• 关于

    批标准化常见问题及解决方法

    的搜索结果

问题

面向服务的ERP可重构开发模型

hua2012h 2019-12-01 20:13:41 7876 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:17 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:17 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:16 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:17 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:15 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:18 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:16 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:16 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:17 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:17 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:15 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:15 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:16 0 浏览量 回答数 0

问题

高效运维最佳实践(03):Redis集群技术及Codis实践

柚子 2019-12-01 21:48:00 29893 浏览量 回答数 1

问题

【精品问答】python技术1000问(1)

问问小秘 2019-12-01 21:57:48 455812 浏览量 回答数 21

问题

DRDS 错误代码如何解决?

猫饭先生 2019-12-01 21:21:21 7993 浏览量 回答数 0

回答

共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE 排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE 锁的类别有两种分法: 1. 从数据库系统的角度来看:分为独占锁(即排它锁),共享锁和更新锁 MS-SQL Server 使用以下资源锁模式。 锁模式 描述 共享 (S) 用于不更改或不更新数据的操作(只读操作),如 SELECT 语句。 更新 (U) 用于可更新的资源中。防止当多个会话在读取、锁定以及随后可能进行的资源更新时发生常见形式的死锁。 排它 (X) 用于数据修改操作,例如 INSERT、UPDATE 或 DELETE。确保不会同时同一资源进行多重更新。 意向锁 用于建立锁的层次结构。意向锁的类型为:意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 架构锁 在执行依赖于表架构的操作时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S)。 大容量更新 (BU) 向表中大容量复制数据并指定了 TABLOCK 提示时使用。 共享锁 共享 (S) 锁允许并发事务读取 (SELECT) 一个资源。资源上存在共享 (S) 锁时,任何其它事务都不能修改数据。一旦已经读取数据,便立即释放资源上的共享 (S) 锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务生存周期内用锁定提示保留共享 (S) 锁。 更新锁 更新 (U) 锁可以防止通常形式的死锁。一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此操作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。 若要避免这种潜在的死锁问题,请使用更新 (U) 锁。一次只有一个事务可以获得资源的更新 (U) 锁。如果事务修改资源,则更新 (U) 锁转换为排它 (X) 锁。否则,锁转换为共享锁。 排它锁 排它 (X) 锁可以防止并发事务对资源进行访问。其它事务不能读取或修改排它 (X) 锁锁定的数据。 意向锁 意向锁表示 SQL Server 需要在层次结构中的某些底层资源上获取共享 (S) 锁或排它 (X) 锁。例如,放置在表级的共享意向锁表示事务打算在表中的页或行上放置共享 (S) 锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它 (X) 锁。意向锁可以提高性能,因为 SQL Server 仅在表级检查意向锁来确定事务是否可以安全地获取该表上的锁。而无须检查表中的每行或每页上的锁以确定事务是否可以锁定整个表。 意向锁包括意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 锁模式 描述 意向共享 (IS) 通过在各资源上放置 S 锁,表明事务的意向是读取层次结构中的部分(而不是全部)底层资源。 意向排它 (IX) 通过在各资源上放置 X 锁,表明事务的意向是修改层次结构中的部分(而不是全部)底层资源。IX 是 IS 的超集。 与意向排它共享 (SIX) 通过在各资源上放置 IX 锁,表明事务的意向是读取层次结构中的全部底层资源并修改部分(而不是全部)底层资源。允许顶层资源上的并发 IS 锁。例如,表的 SIX 锁在表上放置一个 SIX 锁(允许并发 IS 锁),在当前所修改页上放置 IX 锁(在已修改行上放置 X 锁)。虽然每个资源在一段时间内只能有一个 SIX 锁,以防止其它事务对资源进行更新,但是其它事务可以通过获取表级的 IS 锁来读取层次结构中的底层资源。 独占锁:只允许进行锁定操作的程序使用,其他任何对他的操作均不会被接受。执行数据更新命令时,SQL Server会自动使用独占锁。当对象上有其他锁存在时,无法对其加独占锁。 共享锁:共享锁锁定的资源可以被其他用户读取,但其他用户无法修改它,在执行Select时,SQL Server会对对象加共享锁。 更新锁:当SQL Server准备更新数据时,它首先对数据对象作更新锁锁定,这样数据将不能被修改,但可以读取。等到SQL Server确定要进行更新数据操作时,他会自动将更新锁换为独占锁,当对象上有其他锁存在时,无法对其加更新锁。 数据库锁定机制简单来说,就是数据库为了保证数据的一致性,而使各种共享资源在被并发访问变得有序所设计的一种规则。对于任何一种数据库来说都需要有相应的锁定机制,所以MySQL自然也不能例外。MySQL数据库由于其自身架构的特点,存在多种数据存储引擎,每种存储引擎所针对的应用场景特点都不太一样,为了满足各自特定应用场景的需求,每种存储引擎的锁定机制都是为各自所面对的特定场景而优化设计,所以各存储引擎的锁定机制也有较大区别。MySQL各存储引擎使用了三种类型(级别)的锁定机制:表级锁定,行级锁定和页级锁定。 1.表级锁定(table-level) 表级别的锁定是MySQL各存储引擎中最大颗粒度的锁定机制。该锁定机制最大的特点是实现逻辑非常简单,带来的系统负面影响最小。所以获取锁和释放锁的速度很快。由于表级锁一次会将整个表锁定,所以可以很好的避免困扰我们的死锁问题。 当然,锁定颗粒度大所带来最大的负面影响就是出现锁定资源争用的概率也会最高,致使并大度大打折扣。 使用表级锁定的主要是MyISAM,MEMORY,CSV等一些非事务性存储引擎。 2.行级锁定(row-level) 行级锁定最大的特点就是锁定对象的颗粒度很小,也是目前各大数据库管理软件所实现的锁定颗粒度最小的。由于锁定颗粒度很小,所以发生锁定资源争用的概率也最小,能够给予应用程序尽可能大的并发处理能力而提高一些需要高并发应用系统的整体性能。 虽然能够在并发处理能力上面有较大的优势,但是行级锁定也因此带来了不少弊端。由于锁定资源的颗粒度很小,所以每次获取锁和释放锁需要做的事情也更多,带来的消耗自然也就更大了。此外,行级锁定也最容易发生死锁。 使用行级锁定的主要是InnoDB存储引擎。 3.页级锁定(page-level) 页级锁定是MySQL中比较独特的一种锁定级别,在其他数据库管理软件中也并不是太常见。页级锁定的特点是锁定颗粒度介于行级锁定与表级锁之间,所以获取锁定所需要的资源开销,以及所能提供的并发处理能力也同样是介于上面二者之间。另外,页级锁定和行级锁定一样,会发生死锁。 在数据库实现资源锁定的过程中,随着锁定资源颗粒度的减小,锁定相同数据量的数据所需要消耗的内存数量是越来越多的,实现算法也会越来越复杂。不过,随着锁定资源颗粒度的减小,应用程序的访问请求遇到锁等待的可能性也会随之降低,系统整体并发度也随之提升。 使用页级锁定的主要是BerkeleyDB存储引擎。 总的来说,MySQL这3种锁的特性可大致归纳如下: 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低; 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高; 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 适用:从锁的角度来说,表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用;而行级锁则更适合于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用,如一些在线事务处理(OLTP)系统。 -------------MYSQL处理------------------ 表级锁定 由于MyISAM存储引擎使用的锁定机制完全是由MySQL提供的表级锁定实现,所以下面我们将以MyISAM存储引擎作为示例存储引擎。 1.MySQL表级锁的锁模式 MySQL的表级锁有两种模式:表共享读锁(Table Read Lock)和表独占写锁(Table Write Lock)。锁模式的兼容性: 对MyISAM表的读操作,不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求; 对MyISAM表的写操作,则会阻塞其他用户对同一表的读和写操作; MyISAM表的读操作与写操作之间,以及写操作之间是串行的。当一个线程获得对一个表的写锁后,只有持有锁的线程可以对表进行更新操作。其他线程的读、写操作都会等待,直到锁被释放为止。 2.如何加表锁 MyISAM在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作(UPDATE、DELETE、INSERT等)前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此,用户一般不需要直接用LOCK TABLE命令给MyISAM表显式加锁。 3.MyISAM表锁优化建议 对于MyISAM存储引擎,虽然使用表级锁定在锁定实现的过程中比实现行级锁定或者页级锁所带来的附加成本都要小,锁定本身所消耗的资源也是最少。但是由于锁定的颗粒度比较到,所以造成锁定资源的争用情况也会比其他的锁定级别都要多,从而在较大程度上会降低并发处理能力。所以,在优化MyISAM存储引擎锁定问题的时候,最关键的就是如何让其提高并发度。由于锁定级别是不可能改变的了,所以我们首先需要尽可能让锁定的时间变短,然后就是让可能并发进行的操作尽可能的并发。 (1)查询表级锁争用情况 MySQL内部有两组专门的状态变量记录系统内部锁资源争用情况: mysql> show status like 'table%'; +----------------------------+---------+ | Variable_name | Value | +----------------------------+---------+ | Table_locks_immediate | 100 | | Table_locks_waited | 10 | +----------------------------+---------+ 这里有两个状态变量记录MySQL内部表级锁定的情况,两个变量说明如下: Table_locks_immediate:产生表级锁定的次数; Table_locks_waited:出现表级锁定争用而发生等待的次数; 两个状态值都是从系统启动后开始记录,出现一次对应的事件则数量加1。如果这里的Table_locks_waited状态值比较高,那么说明系统中表级锁定争用现象比较严重,就需要进一步分析为什么会有较多的锁定资源争用了。 (2)缩短锁定时间 如何让锁定时间尽可能的短呢?唯一的办法就是让我们的Query执行时间尽可能的短。 a)尽两减少大的复杂Query,将复杂Query分拆成几个小的Query分布进行; b)尽可能的建立足够高效的索引,让数据检索更迅速; c)尽量让MyISAM存储引擎的表只存放必要的信息,控制字段类型; d)利用合适的机会优化MyISAM表数据文件。 (3)分离能并行的操作 说到MyISAM的表锁,而且是读写互相阻塞的表锁,可能有些人会认为在MyISAM存储引擎的表上就只能是完全的串行化,没办法再并行了。大家不要忘记了,MyISAM的存储引擎还有一个非常有用的特性,那就是ConcurrentInsert(并发插入)的特性。 MyISAM存储引擎有一个控制是否打开Concurrent Insert功能的参数选项:concurrent_insert,可以设置为0,1或者2。三个值的具体说明如下: concurrent_insert=2,无论MyISAM表中有没有空洞,都允许在表尾并发插入记录; concurrent_insert=1,如果MyISAM表中没有空洞(即表的中间没有被删除的行),MyISAM允许在一个进程读表的同时,另一个进程从表尾插入记录。这也是MySQL的默认设置; concurrent_insert=0,不允许并发插入。 可以利用MyISAM存储引擎的并发插入特性,来解决应用中对同一表查询和插入的锁争用。例如,将concurrent_insert系统变量设为2,总是允许并发插入;同时,通过定期在系统空闲时段执行OPTIMIZE TABLE语句来整理空间碎片,收回因删除记录而产生的中间空洞。 (4)合理利用读写优先级 MyISAM存储引擎的是读写互相阻塞的,那么,一个进程请求某个MyISAM表的读锁,同时另一个进程也请求同一表的写锁,MySQL如何处理呢? 答案是写进程先获得锁。不仅如此,即使读请求先到锁等待队列,写请求后到,写锁也会插到读锁请求之前。 这是因为MySQL的表级锁定对于读和写是有不同优先级设定的,默认情况下是写优先级要大于读优先级。 所以,如果我们可以根据各自系统环境的差异决定读与写的优先级: 通过执行命令SET LOW_PRIORITY_UPDATES=1,使该连接读比写的优先级高。如果我们的系统是一个以读为主,可以设置此参数,如果以写为主,则不用设置; 通过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,降低该语句的优先级。 虽然上面方法都是要么更新优先,要么查询优先的方法,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题。 另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级降低,给读进程一定获得锁的机会。 这里还要强调一点:一些需要长时间运行的查询操作,也会使写进程“饿死”,因此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语句来解决问题,因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行 三、行级锁定 行级锁定不是MySQL自己实现的锁定方式,而是由其他存储引擎自己所实现的,如广为大家所知的InnoDB存储引擎,以及MySQL的分布式存储引擎NDBCluster等都是实现了行级锁定。考虑到行级锁定君由各个存储引擎自行实现,而且具体实现也各有差别,而InnoDB是目前事务型存储引擎中使用最为广泛的存储引擎,所以这里我们就主要分析一下InnoDB的锁定特性。 1.InnoDB锁定模式及实现机制 考虑到行级锁定君由各个存储引擎自行实现,而且具体实现也各有差别,而InnoDB是目前事务型存储引擎中使用最为广泛的存储引擎,所以这里我们就主要分析一下InnoDB的锁定特性。 总的来说,InnoDB的锁定机制和Oracle数据库有不少相似之处。InnoDB的行级锁定同样分为两种类型,共享锁和排他锁,而在锁定机制的实现过程中为了让行级锁定和表级锁定共存,InnoDB也同样使用了意向锁(表级锁定)的概念,也就有了意向共享锁和意向排他锁这两种。 当一个事务需要给自己需要的某个资源加锁的时候,如果遇到一个共享锁正锁定着自己需要的资源的时候,自己可以再加一个共享锁,不过不能加排他锁。但是,如果遇到自己需要锁定的资源已经被一个排他锁占有之后,则只能等待该锁定释放资源之后自己才能获取锁定资源并添加自己的锁定。而意向锁的作用就是当一个事务在需要获取资源锁定的时候,如果遇到自己需要的资源已经被排他锁占用的时候,该事务可以需要锁定行的表上面添加一个合适的意向锁。如果自己需要一个共享锁,那么就在表上面添加一个意向共享锁。而如果自己需要的是某行(或者某些行)上面添加一个排他锁的话,则先在表上面添加一个意向排他锁。意向共享锁可以同时并存多个,但是意向排他锁同时只能有一个存在。所以,可以说InnoDB的锁定模式实际上可以分为四种:共享锁(S),排他锁(X),意向共享锁(IS)和意向排他锁(IX),我们可以通过以下表格来总结上面这四种所的共存逻辑关系 如果一个事务请求的锁模式与当前的锁兼容,InnoDB就将请求的锁授予该事务;反之,如果两者不兼容,该事务就要等待锁释放。 意向锁是InnoDB自动加的,不需用户干预。对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X);对于普通SELECT语句,InnoDB不会加任何锁;事务可以通过以下语句显示给记录集加共享锁或排他锁。 共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE 排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE 用SELECT ... IN SHARE MODE获得共享锁,主要用在需要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。 但是如果当前事务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用SELECT... FOR UPDATE方式获得排他锁。 2.InnoDB行锁实现方式 InnoDB行锁是通过给索引上的索引项加锁来实现的,只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁 在实际应用中,要特别注意InnoDB行锁的这一特性,不然的话,可能导致大量的锁冲突,从而影响并发性能。下面通过一些实际例子来加以说明。 (1)在不通过索引条件查询的时候,InnoDB确实使用的是表锁,而不是行锁。 (2)由于MySQL的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然是访问不同行的记录,但是如果是使用相同的索引键,是会出现锁冲突的。 (3)当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,另外,不论是使用主键索引、唯一索引或普通索引,InnoDB都会使用行锁来对数据加锁。 (4)即便在条件中使用了索引字段,但是否使用索引来检索数据是由MySQL通过判断不同执行计划的代价来决定的,如果MySQL认为全表扫描效率更高,比如对一些很小的表,它就不会使用索引,这种情况下InnoDB将使用表锁,而不是行锁。因此,在分析锁冲突时,别忘了检查SQL的执行计划,以确认是否真正使用了索引。 3.间隙锁(Next-Key锁) 当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁; 对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。 例: 假如emp表中只有101条记录,其empid的值分别是 1,2,...,100,101,下面的SQL: mysql> select * from emp where empid > 100 for update; 是一个范围条件的检索,InnoDB不仅会对符合条件的empid值为101的记录加锁,也会对empid大于101(这些记录并不存在)的“间隙”加锁。 InnoDB使用间隙锁的目的: (1)防止幻读,以满足相关隔离级别的要求。对于上面的例子,要是不使用间隙锁,如果其他事务插入了empid大于100的任何记录,那么本事务如果再次执行上述语句,就会发生幻读; (2)为了满足其恢复和复制的需要。 很显然,在使用范围条件检索并锁定记录时,即使某些不存在的键值也会被无辜的锁定,而造成在锁定的时候无法插入锁定键值范围内的任何数据。在某些场景下这可能会对性能造成很大的危害。 除了间隙锁给InnoDB带来性能的负面影响之外,通过索引实现锁定的方式还存在其他几个较大的性能隐患: (1)当Query无法利用索引的时候,InnoDB会放弃使用行级别锁定而改用表级别的锁定,造成并发性能的降低; (2)当Query使用的索引并不包含所有过滤条件的时候,数据检索使用到的索引键所只想的数据可能有部分并不属于该Query的结果集的行列,但是也会被锁定,因为间隙锁锁定的是一个范围,而不是具体的索引键; (3)当Query在使用索引定位数据的时候,如果使用的索引键一样但访问的数据行不同的时候(索引只是过滤条件的一部分),一样会被锁定。 因此,在实际应用开发中,尤其是并发插入比较多的应用,我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件。 还要特别说明的是,InnoDB除了通过范围条件加锁时使用间隙锁外,如果使用相等条件请求给一个不存在的记录加锁,InnoDB也会使用间隙锁。 4.死锁 MyISAM表锁是deadlock free的,这是因为MyISAM总是一次获得所需的全部锁,要么全部满足,要么等待,因此不会出现死锁。但在InnoDB中,除单个SQL组成的事务外,锁是逐步获得的,当两个事务都需要获得对方持有的排他锁才能继续完成事务,这种循环锁等待就是典型的死锁。 在InnoDB的事务管理和锁定机制中,有专门检测死锁的机制,会在系统中产生死锁之后的很短时间内就检测到该死锁的存在。当InnoDB检测到系统中产生了死锁之后,InnoDB会通过相应的判断来选这产生死锁的两个事务中较小的事务来回滚,而让另外一个较大的事务成功完成。 那InnoDB是以什么来为标准判定事务的大小的呢?MySQL官方手册中也提到了这个问题,实际上在InnoDB发现死锁之后,会计算出两个事务各自插入、更新或者删除的数据量来判定两个事务的大小。也就是说哪个事务所改变的记录条数越多,在死锁中就越不会被回滚掉。 但是有一点需要注意的就是,当产生死锁的场景中涉及到不止InnoDB存储引擎的时候,InnoDB是没办法检测到该死锁的,这时候就只能通过锁定超时限制参数InnoDB_lock_wait_timeout来解决。 需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因无法立即获得所需的锁而挂起,会占用大量计算机资源,造成严重性能问题,甚至拖跨数据库。我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。 通常来说,死锁都是应用设计的问题,通过调整业务流程、数据库对象设计、事务大小,以及访问数据库的SQL语句,绝大部分死锁都可以避免。下面就通过实例来介绍几种避免死锁的常用方法: (1)在应用中,如果不同的程序会并发存取多个表,应尽量约定以相同的顺序来访问表,这样可以大大降低产生死锁的机会。 (2)在程序以批量方式处理数据的时候,如果事先对数据排序,保证每个线程按固定的顺序来处理记录,也可以大大降低出现死锁的可能。 (3)在事务中,如果要更新记录,应该直接申请足够级别的锁,即排他锁,而不应先申请共享锁,更新时再申请排他锁,因为当用户申请排他锁时,其他事务可能又已经获得了相同记录的共享锁,从而造成锁冲突,甚至死锁。 (4)在REPEATABLE-READ隔离级别下,如果两个线程同时对相同条件记录用SELECT...FOR UPDATE加排他锁,在没有符合该条件记录情况下,两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出现死锁。这种情况下,将隔离级别改成READ COMMITTED,就可避免问题。 (5)当隔离级别为READ COMMITTED时,如果两个线程都先执行SELECT...FOR UPDATE,判断是否存在符合条件的记录,如果没有,就插入记录。此时,只有一个线程能插入成功,另一个线程会出现锁等待,当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁。这时如果有第3个线程又来申请排他锁,也会出现死锁。对于这种情况,可以直接做插入操作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得的排他锁。 5.什么时候使用表锁 对于InnoDB表,在绝大部分情况下都应该使用行级锁,因为事务和行锁往往是我们之所以选择InnoDB表的理由。但在个别特殊事务中,也可以考虑使用表级锁: (1)事务需要更新大部分或全部数据,表又比较大,如果使用默认的行锁,不仅这个事务执行效率低,而且可能造成其他事务长时间锁等待和锁冲突,这种情况下可以考虑使用表锁来提高该事务的执行速度。 (2)事务涉及多个表,比较复杂,很可能引起死锁,造成大量事务回滚。这种情况也可以考虑一次性锁定事务涉及的表,从而避免死锁、减少数据库因事务回滚带来的开销。 应用中这两种事务不能太多,否则,就应该考虑使用MyISAM表了。 在InnoDB下,使用表锁要注意以下两点。 (1)使用LOCK TABLES虽然可以给InnoDB加表级锁,但必须说明的是,表锁不是由InnoDB存储引擎层管理的,而是由其上一层──MySQL Server负责的,仅当autocommit=0、InnoDB_table_locks=1(默认设置)时,InnoDB层才能知道MySQL加的表锁,MySQL Server也才能感知InnoDB加的行锁,这种情况下,InnoDB才能自动识别涉及表级锁的死锁,否则,InnoDB将无法自动检测并处理这种死锁。 (2)在用 LOCK TABLES对InnoDB表加锁时要注意,要将AUTOCOMMIT设为0,否则MySQL不会给表加锁;事务结束前,不要用UNLOCK TABLES释放表锁,因为UNLOCK TABLES会隐含地提交事务;COMMIT或ROLLBACK并不能释放用LOCK TABLES加的表级锁,必须用UNLOCK TABLES释放表锁。

1006541099824509 2019-12-02 03:14:39 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 阿里云双十一主会场 阿里云双十一新人会场 1024程序员加油包 阿里云双十一拼团会场 场景化解决方案 阿里云双十一直播大厅