用户提供服务和/或技术支持,或者终止服务和/或技术支持的权利。3-4用户完全理解阿里云价格体系中所有的赠送服务项目均为阿里云在正常服务价格之外的一次性特别优惠,优惠内容不包括赠送服务项目的修改、更新及维护费用,并且赠送服务项目不可折价冲抵服务价格。第四条期限4-1服务有效期自阿里云收到用户款项之日起(而非自用户虚拟主机可以绑定顶级域名之日起)计算,并以款项数额为依据确认服务期限。鉴于用户申请虚拟主机后,阿里云将为用户预留空间以备随时开通,用户承认其办理网站经营许可证/网站备案的相关期间将包含在用户购买的服务期之内。4-2本服务条款另有规定的,从其规定。第五条服务终止及责任承担5-1如果用户没有按时支付续约款项,则在本服务有效期结束后,服务即告终止。阿里云届时将关闭用户的使用帐号。关闭帐号之日起7日内,若用户依然没有续费,阿里云将有权删除用户使用帐号内的所有文件,由此带来的后果由用户自行负责。5-2发生下列情形,服务期限提前终止:5-2-1双方协商一致提前终止的;5-2-2用户违反本服务条款,阿里云有权提前终止服务,并不退还用户已经支付的费用;5-2-3用户可以单方提出提前终止服务的要求,但应提前30天书面通知阿里云,此时用户已交纳的费用不再返还。用户擅自终止本服务条款给阿里云造成损失的,还应予以承担。5-3用户理解,鉴于计算机、互联网的特殊性,下述情况不属于阿里云违约:5-3-1阿里云在进行服务器配置、维护时,需要短时间中断服务;5-3-2由于Internet上的通路阻塞造成用户网站访问速度下降;5-3-3因黑客问题、电信部门技术调整和政府管制等引起的事件。5-4如果因阿里云原因造成用户网站不能正常访问的,阿里云以天为单位向用户赔偿损失,即连续24小时不能正常访问的,延长一天的服务期(以此类推)。如果因阿里云原因造成用户网站连续72小时不能正常访问的,用户可以终止接受服务并可以要求赔偿损失,但非阿里云控制之内的原因引起的除外。赔偿总额以该型号虚拟主机年基本费用的总额为上限。5-5如果用户在网站上的应用给服务器带来异常大的负荷,以致影响该网站所在服务器的正常运行或者影响其他用户的正常使用(包括但不限于2-3-4所述的大量占用阿里云服务器内存、CPU资源的行为),阿里云有权关闭用户的网站,终止服务且余款不予退还。5-6阿里云对因第三方的过错或者延误而给用户造成的损失不承担责任,同时,阿里云对通过用户间接接受阿里云服务的第三方的损失不承担责任。第六条争议解决6-1因本虚拟主机服务有关的一切争议,双方当事人应通过友好协商方式解决。6-2如果协商未成,双方同意向杭州市西湖区人民法院起诉。第七条不可抗力7-1因不可抗力或者其他意外事件,使得本服务条款的履行不可能、不必要或者无意义的,遭受不可抗力、意外事件的一方不承担责任。7-2不可抗力、意外事件是指不能预见、不能克服并不能避免且对一方或双方当事人造成重大影响的客观事件,包括但不限于自然灾害如洪水、地震、瘟疫流行等以及社会事件如战争、动乱、政府行为、电信主干线路中断等。第八条其他约定8-1本虚拟主机服务条款适用中华人民共和国法律法规和计算机行业的规范。8-2任何一方对另一方当事人的商业秘密(包括但不限于经营和技术秘密、源代码、数据库等)均负有保密的义务。8-3因阿里云上市、被收购、与第三方合并、名称变更等事由,用户同意阿里云可以将其权利和/或义务转让给相应的阿里云权利/义务的承受者。8-4本虚拟主机服务有关条款或者约定若与双方以前签署的有关条款或者阿里云的有关陈述不一致或者相抵触的,以此为准。8-5阿里云在相关页面上对于虚拟主机服务的服务说明、价格说明、申请表格等是本条款不可分割的一部分,与本条款具有同等法律效力。用户在此再次确认已经完全阅读并理解了上述虚拟主机服务条款,并自愿正式进入虚拟主机申请程序,接受上述条款的约束。  
2019-12-01 23:19:05 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 STANDARD-XNZJ004-201130723          在以下条款中,“用户”是指将其网站寄放在阿里云提供的在国际互联网(Internet)上采用共享服务器主机资源技术的万维网(World Wide Web)服务器上并接受相关技术及网络支持服务的个人(包括自然人、个人合伙和个体工商户等)或者单位(包括公司、企业、合伙企业和事业单位等)。       用户在此保证所填写的用户信息真实、准确、完整,并且没有任何引人误解的陈述。       用户同意此虚拟主机条款对用户具有法律约束力。第一条服务项目1-1用户将其网站寄放在阿里云提供的在国际互联网(Internet)上采用共享服务器主机资源技术的万维网(World Wide Web)服务器上(也称“虚拟主机”)并接受相关技术及网络支持服务。第二条双方的权利和义务2-1用户可以自行或者委托阿里云管理其网站,可以利用网站在国际互联网上发布信息,可以自行决定信息的内容和文件的放置结构等。2-2用户运行有关的CGI程序应根据阿里云有效的服务体系列表和服务档次的具体要求执行。对于超出用户购买档次资源的行为,阿里云有权采取相应措施予以制止,包括但不限于关闭虚拟主机、删除有关目录、文件、程序等,由此引起的后果由用户自行负责,同时,用户已经支付的费用将不予退还。2-3用户承诺不进行下列行为:2-3-1散布电子邮件广告、垃圾邮件(SPAM):利用虚拟主机散发大量不受欢迎的或者未经请求的电子邮件、电子广告或包含反动、色情等有害信息的电子邮件;2-3-2将所购买的虚拟主机或磁盘空间再次出租;2-3-3利用阿里云提供的资源和服务上传(Upload)、下载(download)、储存、发布如下信息或者内容,为他人发布该等信息提供任何便利(包括但不限于设置URL、BANNER链接等):·违反国家规定的政治宣传和/或新闻信息;·涉及国家秘密和/或安全的信息;·封建迷信和/或淫秽、色情、下流的信息或教唆犯罪的信息;·博彩有奖、赌博游戏;“私服”、“外挂”等非法互联网出版活动;·违反国家民族和宗教政策的信息;防碍互联网运行安全的信息;·侵害他人合法权益的信息和/或其他有损于社会秩序、社会治安、公共道德的信息或内容;·其他违反法律法规、部门规章或国家政策的内容。2-3-4建立或利用有关设备、配置运行与WEB服务器无关的程序或进程,包括但不限于提供在线聊天室服务、在线音频、视频服务以及其他超出网站应用范围的行为、程序、进程或软件等,导致大量占用服务器内存、CPU资源或者网络带宽资源,给阿里云或者阿里云的其他用户的网络或者服务器(包括但不限于本地及外地和国际的网络、服务器等)带来严重的负荷,影响阿里云与国际互联网或者阿里云与特定网络、服务器及阿里云内部的通畅联系,或者导致阿里云服务器或者阿里云的其他用户网站所在的服务器宕机、死机等;2-3-5进行任何破坏或试图破坏网络安全的行为;2-3-6进行任何改变或试图改变阿里云提供的系统配置或破坏系统安全的行为;2-3-7运行影响网站服务器或者阿里云服务器正常工作的程序、进程等;2-3-8其他超出阿里云服务范围,可能给阿里云带来任何不利影响的行为或者是国家禁止的行为。2-4用户对其违反2-3的规定而引起的法律责任和政治责任,以及给阿里云造成的经济损失承担全部责任,阿里云不对此承担任何责任。用户承认阿里云有权根据阿里云自己谨慎的判断来确定用户是否违反了2-3的规定。如阿里云发现用户违反2-3的规定,有权立即终止服务。2-5用户对自行安装的软件和进行的操作所引起的结果承担全部责任。2-6用户对自己存放在服务器上的数据、以及进入和管理服务器的口令、密码的完整性和保密性负责。因用户维护不当或保密不当致使上述数据、口令、密码等丢失或泄漏所引起的一切损失和后果均由用户自行承担。2-7用户应向阿里云提交执行本服务条款的联系人和管理用户网络和服务器的人员名单和联系方式并提供必要的协助。如以上人员发生变动,用户应自行将变动后的信息进行在线更新并及时通知阿里云。因用户提供的人员的信息不真实、不准确、不完整,以及因以上人员的行为或不作为而产生的结果,均由用户负责。2-8用户承认阿里云向用户提供的任何资料、技术或技术支持、软件、服务等的知识产权均属于阿里云所有,用户无权复制、传播、转让、许可或提供他人使用这些资源,否则应承担相应的责任。2-9如果用户利用阿里云提供的服务进行的经营活动需要获得国家有关部门的认可或批准的,应获得该有关的认可或批准。特别是,用户网站必须办理非经营性ICP备案,并保证所提交的所有备案信息真实有效,在备案信息发生变化时及时在备案系统中提交更新信息。如用户网站为经营性网站,还应自行在当地通信管理部门办理经营性ICP许可证,用户如开办BBS等电子公告服务以及新闻等栏目也需根据相关法规政策要求获得批准或进行登记备案手续。用户违反本条款的,阿里云或相关部门将有权注销用户的备案和/或关闭用户网站。如因用户违反本条款而给阿里云造成损失的(包括但不限于工业和信息化部等有关部门的罚金等),用户还应赔偿。2-10用户所购买的虚拟主机申请成功后并不意味可以立即绑定顶级域名。用户还需进行以下操作:2-10-1在收到阿里云的《虚拟主机申请成功通知书》后及时登录阿里云代备案系统,按照阿里云要求在线提交其网站的备案信息;2-10-2网站备案信息经阿里云和相应的通信管理局审核通过后,用户将获得工业和信息化部颁发的备案号和备案标志,才能绑定已备案的顶级域名。2-11用户须依照《互联网信息服务管理办法》、《互联网电子公告服务管理规定》的规定保留自己网站的访问日志记录,包括发布的信息内容及其发布时间、互联网地址(IP)、域名等,该记录在国家有关机关依法查询时必须提供。用户自行承担由于其未按规定保留相关记录而引起的全部责任。2-12本服务条款中网站所处的服务器的所有权属于阿里云,阿里云为用户提供网站空间并进行网站的日常维护。2-13阿里云可以帮助用户进行日常的数据备份,但不保证完全备份用户网站上的数据,用户应自行备份其网站上的相关数据。用户充分认识到对用户网站数据的备份并非阿里云的义务,阿里云亦不对用户网站的数据备份工作承担任何责任。2-14阿里云将不定期举办培训和技术咨询,帮助用户充分地发挥网站的作用。2-15阿里云将消除用户非人为操作所出现的故障,但因用户原因和/或不可抗力以及非阿里云控制范围之内的事项除外。2-16阿里云将在必要时对用户的主机进行免费升级,或将主机进行机房迁移,升级后的主机能够支持现有主机的功能。阿里云进行上述操作前将提前7日通知用户,特别的,由于进行上述操作均需要修改用户相关域名的DNS,因此如果用户域名是由阿里云提供DNS服务的,阿里云将直接帮助用户对域名DNS进行相应修改;如用户域名不是由阿里云提供DNS服务的,用户需在接到阿里云通知后按照阿里云要求的时间将DNS修改到阿里云指定IP上,否则因此造成网站无法访问的,由用户自行负责。如用户不同意阿里云对主机进行升级和/或迁移机房的,可在收到阿里云通知后7日内解除本服务条款,届时服务期限和费用将按实际服务月份计算(不足一个月的按一个月计),阿里云将按照阿里云网站公示的退款流程向用户退还用户已支付但未发生的服务费(剩余服务费)。第三条费用3-1在接受本服务的同时,用户须已按照阿里云现时有效的虚拟主机价格体系支付所有费用,阿里云的虚拟主机价格体系中的每一套方案都是独立且不可变更的。3-2服务期满双方愿意继续合作的,用户应在服务期满前一个月内支付续费款项,以使服务得以继续进行。如续费时阿里云对产品体系、名称或价格进行调整的,双方同意按照届时有效的新的产品体系、名称或价格履行。3-3阿里云保留在用户未按照约定支付全部费用之前不向用户提供服务和/或技术支持,或者终止服务和/或技术支持的权利。3-4用户完全理解阿里云价格体系中所有的赠送服务项目均为阿里云在正常服务价格之外的一次性特别优惠,优惠内容不包括赠送服务项目的修改、更新及维护费用,并且赠送服务项目不可折价冲抵服务价格。第四条期限4-1服务有效期自阿里云收到用户款项之日起(而非自用户虚拟主机可以绑定顶级域名之日起)计算,并以款项数额为依据确认服务期限。鉴于用户申请虚拟主机后,阿里云将为用户预留空间以备随时开通,用户承认其办理网站经营许可证/网站备案的相关期间将包含在用户购买的服务期之内。4-2本服务条款另有规定的,从其规定。第五条服务终止及责任承担5-1如果用户没有按时支付续约款项,则在本服务有效期结束后,服务即告终止。阿里云届时将关闭用户的使用帐号。关闭帐号之日起7日内,若用户依然没有续费,阿里云将有权删除用户使用帐号内的所有文件,由此带来的后果由用户自行负责。5-2发生下列情形,服务期限提前终止:5-2-1双方协商一致提前终止的;5-2-2用户违反本服务条款,阿里云有权提前终止服务,并不退还用户已经支付的费用;5-2-3用户可以单方提出提前终止服务的要求,但应提前30天书面通知阿里云,此时用户已交纳的费用不再返还。用户擅自终止本服务条款给阿里云造成损失的,还应予以承担。5-3用户理解,鉴于计算机、互联网的特殊性,下述情况不属于阿里云违约:5-3-1阿里云在进行服务器配置、维护时,需要短时间中断服务;5-3-2由于Internet上的通路阻塞造成用户网站访问速度下降;5-3-3因黑客问题、电信部门技术调整和政府管制等引起的事件。5-4如果因阿里云原因造成用户网站不能正常访问的,阿里云以天为单位向用户赔偿损失,即连续24小时不能正常访问的,延长一天的服务期(以此类推)。如果因阿里云原因造成用户网站连续72小时不能正常访问的,用户可以终止接受服务并可以要求赔偿损失,但非阿里云控制之内的原因引起的除外。赔偿总额以该型号虚拟主机年基本费用的总额为上限。5-5如果用户在网站上的应用给服务器带来异常大的负荷,以致影响该网站所在服务器的正常运行或者影响其他用户的正常使用(包括但不限于2-3-4所述的大量占用阿里云服务器内存、CPU资源的行为),阿里云有权关闭用户的网站,终止服务且余款不予退还。5-6阿里云对因第三方的过错或者延误而给用户造成的损失不承担责任,同时,阿里云对通过用户间接接受阿里云服务的第三方的损失不承担责任。第六条争议解决6-1因本虚拟主机服务有关的一切争议,双方当事人应通过友好协商方式解决。6-2如果协商未成,双方同意向杭州市西湖区人民法院起诉。第七条不可抗力7-1因不可抗力或者其他意外事件,使得本服务条款的履行不可能、不必要或者无意义的,遭受不可抗力、意外事件的一方不承担责任。7-2不可抗力、意外事件是指不能预见、不能克服并不能避免且对一方或双方当事人造成重大影响的客观事件,包括但不限于自然灾害如洪水、地震、瘟疫流行等以及社会事件如战争、动乱、政府行为、电信主干线路中断等。第八条其他约定8-1本虚拟主机服务条款适用中华人民共和国法律法规和计算机行业的规范。8-2任何一方对另一方当事人的商业秘密(包括但不限于经营和技术秘密、源代码、数据库等)均负有保密的义务。8-3因阿里云上市、被收购、与第三方合并、名称变更等事由,用户同意阿里云可以将其权利和/或义务转让给相应的阿里云权利/义务的承受者。8-4本虚拟主机服务有关条款或者约定若与双方以前签署的有关条款或者阿里云的有关陈述不一致或者相抵触的,以此为准。8-5阿里云在相关页面上对于虚拟主机服务的服务说明、价格说明、申请表格等是本条款不可分割的一部分,与本条款具有同等法律效力。用户在此再次确认已经完全阅读并理解了上述虚拟主机服务条款,并自愿正式进入虚拟主机申请程序,接受上述条款的约束。  
2019-12-01 23:19:04 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 STANDARD-XNZJ004-201130723          在以下条款中,“用户”是指将其网站寄放在阿里云提供的在国际互联网(Internet)上采用共享服务器主机资源技术的万维网(World Wide Web)服务器上并接受相关技术及网络支持服务的个人(包括自然人、个人合伙和个体工商户等)或者单位(包括公司、企业、合伙企业和事业单位等)。       用户在此保证所填写的用户信息真实、准确、完整,并且没有任何引人误解的陈述。       用户同意此虚拟主机条款对用户具有法律约束力。第一条服务项目1-1用户将其网站寄放在阿里云提供的在国际互联网(Internet)上采用共享服务器主机资源技术的万维网(World Wide Web)服务器上(也称“虚拟主机”)并接受相关技术及网络支持服务。第二条双方的权利和义务2-1用户可以自行或者委托阿里云管理其网站,可以利用网站在国际互联网上发布信息,可以自行决定信息的内容和文件的放置结构等。2-2用户运行有关的CGI程序应根据阿里云有效的服务体系列表和服务档次的具体要求执行。对于超出用户购买档次资源的行为,阿里云有权采取相应措施予以制止,包括但不限于关闭虚拟主机、删除有关目录、文件、程序等,由此引起的后果由用户自行负责,同时,用户已经支付的费用将不予退还。2-3用户承诺不进行下列行为:2-3-1散布电子邮件广告、垃圾邮件(SPAM):利用虚拟主机散发大量不受欢迎的或者未经请求的电子邮件、电子广告或包含反动、色情等有害信息的电子邮件;2-3-2将所购买的虚拟主机或磁盘空间再次出租;2-3-3利用阿里云提供的资源和服务上传(Upload)、下载(download)、储存、发布如下信息或者内容,为他人发布该等信息提供任何便利(包括但不限于设置URL、BANNER链接等):·违反国家规定的政治宣传和/或新闻信息;·涉及国家秘密和/或安全的信息;·封建迷信和/或淫秽、色情、下流的信息或教唆犯罪的信息;·博彩有奖、赌博游戏;“私服”、“外挂”等非法互联网出版活动;·违反国家民族和宗教政策的信息;防碍互联网运行安全的信息;·侵害他人合法权益的信息和/或其他有损于社会秩序、社会治安、公共道德的信息或内容;·其他违反法律法规、部门规章或国家政策的内容。2-3-4建立或利用有关设备、配置运行与WEB服务器无关的程序或进程,包括但不限于提供在线聊天室服务、在线音频、视频服务以及其他超出网站应用范围的行为、程序、进程或软件等,导致大量占用服务器内存、CPU资源或者网络带宽资源,给阿里云或者阿里云的其他用户的网络或者服务器(包括但不限于本地及外地和国际的网络、服务器等)带来严重的负荷,影响阿里云与国际互联网或者阿里云与特定网络、服务器及阿里云内部的通畅联系,或者导致阿里云服务器或者阿里云的其他用户网站所在的服务器宕机、死机等;2-3-5进行任何破坏或试图破坏网络安全的行为;2-3-6进行任何改变或试图改变阿里云提供的系统配置或破坏系统安全的行为;2-3-7运行影响网站服务器或者阿里云服务器正常工作的程序、进程等;2-3-8其他超出阿里云服务范围,可能给阿里云带来任何不利影响的行为或者是国家禁止的行为。2-4用户对其违反2-3的规定而引起的法律责任和政治责任,以及给阿里云造成的经济损失承担全部责任,阿里云不对此承担任何责任。用户承认阿里云有权根据阿里云自己谨慎的判断来确定用户是否违反了2-3的规定。如阿里云发现用户违反2-3的规定,有权立即终止服务。2-5用户对自行安装的软件和进行的操作所引起的结果承担全部责任。2-6用户对自己存放在服务器上的数据、以及进入和管理服务器的口令、密码的完整性和保密性负责。因用户维护不当或保密不当致使上述数据、口令、密码等丢失或泄漏所引起的一切损失和后果均由用户自行承担。2-7用户应向阿里云提交执行本服务条款的联系人和管理用户网络和服务器的人员名单和联系方式并提供必要的协助。如以上人员发生变动,用户应自行将变动后的信息进行在线更新并及时通知阿里云。因用户提供的人员的信息不真实、不准确、不完整,以及因以上人员的行为或不作为而产生的结果,均由用户负责。2-8用户承认阿里云向用户提供的任何资料、技术或技术支持、软件、服务等的知识产权均属于阿里云所有,用户无权复制、传播、转让、许可或提供他人使用这些资源,否则应承担相应的责任。2-9如果用户利用阿里云提供的服务进行的经营活动需要获得国家有关部门的认可或批准的,应获得该有关的认可或批准。特别是,用户网站必须办理非经营性ICP备案,并保证所提交的所有备案信息真实有效,在备案信息发生变化时及时在备案系统中提交更新信息。如用户网站为经营性网站,还应自行在当地通信管理部门办理经营性ICP许可证,用户如开办BBS等电子公告服务以及新闻等栏目也需根据相关法规政策要求获得批准或进行登记备案手续。用户违反本条款的,阿里云或相关部门将有权注销用户的备案和/或关闭用户网站。如因用户违反本条款而给阿里云造成损失的(包括但不限于工业和信息化部等有关部门的罚金等),用户还应赔偿。2-10用户所购买的虚拟主机申请成功后并不意味可以立即绑定顶级域名。用户还需进行以下操作:2-10-1在收到阿里云的《虚拟主机申请成功通知书》后及时登录阿里云代备案系统,按照阿里云要求在线提交其网站的备案信息;2-10-2网站备案信息经阿里云和相应的通信管理局审核通过后,用户将获得工业和信息化部颁发的备案号和备案标志,才能绑定已备案的顶级域名。2-11用户须依照《互联网信息服务管理办法》、《互联网电子公告服务管理规定》的规定保留自己网站的访问日志记录,包括发布的信息内容及其发布时间、互联网地址(IP)、域名等,该记录在国家有关机关依法查询时必须提供。用户自行承担由于其未按规定保留相关记录而引起的全部责任。2-12本服务条款中网站所处的服务器的所有权属于阿里云,阿里云为用户提供网站空间并进行网站的日常维护。2-13阿里云可以帮助用户进行日常的数据备份,但不保证完全备份用户网站上的数据,用户应自行备份其网站上的相关数据。用户充分认识到对用户网站数据的备份并非阿里云的义务,阿里云亦不对用户网站的数据备份工作承担任何责任。2-14阿里云将不定期举办培训和技术咨询,帮助用户充分地发挥网站的作用。2-15阿里云将消除用户非人为操作所出现的故障,但因用户原因和/或不可抗力以及非阿里云控制范围之内的事项除外。2-16阿里云将在必要时对用户的主机进行免费升级,或将主机进行机房迁移,升级后的主机能够支持现有主机的功能。阿里云进行上述操作前将提前7日通知用户,特别的,由于进行上述操作均需要修改用户相关域名的DNS,因此如果用户域名是由阿里云提供DNS服务的,阿里云将直接帮助用户对域名DNS进行相应修改;如用户域名不是由阿里云提供DNS服务的,用户需在接到阿里云通知后按照阿里云要求的时间将DNS修改到阿里云指定IP上,否则因此造成网站无法访问的,由用户自行负责。如用户不同意阿里云对主机进行升级和/或迁移机房的,可在收到阿里云通知后7日内解除本服务条款,届时服务期限和费用将按实际服务月份计算(不足一个月的按一个月计),阿里云将按照阿里云网站公示的退款流程向用户退还用户已支付但未发生的服务费(剩余服务费)。第三条费用3-1在接受本服务的同时,用户须已按照阿里云现时有效的虚拟主机价格体系支付所有费用,阿里云的虚拟主机价格体系中的每一套方案都是独立且不可变更的。3-2服务期满双方愿意继续合作的,用户应在服务期满前一个月内支付续费款项,以使服务得以继续进行。如续费时阿里云对产品体系、名称或价格进行调整的,双方同意按照届时有效的新的产品体系、名称或价格履行。3-3阿里云保留在用户未按照约定支付全部费用之前不向用户提供服务和/或技术支持,或者终止服务和/或技术支持的权利。3-4用户完全理解阿里云价格体系中所有的赠送服务项目均为阿里云在正常服务价格之外的一次性特别优惠,优惠内容不包括赠送服务项目的修改、更新及维护费用,并且赠送服务项目不可折价冲抵服务价格。第四条期限4-1服务有效期自阿里云收到用户款项之日起(而非自用户虚拟主机可以绑定顶级域名之日起)计算,并以款项数额为依据确认服务期限。鉴于用户申请虚拟主机后,阿里云将为用户预留空间以备随时开通,用户承认其办理网站经营许可证/网站备案的相关期间将包含在用户购买的服务期之内。4-2本服务条款另有规定的,从其规定。第五条服务终止及责任承担5-1如果用户没有按时支付续约款项,则在本服务有效期结束后,服务即告终止。阿里云届时将关闭用户的使用帐号。关闭帐号之日起7日内,若用户依然没有续费,阿里云将有权删除用户使用帐号内的所有文件,由此带来的后果由用户自行负责。5-2发生下列情形,服务期限提前终止:5-2-1双方协商一致提前终止的;5-2-2用户违反本服务条款,阿里云有权提前终止服务,并不退还用户已经支付的费用;5-2-3用户可以单方提出提前终止服务的要求,但应提前30天书面通知阿里云,此时用户已交纳的费用不再返还。用户擅自终止本服务条款给阿里云造成损失的,还应予以承担。5-3用户理解,鉴于计算机、互联网的特殊性,下述情况不属于阿里云违约:5-3-1阿里云在进行服务器配置、维护时,需要短时间中断服务;5-3-2由于Internet上的通路阻塞造成用户网站访问速度下降;5-3-3因黑客问题、电信部门技术调整和政府管制等引起的事件。5-4如果因阿里云原因造成用户网站不能正常访问的,阿里云以天为单位向用户赔偿损失,即连续24小时不能正常访问的,延长一天的服务期(以此类推)。如果因阿里云原因造成用户网站连续72小时不能正常访问的,用户可以终止接受服务并可以要求赔偿损失,但非阿里云控制之内的原因引起的除外。赔偿总额以该型号虚拟主机年基本费用的总额为上限。5-5如果用户在网站上的应用给服务器带来异常大的负荷,以致影响该网站所在服务器的正常运行或者影响其他用户的正常使用(包括但不限于2-3-4所述的大量占用阿里云服务器内存、CPU资源的行为),阿里云有权关闭用户的网站,终止服务且余款不予退还。5-6阿里云对因第三方的过错或者延误而给用户造成的损失不承担责任,同时,阿里云对通过用户间接接受阿里云服务的第三方的损失不承担责任。第六条争议解决6-1因本虚拟主机服务有关的一切争议,双方当事人应通过友好协商方式解决。6-2如果协商未成,双方同意向杭州市西湖区人民法院起诉。第七条不可抗力7-1因不可抗力或者其他意外事件,使得本服务条款的履行不可能、不必要或者无意义的,遭受不可抗力、意外事件的一方不承担责任。7-2不可抗力、意外事件是指不能预见、不能克服并不能避免且对一方或双方当事人造成重大影响的客观事件,包括但不限于自然灾害如洪水、地震、瘟疫流行等以及社会事件如战争、动乱、政府行为、电信主干线路中断等。第八条其他约定8-1本虚拟主机服务条款适用中华人民共和国法律法规和计算机行业的规范。8-2任何一方对另一方当事人的商业秘密(包括但不限于经营和技术秘密、源代码、数据库等)均负有保密的义务。8-3因阿里云上市、被收购、与第三方合并、名称变更等事由,用户同意阿里云可以将其权利和/或义务转让给相应的阿里云权利/义务的承受者。8-4本虚拟主机服务有关条款或者约定若与双方以前签署的有关条款或者阿里云的有关陈述不一致或者相抵触的,以此为准。8-5阿里云在相关页面上对于虚拟主机服务的服务说明、价格说明、申请表格等是本条款不可分割的一部分,与本条款具有同等法律效力。用户在此再次确认已经完全阅读并理解了上述虚拟主机服务条款,并自愿正式进入虚拟主机申请程序,接受上述条款的约束。  
2019-12-01 23:19:04 0 浏览量 回答数 0

回答

前言 这期我想写很久了,但是因为时间的原因一直拖到了现在,我以为一两天就写完了,结果从构思到整理资料,再到写出来用了差不多一周的时间吧。 你们也知道丙丙一直都是创作鬼才来的,所以我肯定不会一本正经的写,我想了好几个切入点,最后决定用一个完整的电商系统作为切入点,带着大家看看,我们需要学些啥,我甚至还收集配套视频和资料,暖男石锤啊,这期是呕心沥血之作,不要白嫖了。 正文 在写这个文章之前,我花了点时间,自己臆想了一个电商系统,基本上算是麻雀虽小五脏俱全,我今天就用它开刀,一步步剖析,我会讲一下我们可能会接触的技术栈可能不全,但是够用,最后给个学习路线。 Tip:请多欣赏一会,每个点看一下,看看什么地方是你接触过的,什么技术栈是你不太熟悉的,我觉得还算是比较全的,有什么建议也可以留言给我。 不知道大家都看了一下没,现在我们就要庖丁解牛了,我从上到下依次分析。 前端 你可能会会好奇,你不是讲后端学习路线嘛,为啥还有前端的部分,我只能告诉你,傻瓜,肤浅。 我们可不能闭门造车,谁告诉你后端就不学点前端了? 前端现在很多也了解后端的技术栈的,你想我们去一个网站,最先接触的,最先看到的是啥? 没错就是前端,在大学你要是找不到专门的前端同学,去做系统肯定也要自己顶一下前端的,那我觉得最基本的技术栈得熟悉和了解吧,丙丙现在也是偶尔会开发一下我们的管理系统主要是VUE和React。 在这里我列举了我目前觉得比较简单和我们后端可以了解的技术栈,都是比较基础的。 作为一名后端了解部分前端知识还是很有必要的,在以后开发的时候,公司有前端那能帮助你前后端联调更顺畅,如果没前端你自己也能顶一下简单的页面。 HTML、CSS、JS、Ajax我觉得是必须掌握的点,看着简单其实深究或者去操作的话还是有很多东西的,其他作为扩展有兴趣可以了解,反正入门简单,只是精通很难很难。 在这一层不光有这些还有Http协议和Servlet,request、response、cookie、session这些也会伴随你整个技术生涯,理解他们对后面的你肯定有不少好处。 Tip:我这里最后删除了JSP相关的技术,我个人觉得没必要学了,很多公司除了老项目之外,新项目都不会使用那些技术了。 前端在我看来比后端难,技术迭代比较快,知识好像也没特定的体系,所以面试大厂的前端很多朋友都说难,不是技术多难,而是知识多且复杂,找不到一个完整的体系,相比之下后端明朗很多,我后面就开始讲后端了。 网关层: 互联网发展到现在,涌现了很多互联网公司,技术更新迭代了很多个版本,从早期的单机时代,到现在超大规模的互联网时代,几亿人参与的春运,几千亿成交规模的双十一,无数互联网前辈的造就了现在互联网的辉煌。 微服务,分布式,负载均衡等我们经常提到的这些名词都是这些技术在场景背后支撑。 单机顶不住,我们就多找点服务器,但是怎么将流量均匀的打到这些服务器上呢? 负载均衡,LVS 我们机器都是IP访问的,那怎么通过我们申请的域名去请求到服务器呢? DNS 大家刷的抖音,B站,快手等等视频服务商,是怎么保证同时为全国的用户提供快速的体验? CDN 我们这么多系统和服务,还有这么多中间件的调度怎么去管理调度等等? zk 这么多的服务器,怎么对外统一访问呢,就可能需要知道反向代理的服务器。 Nginx 这一层做了反向负载、服务路由、服务治理、流量管理、安全隔离、服务容错等等都做了,大家公司的内外网隔离也是这一层做的。 我之前还接触过一些比较有意思的项目,所有对外的接口都是加密的,几十个服务会经过网关解密,找到真的路由再去请求。 这一层的知识点其实也不少,你往后面学会发现分布式事务,分布式锁,还有很多中间件都离不开zk这一层,我们继续往下看。 服务层: 这一层有点东西了,算是整个框架的核心,如果你跟我帅丙一样以后都是从事后端开发的话,我们基本上整个技术生涯,大部分时间都在跟这一层的技术栈打交道了,各种琳琅满目的中间件,计算机基础知识,Linux操作,算法数据结构,架构框架,研发工具等等。 我想在看这个文章的各位,计算机基础肯定都是学过的吧,如果大学的时候没好好学,我觉得还是有必要再看看的。 为什么我们网页能保证安全可靠的传输,你可能会了解到HTTP,TCP协议,什么三次握手,四次挥手。 还有进程、线程、协程,什么内存屏障,指令乱序,分支预测,CPU亲和性等等,在之后的编程生涯,如果你能掌握这些东西,会让你在遇到很多问题的时候瞬间get到点,而不是像个无头苍蝇一样乱撞(然而丙丙还做得不够)。 了解这些计算机知识后,你就需要接触编程语言了,大学的C语言基础会让你学什么语言入门都会快点,我选择了面向对象的JAVA,但是也不知道为啥现在还没对象。 JAVA的基础也一样重要,面向对象(包括类、对象、方法、继承、封装、抽象、 多态、消息解析等),常见API,数据结构,集合框架,设计模式(包括创建型、结构型、行为型),多线程和并发,I/O流,Stream,网络编程你都需要了解。 代码会写了,你就要开始学习一些能帮助你把系统变得更加规范的框架,SSM可以会让你的开发更加便捷,结构层次更加分明。 写代码的时候你会发现你大学用的Eclipse在公司看不到了,你跟大家一样去用了IDEA,第一天这是什么玩意,一周后,真香,但是这玩意收费有点贵,那免费的VSCode真的就是不错的选择了。 代码写的时候你会接触代码的仓库管理工具maven、Gradle,提交代码的时候会去写项目版本管理工具Git。 代码提交之后,发布之后你会发现很多东西需要自己去服务器亲自排查,那Linux的知识点就可以在里面灵活运用了,查看进程,查看文件,各种Vim操作等等。 系统的优化很多地方没优化的空间了,你可能会尝试从算法,或者优化数据结构去优化,你看到了HashMap的源码,想去了解红黑树,然后在算法网上看到了二叉树搜索树和各种常见的算法问题,刷多了,你也能总结出精华所在,什么贪心,分治,动态规划等。 这么多个服务,你发现HTTP请求已经开始有点不满足你的需求了,你想开发更便捷,像访问本地服务一样访问远程服务,所以我们去了解了Dubbo,Spring cloud。 了解Dubbo的过程中,你发现了RPC的精华所在,所以你去接触到了高性能的NIO框架,Netty。 代码写好了,服务也能通信了,但是你发现你的代码链路好长,都耦合在一起了,所以你接触了消息队列,这种异步的处理方式,真香。 他还可以帮你在突发流量的时候用队列做缓冲,但是你发现分布式的情况,事务就不好管理了,你就了解到了分布式事务,什么两段式,三段式,TCC,XA,阿里云的全局事务服务GTS等等。 分布式事务的时候你会想去了解RocketMQ,因为他自带了分布式事务的解决方案,大数据的场景你又看到了Kafka。 我上面提到过zk,像Dubbo、Kafka等中间件都是用它做注册中心的,所以很多技术栈最后都组成了一个知识体系,你先了解了体系中的每一员,你才能把它们联系起来。 服务的交互都从进程内通信变成了远程通信,所以性能必然会受到一些影响。 此外由于很多不确定性的因素,例如网络拥塞、Server 端服务器宕机、挖掘机铲断机房光纤等等,需要许多额外的功能和措施才能保证微服务流畅稳定的工作。 **Spring Cloud **中就有 Hystrix 熔断器、Ribbon客户端负载均衡器、Eureka注册中心等等都是用来解决这些问题的微服务组件。 你感觉学习得差不多了,你发现各大论坛博客出现了一些前沿技术,比如容器化,你可能就会去了解容器化的知识,像**Docker,Kubernetes(K8s)**等。 微服务之所以能够快速发展,很重要的一个原因就是:容器化技术的发展和容器管理系统的成熟。 这一层的东西呢其实远远不止这些的,我不过多赘述,写多了像个劝退师一样,但是大家也不用慌,大部分的技术都是慢慢接触了,工作中慢慢去了解,去深入的。 好啦我们继续沿着图往下看,那再往下是啥呢? 数据层: 数据库可能是整个系统中最值钱的部分了,在我码文字的前一天,刚好发生了微盟程序员删库跑路的操作,删库跑路其实是我们在网上最常用的笑话,没想到还是照进了现实。 这里也提一点点吧,36小时的故障,其实在互联网公司应该是个笑话了吧,权限控制没做好类似rm -rf 、fdisk、drop等等这样的高危命令是可以实时拦截掉的,备份,全量备份,增量备份,延迟备份,异地容灾全部都考虑一下应该也不至于这样,一家上市公司还是有点点不应该。 数据库基本的事务隔离级别,索引,SQL,主被同步,读写分离等都可能是你学的时候要了解到的。 上面我们提到了安全,不要把鸡蛋放一个篮子的道理大家应该都知道,那分库的意义就很明显了,然后你会发现时间久了表的数据大了,就会想到去接触分表,什么TDDL、Sharding-JDBC、DRDS这些插件都会接触到。 你发现流量大的时候,或者热点数据打到数据库还是有点顶不住,压力太大了,那非关系型数据库就进场了,Redis当然是首选,但是MongoDB、memcache也有各自的应用场景。 Redis使用后,真香,真快,但是你会开始担心最开始提到的安全问题,这玩意快是因为在内存中操作,那断点了数据丢了怎么办?你就开始阅读官方文档,了解RDB,AOF这些持久化机制,线上用的时候还会遇到缓存雪崩击穿、穿透等等问题。 单机不满足你就用了,他的集群模式,用了集群可能也担心集群的健康状态,所以就得去了解哨兵,他的主从同步,时间久了Key多了,就得了解内存淘汰机制…… 他的大容量存储有问题,你可能需要去了解Pika…. 其实远远没完,每个的点我都点到为止,但是其实要深究每个点都要学很久,我们接着往下看。 实时/离线/大数据 等你把几种关系型非关系型数据库的知识点,整理清楚后,你会发现数据还是大啊,而且数据的场景越来越多多样化了,那大数据的各种中间件你就得了解了。 你会发现很多场景,不需要实时的数据,比如你查你的支付宝去年的,上个月的账单,这些都是不会变化的数据,没必要实时,那你可能会接触像ODPS这样的中间件去做数据的离线分析。 然后你可能会接触Hadoop系列相关的东西,比如于Hadoop(HDFS)的一个数据仓库工具Hive,是建立在 Hadoop 文件系统之上的分布式面向列的数据库HBase 。 写多的场景,适合做一些简单查询,用他们又有点大材小用,那Cassandra就再合适不过了。 离线的数据分析没办法满足一些实时的常见,类似风控,那Flink你也得略知一二,他的窗口思想还是很有意思。 数据接触完了,计算引擎Spark你是不是也不能放过…… 搜索引擎: 传统关系型数据库和NoSQL非关系型数据都没办法解决一些问题,比如我们在百度,淘宝搜索东西的时候,往往都是几个关键字在一起一起搜索东西的,在数据库除非把几次的结果做交集,不然很难去实现。 那全文检索引擎就诞生了,解决了搜索的问题,你得思考怎么把数据库的东西实时同步到ES中去,那你可能会思考到logstash去定时跑脚本同步,又或者去接触伪装成一台MySQL从服务的Canal,他会去订阅MySQL主服务的binlog,然后自己解析了去操作Es中的数据。 这些都搞定了,那可视化的后台查询又怎么解决呢?Kibana,他他是一个可视化的平台,甚至对Es集群的健康管理都做了可视化,很多公司的日志查询系统都是用它做的。 学习路线 看了这么久你是不是发现,帅丙只是一直在介绍每个层级的技术栈,并没说到具体的一个路线,那是因为我想让大家先有个认知或者说是扫盲吧,我一样用脑图的方式汇总一下吧,如果图片被平台二压了。 资料/学习网站 Tip:本来这一栏有很多我准备的资料的,但是都是外链,或者不合适的分享方式,博客的运营小姐姐提醒了我,所以大家去公众号回复【路线】好了。 絮叨 如果你想去一家不错的公司,但是目前的硬实力又不到,我觉得还是有必要去努力一下的,技术能力的高低能决定你走多远,平台的高低,能决定你的高度。 如果你通过努力成功进入到了心仪的公司,一定不要懈怠放松,职场成长和新技术学习一样,不进则退。 丙丙发现在工作中发现我身边的人真的就是实力越强的越努力,最高级的自律,享受孤独(周末的歪哥)。 总结 我提到的技术栈你想全部了解,我觉得初步了解可能几个月就够了,这里的了解仅限于你知道它,知道他是干嘛的,知道怎么去使用它,并不是说深入了解他的底层原理,了解他的常见问题,熟悉问题的解决方案等等。 你想做到后者,基本上只能靠时间上的日积月累,或者不断的去尝试积累经验,也没什么速成的东西,欲速则不达大家也是知道的。 技术这条路,说实话很枯燥,很辛苦,但是待遇也会高于其他一些基础岗位。 所实话我大学学这个就是为了兴趣,我从小对电子,对计算机都比较热爱,但是现在打磨得,现在就是为了钱吧,是不是很现实?若家境殷实,谁愿颠沛流离。 但是至少丙丙因为做软件,改变了家庭的窘境,自己日子也向小康一步步迈过去。 说做程序员改变了我和我家人的一生可能夸张了,但是我总有一种下班辈子会因为我选择走这条路而改变的错觉。 我是敖丙,一个在互联网苟且偷生的工具人。 创作不易,本期硬核,不想被白嫖,各位的「三连」就是丙丙创作的最大动力,我们下次见! 本文 GitHub https://github.com/JavaFamily 已经收录,有大厂面试完整考点,欢迎Star。 该回答来自:敖丙
剑曼红尘 2020-03-06 11:35:37 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用
游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

问题

对比ECS自建数据库与RDS性能时的注意事项

适用场景 测试ECS自建数据库库与云数据库RDS的性能差异。 背景信息 很多用户都会对比ECS自建数据库与云数据库RDS的性能,但在测试两种数据库的性能时,不仅需要保证二者处于相同的环境下࿰...
云栖大讲堂 2019-12-01 21:42:55 1114 浏览量 回答数 0

回答

回2楼啊里新人的帖子 在日常的业务开发中,常见使用到索引的地方大概有两类: 第一类.做业务约束需求,比如需要保证表中每行的单个字段或者某几个组合字段是唯一的,则可以在表中创建唯一索引; 比如:需要保证test表中插入user_id字段的值不能出现重复,则在设计表的时候,就可以在表中user_id字段上创建一个唯一索引: CREATE TABLE `test` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`),   UNIQUE KEY `uk_userid` (`user_id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 ; 第二类.提高SQL语句执行速度,可以根据SQL语句的查询条件在表中创建合适的索引,以此来提升SQL语句的执行速度; 此过程好比是去图书找一本书,最慢的方法就是从图书馆的每一层楼每一个书架一本本的找过去;快捷一点的方法就是先通过图书检索来确认这一本书在几楼那个书架上,然后直接去找就可以了;当然创建这个索引也需要有一定的代价,需要存储空间来存放,需要在数据行插入,更新,删除的时候维护索引: 例如: CREATE TABLE `test_record` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=5635996 DEFAULT CHARSET=utf8 该表有500w的记录,我需要查询20:00后插入的记录有多少条记录: mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (1.31 sec) 可以看到查询耗费了1.31秒返回了1行记录,如果我们在gmt_create字段上添加索引: mysql> alter table test_record add index ind_gmt_create(gmt_create); Query OK, 0 rows affected (21.87 sec) Records: 0  Duplicates: 0  Warnings: 0 mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (0.01 sec) 查询只消耗了0.01秒中就返回了记录. 总的来说,为SQL语句(select,update,delete)创建必要的索引是必须的,这样虽然有一定的性能和空间消耗,但是是值得,尤其是在大并发的请求下,大量的数据被扫描造成系统IO和CPU资源消耗完,进而导致整个数据库不可服务. ------------------------- 怎么学好数据库是一个比较大题目,数据库不仅仅是写SQL那么简单,即使知道了SQL怎么写,还需要很清楚的知道这条SQL他大概扫描了多少数据,返回多少数据,是否需要创建索引。至于SQL优化是一个比较专业的技术活,但是可以通过学习是可以掌握的,你可以把一条sql从执行不出来优化到瞬间完成执行,这个过程的成就感是信心满满的。学习的方法可以有以下一些过程:1、自己查资料,包括书本,在线文档,google,别人的总结等等,试图自己解决2、多做实验,证明自己的想法以及判断3、如果实在不行,再去论坛问,或者问朋友4、如果问题解决了,把该问题的整个解决方法记录下来,以备后来的需要5、多关注别人的问题,或许以后自己就遇到了,并总是试图去多帮助别人6、习惯从多个方面去考虑问题,并且养成良好的总结习惯 下面是一些国内顶级数据库专家学习数据库的经验分享给大家: http://www.eygle.com/archives/2005/08/ecinieoracleouo.html 其实学习任何东西都是一样,没有太多的捷径可走,必须打好了坚实的基础,才有可以在进一步学习中得到快速提高。王国维在他的《人间词话》中曾经概括了为学的三种境界,我在这里套用一下: 古今之成大事业、大学问者,罔不经过三种之境界。"昨夜西风凋碧树。独上高楼,望尽天涯路。"此第一境界也。"衣带渐宽终不悔,为伊消得人憔悴。"此第二境界也。"众里寻他千百度,蓦然回首,那人却在灯火阑珊处。"此第三境界也。 学习Oracle,这也是你必须经历的三种境界。 第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。 这里,注意一个"尽"字,在开始学习的过程中,你必须充分阅读Oracle的基础文档,概念手册、管理手册、备份恢复手册等(这些你都可以在http://tahiti.oracle.com 上找到);OCP认证的教材也值得仔细阅读。打好基础之后你才具备了进一步提升的能力,万丈高楼都是由地而起。 第二层境界是说,尽管经历挫折、打击、灰心、沮丧,也都要坚持不放弃,具备了基础知识之后,你可以对自己感兴趣或者工作中遇到的问题进行深入的思考,由浅入深从来都不是轻而易举的,甚至很多时候你会感到自己停滞不前了,但是不要动摇,学习及理解上的突破也需要时间。 第三次境界是说,经历了那么多努力以后,你会发现,那苦苦思考的问题,那百思不得其解的算法原理,原来答案就在手边,你的思路豁然开朗,宛如拨云见月。这个时候,学习对你来说,不再是个难题,也许是种享受,也许成为艺术。 所以如果你想问我如何速成,那我是没有答案的。 不经一番寒彻骨,哪得梅花扑鼻香。 当然这三种境界在实际中也许是交叉的,在不断的学习中,不断有蓦然回首的收获。 我自己在学习的过程中,经常是采用"由点及面法"。 当遇到一个问题后,一定是深入下去,穷究根本,这样你会发现,一个简单的问题也必定会带起一大片的知识点,如果你能对很多问题进行深入思考和研究,那么在深处,你会发现,这些面逐渐接合,慢慢的延伸到oracle的所有层面,逐渐的你就能融会贯通。这时候,你会主动的去尝试全面学习Oracle,扫除你的知识盲点,学习已经成为一种需要。 由实践触发的学习才最有针对性,才更能让你深入的理解书本上的知识,正所谓:" 纸上得来终觉浅,绝知此事要躬行"。实践的经验于我们是至为宝贵的。 如果说有,那么这,就是我的捷径。 想想自己,经常是"每有所获,便欣然忘食", 兴趣才是我们最好的老师。 Oracle的优化是一门学问,也是一门艺术,理解透彻了,你会知道,优化不过是在各种条件之下做出的均衡与折中。 内存、外存;CPU、IO...对这一切你都需要有充分的认识和相当的了解,管理数据库所需要的知识并不单纯。 作为一个数据库管理人员,你需要做的就是能够根据自己的知识以及经验在各种复杂情况下做出快速正确的判断。当问题出现时,你需要知道使用怎样的手段发现问题的根本;找到问题之后,你需要运用你的知识找到解决问题的方法。 这当然并不容易,举重若轻还是举轻若重,取决于你具备怎样的基础以及经验积累。 在网络上,Howard J. Rogers最近创造了一个新词组:Voodoo Tuning,用以形容那些没有及时更新自己的知识技能的所谓的Oracle技术专家。由于知识的陈旧或者理解的肤浅,他们提供的很多调整建议是错误的、容易使人误解的,甚至是荒诞的。他们提供的某些建议在有些情况下也许是正确的,如果你愿意回到Oracle5版或者6版的年代;但是这些建议在Oracle7.0,8.0 或者 Oracle8i以后往往是完全错误的。 后来基于类似问题触发了互联网内Oracle顶级高手的一系列深入讨论,TOM、Jonathan Lewis、HJR等人都参与其中,在我的网站上(www.eygle.com )上对这些内容及相关链接作了简要介绍,有兴趣的可以参考。 HJR给我们提了很好的一个提示:对你所需要调整的内容,你必须具有充分的认识,否则你做出的判断就有可能是错误的。 这也是我想给自己和大家的一个建议: 学习和研究Oracle,严谨和认真必不可少。 当然 你还需要勤奋,我所熟悉的在Oracle领域有所成就的技术人员,他们共同的特点就是勤奋。 如果你觉得掌握的东西没有别人多,那么也许就是因为,你不如别人勤奋。 要是你觉得这一切过于复杂了,那我还有一句简单的话送给大家: 不积跬步,无以至千里。学习正是在逐渐积累过程中的提高。 现在Itpub给我们提供了很好的交流场所,很多问题都可以在这里找到答案,互相讨论,互相学习。这是我们的幸运,我也因此非常感谢这个网络时代。 参考书籍: 如果是一个新人可以先买一些基本的入门书籍,比如MySQL:《 深入浅出MySQL——数据库开发、优化与管理维护 》,在进阶一点的就是《 高性能MySQL(第3版) 》 oracle的参考书籍: http://www.eygle.com/archives/2006/08/oracle_fundbook_recommand.html 最后建议不要在数据库中使用外键,让应用程序来保证。 ------------------------- Re:回 9楼(千鸟) 的帖子 我有一个问题想问问,现在在做一个与图书有关的项目,其中有一个功能是按图书书名搜索相似图书列表,问题不难,但是想优化一下,有如下问题想请教一下: 1、在图书数据库数据表的书名字段里,按图书书名进行关键字搜索,如何快速搜索相关的图书?   现在由于数据不多,直接用的like模糊查找验证功能而已; 如果数据量不大,是可以在数据库中完成搜索的,可以在搜索字段上创建索引,然后进行搜索查询: CREATE TABLE `book` (   `book_id` int(11) NOT NULL AUTO_INCREMENT,   `book_name` varchar(100) NOT NULL,   .............................   PRIMARY KEY (`book_id`),   KEY `ind_name` (`book_name`) ) ENGINE=InnoDB select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id  where book.book_id=book_search_id.book_id; 但是当数据量变得很大后,就不在适合了,可以采用一些其他的第三方搜索技术比如sphinx; 2、如何按匹配的关键度进行快速排序?比如搜索“算法”,有一本书是《算法》,另一本书是《算法设计》,要求前者排在更前面。 现在的排序是根据数据表中的主键序号id进行的排序,没有达到想要的效果。 root@127.0.0.1 : test 15:57:12> select book_id,book_name from book_search where book_name like '%算%' order by book_name; +---------+--------------+ | book_id | book_name    | +---------+--------------+ |       2 | 算法       | |       1 | 算法设计 | ------------------------- 回 10楼(大黑豆) 的帖子 模糊查询分为半模糊和全模糊,也就是: select * from book where name like 'xxx%';(半模糊) select * from book where name like '%xxx%';(全模糊) 半模糊可以可以使用到索引,全模糊在上面场景是不能使用到索引的,但可以进行一些改进,比如: select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id   where book.book_id=book_search_id.book_id; 注意这里book_id是主键,同时在book_name上创建了索引 上面的sql语句可以利用全索引扫描来完成优化,但是性能不会太好;特别在数据量大,请求频繁的业务场景下不要在数据库进行模糊查询; 非得使用数据库的话 ,建议不要在生产库进行查询,可以在只读节点进行查询,避免查询造成主业务数据库的资源消耗完,导致故障. 可以使用一些开源的搜索引擎技术,比如sphinx. ------------------------- 回 11楼(蓝色之鹰) 的帖子 我想问下,sql优化一般从那几个方面入手?多表之间的连接方式:Nested Loops,Hash Join 和 Sort Merge Join,是不是Hash Join最优连接? SQL优化需要了解优化器原理,索引的原理,表的存储结构,执行计划等,可以买一本书来系统的进行学习,多多实验; 不同的数据库优化器的模型不一样,比如oracle支持NL,HJ,SMJ,但是mysql只支持NL,不通的连接方式适用于不同的应用场景; NL:对于被连接的数据子集较小的情况,嵌套循环连接是个较好的选择 HJ:对于列连接是做大数据集连接时的常用方式 SMJ:通常情况下散列连接的效果都比排序合并连接要好,然而如果行源已经被排过序,在执行排序合并连接时不需要再排序了,这时排序合并连接的性能会优于散列连接 ------------------------- Re:回 19楼(原远) 的帖子 有个问题:分类表TQueCategory,问题表TQuestion(T-SQL) CREATE TABLE TQueCategory ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题分类ID NAME VARCHAR(20)        --问题分类名称 ) CREATE TABLE TQuestion ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题ID CateID INT NOT NULL,        --问题分类ID TITLE VARCHAR(50),        --问题标题 CONTENT VARCHAR(500)        --问题内容 ) 当前要统计某个分类下的问题数,有两种方式: 1.每次统计,在TQuestion通过CateID进行分组统计 SELECT CateID,COUNT(1) AS QueNum FROM TQuestion GROUP BY CateID WHERE 1=1 2.在TQueCategory表增加字段QueNum,用于标识该分类下的问题数量 ALTER TABLE TQueCategory ADD QueNum INT SELECT CateID,QueNum FROM TQueCategory 问:在哪种业务应用场景下采用上面哪种方式性能比较好,为什么? ############################################################################################### 方案 一 需要对 TQuestion 的 CateID字段 进行分组 ,可以在 CateID上创建一个索引,这样就可以索引扫描来完成查询; 方案 二 需要对 TQueCategory 进行扫描就可以得出结果,但是必须在问题表有插入,删除的时候维护quenum数量; 单单从SQL的性能来看, 分类表的数量应该是远远小于问题表的数量的,所以方案二的性能会比较好; 但是如果 TQuestion 的插入非常频繁的话,会带来对 TQueCategory的频繁更新,一次 TQuestion 的 insert或deleted就会带来一次 TQueCategory 的update,这个代价其实是蛮高的; 如果这个分类统计的查询不是非常频繁的话,建议还是使用方案一; 同时还可能还会其他的业务逻辑统计需求(例如: CateID +时间),这个时候在把逻辑放到 TQueCategory就不合适了。 ------------------------- 回 20楼(原远) 的帖子 经验之谈,仅供参考 使用外键在开发上确实省去了很多功夫,但是把业务逻辑交由数据库来完成,对后期的维护来说是很麻烦的事情,不利于维护. ------------------------- 回 21楼(玩站网) 的帖子 无关技术方面: 咨询一下,现在mysql新的版本,5.5.45后貌似修改了开源协议。 是否意味着今后我们商业化使用mysql将受到限制? 如果甲骨文真周到那一步,rds是否会受到影响? 一个疑惑: 为什么很少见到有人用mysql正则匹配?性能不好还是什么原因? ######################################## MySQL有商业版 和 社区版,RDS的MySQL采用开源的社区版进行改进,由专门的RDS MySQL源码团队来维护,国内TOP 10的mysql源码贡献者大部分都在RDS,包括了@丁奇 ,@彭立勋 ,@印风 等; 不在数据库中做业务计算,是保证数据库运行稳定的一个好的设计经验; 是否影响性能与你的sql的执行频率,需要参与的计算数据量相关,当然了还包括数据库所在主机的IO,cpu,内存等资源,离开了这些谈性能是没有多大意义的; ------------------------- 回 22楼(比哥) 的帖子 分页该怎么优化才行??? ######################### 可以参考这个链接,里面有很多的最佳实践,其中就包括了分页语句的优化: http://bbs.aliyun.com/read/168647.html?spm=5176.7114037.1996646101.1.celwA1&pos=1 普通写法: select  *  from t where sellerid=100 limit 100000,20 普通limit M,N的翻页写法,往往在越往后翻页的过程中速度越慢,原因 mysql会读取表中的前M+N条数据,M越大,性能就越差: 优化写法: select t1.* from  t t1,             (select id from t  sellerid=100 limit 100000,20) t2 where t1.id=t2.id; 优化后的翻页写法,先查询翻页中需要的N条数据的主键id,在根据主键id 回表查询所需要的N条数据,此过程中查询N条数据的主键ID在索引中完成 注意:需要在t表的sellerid字段上创建索引 create index ind_sellerid on t(sellerid); 案例: user_A (21:42:31): 这个sql该怎么优化,执行非常的慢: | Query   |   51 | Sending data | select id, ... from t_buyer where sellerId = 765922982 and gmt_modified >= '1970-01-01 08:00:00' and gmt_modified <= '2013-06-05 17:11:31' limit 255000, 5000 SQL改写:selectt2.* from (selectid from t_buyer where sellerId = 765922982   andgmt_modified >= '1970-01-01 08:00:00'   andgmt_modified <= '2013-06-05 17:11:31' limit255000, 5000)t1,t_buyer t2 where t1.id=t2.id index:seller_id,gmt_modified user_A(21:58:43): 好像很快啊。神奇,这个原理是啥啊。牛!!! user_A(21:59:55): 5000 rows in set (4.25 sec), 前面要90秒。 ------------------------- 回 27楼(板砖大叔) 的帖子 这里所说的索引都是普通的b-tree索引,mysql,sqlserver,oracle 的关系数据库都是默认支持的; ------------------------- 回 32楼(veeeye) 的帖子 可以详细说明一下“最后建议不要在数据库中使用外键,让应用程序来保证。 ”的原因吗?我们公司在项目中经常使用外键,用程序来保证不是相对而言更加复杂了吗? 这里的不建议使用外键,主要考虑到 : 第一.维护成本上,把一些业务逻辑交由数据库来保证,当业务需求发生改动的时候,需要同时考虑应用程序和数据库,有时候一些数据库变更或者bug,可能会导致外键的失效;同时也给数据库的管理人员带来维护的麻烦,不便于管理。 第二.性能上考虑,当大量数据写入的时候,外键肯定会带来一定的性能损耗,当出现这样的问题时候,再来改造去除外键,真的就不值得了; 最后,不在数据库中参与业务的计算(存储过程,函数,触发器,外键),是保证数据库运行稳定的一个好的最佳实践。 ------------------------- 回 33楼(优雅的固执) 的帖子 ReDBA专家门诊一期:索引与sql优化 十分想请大师分享下建立索引的经验 我平时简历索引是这样的 比如订单信息的话 建立 订单号  唯一聚集索引 其他的比如   客户编号 供应商编号 商品编号 这些建立非聚集不唯一索引   ################################################## 建立索引,需要根据你的SQL语句来进行创建,不是每一个字段都需要进行创建,也不是一个索引都不创建,,可以把你的SQL语句,应用场景发出来看看。 索引的创建确实是一个非常专业的技术活,需要掌握:表的存储方式,索引的原理,数据库的优化器,统计信息,最后还需要能够读懂数据库的执行计划,以此来判断索引是否创建正确; 所以需要进行系统的学习才能掌握,附件是我在2011年的时候的一次公开课的ppt,希望对你有帮助,同时可以把你平时遇到的索引创建的疑惑发到论坛上来,大家可以一起交流。 ------------------------- 回 30楼(几几届) 的帖子 我也是这样,简单的会,仔细写也会写出来,但是就是不知道有没有更快或者更好的 #################################################### 多写写SQL,掌握SQL优化的方法,自然这些问题不在话下了。 ------------------------- 回 40楼(小林阿小林) 的帖子 mysql如何查询需要优化的语句,比如慢查询的步奏,如何找出需要通知程序员修改或者优化的sql语句 ############################################################ 可以将mysql的慢日志打开,就可以记录执行时间超过指定阀值的慢SQL到本地文件或者数据库的slow_log表中; 在RDS中默认是打开了慢日志功能的:long_query_time=1,表示会记录执行时间>=1秒的慢sql; 如何快速找到mysql瓶颈: 简单一点的方法,可以通过监控mysql所在主机的性能(CPU,IO,load等)以及mysql本身的一些状态值(connections,thread running,qps,命中率等); RDS提供了完善的数据库监控体系,包括了CPU,IOPS,Disk,Connections,QPS,可以重点关注cpu,IO,connections,disk 4个 指标; cpu,io,connections主要体现在了性能瓶颈,disk主要体现了空间瓶颈; 有时候一条慢sql语句的频繁调用,也可能导致整个实例的cpu,io,connections达到100%;也有可能一条排序的sql语句,消耗大量的临时空间,导致实例的空间消耗完。 ------------------------- 下面是分析一个cpu 100%的案例分析:该实例的cpu已经到达100% 查看当前数据库的活动会话信息:当前数据库有较多的活跃线程在数据库中执行查看当前数据库正在执行的sql: 可以看到这条sql执行的非常缓慢:[tr=rgb(100, 204, 255)]delete from task_process where task_id='1801099' 查看这个表的索引: CREATE TABLE `task_process` (  `id` int(11) NOT NULL AUTO_INCREMENT,    ................  `task_id` int(11) NOT NULL DEFAULT '0' COMMENT '??????id',   ................  PRIMARY KEY (`id`),  KEY `index_over_task` (`is_over`,`task_id`),  KEY `index_over` (`is_over`,`is_auto`) USING BTREE,  KEY `index_process_sn` (`process_sn`,`is_over`) USING BTREE) ENGINE=InnoDB AUTO_INCREMENT=32129710; 可以看到这个表有3KW的数据,但是没有task_id字段开头的索引,导致该sql语句删除需要进行全表扫描: 在我们的诊断报告中已经将该sql语句捕获到,同时给你提出该怎样进行索引的添加。 广告:诊断报告将会在1月底发布到控制台,到时候用户可以直接查看诊断建议,来完成你的数据库优化。 ------------------------- 回 45楼(dentrite) 的帖子 datetime和int都是占用数据库4个字节,所以在空间上没有什么差别;但是为了可读性,建议还是使用datetime数据类型。 ------------------------- 回 48楼(yuantel) 的帖子 麻烦把ecs_brand和ecs_goods的表结构发出来一下看看 。 ------------------------- 回 51楼(小林阿小林) 的帖子 普通的 ECS服务器上目前还没有这样的慢SQL索引建议的工具。 不过后续有IDBCloud将会集成这样的sql诊断功能,使用他来管理ECS上的数据库就可以使用这样的功能了 。
玄惭 2019-12-02 01:16:11 0 浏览量 回答数 0

问题

干货分享:DBA专家门诊一期:索引与sql优化问题汇总

各位亲爱的云友,               非常感谢大家踊跃参加DBA专家门诊一期:索引与sql优化,很多云友都提出了自己的问题,门诊主任医师玄惭对大家提的问题一一作了解答。现已整...
xiaofanqie 2019-12-01 21:24:21 74007 浏览量 回答数 38

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT