• 关于 资源监视器未响应 的搜索结果

回答

kube-apiserver 主节点上负责提供 Kubernetes API 服务的组件;它是 Kubernetes 控制面的前端。 kube-apiserver 在设计上考虑了水平扩缩的需要。 换言之,通过部署多个实例可以实现扩缩。 etcd etcd 是兼具一致性和高可用性的键值数据库,可以作为保存 Kubernetes 所有集群数据的后台数据库。 您的 Kubernetes 集群的 etcd 数据库通常需要有个备份计划。 kube-scheduler 主节点上的组件,该组件监视那些新创建的未指定运行节点的 Pod,并选择节点让 Pod 在上面运行。 调度决策考虑的因素包括单个 Pod 和 Pod 集合的资源需求、硬件/软件/策略约束、亲和性和反亲和性规范、数据位置、工作负载间的干扰和最后时限。 kube-controller-manager 在主节点上运行控制器的组件。 从逻辑上讲,每个控制器都是一个单独的进程,但是为了降低复杂性,它们都被编译到同一个可执行文件,并在一个进程中运行。 这些控制器包括: 节点控制器(Node Controller): 负责在节点出现故障时进行通知和响应。 副本控制器(Replication Controller): 负责为系统中的每个副本控制器对象维护正确数量的 Pod。 端点控制器(Endpoints Controller): 填充端点(Endpoints)对象(即加入 Service 与 Pod)。 服务帐户和令牌控制器(Service Account & Token Controllers): 为新的命名空间创建默认帐户和 API 访问令牌. 云控制器管理器-(cloud-controller-manager) cloud-controller-manager 运行与基础云提供商交互的控制器 cloud-controller-manager 仅运行云提供商特定的控制器循环。您必须在 kube-controller-manager 中禁用这些控制器循环,您可以通过在启动 kube-controller-manager 时将 --cloud-provider 参数设置为 external 来禁用控制器循环。 cloud-controller-manager 允许云供应商的代码和 Kubernetes 代码彼此独立地发展。在以前的版本中,核心的 Kubernetes 代码依赖于特定云提供商的代码来实现功能。在将来的版本中,云供应商专有的代码应由云供应商自己维护,并与运行 Kubernetes 的云控制器管理器相关联。 以下控制器具有云提供商依赖性: 节点控制器(Node Controller): 用于检查云提供商以确定节点是否在云中停止响应后被删除 路由控制器(Route Controller): 用于在底层云基础架构中设置路由 服务控制器(Service Controller): 用于创建、更新和删除云提供商负载均衡器 数据卷控制器(Volume Controller): 用于创建、附加和装载卷、并与云提供商进行交互以编排卷

愚笨如你 2020-02-25 14:42:19 0 浏览量 回答数 0

回答

一 容器 在学习k8s前,首先要了解和学习容器概念和工作原理。 什么是容器? 容器是一种轻量级、可移植、自包含的软件打包技术,使应用程序可以在几乎任何地方以相同的方式运行。开发人员在自己笔记本上创建并测试好的容器,无需任何修改就能够在生产系统的虚拟机、物理服务器或公有云主机上运行。 容器的优势 容器使软件具备了超强的可移植能力。 对于开发人员 – Build Once, Run Anywhere 容器意味着环境隔离和可重复性。开发人员只需为应用创建一次运行环境,然后打包成容器便可在其他机器上运行。另外,容器环境与所在的 Host 环境是隔离的,就像虚拟机一样,但更快更简单。 对于运维人员 – Configure Once, Run Anything 只需要配置好标准的 runtime 环境,服务器就可以运行任何容器。这使得运维人员的工作变得更高效,一致和可重复。容器消除了开发、测试、生产环境的不一致性。 Docker概念 “Docker” 一词指代了多个概念,包括开源社区项目、开源项目使用的工具、主导支持此类项目的公司 Docker Inc. 以及该公司官方支持的工具。技术产品和公司使用同一名称,的确让人有点困惑。 我们来简单说明一下: IT 软件中所说的 “Docker” ,是指容器化技术,用于支持创建和使用容器。 开源 Docker 社区致力于改进这类技术,并免费提供给所有用户,使之获益。 Docker Inc. 公司凭借 Docker 社区产品起家,它主要负责提升社区版本的安全性,并将技术进步与广大技术社区分享。此外,它还专门对这些技术产品进行完善和安全固化,以服务于企业客户。 借助 Docker,您可将容器当做轻巧、模块化的虚拟机使用。同时,您还将获得高度的灵活性,从而实现对容器的高效创建、部署及复制,并能将其从一个环境顺利迁移至另一个环境,从而有助于您针对云来优化您的应用。 Docker有三大核心概念: 镜像(Image)是一个特殊的文件系统,提供容器运行时所需的程序、库、配置等,构建后不会改变 容器(Container)实质是进程,拥有自己独立的命名空间。 仓库(Repository)一个仓库可以包含多个标签(Tag),每个标签对应一个镜像 容器工作原理 Docker 技术使用 Linux 内核和内核功能(例如 Cgroups 和 namespaces)来分隔进程,以便各进程相互独立运行。这种独立性正是采用容器的目的所在;它可以独立运行多种进程、多个应用,更加充分地发挥基础设施的作用,同时保持各个独立系统的安全性。 二 Kubernetes入门知识指南 Kubernets的知识都可以在官方文档查询,网址如下: https://kubernetes.io/zh/docs/home/ Kubernetes基础知识 Kubernetes是什么? Kubernetes 是一个可移植的、可扩展的开源平台,用于管理容器化的工作负载和服务,可促进声明式配置和自动化。Kubernetes 拥有一个庞大且快速增长的生态系统。Kubernetes 的服务、支持和工具广泛可用。 为什么需要 Kubernetes 容器是打包和运行应用程序的好方式。在生产环境中,您需要管理运行应用程序的容器,并确保不会停机。例如,如果一个容器发生故障,则需要启动另一个容器。如果由操作系统处理此行为,会不会更容易? Kubernetes 为您提供: 服务发现和负载均衡 Kubernetes 可以使用 DNS 名称或自己的 IP 地址公开容器,如果到容器的流量很大,Kubernetes 可以负载均衡并分配网络流量,从而使部署稳定。 存储编排 Kubernetes 允许您自动挂载您选择的存储系统,例如本地存储、公共云提供商等。 自动部署和回滚 您可以使用 Kubernetes 描述已部署容器的所需状态,它可以以受控的速率将实际状态更改为所需状态。例如,您可以自动化 Kubernetes 来为您的部署创建新容器,删除现有容器并将它们的所有资源用于新容器。 自动二进制打包 Kubernetes 允许您指定每个容器所需 CPU 和内存(RAM)。当容器指定了资源请求时,Kubernetes 可以做出更好的决策来管理容器的资源。 自我修复 Kubernetes 重新启动失败的容器、替换容器、杀死不响应用户定义的运行状况检查的容器,并且在准备好服务之前不将其通告给客户端。 密钥与配置管理 Kubernetes 允许您存储和管理敏感信息,例如密码、OAuth 令牌和 ssh 密钥。您可以在不重建容器镜像的情况下部署和更新密钥和应用程序配置,也无需在堆栈配置中暴露密钥。 Kubernetes 组件 初学者首先要了解Kubernetes的基本概念,包括master、node、pod等。 Master Master是Kubernetes集群的大脑,运行着的守护进程服务包括kube-apiserver、kube-scheduler、kube-controller-manager、etcd和Pod网络等。 kube-apiserver 主节点上负责提供 Kubernetes API 服务的组件;它是 Kubernetes 控制面的前端。 kube-apiserver 在设计上考虑了水平扩缩的需要。 换言之,通过部署多个实例可以实现扩缩。 etcd etcd 是兼具一致性和高可用性的键值数据库,可以作为保存 Kubernetes 所有集群数据的后台数据库。 您的 Kubernetes 集群的 etcd 数据库通常需要有个备份计划。 kube-scheduler 主节点上的组件,该组件监视那些新创建的未指定运行节点的 Pod,并选择节点让 Pod 在上面运行。 调度决策考虑的因素包括单个 Pod 和 Pod 集合的资源需求、硬件/软件/策略约束、亲和性和反亲和性规范、数据位置、工作负载间的干扰和最后时限。 kube-controller-manager 在主节点上运行控制器的组件。 从逻辑上讲,每个控制器都是一个单独的进程,但是为了降低复杂性,它们都被编译到同一个可执行文件,并在一个进程中运行。 这些控制器包括: 节点控制器(Node Controller): 负责在节点出现故障时进行通知和响应。 副本控制器(Replication Controller): 负责为系统中的每个副本控制器对象维护正确数量的 Pod。 端点控制器(Endpoints Controller): 填充端点(Endpoints)对象(即加入 Service 与 Pod)。 服务帐户和令牌控制器(Service Account & Token Controllers): 为新的命名空间创建默认帐户和 API 访问令牌. 云控制器管理器-(cloud-controller-manager) cloud-controller-manager 运行与基础云提供商交互的控制器 cloud-controller-manager 仅运行云提供商特定的控制器循环。您必须在 kube-controller-manager 中禁用这些控制器循环,您可以通过在启动 kube-controller-manager 时将 --cloud-provider 参数设置为 external 来禁用控制器循环。 cloud-controller-manager 允许云供应商的代码和 Kubernetes 代码彼此独立地发展。在以前的版本中,核心的 Kubernetes 代码依赖于特定云提供商的代码来实现功能。在将来的版本中,云供应商专有的代码应由云供应商自己维护,并与运行 Kubernetes 的云控制器管理器相关联。 以下控制器具有云提供商依赖性: 节点控制器(Node Controller): 用于检查云提供商以确定节点是否在云中停止响应后被删除 路由控制器(Route Controller): 用于在底层云基础架构中设置路由 服务控制器(Service Controller): 用于创建、更新和删除云提供商负载均衡器 数据卷控制器(Volume Controller): 用于创建、附加和装载卷、并与云提供商进行交互以编排卷 Node 节点组件在每个节点上运行,维护运行 Pod 并提供 Kubernetes 运行环境。 kubelet 一个在集群中每个节点上运行的代理。它保证容器都运行在 Pod 中。 kubelet 接收一组通过各类机制提供给它的 PodSpecs,确保这些 PodSpecs 中描述的容器处于运行状态且健康。kubelet 不会管理不是由 Kubernetes 创建的容器。 kube-proxy kube-proxy 是集群中每个节点上运行的网络代理,实现 Kubernetes Service 概念的一部分。 kube-proxy 维护节点上的网络规则。这些网络规则允许从集群内部或外部的网络会话与 Pod 进行网络通信。 如果有 kube-proxy 可用,它将使用操作系统数据包过滤层。否则,kube-proxy 会转发流量本身。 容器运行环境(Container Runtime) 容器运行环境是负责运行容器的软件。 Kubernetes 支持多个容器运行环境: Docker、 containerd、cri-o、 rktlet 以及任何实现 Kubernetes CRI (容器运行环境接口)。 Pod 在Kubernetes中,最小的管理元素不是一个个独立的容器,而是Pod。Pod是管理,创建,计划的最小单元. 一个Pod相当于一个共享context的配置组,在同一个context下,应用可能还会有独立的cgroup隔离机制,一个Pod是一个容器环境下的“逻辑主机”,它可能包含一个或者多个紧密相连的应用,这些应用可能是在同一个物理主机或虚拟机上。 Pod 的context可以理解成多个linux命名空间的联合 PID 命名空间(同一个Pod中应用可以看到其它进程) 网络 命名空间(同一个Pod的中的应用对相同的IP地址和端口有权限) IPC 命名空间(同一个Pod中的应用可以通过VPC或者POSIX进行通信) UTS 命名空间(同一个Pod中的应用共享一个主机名称) 同一个Pod中的应用可以共享磁盘,磁盘是Pod级的,应用可以通过文件系统调用。 由于docker的架构,一个Pod是由多个相关的并且共享磁盘的容器组成,Pid的命名空间共享还没有应用到Docker中 和相互独立的容器一样,Pod是一种相对短暂的存在,而不是持久存在的,正如我们在Pod的生命周期中提到的,Pod被安排到结点上,并且保持在这个节点上直到被终止(根据重启的设定)或者被删除,当一个节点死掉之后,上面的所有Pod均会被删除。特殊的Pod永远不会被转移到的其他的节点,作为替代,他们必须被replace. 三 通过kubeadm方式创建一个kubernetes 对kubernetes的概念和组件有所了解以后,就可以通过kubeadm的方式创建一个kubernetes集群。 安装前准备工作 创建虚拟机 创建至少2台虚拟机,可以在本地或者公有云。 下载部署软件 需要下载的软件包括calico、demo-images、docker-ce、kube、kube-images、kubectl、metrics-server 安装部署 具体安装过程参考官网文档: https://kubernetes.io/zh/docs/reference/setup-tools/kubeadm/kubeadm/ 四 安装后的练习 安装后详读官方文档,做下面这些组件的练习操作,要达到非常熟练的程度。 Node Namespace Pod Deployment DaemonSet Service Job Static Pod ConfigMap Secrets Volume Init-containers Affinity and Anti-Affinity Monitor and logs Taints and Tolerations Cordon and Drain Backing up etcd 这些内容都非常熟练以后,基本就达到了入门的水平。

红亮 2020-03-02 11:09:17 0 浏览量 回答数 0

回答

1.阻塞与同步2.BIO与NIO对比3.NIO简介4.缓冲区Buffer5.通道Channel6.反应堆7.选择器8.NIO源码分析9.AIO1.阻塞与同步1)阻塞(Block)和非租塞(NonBlock):阻塞和非阻塞是进程在访问数据的时候,数据是否准备就绪的一种处理方式,当数据没有准备的时候阻塞:往往需要等待缞冲区中的数据准备好过后才处理其他的事情,否則一直等待在那里。非阻塞:当我们的进程访问我们的数据缓冲区的时候,如果数据没有准备好则直接返回,不会等待。如果数据已经准备好,也直接返回2)同步(Synchronization)和异步(Async)的方式:同步和异步都是基于应用程序私操作系统处理IO事件所采用的方式,比如同步:是应用程序要直接参与IO读写的操作。异步:所有的IO读写交给搡作系统去处理,应用程序只需要等待通知。同步方式在处理IO事件的时候,必须阻塞在某个方法上靣等待我们的IO事件完成(阻塞IO事件或者通过轮询IO事件的方式).对于异步来说,所有的IO读写都交给了搡作系统。这个时候,我们可以去做其他的事情,并不拓要去完成真正的IO搡作,当搡作完成IO后.会给我们的应用程序一个通知同步:阻塞到IO事件,阻塞到read成则write。这个时候我们就完全不能做自己的事情,让读写方法加入到线程里面,然后阻塞线程来实现,对线程的性能开销比较大,参考:https://blog.csdn.net/CharJay_Lin/article/details/812598802.BIO与NIO对比block IO与Non-block IO1)区别IO模型 IO NIO方式 从硬盘到内存 从内存到硬盘通信 面向流(乡村公路) 面向缓存(高速公路,多路复用技术)处理 阻塞IO(多线程) 非阻塞IO(反应堆Reactor)触发 无 选择器(轮询机制)2)面向流与面向缓冲Java NIO和IO之间第一个最大的区别是,IO是面向流的.NIO是面向缓冲区的。Java IO面向流意味着毎次从流中读一个成多个字节,直至读取所有字节,它们没有被缓存在任何地方,此外,它不能前后移动流中的数据。如果需要前后移动从流中读取的教据,需要先将它缓存到一个缓冲区。Java NIO的缓冲导向方法略有不同。数据读取到一个它稍后处理的缓冲区,霱要时可在缓冲区中前后移动。这就增加了处理过程中的灵活性。但是,还需要检查是否该缓冲区中包含所有您需要处理的数裾。而且,需确保当更多的数据读入缓冲区时,不要覆盖缓冲区里尚未处理的数据。3)阻塞与非阻塞Java IO的各种流是阻塞的。这意味着,当一个线程调用read() 或 write()时,该线程被阻塞,直到有一些数据被读取,或数据完全写入。该线程在此期间不能再干任何事情了。 Java NIO的非阻塞模式,使一个线程从某通道发送请求读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取。而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以继续做其他的事情。 非阻塞写也是如此。一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。 线程通常将非阻塞IO的空闲时间用于在其它通道上执行IO操作,所以一个单独的线程现在可以管理多个输入和输出通道(channel)。4)选择器(Selector)Java NIO的选择器允许一个单独的线程来监视多个输入通道,你可以注册多个通道使用一个选择器,然后使用一个单独的线程来“选择"通道:这些通里已经有可以处理的褕入,或者选择已准备写入的通道。这选怿机制,使得一个单独的线程很容易来管理多个通道。5)NIO和BIO读取文件BIO读取文件:链接BIO从一个阻塞的流中一行一行的读取数据image | left | 469x426NIO读取文件:链接通道是数据的载体,buffer是存储数据的地方,线程每次从buffer检查数据通知给通道image | left | 559x3946)处理数据的线程数NIO:一个线程管理多个连接BIO:一个线程管理一个连接3.NIO简介在Java1.4之前的I/O系统中,提供的都是面向流的I/O系统,系统一次一个字节地处理数据,一个输入流产生一个字节的数据,一个输出流消费一个字节的数据,面向流的I/O速度非常慢,而在Java 1.4中推出了NIO,这是一个面向块的I/O系统,系统以块的方式处理处理,每一个操作在一步中产生或者消费一个数据库,按块处理要比按字节处理数据快的多。在NIO中有几个核心对象需要掌握:缓冲区(Buffer)、通道(Channel)、选择器(Selector)。参考:链接image2.png | center | 851x3834.缓冲区Buffer缓冲区实际上是一个容器对象,更直接的说,其实就是一个数组,在NIO库中,所有数据都是用缓冲区处理的。在读取数据时,它是直接读到缓冲区中的; 在写入数据时,它也是写入到缓冲区中的;任何时候访问 NIO 中的数据,都是将它放到缓冲区中。而在面向流I/O系统中,所有数据都是直接写入或者直接将数据读取到Stream对象中。在NIO中,所有的缓冲区类型都继承于抽象类Buffer,最常用的就是ByteBuffer,对于Java中的基本类型,基本都有一个具体Buffer类型与之相对应,它们之间的继承关系如下图所示:image3.png | center | 650x3681)其中的四个属性的含义分别如下:容量(Capacity):缓冲区能够容纳的数据元素的最大数量。这一个容量在缓冲区创建时被设定,并且永远不能改变。上界(Limit):缓冲区的第一个不能被读或写的元素。或者说,缓冲区中现存元素的计数。位置(Position):下一个要被读或写的元素的索引。位置会自动由相应的 get( )和 put( )函数更新。标记(Mark):下一个要被读或写的元素的索引。位置会自动由相应的 get( )和 put( )函数更新。2)Buffer的常见方法如下所示:flip(): 写模式转换成读模式rewind():将 position 重置为 0 ,一般用于重复读。clear() :compact(): 将未读取的数据拷贝到 buffer 的头部位。mark(): reset():mark 可以标记一个位置, reset 可以重置到该位置。Buffer 常见类型: ByteBuffer 、 MappedByteBuffer 、 CharBuffer 、 DoubleBuffer 、 FloatBuffer 、 IntBuffer 、 LongBuffer 、 ShortBuffer 。3)基本操作Buffer基础操作: 链接缓冲区分片,缓冲区分配,直接缓存区,缓存区映射,缓存区只读:链接4)缓冲区存取数据流程存数据时position会++,当停止数据读取的时候调用flip(),此时limit=position,position=0读取数据时position++,一直读取到limitclear() 清空 buffer ,准备再次被写入 (position 变成 0 , limit 变成 capacity) 。5.通道Channel通道是一个对象,通过它可以读取和写入数据,当然了所有数据都通过Buffer对象来处理。我们永远不会将字节直接写入通道中,相反是将数据写入包含一个或者多个字节的缓冲区。同样不会直接从通道中读取字节,而是将数据从通道读入缓冲区,再从缓冲区获取这个字节。image4.png | center | 368x191在NIO中,提供了多种通道对象,而所有的通道对象都实现了Channel接口。它们之间的继承关系如下图所示:image5.png | center | 650x5171)使用NIO读取数据在前面我们说过,任何时候读取数据,都不是直接从通道读取,而是从通道读取到缓冲区。所以使用NIO读取数据可以分为下面三个步骤:从FileInputStream获取Channel 创建Buffer 将数据从Channel读取到Buffer中 例子:链接 2)使用NIO写入数据使用NIO写入数据与读取数据的过程类似,同样数据不是直接写入通道,而是写入缓冲区,可以分为下面三个步骤:从FileInputStream获取Channel 创建Buffer 将数据从Channel写入到Buffer中 例子:链接 6.反应堆1)阻塞IO模型在老的IO包中,serverSocket和socket都是阻塞式的,因此一旦有大规模的并发行为,而每一个访问都会开启一个新线程。这时会有大规模的线程上下文切换操作(因为都在等待,所以资源全都被已有的线程吃掉了),这时无论是等待的线程还是正在处理的线程,响应率都会下降,并且会影响新的线程。image6.png | center | 739x3362)NIOJava NIO是在jdk1.4开始使用的,它既可以说成“新IO”,也可以说成非阻塞式I/O。下面是java NIO的工作原理:1.由一个专门的线程来处理所有的IO事件,并负责分发。2.事件驱动机制:事件到的时候触发,而不是同步的去监视事件。3.线程通讯:线程之间通过wait,notify等方式通讯。保证每次上下文切换都是有意义的。减少无谓的线程切换。image7.png | center | 689x251注:每个线程的处理流程大概都是读取数据,解码,计算处理,编码,发送响应。7.选择器传统的 server / client 模式会基于 TPR ( Thread per Request ) .服务器会为每个客户端请求建立一个线程.由该线程单独负贵处理一个客户请求。这种模式带未的一个问题就是线程数是的剧增.大量的线程会增大服务器的开销,大多数的实现为了避免这个问题,都采用了线程池模型,并设置线程池线程的最大数量,这又带来了新的问题,如果线程池中有 200 个线程,而有 200 个用户都在进行大文件下载,会导致第 201 个用户的请求无法及时处理,即便第 201 个用户只想请求一个几 KB 大小的页面。传统的 Sorvor / Client 模式如下围所示:image8.png | center | 597x286NIO 中非阻塞IO采用了基于Reactor模式的工作方式,IO调用不会被阻塞,相反是注册感兴趣的特点IO事件,如可读数据到达,新的套接字等等,在发生持定率件时,系统再通知我们。 NlO中实现非阻塞IO的核心设计Selector,Selector就是注册各种IO事件的地方,而且当那些事件发生时,就是这个对象告诉我们所发生的事件。image9.png | center | 462x408当有读或者写等任何注册的事件发生时,可以从Selector中获得相应的SelectionKey,同时从SelectionKey中可以找到发生的事件和该事件所发生的具体的SelectableChannel,以获得客户端发送过来的数据。使用NIO中非阻塞IO编写服务器处理程序,有三个步骤1.向Selector对象注册感兴趣的事件2.从Selector中获取感兴趣的事件3.根据不同事件进行相应的处理8.NIO源码分析Selector是NIO的核心epool模型1)SelectorSelector的open()方法:链接2)ServerSocketChannelServerSocketChannel.open() 链接9.AIOAsynchronous IO异步非阻塞IOBIO ServerSocketNIO ServerSocketChannelAIO AsynchronousServerSocketChannel

wangccsy 2019-12-02 01:46:51 0 浏览量 回答数 0

智能视觉生产免费体验

图像视频分割、图像编辑、图像分析,互娱、电商行业必备

回答

一、内存溢出类型 1、java.lang.OutOfMemoryError: PermGen space JVM管理两种类型的内存,堆和非堆。堆是给开发人员用的上面说的就是,是在JVM启动时创建;非堆是留给JVM自己用的,用来存放类的信息的。它和堆不同,运行期内GC不会释放空间。如果web app用了大量的第三方jar或者应用有太多的class文件而恰好MaxPermSize设置较小,超出了也会导致这块内存的占用过多造成溢出,或者tomcat热部署时侯不会清理前面加载的环境,只会将context更改为新部署的,非堆存的内容就会越来越多。 PermGen space的全称是Permanent Generation space,是指内存的永久保存区域,这块内存主要是被JVM存放Class和Meta信息的,Class在被Loader时就会被放到PermGen space中,它和存放类实例(Instance)的Heap区域不同,GC(Garbage Collection)不会在主程序运行期对PermGen space进行清理,所以如果你的应用中有很CLASS的话,就很可能出现PermGen space错误,这种错误常见在web服务器对JSP进行pre compile的时候。如果你的WEB APP下都用了大量的第三方jar, 其大小超过了jvm默认的大小(4M)那么就会产生此错误信息了。 一个最佳的配置例子:(经过本人验证,自从用此配置之后,再未出现过tomcat死掉的情况) set JAVA_OPTS=-Xms800m -Xmx800m -XX:PermSize=128M -XX:MaxNewSize=256m -XX:MaxPermSize=256m 2、java.lang.OutOfMemoryError: Java heap space 第一种情况是个补充,主要存在问题就是出现在这个情况中。其默认空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)是物理内存的1/4。如果内存剩余不到40%,JVM就会增大堆到Xmx设置的值,内存剩余超过70%,JVM就会减小堆到Xms设置的值。所以服务器的Xmx和Xms设置一般应该设置相同避免每次GC后都要调整虚拟机堆的大小。假设物理内存无限大,那么JVM内存的最大值跟操作系统有关,一般32位机是1.5g到3g之间,而64位的就不会有限制了。 注意:如果Xms超过了Xmx值,或者堆最大值和非堆最大值的总和超过了物理内存或者操作系统的最大限制都会引起服务器启动不起来。 垃圾回收GC的角色 JVM调用GC的频度还是很高的,主要两种情况下进行垃圾回收: 当应用程序线程空闲;另一个是java内存堆不足时,会不断调用GC,若连续回收都解决不了内存堆不足的问题时,就会报out of memory错误。因为这个异常根据系统运行环境决定,所以无法预期它何时出现。 根据GC的机制,程序的运行会引起系统运行环境的变化,增加GC的触发机会。 为了避免这些问题,程序的设计和编写就应避免垃圾对象的内存占用和GC的开销。显示调用System.GC()只能建议JVM需要在内存中对垃圾对象进行回收,但不是必须马上回收, 一个是并不能解决内存资源耗空的局面,另外也会增加GC的消耗。 二、JVM内存区域组成 简单的说java中的堆和栈 java把内存分两种:一种是栈内存,另一种是堆内存 1。在函数中定义的基本类型变量和对象的引用变量都在函数的栈内存中分配; 2。堆内存用来存放由new创建的对象和数组 在函数(代码块)中定义一个变量时,java就在栈中为这个变量分配内存空间,当超过变量的作用域后,java会自动释放掉为该变量所分配的内存空间;在堆中分配的内存由java虚拟机的自动垃圾回收器来管理 堆的优势是可以动态分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的。缺点就是要在运行时动态分配内存,存取速度较慢; 栈的优势是存取速度比堆要快,缺点是存在栈中的数据大小与生存期必须是确定的无灵活性。 java堆分为三个区:New、Old和Permanent GC有两个线程: 新创建的对象被分配到New区,当该区被填满时会被GC辅助线程移到Old区,当Old区也填满了会触发GC主线程遍历堆内存里的所有对象。Old区的大小等于Xmx减去-Xmn java栈存放 栈调整:参数有+UseDefaultStackSize -Xss256K,表示每个线程可申请256k的栈空间 每个线程都有他自己的Stack 三、JVM如何设置虚拟内存 提示:在JVM中如果98%的时间是用于GC且可用的Heap size 不足2%的时候将抛出此异常信息。 提示:Heap Size 最大不要超过可用物理内存的80%,一般的要将-Xms和-Xmx选项设置为相同,而-Xmn为1/4的-Xmx值。 提示:JVM初始分配的内存由-Xms指定,默认是物理内存的1/64;JVM最大分配的内存由-Xmx指定,默认是物理内存的1/4。 默认空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。因此服务器一般设置-Xms、-Xmx相等以避免在每次GC 后调整堆的大小。 提示:假设物理内存无限大的话,JVM内存的最大值跟操作系统有很大的关系。 简单的说就32位处理器虽然可控内存空间有4GB,但是具体的操作系统会给一个限制, 这个限制一般是2GB-3GB(一般来说Windows系统下为1.5G-2G,Linux系统下为2G-3G),而64bit以上的处理器就不会有限制了 提示:注意:如果Xms超过了Xmx值,或者堆最大值和非堆最大值的总和超过了物理内存或者操作系统的最大限制都会引起服务器启动不起来。 提示:设置NewSize、MaxNewSize相等,"new"的大小最好不要大于"old"的一半,原因是old区如果不够大会频繁的触发"主" GC ,大大降低了性能 JVM使用-XX:PermSize设置非堆内存初始值,默认是物理内存的1/64; 由XX:MaxPermSize设置最大非堆内存的大小,默认是物理内存的1/4。 解决方法:手动设置Heap size 修改TOMCAT_HOME/bin/catalina.bat 在“echo "Using CATALINA_BASE: $CATALINA_BASE"”上面加入以下行: JAVA_OPTS="-server -Xms800m -Xmx800m -XX:MaxNewSize=256m" 四、性能检查工具使用 定位内存泄漏: JProfiler工具主要用于检查和跟踪系统(限于Java开发的)的性能。JProfiler可以通过时时的监控系统的内存使用情况,随时监视垃圾回收,线程运行状况等手段,从而很好的监视JVM运行情况及其性能。 1. 应用服务器内存长期不合理占用,内存经常处于高位占用,很难回收到低位; 2. 应用服务器极为不稳定,几乎每两天重新启动一次,有时甚至每天重新启动一次; 3. 应用服务器经常做Full GC(Garbage Collection),而且时间很长,大约需要30-40秒,应用服务器在做Full GC的时候是不响应客户的交易请求的,非常影响系统性能。 因为开发环境和产品环境会有不同,导致该问题发生有时会在产品环境中发生,通常可以使用工具跟踪系统的内存使用情况,在有些个别情况下或许某个时刻确实是使用了大量内存导致out of memory,这时应继续跟踪看接下来是否会有下降, 如果一直居高不下这肯定就因为程序的原因导致内存泄漏。 五、不健壮代码的特征及解决办法 1、尽早释放无用对象的引用。好的办法是使用临时变量的时候,让引用变量在退出活动域后,自动设置为null,暗示垃圾收集器来收集该对象,防止发生内存泄露。 对于仍然有指针指向的实例,jvm就不会回收该资源,因为垃圾回收会将值为null的对象作为垃圾,提高GC回收机制效率; 2、我们的程序里不可避免大量使用字符串处理,避免使用String,应大量使用StringBuffer,每一个String对象都得独立占用内存一块区域; String str = "aaa"; String str2 = "bbb"; String str3 = str + str2;//假如执行此次之后str ,str2以后再不被调用,那它就会被放在内存中等待Java的gc去回收,程序内过多的出现这样的情况就会报上面的那个错误,建议在使用字符串时能使用StringBuffer就不要用String,这样可以省不少开销; 3、尽量少用静态变量,因为静态变量是全局的,GC不会回收的; 4、避免集中创建对象尤其是大对象,JVM会突然需要大量内存,这时必然会触发GC优化系统内存环境;显示的声明数组空间,而且申请数量还极大。 这是一个案例想定供大家警戒 使用jspsmartUpload作文件上传,运行过程中经常出现java.outofMemoryError的错误, 检查之后发现问题:组件里的代码 m_totalBytes = m_request.getContentLength(); m_binArray = new byte[m_totalBytes]; 问题原因是totalBytes这个变量得到的数极大,导致该数组分配了很多内存空间,而且该数组不能及时释放。解决办法只能换一种更合适的办法,至少是不会引发outofMemoryError的方式解决。 5、尽量运用对象池技术以提高系统性能;生命周期长的对象拥有生命周期短的对象时容易引发内存泄漏,例如大集合对象拥有大数据量的业务对象的时候,可以考虑分块进行处理,然后解决一块释放一块的策略。 6、不要在经常调用的方法中创建对象,尤其是忌讳在循环中创建对象。可以适当的使用hashtable,vector 创建一组对象容器,然后从容器中去取那些对象,而不用每次new之后又丢弃 7、一般都是发生在开启大型文件或跟数据库一次拿了太多的数据,造成 Out Of Memory Error 的状况,这时就大概要计算一下数据量的最大值是多少,并且设定所需最小及最大的内存空间值。 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:16:21 0 浏览量 回答数 0

回答

新地址 24题 Starters可以理解为启动器,它包含了一系列可以集成到应用里面的依赖包,你可以一站式集成 Spring 及其他技术,而不需要到处找示例代码和依赖包。如你想使用 Spring JPA 访问数据库,只要加入 spring-boot-starter-data-jpa 启动器依赖就能使用了。Starters包含了许多项目中需要用到的依赖,它们能快速持续的运行,都是一系列得到支持的管理传递性依赖。 23题 Spring Boot 的核心配置文件是application(.yml 或者 .properties) 和 bootstrap(.yml 或者 .properties) 配置文件。boostrap 由父 ApplicationContext 加载,比 applicaton 优先加载,boostrap 里面的属性不能被覆盖。application 配置文件主要用于 Spring Boot 项目的自动化配置。bootstrap 配置文件的应用场景:使用 Spring Cloud Config 配置中心时,这时需要在 bootstrap 配置文件中添加连接到配置中心的配置属性来加载外部配置中心的配置信息;一些固定的不能被覆盖的属性;一些加密/解密的场景。 22题 优点:快速构建项目;对主流开发框架的无配置集成;starters自动依赖与版本控制;大量的自动配置,简化开发,也可修改默认值;无需配置XML,无代码生成,开箱即用;项目可独立运行,无须外部依赖Servlet容器;提供运行时的应用监控;与云计算的天然集成。缺点:集成度较高,使用过程中不太容易了解底层。 21题 Spring Boot的初衷就是为了简化spring的配置,使得开发中集成新功能时更快,简化或减少相关的配置文件。Spring Boot其实是一个整合很多可插拔的组件(框架),内嵌了使用工具(比如内嵌了Tomcat、Jetty等),方便开发人员快速搭建和开发的一个框架。 20题 当程序创建对象、数组等引用类型实体时,系统会在堆内存中为之分配一块内存区,对象就保存在内存区中,不需要显式的去释放一个对象的内存,而是由虚拟机自行执行。在JVM 中,有一个垃圾回收线程,它是低优先级的,在正常情况下是不会执行的,只有在虚拟机空闲或者当前堆内存不足时,才会触发执行,标记那些没有被任何引用的对象,并将它们添加到要回收的集合中,进行回收。 19题 HashMap线程不安全,HashTable线程安全。HashMap允许有一个key为null,多个value为null;而HashTable不允许key和vale为null。继承类不一样,HashMap继承的是AbstractMap,HashTable继承的是Dictionary。初始容量不一样。使用的hashcode不一样。内部遍历方式的实现不一样。 18题 作用:内容可见性和禁止指令重排。内存可见性:某线程对 volatile 变量的修改,对其他线程都是可见的,即获取 volatile 变量的值都是最新的;禁止指令重排:重排序在单线程下一定能保证结果的正确性,但是在多线程环境下,可能发生重排序影响结果,若用volatile修饰共享变量,在编译时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。使用:当一个线程需要立刻读取到另外一个线程修改的变量值的时候,我们就可以使用volatile。区别:volatile是变量修饰符,而synchronized则作用于一段代码或者方法;volatile只是在线程内存和main memory(主内存)间同步某个变量的值,而synchronized通过锁定和解锁某个监视器同步所有变量的值。显然synchronized要比volatile消耗更多资源;synchronized 关键字可以保证变量原子性和可见性,volatile 不能保证原子性。 17题 非公平主要表现在获取锁的行为上,并非是按照申请锁的时间前后给等待线程分配锁的 ,每当锁被释放后 ,任何一个线程都有机会竞争到锁,这样做的目的是为了提高执行性能 ,缺点是可能会产生线程饥饿现象 。 16题 如果线程遇到了 IO 阻塞,无能为力,因为IO是操作系统实现的,Java代码并没有办法直接接触到操作系统。如果线程因为调用 wait()、sleep()、或者 join()方法而导致的阻塞,可以中断线程,并且通过抛出 InterruptedException 来唤醒它。 15题 原子操作就是无法被别的线程打断的操作。要么不执行,要么就执行成功。在Java中可以通过锁和循环CAS的方式来实现原子操作。从JDK 1.5开始提供了java.util.concurrent.atomic包,这个包中的原子操作类提供了一种用法简单、性能高效、线程安全地更新一个变量的方式。 14题 wait()是Object类的方法,所以每一个对象能使用wait()方法。sleep()是Thread类中的静态方法。sleep不会释放锁,但会让出cpu,sleep会在指定的休眠时间后自动唤醒。wait则会释放锁,让出系统资源,并且加入wait set中,wait不会自动唤醒,而需要notify()或者notifyAll()唤醒。sleep和wait都可以被中断,使用sleep需要捕获异常。wait与notify、notifyAll只能在同步代码块中使用,而sleep可以在任何地方使用。 13题 Synchronized 是由 JVM 实现的一种实现互斥同步的一种方式,查看编译后的字节码,会发现被 Synchronized 修饰过的程序块,在编译前后被编译器生成了monitorenter 和 monitorexit 两个字节码指令。在虚拟机执行到 monitorenter 指令时,首先要尝试获取对象的锁:如果这个对象没有锁定,或者当前线程已经拥有了这个对象的锁,把锁的计数器+1;当执行 monitorexit 指令时将锁计数器-1;当计数器为0时,锁就被释放了。如果获取对象失败了,那当前线程就要阻塞等待,直到对象锁被另外一个线程释放为止。Java 中 Synchronize 通过在对象头设置标记,达到了获取锁和释放锁的目的。 12题 Mybatis 通过动态代理,为需要拦截的接口生成代理对象以实现接口方法拦截功能,每当执行这 4 种接口对象的方法时,就会进入拦截方法,具体就是InvocationHandler 的 invoke()方法,只会拦截那些你指定需要拦截的方法。 实现方法:1.编写Intercepror接口的实现类;2.设置插件的签名,告诉mybatis拦截哪个对象的哪个方法;3.最后将插件注册到全局配置文件中。 11题 Mybatis可以映射枚举类,不单可以映射枚举类,Mybatis可以映射任何对象到表的一列上。映射方式为自定义一个TypeHandler,实现TypeHandler的setParameter()和getResult()接口方法。TypeHandler 有两个作用,一是完成从 javaType至jdbcType 的转换,二是完成jdbcType至javaType的转换,体现为 setParameter()和getResult()两个方法,分别代表设置sql问号占位符参数和获取列查询结果。 10题 Mybatis使用RowBounds对象进行分页,也可以直接编写sql实现分页,也可以使用Mybatis的分页插件。分页插件的原理:使用Mybatis提供的插件接口,实现自定义插件,在插件的拦截方法内拦截待执行的sql,然后重写sql,根据dialect方言,添加对应的物理分页语句和物理分页参数。举例:select * from student,拦截 sql 后重写为:select t.* from(select * from student)t limit 0,10。 9题 resultType和resultMap都是表示数据库表与pojo之间的映射规则的。类的名字和数据库相同时,可以直接设置resultType 参数为Pojo类。若不同或者有关联查询,需要设置resultMap将结果名字和Pojo名字进行转换。在项目中我们定义的resultMap多了property和column属性,实际也就是分别配置Pojo类的属性和对应的表字段之间的映射关系,多了这个映射关系以后,方便维护。 8题 之所以说Mybatis半自动化,是因为SQL语句需要用户自定义,SQL的解析、执行等工作由Mybatis执行。区别:Hibernate属于全自动 ORM 映射工具,使用Hibernate查询关联对象或者关联集合对象时,可以根据对象关系模型直接获取,所以它是全自动的。而 Mybatis 在查询关联对象或关联集合对象时,需要手动编写 sql 来完成,所以它是半自动ORM映射工具。 7题 MyBatis 的缓存分为一级缓存和二级缓存。一级缓存是SqlSession级别的缓存,默认就有,在操作数据库时需要构造 sqlSession对象,在对象中有一个(内存区域)数据结构(HashMap)用于存储缓存数据,不同的sqlSession之间的缓存数据区域(HashMap)是互相不影响的。二级缓存是mapper级别的缓存,默认是不打开的,多个SqlSession去操作同一个Mapper的sql语句,多个SqlSession去操作数据库得到数据会存在二级缓存区域,多个SqlSession可以共用二级缓存,二级缓存是跨SqlSession的。 6题 RequestMapping是一个用来处理请求地址映射的注解,可用于类或方法上。用于类上,表示类中的所有响应请求的方法都是以该地址作为父路径。用于方法上是为了细化映射,即根据特定的HTTP请求方法(GET、POST 方法等)、HTTP请求中是否携带特定参数等条件,将请求映射到匹配的方法上。 5题 1、前置通知(before advice):在目标方法调用之前执行; 2、后置通知(after returning advice):在目标方法调用之后执行,一旦目标方法产生异常不会执行; 3、最终通知(after(finally) advice):在目标调用方法之后执行,无论目标方法是否产生异常,都会执行; 4、异常通知(after throwing advice):在目标方法产生异常时执行; 5、环绕通知(around advice):在目标方法执行之前和执行之后都会执行,可以写一些非核心的业务逻辑,一般用来替代前置通知和后置通知。 4题 1、通过构造器或工厂方法创建Bean实例;2、为Bean的属性设置值和对其他Bean的引用;3、将Bean实例传递给Bean后置处理器的postProcessBeforeInitialization方法;4、调用Bean的初始方法(init-method);5、将bean实例传递给bean后置处理器的postProcessAfterInitialization方法;6、bean可以使用了;7、当容器关闭时,调用Bean的销毁方法(destroy-method) 3题 在TransactionDefinition接口中定义了五个表示隔离级别的常量: ISOLATION_DEFAULT:使用后端数据库默认的隔离级别,Mysql默认采用的REPEATABLE_READ隔离级别;Oracle默认采用的READ_COMMITTED隔离级别。 ISOLATION_READ_UNCOMMITTED:最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。 ISOLATION_READ_COMMITTED:允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生 ISOLATION_REPEATABLE_READ:对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。 ISOLATION_SERIALIZABLE:最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。但是这将严重影响程序的性能。通常情况下也不会用到该级别。 2 题 自动装配提供五种不同的模式供Spring容器用来自动装配beans之间的依赖注入: 1.默认的方式是不进行自动装配,通过手工设置ref 属性来进行装配bean。 2.byName:通过参数名自动装配,之后容器试图匹配、装配和该bean的属性具有相同名字的bean。 3.byType:按照参数的数据类型进行自动装配,之后容器试图匹配和装配和该bean的属性类型一样的bean。如果存在多个相同类型的bean对象,会出错。 4.constructor:使用构造方法完成对象注入,其实也是根据构造方法的参数类型进行对象查找,相当于采用byType的方式。 5.autodetect:如果找到默认的构造函数,则通过 constructor的方式自动装配,否则使用 byType的方式自动装配。在Spring3.0以后的版本此模式已被废弃,已经不再合法了。 1 题 循环依赖只会存在在单例实例中,多例循环依赖直接报错。Spring先用构造器实例化Bean对象,然后将实例化结束的对象放到一个Map中,并且Spring提供获取这个未设置属性的实例化对象的引用方法。当Spring实例化了A类、B类后,紧接着会去设置对象的属性,此时发现A类依赖B类,就会去Map中取出已经存在的单例B类对象,以此类推。因为所持有的都是引用,所以A类一改变B类也会跟着改变。从而解决循环依赖问题。

游客ih62co2qqq5ww 2020-03-03 18:05:36 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播