• 关于

    开源工具出问题什么情况

    的搜索结果

回答

ps变量的使用有问题吧,在二重循环里用ps取结果集,但在三重循环里又用ps插入数据,而且每次三重循环在创建新ps前都没有close。回复 @nubo:你用的什么工具?发现问题了,是没有创建新的ps和close掉的原因。谢谢了!很多靠眼睛难找的bug,用工具监测下很容易就发现了。尝试每次少取点儿,正则的确很占内存,尤其在正则不是那么高效的情况下回复 @布谷鸟:这个位置应该是MD5加密的原字符串过长需要较多内存造成的,但异常根本原因还是其他地方占用了绝大部分内存。是不是字符串的编码出问题了,报错位置的类这是干嘛的?atsun.nio.cs.ext.GBK.newEncoder(GBK.java:36)为什么内存会不断增长呢?我每次匹配完了,不是正则所占内存会被回收吗? 、目测下来,很有可能是数据库连接过大消耗完了内存! 曾经我的项目也出现过此问题!加入开源的proxool就ok了! 建议楼主项目加入缓存! 是在不行,用eclipse提供的堆栈跟踪tool看看!因为我每次事务下来都关闭了结果集、PreparedStatement和数据库连接,而且我每次取连接是用的连接池。不知道是不是因为连接过多的原因? 引用来自“Beyond-Bit”的答案 、目测下来,很有可能是数据库连接过大消耗完了内存! 曾经我的项目也出现过此问题!加入开源的proxool就ok了! 建议楼主项目加入缓存! 是在不行,用eclipse提供的堆栈跟踪tool看看!全局只采用一个连接的方法已经测试过了,问题是同样的。因为就数据情况而言这段代码始终都不会报SQL异常,所以没有写finally,前期的代码中已经排除掉SQL插入的异常了,现在每次关闭连接是没有问题的。visualvm 你可以用 Java自带的工具visualvm查看一下内存使用情况 看看具体是哪里出了问题   很明显是拼接string啊,用stringbuilder 同意楼上string,非常明显了,string类型,还是循环

爱吃鱼的程序员 2020-06-22 19:29:59 0 浏览量 回答数 0

问题

如何选择一款web漏洞扫描器

elinks 2019-12-01 21:15:22 7018 浏览量 回答数 0

问题

【7月11日更新】阿里中间件性能挑战赛 - 第二赛季答疑汇总

中间件那珂 2019-12-01 21:37:29 5767 浏览量 回答数 11

阿里云高校特惠,助力学生创业梦!0元体验,快速入门云计算!

学生动手场景应用,快速了解并掌握云服务器的各种新奇玩法!

问题

为什么对基础设施的监控变得如此重要?

忆远0711 2019-12-01 21:46:44 8511 浏览量 回答数 1

问题

《云周刊》第54期:一大波假期来袭,运维人员休假攻略!

dreamdoo 2019-12-01 21:11:18 10499 浏览量 回答数 5

回答

一、基础篇 1.1、Java基础 面向对象的特征:继承、封装和多态 final, finally, finalize 的区别 Exception、Error、运行时异常与一般异常有何异同 请写出5种常见到的runtime exception int 和 Integer 有什么区别,Integer的值缓存范围 包装类,装箱和拆箱 String、StringBuilder、StringBuffer 重载和重写的区别 抽象类和接口有什么区别 说说反射的用途及实现 说说自定义注解的场景及实现 HTTP请求的GET与POST方式的区别 Session与Cookie区别 列出自己常用的JDK包 MVC设计思想 equals与==的区别 hashCode和equals方法的区别与联系 什么是Java序列化和反序列化,如何实现Java序列化?或者请解释Serializable 接口的作用 Object类中常见的方法,为什么wait notify会放在Object里边? Java的平台无关性如何体现出来的 JDK和JRE的区别 Java 8有哪些新特性 1.2、Java常见集合 List 和 Set 区别 Set和hashCode以及equals方法的联系 List 和 Map 区别 Arraylist 与 LinkedList 区别 ArrayList 与 Vector 区别 HashMap 和 Hashtable 的区别 HashSet 和 HashMap 区别 HashMap 和 ConcurrentHashMap 的区别 HashMap 的工作原理及代码实现,什么时候用到红黑树 多线程情况下HashMap死循环的问题 HashMap出现Hash DOS攻击的问题 ConcurrentHashMap 的工作原理及代码实现,如何统计所有的元素个数 手写简单的HashMap 看过那些Java集合类的源码 1.3、进程和线程 线程和进程的概念、并行和并发的概念 创建线程的方式及实现 进程间通信的方式 说说 CountDownLatch、CyclicBarrier 原理和区别 说说 Semaphore 原理 说说 Exchanger 原理 ThreadLocal 原理分析,ThreadLocal为什么会出现OOM,出现的深层次原理 讲讲线程池的实现原理 线程池的几种实现方式 线程的生命周期,状态是如何转移的 可参考:《Java多线程编程核心技术》 1.4、锁机制 说说线程安全问题,什么是线程安全,如何保证线程安全 重入锁的概念,重入锁为什么可以防止死锁 产生死锁的四个条件(互斥、请求与保持、不剥夺、循环等待) 如何检查死锁(通过jConsole检查死锁) volatile 实现原理(禁止指令重排、刷新内存) synchronized 实现原理(对象监视器) synchronized 与 lock 的区别 AQS同步队列 CAS无锁的概念、乐观锁和悲观锁 常见的原子操作类 什么是ABA问题,出现ABA问题JDK是如何解决的 乐观锁的业务场景及实现方式 Java 8并法包下常见的并发类 偏向锁、轻量级锁、重量级锁、自旋锁的概念 可参考:《Java多线程编程核心技术》 1.5、JVM JVM运行时内存区域划分 内存溢出OOM和堆栈溢出SOE的示例及原因、如何排查与解决 如何判断对象是否可以回收或存活 常见的GC回收算法及其含义 常见的JVM性能监控和故障处理工具类:jps、jstat、jmap、jinfo、jconsole等 JVM如何设置参数 JVM性能调优 类加载器、双亲委派模型、一个类的生命周期、类是如何加载到JVM中的 类加载的过程:加载、验证、准备、解析、初始化 强引用、软引用、弱引用、虚引用 Java内存模型JMM 1.6、设计模式 常见的设计模式 设计模式的的六大原则及其含义 常见的单例模式以及各种实现方式的优缺点,哪一种最好,手写常见的单利模式 设计模式在实际场景中的应用 Spring中用到了哪些设计模式 MyBatis中用到了哪些设计模式 你项目中有使用哪些设计模式 说说常用开源框架中设计模式使用分析 动态代理很重要!!! 1.7、数据结构 树(二叉查找树、平衡二叉树、红黑树、B树、B+树) 深度有限算法、广度优先算法 克鲁斯卡尔算法、普林母算法、迪克拉斯算法 什么是一致性Hash及其原理、Hash环问题 常见的排序算法和查找算法:快排、折半查找、堆排序等 1.8、网络/IO基础 BIO、NIO、AIO的概念 什么是长连接和短连接 Http1.0和2.0相比有什么区别,可参考《Http 2.0》 Https的基本概念 三次握手和四次挥手、为什么挥手需要四次 从游览器中输入URL到页面加载的发生了什么?可参考《从输入URL到页面加载发生了什么》 二、数据存储和消息队列 2.1、数据库 MySQL 索引使用的注意事项 DDL、DML、DCL分别指什么 explain命令 left join,right join,inner join 数据库事物ACID(原子性、一致性、隔离性、持久性) 事物的隔离级别(读未提交、读以提交、可重复读、可序列化读) 脏读、幻读、不可重复读 数据库的几大范式 数据库常见的命令 说说分库与分表设计 分库与分表带来的分布式困境与应对之策(如何解决分布式下的分库分表,全局表?) 说说 SQL 优化之道 MySQL遇到的死锁问题、如何排查与解决 存储引擎的 InnoDB与MyISAM区别,优缺点,使用场景 索引类别(B+树索引、全文索引、哈希索引)、索引的原理 什么是自适应哈希索引(AHI) 为什么要用 B+tree作为MySQL索引的数据结构 聚集索引与非聚集索引的区别 遇到过索引失效的情况没,什么时候可能会出现,如何解决 limit 20000 加载很慢怎么解决 如何选择合适的分布式主键方案 选择合适的数据存储方案 常见的几种分布式ID的设计方案 常见的数据库优化方案,在你的项目中数据库如何进行优化的 2.2、Redis Redis 有哪些数据类型,可参考《Redis常见的5种不同的数据类型详解》 Redis 内部结构 Redis 使用场景 Redis 持久化机制,可参考《使用快照和AOF将Redis数据持久化到硬盘中》 Redis 集群方案与实现 Redis 为什么是单线程的? 缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级 使用缓存的合理性问题 Redis常见的回收策略 2.3、消息队列 消息队列的使用场景 消息的重发补偿解决思路 消息的幂等性解决思路 消息的堆积解决思路 自己如何实现消息队列 如何保证消息的有序性 三、开源框架和容器 3.1、SSM/Servlet Servlet的生命周期 转发与重定向的区别 BeanFactory 和 ApplicationContext 有什么区别 Spring Bean 的生命周期 Spring IOC 如何实现 Spring中Bean的作用域,默认的是哪一个 说说 Spring AOP、Spring AOP 实现原理 动态代理(CGLib 与 JDK)、优缺点、性能对比、如何选择 Spring 事务实现方式、事务的传播机制、默认的事务类别 Spring 事务底层原理 Spring事务失效(事务嵌套),JDK动态代理给Spring事务埋下的坑,可参考《JDK动态代理给Spring事务埋下的坑!》 如何自定义注解实现功能 Spring MVC 运行流程 Spring MVC 启动流程 Spring 的单例实现原理 Spring 框架中用到了哪些设计模式 Spring 其他产品(Srping Boot、Spring Cloud、Spring Secuirity、Spring Data、Spring AMQP 等) 有没有用到Spring Boot,Spring Boot的认识、原理 MyBatis的原理 可参考《为什么会有Spring》 可参考《为什么会有Spring AOP》 3.2、Netty 为什么选择 Netty 说说业务中,Netty 的使用场景 原生的 NIO 在 JDK 1.7 版本存在 epoll bug 什么是TCP 粘包/拆包 TCP粘包/拆包的解决办法 Netty 线程模型 说说 Netty 的零拷贝 Netty 内部执行流程 Netty 重连实现 3.3、Tomcat Tomcat的基础架构(Server、Service、Connector、Container) Tomcat如何加载Servlet的 Pipeline-Valve机制 可参考:《四张图带你了解Tomcat系统架构!》 四、分布式 4.1、Nginx 请解释什么是C10K问题或者知道什么是C10K问题吗? Nginx简介,可参考《Nginx简介》 正向代理和反向代理. Nginx几种常见的负载均衡策略 Nginx服务器上的Master和Worker进程分别是什么 使用“反向代理服务器”的优点是什么? 4.2、分布式其他 谈谈业务中使用分布式的场景 Session 分布式方案 Session 分布式处理 分布式锁的应用场景、分布式锁的产生原因、基本概念 分布是锁的常见解决方案 分布式事务的常见解决方案 集群与负载均衡的算法与实现 说说分库与分表设计,可参考《数据库分库分表策略的具体实现方案》 分库与分表带来的分布式困境与应对之策 4.3、Dubbo 什么是Dubbo,可参考《Dubbo入门》 什么是RPC、如何实现RPC、RPC 的实现原理,可参考《基于HTTP的RPC实现》 Dubbo中的SPI是什么概念 Dubbo的基本原理、执行流程 五、微服务 5.1、微服务 前后端分离是如何做的? 微服务哪些框架 Spring Could的常见组件有哪些?可参考《Spring Cloud概述》 领域驱动有了解吗?什么是领域驱动模型?充血模型、贫血模型 JWT有了解吗,什么是JWT,可参考《前后端分离利器之JWT》 你怎么理解 RESTful 说说如何设计一个良好的 API 如何理解 RESTful API 的幂等性 如何保证接口的幂等性 说说 CAP 定理、BASE 理论 怎么考虑数据一致性问题 说说最终一致性的实现方案 微服务的优缺点,可参考《微服务批判》 微服务与 SOA 的区别 如何拆分服务、水平分割、垂直分割 如何应对微服务的链式调用异常 如何快速追踪与定位问题 如何保证微服务的安全、认证 5.2、安全问题 如何防范常见的Web攻击、如何方式SQL注入 服务端通信安全攻防 HTTPS原理剖析、降级攻击、HTTP与HTTPS的对比 5.3、性能优化 性能指标有哪些 如何发现性能瓶颈 性能调优的常见手段 说说你在项目中如何进行性能调优 六、其他 6.1、设计能力 说说你在项目中使用过的UML图 你如何考虑组件化、服务化、系统拆分 秒杀场景如何设计 可参考:《秒杀系统的技术挑战、应对策略以及架构设计总结一二!》 6.2、业务工程 说说你的开发流程、如何进行自动化部署的 你和团队是如何沟通的 你如何进行代码评审 说说你对技术与业务的理解 说说你在项目中遇到感觉最难Bug,是如何解决的 介绍一下工作中的一个你认为最有价值的项目,以及在这个过程中的角色、解决的问题、你觉得你们项目还有哪些不足的地方 6.3、软实力 说说你的优缺点、亮点 说说你最近在看什么书、什么博客、在研究什么新技术、再看那些开源项目的源代码 说说你觉得最有意义的技术书籍 工作之余做什么事情、平时是如何学习的,怎样提升自己的能力 说说个人发展方向方面的思考 说说你认为的服务端开发工程师应该具备哪些能力 说说你认为的架构师是什么样的,架构师主要做什么 如何看待加班的问题

徐刘根 2020-03-31 11:22:08 0 浏览量 回答数 0

回答

1,架构师是什么?要想往架构师的方向发展首先要知道架构师是什么?架构师是一个既需要掌控整体又需要洞悉局部瓶颈并依据具体的业务场景给出解决方案的团队领导型人物。一个架构师得需要足够的想像力,能把各种目标需求进行不同维度的扩展,为目标客户提供更为全面的需求清单。架构师在软件开发的整个过程中起着很重要的作用。说的详细一些,架构师就是确认和评估系统需求,给出开发规范,搭建系统实现的核心构架,并澄清技术细节、扫清主要难点的技术人员。主要着眼于系统的“技术实现”。2,架构师的任务架构师的主要任务不是从事具体的软件程序的编写,而是从事更高层次的开发构架工作。他必须对开发技术非常了解,并且需要有良好的组织管理能力。可以这样说,一个架构师工作的好坏决定了整个软件开发项目的成败。在成为Java架构师之前,应当先成为Java工程师。熟练使用各种框架,并知道它们实现的原理。jvm虚拟机原理、调优,懂得jvm能让你写出性能更好的代码;池技术,什么对象池,连接池,线程池……Java反射技术,写框架必备的技术,遇到有严重的性能问题,替代方案java字节码技术;nio,没什么好说的,值得注意的是"直接内存"的特点,使用场景;java多线程同步异步;java各种集合对象的实现原理,了解这些可以让你在解决问题时选择合适的数据结构,高效的解决问题,比如hashmap的实现原理,好多五年以上经验的人都弄不清楚,还有为什扩容时有性能问题?不弄清楚这些原理,就写不出高效的代码,还会认为自己做的很对;总之一句话,越基础的东西越重要,很多人认为自己会用它们写代码了,其实仅仅是知道如何调用api而已,离会用还差的远。如果你立志做架构,首先打好基础,从最底层开始。然后发展到各种技术和语言,什么都要懂两点,要全面且不肤浅。为什么不是懂一点?你要看得透彻,必须尽量深入一些。别人懂一点,你要做架构师,必须再多懂一点。比如你发现golang很流行,别人可能写一个helloworld就说自己玩过golang,但你至少要尝试写一个完整的应用。不肯下苦功,如何高人一头?另外你要非常深入地了解至少一门语言,如果你的目标是java,就学到极致,作为敲门砖,先吃饱了才能谈理想。3,架构师都是从码农过来的而Java学到极致势必涉及到设计模式,算法和数据结构,多线程,文件及网络IO,数据库及ORM,不一而足。这些概念放之一切语言都适用。先精一门,为全面且不肤浅打基础。另外就是向有经验的架构师学习,和小伙伴们讨论辩论争论。其实最重要的能力就是不断学习。在思考新的技术是否能更好地解决你们遇到的问题之前,你首先得知道并了解新的技术。架构师都是从码农过来的,媳妇熬成婆。千万不要成为不写代码的架构师,有些公司专门产不写技术的架构师。所谓架构师,只是功底深厚的程序员而已。个人认为应该扎扎实实学习基础知识,学习各种规范,架构,需要广泛的知识面,懂的东西越多视野越开阔,设计的东西当然会越好越全面。成为架构师需要时间的积累的,不但要知其然还要知其所以然。平时的一点一滴你感觉不到特别用处,但某天你会发现所有东西都没有白学的。4,架构师知识体系下面是我总结多年经验开发的架构师知识体系一、分布式架构架构分布式的英文( Distributed computing 分布式计算技术)的应用和工具,成熟目前的技术包括 J2EE,CORBA 和 .NET(DCOM),这些技术牵扯的内容非常广,相关的书籍也非常多。本文不介绍这些技术的内容,也没有涉及这些技术的细节,只是从各种分布式系统平台产生的背景和在软件开发中应用的情况来探讨它们的主要异同。分布式系统是一个古老而宽泛的话题,而近几年因为“大数据”概念的兴起,又焕发出了新的青春与活力。除此之外,分布式系统也是一门理论模型与工程技法。并重的学科内容相比于机器学习这样的研究方向,学习分布式系统的同学往往会感觉:“入门容易,深入难”的确,学习分布式系统几乎不需要太多数学知识。分布式系统是一个复杂且宽泛的研究领域,学习一两门在线课程,看一两本书可能都是不能完全覆盖其所有内容的。总的来说,分布式系统要做的任务就是把多台机器有机的组合,连接起来,让其协同完成一件任务,可以是计算任务,也可以是存储任务。如果一定要给近些年的分布式系统研究做一个分类的话,我个人认为大概可以包括三大部分:分布式存储系统分布式计算系统分布式管理系统二、微服务当前微服务很热,大家都号称在使用微服务架构,但究竟什么是微服务架构?微服务架构是不是发展趋势?对于这些问题,我们都缺乏清楚的认识。为解决单体架构下的各种问题,微服务架构应运而生。与其构建一个臃肿庞大,难以驯服的怪兽,还不如及早将服务拆分。微服务的核心思想便是服务拆分与解耦,降低复杂性。微服务强调将功能合理拆解,尽可能保证每个服务的功能单一,按照单一责任原则(Single Responsibility Principle)明确角色。将各个服务做轻,从而做到灵活,可复用,亦可根据各个服务自身资源需求,单独布署,单独作横向扩展。微服务架构(Microservice Architecture)是一种架构概念,旨在通过将功能分解到各个离散的服务中以实现对解决方案的解耦。你可以将其看作是在架构层次而非获取服务的类上应用很多 SOLID 原则。微服务架构是个很有趣的概念,它的主要作用是将功能分解到离散的各个服务当中,从而降低系统的耦合性,并提供更加灵活的服务支持。概念:把一个大型的单个应用程序和服务拆分为数个甚至数十个的支持微服务,它可扩展单个组件而不是整个的应用程序堆栈,从而满足服务等级协议。定义:围绕业务领域组件来创建应用,这些应用可独立地进行开发,管理和迭代在分散的组件中使用云架构和平台式部署,管理和服务功能,使产品交付变得更加简单。本质:用一些功能比较明确,业务比较精练的服务去解决更大,更实际的问题。三、源码分析从字面意义上来讲,源文件的英文指一个文件,指源代码的集合。源代码则是一组具有特定意义的可以实现特定功能的字符(程序开发代码)。源码分析是一种临界知识,掌握了这种临界知识,能不变应万变,源码分析对于很多人来说很枯燥,生涩难懂。源码阅读,我觉得最核心有三点:技术基础+强烈的求知欲+耐心。我认为是阅读源码的最核心驱动力我见到绝大多数程序员,对学习的态度,基本上就是这几个层次(很偏激哦):1,只关注项目本身,不懂就百度一下。2,除了做好项目,还会阅读和项目有关的技术书籍,看维基百科。3,除了阅读和项目相关的书外,还会阅读IT行业的书,比如学的Java的时,还会去了解函数语言,如LISP。4,找一些开源项目看看,大量试用第三方框架,还会写写演示。5,阅读基础框架,J2EE 规范,调试服务器内核。大多数程序都是第1种,到第5种不光需要浓厚的兴趣,还需要勇气:?我能读懂吗其实,你能够读懂的耐心,真的很重要。因为你极少看到阅读源码的指导性文章或书籍,也没有人要求或建议你读。你读的过程中经常会卡住,而一卡主可能就陷进了迷宫这时,你需要做的,可能是暂时中断一下,再从外围看看它:如API结构,框架的设计图。四、工具使用工欲善其事必先利其器,工具对 Java 的的程序员的重要性不言而喻现在有很多库,实用工具和程序任的 Java 的开发人员选择。下图列出的工具都是程序员必不可少的工具五、性能优化不管是应付前端面试还是改进产品体验,性能优化都是躲不开的话题。优化的目的是让用户有“快”的感受,那如何让用户感受到快呢?加载速度真的很快,用户打开输入网址按下回车立即看到了页面加载速度并没有变快,但用户感觉你的网站很快性能优化取决于多个因素,包括垃圾收集,虚拟机和底层操作系统(OS)设置。有多个工具可供开发人员进行分析和优化时使用,你可以通过阅读爪哇工具的源代码优化和分析来学习和使用它们。必须要明白的是,没有两个应用程序可以使用相同的优化方式,也没有完美的优化的 Java 应用程序的参考路径。使用最佳实践并且坚持采用适当的方式处理性能优化。想要达到真正最高的性能优化,你作为一个 Java 的开发人员,需要对 Java 的虚拟机(JVM)和底层操作系统有正确的理解。性能优化,简而言之,就是在不影响系统运行正确性的前提下,使之运行地更快,完成特定功能所需的时间更短。性能问题永远是永恒的主题之一,而优化则更需要技巧。Java程序员如何学习才能快速入门并精通呢?当真正开始学习的时候难免不知道从哪入手,导致效率低下影响继续学习的信心。但最重要的是不知道哪些技术需要重点掌握,学习时频繁踩坑,最终浪费大量时间,所以有一套实用的视频课程用来跟着学习是非常有必要的。为了让学习变得轻松、高效,今天给大家免费分享一套阿里架构师传授的一套教学资源。帮助大家在成为架构师的道路上披荆斩棘。这套视频课程详细讲解了(Spring,MyBatis,Netty源码分析,高并发、高性能、分布式、微服务架构的原理,JVM性能优化、分布式架构)等这些成为架构师必备的内容!而且还把框架需要用到的各种程序进行了打包,根据基础视频可以让你轻松搭建分布式框架环境,像在企业生产环境一样进行学习和实践。

auto_answer 2019-12-02 01:51:27 0 浏览量 回答数 0

回答

北美华人安全论坛 BASec 创始人韦韬认为,Rust 有着出色的性能表现,不过对于普通业务而言,性能不是关键,稳定性才是。这个恰恰是 Rust 的最强项。就稳定性而言,Rust 碾压大部分语言,包括 C,C++,Go,Python,PHP 等等。但是没有免费的午餐,Rust 的稳定性来自于 Borrow Checker 的 " 严苛 ",Ownership 机制对于 Rust 入门者有一定的门槛。但大部分情况下,配合上基本的编程规范 (严格限制 unsafe/unwrap/…等),只要 Rust 编译器点头,程序运行起来就没什么问题。需要注意的是,Rust 保障的内存安全不包括防止内存泄露。因为内存泄露的语义和具体应用逻辑强相关,所以还需要做额外的内存泄露检查,但这方面的工具比较现成,一般不是大问题。但即使如此,Rust 写驱动也不太乐观,主要是两个原因。一是需要把底层的 unsafe 仔细封装,因为在驱动场景下,很多操作不满足 Rust safe 的要求,一旦代码里混杂了很多 unsafe,那么因常规安全检验工具的缺乏,Rust 反而会不如 C。二是硬件厂家的工程师从 C 改为 Rust 更漫长,广泛的硬件驱动支持才是 Linux 生态繁荣昌盛的根基,这个生态挑战比单纯的技术挑战更大。 方便开发者学习 Rust,Rust 官方团队做出了如下努力: 独立出专门的社区工作组,编写官方Rust Book,以及其他各种不同深度的文档,比如编译器文档、nomicon book 等。甚至组织免费的社区教学活动 Rust Bridge,大力鼓励社区博客写作,等等。 Rust 语言的文档支持 Markdown 格式,因此 Rust 标准库文档表现力丰富。生态系统内很多第三方包的文档的表现力也同样得以提升。 提供了非常好用的在线 Playground 工具,供开发者学习、使用和分享代码。 Rust 语言很早就实现了自举,方便学习者通过阅读源码了解其内部机制,甚至参与贡献。 Rust 核心团队一直在不断改进 Rust,致力于提升 Rust 的友好度,极力降低初学者的心智负担,减缓学习曲线。比如引入 NLL 特性来改进借用检查系统,使得开发者可以编写更加符合直觉的代码。 虽然从 Haskell 那里借鉴了很多类型系统相关的内容,但是 Rust 团队在设计和宣传语言特性的时候,会特意地去学术化,让 Rust 的概念更加亲民。 在类型系统基础上提供了混合编程范式的支持,提供了强大而简洁的抽象表达能力,极大地提升了开发者的开发效率。 提供更加严格且智能的编译器。基于类型系统,编译器可以严格地检查代码中隐藏的问题。Rust 官方团队还在不断优化编译器的诊断信息,使得开发者可以更加轻松地定位错误,并快速理解错误发生的原因。 Rust 从 2006 年诞生之日开始,目标就很明确——追求安全、并发和高性能的现代系统级编程语言。为了达成这一目标,Rust 语言遵循着内存安全、零成本抽象和实用性三大设计哲学。借助现代化的类型系统,赋予了 Rust 语言高级的抽象表达能力,与此同时又保留了对底层的控制能力。开发者和 Rust 编译器共享着同一套“心智模型”,相互信任,相互协作,最大化地保证系统的安全和健壮性。Rust 语言有别于传统语言的另一点在于,它将开源社区视为语言的一部分。Rust 本身就是开源项目中的典范,非常值得学习。 有人把 Rust 称为”The New C“,我十分认同,Rust 是开启新时代的语言。但 Rust 可能不像其他语言那样,突然冒出一个杀手级应用来引领某个领域的一段潮流。Rust 改变世界的方式,正好可以用古人的诗词来形容,”好雨知时节,当春乃发生。随风潜入夜,润物细无声“。 Rust 语言不是银弹,它也不追求完美,它只是在由 C 和 C++ 构建的旧世界之上,寻求更好的问题解决之道。 所以,你准备好学习 Rust 了吗? 内容来源于网络&《Rust 编程之道》 技术交流群 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答

珍宝珠 2020-01-13 14:23:31 0 浏览量 回答数 0

回答

转自:阿飞的博客 一、数据库技术选型的思考维度 我们做选型的时候首先要问: 谁选型?是负责采购的同学、 DBA 还是业务研发? 如果选型的是采购的同学,他们更注重成本,包括存储方式、网络需求等。 如果选型的是 DBA 同学,他们关心的: ① 运维成本 首先是运维成本,包括监控告警是否完善、是否有备份恢复机制、升级和迁移的成本是否高、社区是否稳定、是否方便调优、排障是否简易等; ② 稳定性 其次,DBA会关注稳定性,包括是否支持数据多副本、服务高可用、多写多活等; ③ 性能 第三是性能,包括延迟、QPS 以及是否支持更高级的分级存储功能等; ④ 拓展性 第四是扩展性,如果业务的需求不确定,是否容易横向扩展和纵向扩容; ⑤ 安全 最后是安全,需要符合审计要求,不容易出现 SQL 注入或拖库情况。 ⑥ 其他 除了采购和 DBA之外,后台应用研发的同学同样会关注稳定性、性能、扩展性等问题,同时也非常关注数据库接口是否便于开发,是否便于修改数据库 schema 等问题。 接下来我们来看一下爱奇艺使用的数据库类型: MySQL,互联网业务必备系统; TiDB,爱奇艺的 TiDB 实践会有另外的具体介绍; Redis,KV 数据库,互联网公司标配; Couchbase,这个在爱奇艺用得比较多,但国内互联网公司用得比较少,接下来的部分会详细说明; 其他,比如 MongoDB、图数据库、自研 KV 数据库 HiKV 等; 大数据分析相关系统,比如 Hive、Impala 等等。 可以看到爱奇艺的数据库种类还是很多的,这会造成业务开发的同学可能不太清楚在他的业务场景下应该选用哪种数据库系统。 那么,我们先对这些数据库按照接口(SQL、NoSQL)和面向的业务场景(OLTP、OLAP)这两位维度进行一个简单非严谨的分类。 下图中,左上角是面向 OLTP、支持 SQL 的这样一类系统,例如 MySQL,一般支持事务不同的隔离级别, QPS 要求比较高,延时比较低,主要用于交易信息和关键数据的存储,比如订单、VIP 信息等。 左下角是 NoSQL 数据库,是一类针对特殊场景做优化的系统,schema 一般比较简单,吞吐量较高、延迟较低,一般用作缓存或者 KV 数据库。 整个右侧都是 OLAP 的大数据分析系统,包括 Clickhouse、Impala等,一般支持SQL、不支持事务,扩展性比较好,可以通过加机器增加数据的存储量,响应延迟较长。 还有一类数据库是比较中立的,在数据量比较小的时候性能比较好,在数据量较大或复杂查询的时候性能也不差,一般通过不同的存储引擎和查询引擎来满足不同的业务需求,我们把它叫做 HTAP,TiDB 就是这样一种数据库。 二、iQIYI对数据库的优化与完善 前面我们提到了很多种的数据库,那么接下来就和大家介绍一下在爱奇艺我们是怎么使用这些数据库的。 1、MySQL在爱奇艺的使用 ① MySQL 首先是 MySQL。MySQL 基本使用方式是 master-slave + 半同步,支持每周全备+每日增量备份。我们做了一些基本功能的增强,首先是增强了数据恢复工具 Xtrabackup 的性能。 之前遇到一个情况,我们有一个全量库是 300G 数据,增量库每天 70G 数据,总数据量 700G 左右。我们当时只需要恢复一个表的数据,但该工具不支持单表恢复,且整库恢复需要 5 个小时。 针对这个情况我们具体排查了原因,发现在数据恢复的过程中需要进行多次写盘的 IO 操作并且有很多串行操作,所以我们做了一些优化。例如删减过程中的一些写盘操作,减少落盘并将数据处理并行化,优化后整库恢复耗时减少到 100 分钟,而且可以直接恢复单表数据。 然后是适配 DDL 和 DML 工具到内部系统,gh-ostt 和 oak-online-alter-table 在数据量大的时候会造成 master-slave 延时,所以我们在使用工具的时候也增加了延时上的考虑,实时探测Master-Slave 库之间延时的情况,如果延时较大会暂停工具的使用,恢复到正常水平再继续。 ② MySQL高可用 第二是 MySQL 高可用。Master-slave 加上半同步这种高可用方式不太完善,所以我们参照了 MHA 并进行了改动,采用 master + agent 的方式。Agent 在每一个物理机上部署,可以监控这个物理机上的所有实例的状态,周期性地向 master 发送心跳,Master 会实时监测各个Agent的状态。 如果 MySQL故障,会启动 Binlog 补偿机制,并切换访问域名完成 failover。考虑到数据库跨机房跨地区部署的情况,MHA 的 master 我们也做了高可用设计,众多 master 会通过 raft 组成一个 raft group,类似 TiDB 的 PD 模块。目前 MySQL failover 策略支持三种方式:同机房、同地域跨机房以及跨地域。 ③ MySQL拓展能力 第三是提高MySQL扩展能力,以提供更大容量的数据存储。扩展方式有 SDK,例如开源的 ShardingSphere,在爱奇艺的使用也比较广泛。另外就是 Proxy,开源的就更多了。但是 SDK 和 Proxy 使用的问题是支持的 SQL 语句简单,扩容难度大,依赖较多且运维复杂,所以部分业务已经迁移至 TiDB。 ④ 审计 第四是审计。我们在 MySQL 上做了一个插件获取全量 SQL 操作,后端打到 Kafka,下游再接入包括 Clickhouse 等目标端进行 SQL 统计分析。除此之外还有安全策略,包括主动探索是否有 SQL 注入及是否存在拖库情况等,并触发对应的告警。 MySQL 审计插件最大的问题是如何降低对 MySQL 性能的影响,对此我们进行了一些测试,发现使用 General Log 对性能损耗较大,有 10%~20% 的降低。 于是我们通过接口来获取 MySQL 插件里的监控项,再把监控项放到 buffer 里边,用两级的 RingBuffer 来保证数据的写入不会有锁资源竞争。在这个插件里再启动一个线程,从 RingBuffer 里读取数据并把数据打包写到 FIFO 管道里。 我们在每台 MySQL 的物理机里再启动一个 Agent,从管道里阻塞地读取数据发至 Kafka。优化后我们再次进行压测,在每台机器上有 15 万的更新、删除或插入操作下不会丢失数据,性能损耗一般情况下小于 2%。 目前已经在公司内部的集群上线了一年时间,运行比较稳定,上线和下线对业务没有影响。 ⑤ 分级存储 第五是分级存储。MySQL 里会存一些过程性的数据,即只需要读写最近一段时间存入的数据,过段时间这些数据就不需要了,需要进行定时清理。 分级存储就是在 MySQL 之上又用了其他存储方式,例如 TiDB 或其他 TokuDB,两者之间可以进行数据自动搬迁和自动归档,同时前端通过 SDK + Proxy 来做统一的访问入口。这样一来,业务的开发同学只需要将数据存入 MySQL 里,读取时可能从后端接入的任意数据库读出。这种方式目前只是过渡使用,之后会根据 TiDB 的特性进行逐步迁移。 Redis在爱奇艺的使用 接下来是 Redis。Redis 也是使用 master - slave 这种方式,由于网络的复杂性我们对 Sentinel 的部署进行了一些特殊配置,在多机房的情况下每个机房配置一定数量 Sentinel 来避免脑裂。 备份恢复方面介绍一个我们的特殊场景,虽然 Redis 是一个缓存,但我们发现不少的业务同学会把它当做一个 KVDB 来使用,在某些情况下会造成数据的丢失。 所以我们做了一个 Redis 实时备份功能,启动一个进程伪装成 Redis 的 Slave 实时获取数据,再放到后端的 KV 存储里,例如 ScyllaDB,如果要恢复就可以从 ScyllaDB 里把数据拉出来。 我们在用 Redis 时最大的痛点就是它对网络的延迟或抖动非常敏感。如有抖动造成 Redis Master 超时,会由 Sentinel 重新选出一个新的节点成为 Master,再把该节点上的数据同步到所有 Slave 上,此过程中数据会放在 Master 节点的 Buffer 里,如果写入的 QPS 很高会造成 Buffer 满溢。如果 Buffer 满后 RDB 文件还没有拷贝过去,重建过程就会失败。 基于这种情况,我们对 Redis 告警做了自动化优化,如有大量 master - slave 重建失败,我们会动态调整一些参数,例如把 Buffer 临时调大等, 此外我们还做了 Redis 集群的自动扩缩容功能。 我们在做 Redis 开发时如果是 Java 语言都会用到 Jedis。用 Jedis 访问客户端分片的 Redis 集群,如果某个分片发生了故障或者 failover,Jedis 就会对所有后端的分片重建连接。如果某一分片发生问题,整个 Redis 的访问性能和 QPS 会大幅降低。针对这个情况我们优化了 Jedis,如果某个分片发生故障,就只针对这个分片进行重建。 在业务访问 Redis 时我们会对 Master 绑定一个读写域名,多个从库绑定读域名。但如果我们进行 Master failover,会将读写域名从某旧 Master 解绑,再绑定到新 Master 节点上。 DNS 本身有一个超时时间,所以数据库做完 failover 后业务程序里没有立刻获取到新的 Master 节点的 IP的话,有可能还会连到原来的机器上,造成访问失败。 我们的解决方法是把 DNS 的 TTL 缩短,但对 DNS 服务又会造成很大的压力,所以我们在 SDK 上提供 Redis 的名字服务 RNS,RNS 从 Sentinel 里获取集群的拓扑和拓扑的变化情况,如果集群 failover,Sentinel 会接到通知,客户端就可以通过 RNS 来获取新的 Master 节点的 IP 地址。我们去掉域名,通过 IP 地址来访问整个集群,屏蔽了 DNS 的超时,缩短了故障的恢复时间。 SDK 上还做了一些功能,例如 Load Balance 以及故障检测,比如某个节点延时较高的话会被临时熔断等。 客户端分片的方式会造成 Redis 的扩容非常痛苦,如果客户端已经进行了一定量的分片,之后再增加就会非常艰难。 Redis 在 3.0 版本后会提供 Redis Cluster,因为功能受限在爱奇艺应用的不是很多,例如不支持显示跨 DC 部署和访问,读写只在主库上等。 我们某些业务场景下会使用 Redis 集群,例如数据库访问只发生在本 DC,我们会在 DC 内部进行 Cluster 部署。 但有些业务在使用的过程中还是想做 failover,如果集群故障可以切换到其他集群。根据这种情况我们做了一个 Proxy,读写都通过它来进行。写入数据时 Proxy 会做一个旁路,把新增的数据写在 Kafka 里,后台启用同步程序再把 Kafka 里的数据同步到其他集群,但存在一些限制,比如我们没有做冲突检测,所以集群间数据需要业务的同学做单元化。线上环境的Redis Cluster 集群间场景跨 DC 同步 需要 50 毫秒左右的时间。 2、Couchbase在爱奇艺的使用 Redis 虽然提供 Cluster 这种部署方式,但存在一些问题。所以数据量较大的时候(经验是 160G),就不推荐 Redis 了,而是采用另一种存储方式 Couchbase。 Couchbase 在国内互联网公司用的比较少,一开始我们是把他当做一个 Memcached 来使用的,即纯粹的缓存系统。 但其实它性能还是比较强大的,是一个分布式高性能的 KV 系统,支持多种存储引擎 (bucket)。第一种是 Memcached bucket,使用方式和 Memcached 一样为 KV 存储,不支持数据持久化也没有数据副本,如果节点故障会丢失数据; 第二种是 Couchbase bucket,支持数据持久化,使用 Json 写入,有副本,我们一般会在线上配置两个副本,如果新加节点会对数据进行 rebalance,爱奇艺使用的一般是 Couchbase bucket 这种配置。 Couchbase 数据的分布如下图,数据写入时在客户端上会先进行一次哈希运算,运算完后会定位 Key 在哪一个 vBucket (相当于数据库里的某个分片)。之后客户端会根据 Cluster Map 发送信息至对应的服务端,客户端的 Cluster Map 保存的是 vBucket 和服务器的映射关系,在服务端数据迁移的过程中客户端的 Cluster Map 映射关系会动态更新,因此客户端对于服务端的 failover 操作不需要做特殊处理,但可能在 rebalance 过程中会有短暂的超时,导致的告警对业务影响不大。 Couchbase 在爱奇艺应用比较早,2012 年还没有 Redis Cluster 的时候就开始使用了。集群管理使用 erlang 语言开发,最大功能是进行集群间的复制,提供多种复制方式:单向、双向、星型、环式、链式等。 爱奇艺从最初的 1.8 版本使用到如今的 5.0 版本,正在调研的 6.0,中间也遇到了很多坑,例如 NTP 时间配置出错会导致崩溃,如果每个集群对外 XDCR 并发过高导致不稳定,同步方向变更会导致数据丢失等等,我们通过运维和一些外部工具来进行规避。 Couchbase 的集群是独立集群,集群间的数据同步通过 XDCR,我们一般配置为双向同步。对于业务来说,如果 Cluster 1 写入, Cluster 2 不写入,正常情况下客户端会写 Cluster 1。如果 Cluster 1 有故障,我们提供了一个 Java SDK,可以在配置中心把写入更改到 Cluster 2,把原来到 Cluster 1 的连接逐步断掉再与Cluster 2 新建连接。这种集群 failover 的过程对于客户端来说是相对透明和无感的。 3、爱奇艺自研数据库HiKV的使用 Couchbase 虽然性能非常高,并且数据的存储可以超过内存。但是,如果数据量超过内存 75% 这个阈值,性能就会下降地特别快。在爱奇艺,我们会把数据量控制在可用内存的范围之内,当做内存数据库使用。但是它的成本非常高,所以我们后面又开发了一个新的数据库—— HiKV。 开发 HiKV 的目的是为了把一些对性能要求没那么高的 Couchbase 应用迁移到 HiKV 上。HiKV 基于开源系统 ScyllaDB,主要使用了其分布式数据库的管理功能,增加了单机存储引擎 HiKV。 ScyllaDB 比较吸引人的是它宣称性能高于 Cassandra 十倍,又完全兼容 Cassandra 接口,设计基本一致,可以视为 C++ 版 Cassandra 系统。 ScyllaDB 性能的提升主要是使用了一些新的技术框架,例如 C++ 异步框架 seastar,主要原理是在j每台物理机的核上会 attach 一个应用线程,每个核上有自己独立的内存、网络、IO 资源,核与核之间没有数据共享但可以通信,其最大的好处是内存访问无锁,没有冲突过程。 当一个数据读或写到达 ScyllaDB 的 server 时,会按照哈希算法来判断请求的 Key 是否是该线程需要处理的,如果是则本线程处理,否则会转发到对应线程上去。 除此之外,它还支持多副本、多数据中心、多写多活,功能比较强大。 在爱奇艺,我们基于 SSD 做了一个 KV 存储引擎。Key 放在内存里,Value 放在盘上的文件里,我们在读和写文件时,只需要在内存索引里定位,再进行一次盘的 IO 开销就可以把数据读出来,相比 ScyllaDB 原本基于 LSM Tree 的存储引擎方式对 IO 的开销较少。 索引数据全部放在内存中,如果索引长度较长会限制单机可存储的数据量,于是我们通过开发定长的内存分布器,对于比较长的 Key 做摘要缩短长度至 20 字节,采用红黑树索引,限制每条记录在内存里的索引长度至为 64 字节。内存数据要定期做 checkpoint,客户端要做限流、熔断等。 HiKV 目前在爱奇艺应用范围比较大,截至目前已经替换了 30% 的 Couchbase,有效地降低了存储成本。 4、爱奇艺的数据库运维管理 爱奇艺数据库种类较多,如何高效地运维和管理这些数据库也是经历了不同的阶段。 最初我们通过 DBA 写脚本的方式管理,如果脚本出问题就找 DBA,导致了 DBA 特别忙碌。 第二个阶段我们考虑让大家自己去查问题的答案,于是在内部构建了一个私有云,通过 Web 的方式展示数据库运行状态,让业务的同学可以自己去申请集群,一些简单的操作也可以通过自服务平台实现,解放了 DBA。一些需要人工处理的大型运维操作经常会造成一些人为故障,敲错参数造成数据丢失等。 于是在第三个阶段我们把运维操作 Web 化,通过网页点击可以进行 90% 的操作。 第四个阶段让经验丰富的 DBA 把自身经验变成一些工具,比如有业务同学说 MySQL master-slave 延时了,DBA 会通过一系列操作排查问题。现在我们把这些操作串起来形成一套工具,出问题时业务的同学可以自己通过网页上的一键诊断工具去排查,自助进行处理。 除此之外我们还会定期做预警检查,对业务集群里潜在的问题进行预警报告;开发智能客服,回答问题;通过监控的数据对实例打标签,进行削峰填谷地智能调度,提高资源利用率。 三、不同场景下数据库选型建议 1、实用数据库选型树 最后来说一些具体数据库选型建议。这是 DBA 和业务一起,通过经验得出来的一些结论。 对于关系型数据库的选型来说,可以从数据量和扩展性两个维度考虑,再根据数据库有没有冷备、要不要使用 Toku 存储引擎,要不要使用 Proxy 等等进行抉择。 NoSQL 也是什么情况下使用 master-slave,什么情况下使用客户端分片、集群、Couchbase、HiKV 等,我们内部自服务平台上都有这个选型树信息。 2、一些思考 ① 需求 我们在选型时先思考需求,判断需求是否真实。 你可以从数据量、QPS、延时等方面考虑需求,但这些都是真实需求吗?是否可以通过其他方式把这个需求消耗掉,例如在数据量大的情况下可以先做数据编码或者压缩,数据量可能就降下来了。 不要把所有需求都推到数据库层面,它其实是一个兜底的系统。 ② 选择 第二个思考的点是对于某个数据库系统或是某个技术选型我们应该考虑什么?是因为热门吗?还是因为技术上比较先进?但是不是能真正地解决你的问题?如果你数据量不是很大的话就不需要选择可以存储大数据量的系统。 ③ 放弃 第三是放弃,当你放弃一个系统时真的是因为不好用吗?还是没有用好?放弃一个东西很难,但在放弃时最好有一个充分的理由,包括实测的结果。 ④ 自研 第四是自研,在需要自己开发数据库时可以参考和使用一些成熟的产品,但不要盲目自研。 ⑤ 开源 最后是开源,要有拥抱开源的态度。

茶什i 2019-12-27 14:17:56 0 浏览量 回答数 0

回答

有编程能力和数据挖掘能力的工程师最火,包括:数据挖掘工程师、机器学习工程师,算法工程师。 今年3月份时,谷歌开发的人工智能AlphaGo打败了全球最顶尖的围棋高手,轰动全世界,AI时代正式拉开序幕。实际上,人工智能这一概念早在上世纪一大批科幻小说陆续发表时,就已被人们接受,而随着科技的发展,人工智能的发展前景更是日益清晰。一个人工智能的诞生需要无数个工程师挥洒汗水。其中,负责开发学习算法、使机器能像人类一样思考问题的数据挖掘工程师更是无比重要。什么人能完成人工智能的开发任务呢。必须指出,人工智能和一般的计算机程序有极大的差别,它应当具有“能够自主学习知识”这一特点,这一特点也被称为“机器学习”。而自学习模型(或者说机器学习能力开发)正是数据挖掘工程师的强项,人工智能的诞生和普及需要一大批数据挖掘工程师。  那么在AI时代,如何才能掌握相关的技能,成为企业需要的数据挖掘人才呢。 第一个门槛是数学 首先,机器学习的第一个门槛是数学知识。机器学习算法需要的数学知识集中在微积分、线性代数和概率与统计当中,具有本科理工科专业的同学对这些知识应该不陌生,如果你已经还给了老师,我还是建议你通过自学或大数据学习社区补充相关知识。所幸的是如果只是想合理应用机器学习算法,而不是做相关方向高精尖的研究,需要的数学知识啃一啃教科书还是基本能理解下来的。 第二个门槛是编程 跨过了第一步,就是如何动手解决问题。所谓工欲善其事必先利其器,如果没有工具,那么所有的材料和框架、逻辑、思路都给你,也寸步难行。因此我们还是得需要合适的编程语言、工具和环境帮助自己在数据集上应用机器学习算法。对于有计算机编程基础的初学者而言,Python是很好的入门语言,很容易上手,同时又活跃的社区支持,丰富的工具包帮助我们完成想法。没有编程基础的同学掌握R或者平台自带的一些脚本语言也是不错的选择。 Make your hands dirty 接下来就是了解机器学习的工作流程和掌握常见的算法。一般机器学习步骤包括: 数据建模:将业务问题抽象为数学问题; 数据获取:获取有代表性的数据,如果数据量太大,需要考虑分布式存储和管理; 特征工程:包括特征预处理与特征选择两个核心步骤,前者主要是做数据清洗,好的数据清洗过程可以使算法的效果和性能得到显著提高,这一步体力活多一些,也比较耗时,但也是非常关键的一个步骤。特征选择对业务理解有一定要求,好的特征工程会降低对算法和数据量的依赖。 模型调优:所谓的训练数据都是在这个环节处理的,简单的说就是通过迭代分析和参数优化使上述所建立的特征工程是最优的。 这些工作流程主要是工程实践上总结出的一些经验。并不是每个项目都包含完整的一个流程,只有大家自己多实践,多积累项目经验,才会有自己更深刻的认识。 翻过了数学和编程两座大山,就是如何实践的问题,其中一个捷径就是积极参加国内外各种数据挖掘竞赛。国外的Kaggle和国内的阿里天池比赛都是很好的平台,你可以在上面获取真实的数据和队友们一起学习和进行竞赛,尝试使用已经学过的所有知识来完成这个比赛本身也是一件很有乐趣的事情。 另外就是企业实习,可以先从简单的统计分析和数据清洗开始做起,积累自己对数据的感觉,同时了解企业的业务需求和生产环境。我们通常讲从事数据科学的要”Make your hands dirty”,就是说要通过多接触数据加深对数据和业务的理解,好厨子都是食材方面的专家,你不和你的“料”打交道,怎么能谈的上去应用好它。 摆脱学习的误区 初学机器学习可能有一个误区,就是一上来就陷入到对各种高大上算法的追逐当中。动不动就讨论我能不能用深度学习去解决这个问题啊。实际上脱离业务和数据的算法讨论是毫无意义的。上文中已经提到,好的特征工程会大大降低对算法和数据量的依赖,与其研究算法,不如先厘清业务问题。任何一个问题都可以用最传统的的算法,先完整的走完机器学习的整个工作流程,不断尝试各种算法深挖这些数据的价值,在运用过程中把数据、特征和算法搞透。真正积累出项目经验才是最快、最靠谱的学习路径。 自学还是培训 很多人在自学还是参加培训上比较纠结。我是这么理解的,上述过程中数学知识需要在本科及研究生阶段完成,离开学校的话基本上要靠自学才能补充这方面的知识,所以建议那些还在学校里读书并且有志于从事数据挖掘工作的同学在学校把数学基础打好,书到用时方恨少,希望大家珍惜在学校的学习时间。 除了数学以外,很多知识的确可以通过网络搜索的方式自学,但前提是你是否拥有超强的自主学习能力,通常拥有这种能力的多半是学霸,他们能够跟据自己的情况,找到最合适的学习资料和最快学习成长路径。如果你不属于这一类人,那么参加职业培训也许是个不错的选择,在老师的带领下可以走少很多弯路。另外任何学习不可能没有困难,也就是学习道路上的各种沟沟坎坎,通过老师的答疑解惑,可以让你轻松迈过这些障碍,尽快实现你的“小”目标。 机器学习这个领域想速成是不太可能的,但是就入门来说,如果能有人指点一二还是可以在短期内把这些经典算法都过一遍,这番学习可以对机器学习的整体有个基本的理解,从而尽快进入到这个领域。师傅领进门,修行靠个人,接下来就是如何钻进去了,好在现在很多开源库给我们提供了实现的方法,我们只需要构造基本的算法框架就可以了,大家在学习过程中应当尽可能广的学习机器学习的经典算法。 学习资料 至于机器学习的资料网上很多,大家可以找一下,我个人推荐李航老师的《统计机器学习》和周志华老师的《机器学习》这两门书,前者理论性较强,适合数学专业的同学,后者读起来相对轻松一些,适合大多数理工科专业的同学。

管理贝贝 2019-12-02 01:21:46 0 浏览量 回答数 0

问题

你需要的是持续的服务改进

sunny夏筱 2019-12-01 21:41:32 7450 浏览量 回答数 3

问题

借助Wireshark帮助定位调用阿里云OSS开发过程问题

云语科技 2019-12-01 21:47:48 11257 浏览量 回答数 6

问题

比赛_快速入门_4_19_update_仅供参考,思维不要受局限

小斯never 2019-12-01 21:43:08 30563 浏览量 回答数 24

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 38419 浏览量 回答数 12

回答

我想了下,其实应该这样。比如现在有A(私钥A、公钥A),B(私钥B、公钥B) ,A向B发送消息,用私钥A加签、用公钥B加密,发送给B,B用私钥B解密,然后用公钥A验签。这样就可以解决上述2个问题。如果单纯的使用RSA只进行加密不签名的话,我认为是不安全的。######你这样的说法也是对的,这种叫双向认证。 A拥有A私钥、B公钥;B拥有A公钥、B私钥,这种一般用在最高级别的时候,一般很少这么用。######私钥加密用于数字签名,你对内容私钥加密,表示这内容版权归你 公钥加密用于防止信息被别人看到,只有持有私钥的人才能解密,如邮件加密发送给对方######回复 @开源中国总书记 : 老哥你这个脑瓜子真的是,A用C的公钥加密发送给C,B也用C公钥加密伪装成A发送C,你的意思是如何判断A是不是真正的A吧?首先A和C直接的通信内容只有A和C知道,A在加密的内容里面定义一串只有两个人知道的内容不就好了,例如123,C解密报文以后只要看内容中是否有123就知道是不是真正的A发的内容,B即使有C的公钥,但是不知道A和C之间通信的内容。######私钥加密的话,因为公钥是公开的,别人有可能拿到,也就是说,可以解密你的报文。 公钥加密的话,确实是只有拥有私钥的人才能解密,但是不能保证请求就是指定系统的。######私钥加密公钥解密防止发送信息中途呗篡改,公钥加密私钥解密防止信息中途被截获泄露。######还是不能解决我说的上边的2个问题###### 你举的例子 1,是用于身份验证的,你说它不能用于加密通讯。 你举的例子 2,是用于加密通讯的,你说它不能用于身份验证。 这其中的逻辑就好比,筷子不能用来喝汤,吸管不能用来吃饭,所以人发明这两种工具都没有意义吗?######回复 @开源中国总书记 : 公钥加密私钥解密,你怎么模拟我的报文,每个人公钥的拥有者都会有自己的身份ID,比如https的session之类的,你既不能获取我的身份Id,也不能获取我发送的报文内容,你怎么模拟,你自己用公钥生成的报文那不叫模拟,那是你用自己的身份做的事。 私钥加密公钥解密,这种主要是用于签名,信息是公开的,谁都可以看到,但是签名的作是为了让你知道这个信自己确定是我给你的######我的意思是,如果单纯用RSA加密的话不安全。###### "1、如果是私钥加密,公钥解密的话,因为公钥是公开出来的,所以拿到公钥的人 ,是可以解密报文的,我认为这种加密方式没意义。"   你理解有误. 这种场景是用作签名的, 就是校验信息发送者身份. 只有通过特定私钥的的信息才能被公开出来的公钥解密. 这就唯一确定了信息发送者, 达到签名(不可抵赖)的目的.  "2、如果是公钥加密,私钥解密的话,因为公钥是公开出来的,所以系统是无法识别请求就是指定系统发送的,也就是别人是可以模拟你的报文,请求你的系统。"   这种场景是做信息加密用. 发送者A通过公钥加密信息, 只有持有私钥的人C才能解密. 保证了被发送的信息不会被第三方知晓. 而B通过模拟报文的攻击方式并不是修改了A的信息, 而是B"假扮"A向系统发信息. 这种情况并不是A的密文被破解, 而是B在欺骗C, 所以不属于RSA算法漏洞.  同时, 要预防这类欺骗只需利用场景1的方式, 由A使用另外一套RSA密钥对信息签名即可. 此时B即使知晓了A要发送的原文, 由于没有A的密钥 C也无法使用公钥解密出数据. 达到了既不可篡改, 又不可抵赖的目的.  ######回复 @开源中国总书记 : 即便第三者知道报文格式, 通过公钥仿制一个报文请求系统, 这种情况也不是RSA的问题. RSA还是很好的保护了通信者之间的信息. 第三方如无密钥, 无法得知通信内容. 签名只是对RSA的活用,相当于对密文的再次加密. 要解决这种欺骗问题, 还可以通过诸如约定token来实现. 因为通信内容不可被第三方获取, 故可在报文中加入身份验证信息token来实现防骗.######回复 @开源中国总书记 : 所以需要签名啊. 使用场景1 的方式签名就可以防止这种欺骗了. 一共有两套密钥. 第一套做签名, 第二套做加密. 这样无论第三者是否知道报文格式, 都无法欺骗到系统了.######我的意思是:如果我知道你的报文结构,因为公钥是公开的,我可以使用公钥加密模拟报文请求你的系统,并不是说要篡改数据###### 加密是为了加密内容,防止别人窃据你的信息 你说的2是权限控制应该做的东西###### 发送方用接收方的公钥加密,然后用自己的私钥进行签名,然后发送消息 接收方用发送方的公钥验证发送方身份,然后用自己的私钥解密######因为发送方和接收方的公钥都公开了,还是不能解决上述2个问题###### 1上面有人说了是用来证明代码/软件所有权的,比如有人做了个木马,试图伪装成微软的程序骗过杀毒软件,可是他没有微软的私钥,无法对木马程序进行签名,也就没办法伪装成微软的程序 2既然是加密的信息别人都不知道你的报文内容怎么伪造呢,就算邪恶第三方知道你的报文格式,只要你在报文里加上一个双方提前商量好的口令就可以阻止第三方伪造报文,因为第三方不可能知道口令是什么######1、签名是可以的,这个没问题 2、你说的口令,这个口令怎么保证安全?###### 1.用于签名认证 2.并不是用于身份认证的,参考HTTPS客户端发送数据###### 两个都是有意义的。 1.私钥加密,公钥解密;用于数字签名方向。私钥-公钥是一对一的关系,使用私钥加密的值,只能用对应的公钥解开,可以验证持有者身份(即私钥表示一个身份)。 2.公钥加密,私钥解密;用于数字信封方向。对方使用公钥加密的结果,只能用对应的私钥解开,可以发送给特定持有者一些私密的消息。 你说的模拟报文,进行请求;是可以进行的。 如果要验证对方身份信息,建议使用SSL的双向验证功能######签名是没问题的。如果单纯的公钥加密,私钥解密,是不能保证请求是别人模拟的。 我想了下,其实应该这样。比如现在有A(私钥A、公钥A),B(私钥B、公钥B) ,A向B发送消息,用私钥A加签、用公钥B加密,发送给B,B用私钥B解密,然后用公钥A验签。这样就可以解决上述2个问题。

爱吃鱼的程序员 2020-06-01 11:29:18 0 浏览量 回答数 0

问题

超越 MySQL 热:报错

kun坤 2020-06-05 22:43:07 0 浏览量 回答数 1

问题

超越 MySQL 热,数据库报错

python小菜菜 2020-06-01 19:55:39 0 浏览量 回答数 1

问题

写出优雅的java代码,不能不知道的8点建议

游客pklijor6gytpx 2020-05-27 15:38:20 691 浏览量 回答数 2

回答

从业余程序员到职业程序员 程序员刚入行时,我觉得最重要的是把自己培养成职业的程序员。 我的程序员起步比同龄人都晚了很多,更不用说现在的年轻人了。我大学读的是生物专业,在上大学前基本算是完全没接触过计算机。军训的时候因为很无聊,我和室友每天跑去学校的机房玩,我现在还印象很深刻,我第一次走进机房的时候,别人问,你是要玩windows,还是dos,我那是完全的一抹黑。后来就只记得在机房一堆人都是在练习盲打,军训完,盲打倒是练的差不多了,对计算机就这么产生了浓厚的兴趣,大一的时候都是玩组装机,捣鼓了一些,对计算机的硬件有了那么一些了解。 到大二后,买了一些书开始学习当时最火的网页三剑客,学会了手写HTML、PS的基本玩法之类的,课余、暑假也能开始给人做做网站什么的(那个时候做网站真的好赚钱),可能那样过了个一年左右,做静态的网页就不好赚钱了,也不好找实习工作,于是就开始学asp,写些简单的CRUD,做做留言板、论坛这些动态程序,应该算是在这个阶段接触编程了。 毕业后加入了深圳的一家做政府行业软件的公司,一个非常靠谱和给我空间的Leader,使得自己在那几年有了不错的成长,终于成了一个职业的程序员。 通常来说,业余或半职业的程序员,多数是1个人,或者很小的一个团队一起开发,使得在开发流程、协作工具(例如jira、cvs/svn/git等)、测试上通常会有很大的欠缺,而职业的程序员在这方面则会专业很多。另外,通常职业的程序员做的系统都要运行较长的时间,所以在可维护性上会特别注意,这点我是在加入阿里后理解更深的。一个运行10年的系统,和一个写来玩玩的系统显然是有非常大差别的。 这块自己感觉也很难讲清楚,只能说模模糊糊有个这样的概念。通常在有兴趣的基础上,从业余程序员跨越到成为职业程序员我觉得不会太难。 编程能力的成长 作为程序员,最重要的能力始终是编程能力,就我自己的感受而言,我觉得编程能力的成长主要有这么几个部分: 1、编程能力初级:会用 编程,首先都是从学习编程语言的基本知识学起的,不论是什么编程语言,有很多共同的基本知识,例如怎么写第一个Hello World、if/while/for、变量等,因此我比较建议在刚刚开始学一门编程语言的时候,看看编程语言自己的一些文档就好,不要上来就去看一些高阶的书。我当年学Java的时候上来就看Think in Java、Effective Java之类的,真心好难懂。 除了看文档以外,编程是个超级实践的活,所以一定要多写代码,只有这样才能真正熟练起来。这也是为什么我还是觉得在面试的时候让面试者手写代码是很重要的,这个过程是非常容易判断写代码的熟悉程度的。很多人会说由于写代码都是高度依赖IDE的,导致手写很难,但我绝对相信写代码写了很多的人,手写一段不太复杂的、可运行的代码是不难的。即使像我这种三年多没写过代码的人,让我现在手写一段不太复杂的可运行的Java程序,还是没问题的,前面N年的写代码生涯使得很多东西已经深入骨髓了。 我觉得编程能力初级这个阶段对于大部分程序员来说都不会是问题,勤学苦练,是这个阶段的核心。 2、编程能力中级:会查和避免问题 除了初级要掌握的会熟练的使用编程语言去解决问题外,中级我觉得首先是提升查问题的能力。 在写代码的过程中,出问题是非常正常的,怎么去有效且高效的排查问题,是程序员群体中通常能感受到的大家在编程能力上最大的差距。 解决问题能力强的基本很容易在程序员群体里得到很高的认可。在查问题的能力上,首先要掌握的是一些基本的调试技巧,好用的调试工具,在Java里有JDK自带的jstat、jmap、jinfo,不在JDK里的有mat、gperf、btrace等。工欲善其事必先利其器,在查问题上是非常典型的,有些时候大家在查问题时的能力差距,有可能仅仅是因为别人比你多知道一个工具而已。 除了调试技巧和工具外,查问题的更高境界就是懂原理。一个懂原理的程序员在查问题的水平上和其他程序员是有明显差距的。我想很多的同学应该能感受到,有些时候查出问题的原因仅仅是因为有效的工具,知其然不知其所以然。 我给很多阿里的同学培训过Java排查问题的方法,在这个培训里,我经常也会讲到查问题的能力的培养最主要的也是熟练,多尝试给自己写一些会出问题的程序,多积极的看别人是怎么查问题的,多积极的去参与排查问题,很多最后查问题能力强的人多数仅仅是因为“无他,但手熟尔”。 我自己排查问题能力的提升主要是在2009年和2010年。那两年作为淘宝消防队(处理各种问题和故障的虚拟团队)的成员,处理了很多的故障和问题。当时消防队还有阿里最公认的技术大神——多隆,我向他学习到了很多排查问题的技巧。和他比,我排查问题的能力就是初级的那种。 印象最深刻的是一次我们一起查一个应用cpu us高的问题,我们两定位到是一段代码在某种输入参数的时候会造成cpu us高的原因后,我能想到的继续查的方法是去生产环境抓输入参数,然后再用参数来本地debug看是什么原因。但多隆在看了一会那段代码后,给了我一个输入参数,我拿这个参数一运行,果然cpu us很高!这种case不是一次两次。所以我经常和别人说,我是需要有问题场景才能排查出问题的,但多隆是完全有可能直接看代码就能看出问题的,这是本质的差距。 除了查问题外,更厉害的程序员是在写代码的过程就会很好的去避免问题。大家最容易理解的就是在写代码时处理各种异常情况,这里通常也是造成程序员们之间很大的差距的地方。 写一段正向逻辑的代码,大部分情况下即使有差距,也不会太大,但在怎么很好的处理这个过程中有可能出现的异常上,这个时候的功力差距会非常明显。很多时候一段代码里处理异常逻辑的部分都会超过正常逻辑的代码量。 我经常说,一个优秀程序员和普通程序员的差距,很多时候压根就不需要看什么满天飞的架构图,而只用show一小段的代码就可以。 举一个小case大家感受下。当年有一个严重故障,最后查出的原因是输入的参数里有一个是数组,把这个数组里的值作为参数去查数据库,结果前面输入了一个很大的数组,导致从数据库查了大量的数据,内存溢出了,很多程序员现在看都会明白对入参、出参的保护check,但类似这样的case我真的碰到了很多。 在中级这个阶段,我会推荐大家尽可能的多刻意的去培养下自己这两个方面的能力,成为一个能写出高质量代码、有效排查问题的优秀程序员。 3、编程能力高级:懂高级API和原理 就我自己的经历而言,我是在写了多年的Java代码后,才开始真正更细致的学习和掌握Java的一些更高级的API,我相信多数Java程序员也是如此。 我算是从2003年开始用Java写商业系统的代码,但直到在2007年加入淘宝后,才开始非常认真地学习Java的IO通信、并发这些部分的API。尽管以前也学过也写过一些这样的代码,但完全就是皮毛。当然,这些通常来说有很大部分的原因会是工作的相关性,多数的写业务系统的程序员可能基本就不需要用到这些,所以导致会很难懂这些相对高级一些的API,但这些API对真正的理解一门编程语言,我觉得至关重要。 在之前的程序员成长路线的文章里我也讲到了这个部分,在没有场景的情况下,只能靠自己去创造场景来学习好。我觉得只要有足够的兴趣,这个问题还是不大的,毕竟现在有各种开源,这些是可以非常好的帮助自己创造机会学习的,例如学Java NIO,可以自己基于NIO包一个框架,然后对比Netty,看看哪些写的是不如Netty的,这样会非常有助于真正的理解。 在学习高级API的过程中,以及排查问题的过程中,我自己越来越明白懂编程语言的运行原理是非常重要的,因此我到了后面的阶段开始学习Java的编译机制、内存管理、线程机制等。对于我这种非科班出身的而言,学这些会因为缺乏基础更难很多,但这些更原理性的东西学会了后,对自己的编程能力会有质的提升,包括以后学习其他编程语言的能力,学这些原理最好的方法我觉得是先看看一些讲相关知识的书,然后去翻看源码,这样才能真正的更好的掌握,最后是在以后写代码的过程中、查问题的过程中多结合掌握的原理,才能做到即使在N年后也不会忘。 在编程能力的成长上,我觉得没什么捷径。我非常赞同1万小时理论,在中级、高级阶段,如果有人指点或和优秀的程序员们共事,会好非常多。不过我觉得这个和读书也有点像,到了一定阶段后(例如高中),天分会成为最重要的分水岭,不过就和大部分行业一样,大部分的情况下都还没到拼天分的时候,只需要拼勤奋就好。 系统设计能力的成长 除了少数程序员会进入专深的领域,例如Linux Kernel、JVM,其他多数的程序员除了编程能力的成长外,也会越来越需要在系统设计能力上成长。 通常一个编程能力不错的程序员,在一定阶段后就会开始承担一个模块的工作,进而承担一个子系统、系统、跨多领域的更大系统等。 我自己在工作的第三年开始承担一个流程引擎的设计和实现工作,一个不算小的系统,并且也是当时那个项目里的核心部分。那个阶段我学会了一些系统设计的基本知识,例如需要想清楚整个系统的目标、模块的划分和职责、关键的对象设计等,而不是上来就开始写代码。但那个时候由于我是一个人写整个系统,所以其实对设计的感觉并还没有那么强力的感觉。 在那之后的几年也负责过一些系统,但总体感觉好像在系统设计上的成长没那么多,直到在阿里的经历,在系统设计上才有了越来越多的体会。(点击文末阅读原文,查看:我在系统设计上犯过的14个错,可以看到我走的一堆的弯路)。 在阿里有一次做分享,讲到我在系统设计能力方面的成长,主要是因为三段经历,负责专业领域系统的设计 -> 负责跨专业领域的专业系统的设计 -> 负责阿里电商系统架构级改造的设计。 第一段经历,是我负责HSF。HSF是一个从0开始打造的系统,它主要是作为支撑服务化的框架,是个非常专业领域的系统,放在整个淘宝电商的大系统来看,其实它就是一个很小的子系统,这段经历里让我最深刻的有三点: 1).要设计好这种非常专业领域的系统,专业的知识深度是非常重要的。我在最早设计HSF的几个框的时候,是没有设计好服务消费者/提供者要怎么和现有框架结合的,在设计负载均衡这个部分也反复了几次,这个主要是因为自己当时对这个领域掌握不深的原因造成的; 2). 太技术化。在HSF的阶段,出于情怀,在有一个版本里投入了非常大的精力去引进OSGi以及去做动态化,这个后来事实证明是个非常非常错误的决定,从这个点我才真正明白在设计系统时一定要想清楚目标,而目标很重要的是和公司发展阶段结合; 3). 可持续性。作为一个要在生产环境持续运行很多年的系统而言,怎么样让其在未来更可持续的发展,这个对设计阶段来说至关重要。这里最low的例子是最早设计HSF协议的时候,协议头里竟然没有版本号,导致后来升级都特别复杂;最典型的例子是HSF在早期缺乏了缺乏了服务Tracing这方面的设计,导致后面发现了这个地方非常重要后,全部落地花了长达几年的时间;又例如HSF早期缺乏Filter Chain的设计,导致很多扩展、定制化做起来非常不方便。 第二段经历,是做T4。T4是基于LXC的阿里的容器,它和HSF的不同是,它其实是一个跨多领域的系统,包括了单机上的容器引擎,容器管理系统,容器管理系统对外提供API,其他系统或用户通过这个来管理容器。这个系统发展过程也是各种犯错,犯错的主要原因也是因为领域掌握不深。在做T4的日子里,学会到的最重要的是怎么去设计这种跨多个专业领域的系统,怎么更好的划分模块的职责,设计交互逻辑,这段经历对我自己更为重要的意义是我有了做更大一些系统的架构的信心。 第三段经历,是做阿里电商的异地多活。这对我来说是真正的去做一个巨大系统的架构师,尽管我以前做HSF的时候参与了淘宝电商2.0-3.0的重大技术改造,但参与和自己主导是有很大区别的,这个架构改造涉及到了阿里电商众多不同专业领域的技术团队。在这个阶段,我学会的最主要的: 1). 子系统职责划分。在这种超大的技术方案中,很容易出现某些部分的职责重叠和冲突,这个时候怎么去划分子系统,就非常重要了。作为大架构师,这个时候要从团队的职责、团队的可持续性上去选择团队; 2). 大架构师最主要的职责是控制系统风险。对于这种超大系统,一定是多个专业领域的架构师和大架构师共同设计,怎么确保在执行的过程中对于系统而言最重要的风险能够被控制住,这是我真正的理解什么叫系统设计文档里设计原则的部分。 设计原则我自己觉得就是用来确保各个子系统在设计时都会遵循和考虑的,一定不能是虚的东西,例如在异地多活架构里,最重要的是如何控制数据风险,这个需要在原则里写上,最基本的原则是可接受系统不可用,但也要保障数据一致,而我看过更多的系统设计里设计原则只是写写的,或者千篇一律的,设计原则切实的体现了架构师对目标的理解(例如当时异地多活这个其实开始只是个概念,但做到什么程度才叫做到异地多活,这是需要解读的,也要确保在技术层面的设计上是达到了目标的),技术方案层面上的选择原则,并确保在细节的设计方案里有对于设计原则的承接以及执行; 3). 考虑问题的全面性。像异地多活这种大架构改造,涉及业务层面、各种基础技术层面、基础设施层面,对于执行节奏的决定要综合考虑人力投入、机器成本、基础设施布局诉求、稳定性控制等,这会比只是做一个小的系统的设计复杂非常多。 系统设计能力的成长,我自己觉得最重要的一是先在一两个技术领域做到专业,然后尽量扩大自己的知识广度。例如除了自己的代码部分外,还应该知道具体是怎么部署的,部署到哪去了,部署的环境具体是怎么样的,和整个系统的关系是什么样的。 像我自己,是在加入基础设施团队后才更加明白有些时候软件上做的一个决策,会导致基础设施上巨大的硬件、网络或机房的投入,但其实有可能只需要在软件上做些调整就可以避免,做做研发、做做运维可能是比较好的把知识广度扩大的方法。 第二点是练习自己做tradeoff的能力,这个比较难,做tradeoff这事需要综合各种因素做选择,但这也是所有的架构师最关键的,可以回头反思下自己在做各种系统设计时做出的tradeoff是什么。这个最好是亲身经历,听一些有经验的架构师分享他们选择背后的逻辑也会很有帮助,尤其是如果恰好你也在同样的挑战阶段,光听最终的架构结果其实大多数时候帮助有限。 技术Leader我觉得最好是能在架构师的基础上,后续注重成长的方面还是有挺大差别,就不在这篇里写了,后面再专门来写一篇。 程序员金字塔 我认为程序员的价值关键体现在作品上,被打上作品标签是一种很大的荣幸,作品影响程度的大小我觉得决定了金字塔的层次,所以我会这么去理解程序员的金字塔。 当然,要打造一款作品,仅有上面的两点能力是不够的,作品里很重要的一点是对业务、技术趋势的判断。 希望作为程序员的大伙,都能有机会打造一款世界级的作品,去为技术圈的发展做出贡献。 由于目前IT技术更新速度还是很快的,程序员这个行当是特别需要学习能力的。我一直认为,只有对程序员这个职业真正的充满兴趣,保持自驱,才有可能在这个职业上做好,否则的话是很容易淘汰的。 作者简介: 毕玄,2007年加入阿里,十多年来主要从事在软件基础设施领域,先后负责阿里的服务框架、Hbase、Sigma、异地多活等重大的基础技术产品和整体架构改造。

茶什i 2020-01-10 15:19:35 0 浏览量 回答数 0

问题

使用SeasLog打造PHP项目中的高性能日志组件(一) 400 请求报错 

kun坤 2020-05-30 16:12:25 0 浏览量 回答数 1

回答

基础:比如计算机系统、算法、编译原理等等 Web开发: 主要是Web开发相关的内容,包括HTML/CSS/JS(前端页面)、Servlet/JSP(J2EE)以及Mysql(数据库)相关的知识。它们的学习顺序应该是从前到后,因此最先学习的应该是HTML/CSS/JS(前端页面),这部分内容你可以去上面的那个runoob网站上找。J2EE:你需要学习的是Servlet/JSP(J2EE)部分,这部分是Java后端开发必须非常精通的部分,因此这部分是这三部分中最需要花精力的。关于Servlet/Jsp部分视频的选择,业界比较认可马士兵的视频 。最后一步,你需要学会使用数据库,mysql是个不错的入门选择,而且Java领域里主流的关系型数据库就是mysql。这部分一般在你学习Servlet/Jsp的时候,就会接触到的,其中的JDBC部分就是数据库相关的部分。你不仅要学会使用JDBC操作数据库,还要学会使用数据库客户端工具,比如navicat,sqlyog,二选一即可。开发框架:目前比较主流的是SSM框架,即spring、springmvc、mybatis。你需要学会这三个框架的搭建,并用它们做出一个简单的增删改查的Web项目。你可以不理解那些配置都是什么含义,以及为什么要这么做,这些留着后面你去了解。但你一定要可以快速的利用它们三个搭建出一个Web框架,你可以记录下你第一次搭建的过程,相信我,你一定会用到的。还要提一句的是,你在搭建SSM的过程中,可能会经常接触到一个叫maven的工具。这个工具也是你以后工作当中几乎是必须要使用的工具,所以你在搭建SSM的过程中,也可以顺便了解一下maven的知识。在你目前这个阶段,你只需要在网络上了解一下maven基本的使用方法即可,一些高端的用法随着你工作经验的增加,会逐渐接触到的。在这一年里,你至少需要看完《Java编程思想》这本书。这本书的内容是帮助你对于Java有一个更加深入的了解,是Java基础的升级版。 总而言之,这个阶段的核心学习思想就是,在工作中实践,并且更加深入的了解Java基础。对于参加工作1年到2年的同学。这部分时间段的同学,已经对Java有了一个更加深入的了解。但是对于面向对象的体会可能还不够深刻,编程的时候还停留在完成功能的层次,很少会去考虑设计的问题。于是这个时候,设计模式就来了。我当时看的是《大话设计模式》这本书,并且写了完整版的设计模式博客。因此,我要求大家,最多在你工作一年的时候,必须开始写博客,而设计模式就是你博客的开端。此外,设计模式并不是你这一年唯一的任务,你还需要看一些关于代码编写优化的书。比如《重构 改善既有代码的设计》,《effective java》。总而言之,这个阶段,你的核心任务就是提高你的代码能力,要能写出一手优雅的代码。对于参加工作2年到3年的同学有的同学在这个时候觉得自己已经很牛逼了,于是忍不住开始慢慢松懈。请记住,你还嫩的多。这个阶段,有一本书是你必须看的,它叫做《深入理解Java虚拟机》。这本书绝对是Java开发者最重要的书,没有之一。在我眼里,这本书的重要性还要高于《Java编程思想》。这本书的内容是帮助你全面的了解Java虚拟机,在这个阶段,你一定已经知道Java是运行在JVM之上的。所以,对于JVM,你没有任何理由不了解它。这个时候,你应该去更加深入的了解并发相关的知识,而这部分内容,我比较推荐《Java并发编程实战》这本书。只要你把这本书啃下来了,并发的部分基本已经了解了十之六七。与此同时,这个阶段你要做的事情还远不止如此。这个时候,你应该对于你所使用的框架应该有了更深入的了解,对于Java的类库也有了更深入的了解。因此,你需要去看一些JDK中的类的源码,也包括你所使用的框架的源码。这些源码能看懂的前提是,你必须对设计模式非常了解。否则的话,你看源码的过程中,永远会有这样那样的疑问,这段代码为什么要这么写?为什么要定义这个接口,它看起来好像很多余?由此也可以看出,这些学习的过程是环环相扣的,如果你任何一个阶段拉下来了,那么你就真的跟不上了,或者说是一步慢步步慢。而且我很负责的告诉你,我在这个阶段的时候,所学习的东西远多于这里所罗列出来的。总而言之,这个阶段,你需要做的是深入了解Java底层和Java类库(比如并发那本书就是Java并发包java.concurrent的内容),也就是JVM和JDK的相关内容。而且还要更深入的去了解你所使用的框架,方式比较推荐看源码或者看官方文档。另外,还有一种学习的方式,在2年这个阶段,也应该启用了,那就是造轮子。不要听信那套“不要重复造轮子”的论调,那是公司为了节省时间成本编造出来的。重复造轮子或许对别人没有价值,因为你造的轮子可能早就有了,而且一般情况下你造出来的轮子还没有现存的好。  但是对别人没有价值,不代表对你自己没有价值。一个造轮子的过程,是一个从无到有的过程。这个过程可以对你进行系统的锻炼,它不仅考察你的编码能力,还考察你的框架设计能力,你需要让你的轮子拥有足够好的扩展性、健壮性。而且在造轮子的过程中,你会遇到各种各样的难题,这些难题往往又是你学习的契机。当你把轮子造好的时候,你一定会发现,其实你自己收获了很多。所以,这个阶段,除了上面提到的了解JVM、JDK和框架源码以外,也请你根据别人优秀的源码,去造一个任何你能够想象出来的轮子。第四部分:参加工作3年到4年的同学这个阶段的同学,提升已经是很难了,而且这个阶段的学习往往会比较多样化。因为在前3年的过程中,你肯定或多或少接触过一些其它的技术,比如大数据、分布式缓存、分布式消息服务、分布式计算、软负载均衡等等。这些技术,你能精通任何一项,都将是你未来面试时巨大的优势,因此如果你对某一项技术感兴趣的话,  这个时候可以深入去研究一下。这项技术不一定是你工作所用到的,但一定是相关的。而且在研究一门新技术时,切忌朝三暮四。有的同学今天去整整大数据,搞搞Hadoop、hbase一类的东西。过不了一段时间,就觉得没意思,又去研究分布式缓存,比如redis。然后又过不了一段时间,又去研究分布式计算,比如整整Mapreduce或者storm。结果到最后,搞得自己好像什么都会一样,在简历上大言不惭的写上大数据、分布式缓存、分布式计算都了解,其实任何一个都只是浮于表面。到时候面试官随便一问,就把你给识破了。我比较推崇的基础书籍有三本,分别是《深入理解计算机系统》,《tcp/ip详解 卷一、二、三》,《数据结构与算法》。其中TCP/IP有三本书,但我们这里把这三本看成是一本大书。这三本分别适合三种人,《深入理解计算机系统》比较适合一直从事Java Web开发和APP后端开发工作的人群。《tcp/ip详解 卷一、二、三》比较适合做网络编程的人群,比如你使用netty去开发的话,那么就要对TCP/IP有更深入的了解。而《数据结构与算法》这本书,则比较适合做计算研究工作的人,比如刚才提到的分布式计算。另外,我要强调的是,这里所说的适合,并不是其它两本对你就没有用。比如你做Java Web和APP后端开发,《tcp/ip详解 卷一、二、三》这本书对你的作用也是很大的。这里只是分出个主次关系而已,你要是时间足够的话,能把三本都精读那当然最好不过了。第五部分:参加工作4年到5年的同学经过前面一年的历练,相信你在自己所钻研的领域已经有了自己一定的见解,这个时候,技术上你应该已经遇到瓶颈了。这个时候不要着急提高自己的技术,已经是时候提高你的影响力了,你可以尝试去一些知名的公司去提高你的背景,你可以发表一些文章去影响更多的人。当然,你也可以去Github创建一个属于你的开源项目,去打造自己的产品。  这次的开源项目不同于之前的造轮子,你这个时候是真的要去尽量尝试造出来真正对别人有价值的轮子。技术学到这个阶段,很容易遇到瓶颈,而且往往达到一定程度后,你再深入下去的收效就真的微乎其微了,除非你是专门搞学术研究的。然而很可惜,大部分程序猿做不到这一步,那是科学家做的事情。这个时候提高影响力不仅仅是因为技术上容易遇到瓶颈,更多的是影响力可以给你创造更多的机会。程序猿在某种程度上和明星很像,一个好的电视剧和电影就可以成就一批明星,程序猿有的时候也是,一个好的项目就可以成就一群程序猿。比如国内几个脍炙人口的项目,像淘宝、支付宝、QQ、百度、微信等等。这每一个项目,都成就了一批程序猿。我敢说,这里面任何一个项目,如果你是它的核心开发,光是这样一个Title,就已经是你非常大的优势。更何况还不止如此,Title说到底也是个名头,更重要的是,这种项目在做的时候,对你的历练一定也是非常给力的。

hiekay 2019-12-02 01:40:04 0 浏览量 回答数 0

回答

基础:比如计算机系统、算法、编译原理等等 Web开发: 主要是Web开发相关的内容,包括HTML/CSS/JS(前端页面)、Servlet/JSP(J2EE)以及Mysql(数据库)相关的知识。它们的学习顺序应该是从前到后,因此最先学习的应该是HTML/CSS/JS(前端页面),这部分内容你可以去上面的那个runoob网站上找。J2EE:你需要学习的是Servlet/JSP(J2EE)部分,这部分是Java后端开发必须非常精通的部分,因此这部分是这三部分中最需要花精力的。关于Servlet/Jsp部分视频的选择,业界比较认可马士兵的视频 。最后一步,你需要学会使用数据库,mysql是个不错的入门选择,而且Java领域里主流的关系型数据库就是mysql。这部分一般在你学习Servlet/Jsp的时候,就会接触到的,其中的JDBC部分就是数据库相关的部分。你不仅要学会使用JDBC操作数据库,还要学会使用数据库客户端工具,比如navicat,sqlyog,二选一即可。开发框架:目前比较主流的是SSM框架,即spring、springmvc、mybatis。你需要学会这三个框架的搭建,并用它们做出一个简单的增删改查的Web项目。你可以不理解那些配置都是什么含义,以及为什么要这么做,这些留着后面你去了解。但你一定要可以快速的利用它们三个搭建出一个Web框架,你可以记录下你第一次搭建的过程,相信我,你一定会用到的。还要提一句的是,你在搭建SSM的过程中,可能会经常接触到一个叫maven的工具。这个工具也是你以后工作当中几乎是必须要使用的工具,所以你在搭建SSM的过程中,也可以顺便了解一下maven的知识。在你目前这个阶段,你只需要在网络上了解一下maven基本的使用方法即可,一些高端的用法随着你工作经验的增加,会逐渐接触到的。在这一年里,你至少需要看完《Java编程思想》这本书。这本书的内容是帮助你对于Java有一个更加深入的了解,是Java基础的升级版。 总而言之,这个阶段的核心学习思想就是,在工作中实践,并且更加深入的了解Java基础。对于参加工作1年到2年的同学。这部分时间段的同学,已经对Java有了一个更加深入的了解。但是对于面向对象的体会可能还不够深刻,编程的时候还停留在完成功能的层次,很少会去考虑设计的问题。于是这个时候,设计模式就来了。我当时看的是《大话设计模式》这本书,并且写了完整版的设计模式博客。因此,我要求大家,最多在你工作一年的时候,必须开始写博客,而设计模式就是你博客的开端。此外,设计模式并不是你这一年唯一的任务,你还需要看一些关于代码编写优化的书。比如《重构 改善既有代码的设计》,《effective java》。总而言之,这个阶段,你的核心任务就是提高你的代码能力,要能写出一手优雅的代码。对于参加工作2年到3年的同学有的同学在这个时候觉得自己已经很牛逼了,于是忍不住开始慢慢松懈。请记住,你还嫩的多。这个阶段,有一本书是你必须看的,它叫做《深入理解Java虚拟机》。这本书绝对是Java开发者最重要的书,没有之一。在我眼里,这本书的重要性还要高于《Java编程思想》。这本书的内容是帮助你全面的了解Java虚拟机,在这个阶段,你一定已经知道Java是运行在JVM之上的。所以,对于JVM,你没有任何理由不了解它。这个时候,你应该去更加深入的了解并发相关的知识,而这部分内容,我比较推荐《Java并发编程实战》这本书。只要你把这本书啃下来了,并发的部分基本已经了解了十之六七。与此同时,这个阶段你要做的事情还远不止如此。这个时候,你应该对于你所使用的框架应该有了更深入的了解,对于Java的类库也有了更深入的了解。因此,你需要去看一些JDK中的类的源码,也包括你所使用的框架的源码。这些源码能看懂的前提是,你必须对设计模式非常了解。否则的话,你看源码的过程中,永远会有这样那样的疑问,这段代码为什么要这么写?为什么要定义这个接口,它看起来好像很多余?由此也可以看出,这些学习的过程是环环相扣的,如果你任何一个阶段拉下来了,那么你就真的跟不上了,或者说是一步慢步步慢。而且我很负责的告诉你,我在这个阶段的时候,所学习的东西远多于这里所罗列出来的。总而言之,这个阶段,你需要做的是深入了解Java底层和Java类库(比如并发那本书就是Java并发包java.concurrent的内容),也就是JVM和JDK的相关内容。而且还要更深入的去了解你所使用的框架,方式比较推荐看源码或者看官方文档。另外,还有一种学习的方式,在2年这个阶段,也应该启用了,那就是造轮子。不要听信那套“不要重复造轮子”的论调,那是公司为了节省时间成本编造出来的。重复造轮子或许对别人没有价值,因为你造的轮子可能早就有了,而且一般情况下你造出来的轮子还没有现存的好。  但是对别人没有价值,不代表对你自己没有价值。一个造轮子的过程,是一个从无到有的过程。这个过程可以对你进行系统的锻炼,它不仅考察你的编码能力,还考察你的框架设计能力,你需要让你的轮子拥有足够好的扩展性、健壮性。而且在造轮子的过程中,你会遇到各种各样的难题,这些难题往往又是你学习的契机。当你把轮子造好的时候,你一定会发现,其实你自己收获了很多。所以,这个阶段,除了上面提到的了解JVM、JDK和框架源码以外,也请你根据别人优秀的源码,去造一个任何你能够想象出来的轮子。第四部分:参加工作3年到4年的同学这个阶段的同学,提升已经是很难了,而且这个阶段的学习往往会比较多样化。因为在前3年的过程中,你肯定或多或少接触过一些其它的技术,比如大数据、分布式缓存、分布式消息服务、分布式计算、软负载均衡等等。这些技术,你能精通任何一项,都将是你未来面试时巨大的优势,因此如果你对某一项技术感兴趣的话,  这个时候可以深入去研究一下。这项技术不一定是你工作所用到的,但一定是相关的。而且在研究一门新技术时,切忌朝三暮四。有的同学今天去整整大数据,搞搞Hadoop、hbase一类的东西。过不了一段时间,就觉得没意思,又去研究分布式缓存,比如redis。然后又过不了一段时间,又去研究分布式计算,比如整整Mapreduce或者storm。结果到最后,搞得自己好像什么都会一样,在简历上大言不惭的写上大数据、分布式缓存、分布式计算都了解,其实任何一个都只是浮于表面。到时候面试官随便一问,就把你给识破了。我比较推崇的基础书籍有三本,分别是《深入理解计算机系统》,《tcp/ip详解 卷一、二、三》,《数据结构与算法》。其中TCP/IP有三本书,但我们这里把这三本看成是一本大书。这三本分别适合三种人,《深入理解计算机系统》比较适合一直从事Java Web开发和APP后端开发工作的人群。《tcp/ip详解 卷一、二、三》比较适合做网络编程的人群,比如你使用netty去开发的话,那么就要对TCP/IP有更深入的了解。而《数据结构与算法》这本书,则比较适合做计算研究工作的人,比如刚才提到的分布式计算。另外,我要强调的是,这里所说的适合,并不是其它两本对你就没有用。比如你做Java Web和APP后端开发,《tcp/ip详解 卷一、二、三》这本书对你的作用也是很大的。这里只是分出个主次关系而已,你要是时间足够的话,能把三本都精读那当然最好不过了。第五部分:参加工作4年到5年的同学经过前面一年的历练,相信你在自己所钻研的领域已经有了自己一定的见解,这个时候,技术上你应该已经遇到瓶颈了。这个时候不要着急提高自己的技术,已经是时候提高你的影响力了,你可以尝试去一些知名的公司去提高你的背景,你可以发表一些文章去影响更多的人。当然,你也可以去Github创建一个属于你的开源项目,去打造自己的产品。  这次的开源项目不同于之前的造轮子,你这个时候是真的要去尽量尝试造出来真正对别人有价值的轮子。技术学到这个阶段,很容易遇到瓶颈,而且往往达到一定程度后,你再深入下去的收效就真的微乎其微了,除非你是专门搞学术研究的。然而很可惜,大部分程序猿做不到这一步,那是科学家做的事情。这个时候提高影响力不仅仅是因为技术上容易遇到瓶颈,更多的是影响力可以给你创造更多的机会。程序猿在某种程度上和明星很像,一个好的电视剧和电影就可以成就一批明星,程序猿有的时候也是,一个好的项目就可以成就一群程序猿。比如国内几个脍炙人口的项目,像淘宝、支付宝、QQ、百度、微信等等。这每一个项目,都成就了一批程序猿。我敢说,这里面任何一个项目,如果你是它的核心开发,光是这样一个Title,就已经是你非常大的优势。更何况还不止如此,Title说到底也是个名头,更重要的是,这种项目在做的时候,对你的历练一定也是非常给力的。

hiekay 2019-12-02 01:38:44 0 浏览量 回答数 0

回答

DevOps 这个概念最早是在 2007 年提出的,那时云计算基础设施的概念也才刚刚提出没多久,而随着互联网的逐渐普及,应用软件的需求爆发式增长,软件开发的理念也逐渐从瀑布模型(waterfall)转向敏捷开发(agile)。传统的软件交付模式(应用开发人员专注于软件开发、IT 运维人员负责将软件部署到服务器运行),再也无法满足互联网软件快速迭代的需求。于是,DevOps 作为一种打破研发和运维之间隔阂、加快软件交付流程、提高软件交付质量的文化理念和最佳实践 逐渐普及至今。 DevOps 的现状 DevOps 的流行得益于业界对于应用软件敏捷开发、高质量交付的诉求,所以为开发和运维开辟了一块“公共的空间”,让双方可以在这里紧密合作。那时软件研发依旧属于一个新兴行业,人们习惯于向成熟的制造业学习,制造业解决大规模生产的方式,就是构建流水线,通过流水线规范化每个步骤对接的内容,而流水线上的工人们则只需要各司其职,快速熟练的完成自己这部分生产内容。 所以,DevOps 借鉴了制造业的经验,开始构建持续集成 / 持续交付(CI/CD)的流水线,催生出了一系列自动化 / 半自动化工具(如 puppet、chef、ansible 等),结合编写脚本的可扩展能力,将研发和运维的大量操作规范化,从而达到彼此协作的目标。但是最终还是要有人投入到这些工具的构建中,于是就出现了 DevOps 团队。DevOps 团队构建的工具和平台,帮助研发更容易地接近生产环境,让研发在持续集成、持续交付的过程中可以一键部署、快速试错,从而很大程度提前暴露和避免了软件在实际运行过程中的问题。 从本质上讲,DevOps 是为运维服务的。 它把生产环境的运维流程通过自动化的工具提供出来了,屏蔽了基础设施细节,同时让软件本身的问题更容易暴露,从而把这些问题尽量提前交给研发去解决。这些,其实都是在帮助运维减轻负担。 这一套模式在一开始运转良好,但是问题也随着时间的推移慢慢暴露出来了。DevOps 本身不为企业带来直接的利润,也不增加产品的功能,它们是企业的成本中心,所以许多企业不愿意为 DevOps 投入太多的成本。久而久之,DevOps 的能力便无法与研发人员增长的需求所匹配,不愿意继续伴随着云和开源社区的发展向前演进,反而成为软件研发的瓶颈。试想一下,有多少大公司的技术人员,对自己公司里的“研发效能”工具表示满意呢? 云计算的普及 聪明的企业总能从自己的需求中发现业界共有的需求,AWS 便是这么诞生的,他们早在 2006 年便首次把软件部署需要的网络、计算、存储等基础设施当做服务提供给用户,允许任何人在不购买服务器等物理硬件的情况下构建互联网应用程序,规模化使得整体的成本比用户自建更低。而云计算 IaaS、PaaS、SaaS 的概念也正是在那一年开始逐渐清晰的。 云计算的初期,用户主要使用的是 IaaS 服务,如虚拟机、存储等,使用云计算服务的企业依旧需要运维来管理这一类基础设施,只是运维管理的对象从物理机切换到虚拟机而已,并没有太本质的区别。 而随着云计算的快速发展,云的能力不断补充、增强,渐渐将原先由运维提供的方方面面的能力都转换成为了云上的服务,这其中自然包含了管理软件完整生命周期的各类服务,从代码托管、持续集成、持续交付,到监控、报警、自动扩缩容等一系列的能力,均能在云上找到对应的服务。品类之多、数量之巨,令人瞠目结舌。 但是 DevOps 依然有着用武之地。云的对接难度实在太大了,涉及到的云服务又多,不同云厂商提供的服务还不统一,为了使用云上的产品不得不投入大量的时间学习,而为了防止云厂商的绑定又不得不做多厂商的适配,DevOps 依旧需要像过去一样为开发屏蔽实际环境的复杂性,只不过这次他们要负责管理的基础设施变成了云资源。 改变一切的 Kubernetes Kubernetes 的本质是现代应用基础设施,它关注如何将应用与“云”天然地集成在一起,将“云”的最大价值发挥出来。Kubernetes 强调让基础设施能更好的配合应用、以更高效的方式为应用“输送”基础设施能力,而不是反之。在这个过程中,Kubernetes 、Docker、Operator 等在云原生生态中起到了关键作用的开源项目,正在在把应用管理与交付推上一个跟以前完全不一样的境况:Kubernetes 的使用者只通过声明式的方式描述自己应用的终态是什么,然后一切就结束了。Kubernetes 会处理后面的所有事情。 这也是为什么 Kubernetes 非常强调声明式 API。通过这种方式,Kubernetes 本身接入的基础设施能力越强,Kubernetes 的使用者能够声明的终态就越丰富,他的职责也就约单纯。现在,我们不仅能够通过 Kubernetes 声明应用的运行终态,比如;“这个应用需要 10 个实例”,我们还能够声明应用的很多运维终态,比如:“这个应用使用金丝雀发布策略进行升级”,以及 “当它的 CPU 使用量大于 50% 时,请自动扩展 2 个实例出来”。 这就让传统的 DevOps 工具和团队受到了挑战:如果一个业务研发自己只需要通过声明式 API 声明他的应用的所有终态甚至包括完整的 SLA,后面的一切就都会有 Kubernetes 来自动的搞定,那么他还有什么理由去对接和学习各式各样的 DevOps 流水线呢? 换句话说,长久以来,DevOps 实际上是在充当研发与基础设施之间的那一层“胶水”。而现在,Kubernetes 通过它极具生命力的声明式 API 和无限接入的应用基础设施能力,正在完美的扮演这个“胶水层”的作用。这也提醒了我们,上一个正在被 Kubernetes 体系强烈挑战的“胶水层”,其实叫做“传统中间件”:它正遭受到 Service Mesh 的巨大冲击。 DevOps 会消失吗? 近几年,Kubernetes 项目经常被描述成 DevOps 的“最佳拍档”。类似的观点认为, Kubernetes 跟 Docker 一样,解决的是软件运行时的问题。这意味着 Kubernetes 更像一种“时髦”的 IaaS,只不过运行时从虚拟机变成了容器。所以,只要能够将现有 DevOps 思想和流程对接到 Kubernetes 上来,就可以享受到容器技术带来的轻量级与弹性。这对于提倡“敏捷”的 DevOps 来说,显然是最好的组合。 不过,至少目前看来,Kubernetes 的发展路径并不是一个类 IaaS 的角色。它虽然关注接入底层的基础设施能力,但它本身却又不是基础设施能力的提供方。而且,相比于软件运行时,Kubernetes 似乎更关心软件的生命周期和状态流转。不仅如此,它还提供了一种叫做“控制器模型”的机制来将软件的实际状态与期望状态不断逼近,这显然都已经超出了一个“软件运行时”的范畴。 Kubernetes 项目对应用本身的“额外关注”,让它与一个类 IaaS 基础设施有着明显的区别,也让它“胶水”的定位更加明显。而如果 Kubernetes 的能力足够强大,那么作为研发与基础设施之间现有的“胶水层”, DevOps 是否还有必要存在?在所谓的云原生时代,应用研发与交付是不是真的会走向“一次声明”就可以“撒手不管”,从而让 DevOps 彻底消失呢? 不过,至少目前看来,Kubernetes 项目距离这个愿景,还有不少困难需要克服。 “Platform for Platform” API 的局限性 Kubernetes 是一个典型的 “Platform for Platform”项目,所以它的 API,距离纯研发视角还是非常遥远的。就比如一个 Deployment 对象,就既包括了研发侧关心的镜像,也包括了基础设施侧的资源配置,甚至是容器安全配置。此外, Kubernetes API 并没有提供出对“运维能力”的描述与定义方式,这也使得声明之后的“撒手不管”变得遥不可及。这也是为什么目前 DevOps 依然被需要的原因:Kubernetes 的大多数字段,还是必须经过研发和运维共同协作的流程来进行填充。 无法对更多的云资源进行描述 K8s 的原生 API 只包含了云资源的很少一部分,比如用 PV/PVC 表达存储,用 Ingress 表达负载均衡,但这对于一个完全声明式的应用描述来说是完全不够的。比如,研发希望在 K8s 上找到一个概念来表达数据库、VPC、消息队列等需求的时候,就会感到非常困惑。而现有的所有方案则完全依赖于云厂商的实现从而带来了新的 vendor lock-in 困惑。 Operator 体系缺乏互操作性 Kubernetes 的 Operator 机制是这个项目的能力能够无限增长的公开秘密。但令人遗憾的是,目前所有 Operator 之间的关系,就像是一个又一个的烟囱,互相之间没有任何交互与协作的可能。比如,我们把云上的 RDS 通过 CRD 和 Operator 扩展到了 K8s 声明式 API 的体系中,但是当第三方希望写一个定时备份 RDS 持久化文件的 CRD Operator 去配合的时候,却往往无从下手。这就又需要 DevOps 的体系介入来解决问题。 未来? 显然,现在的 Kubernetes 项目,依然需要借助 DevOps 体系来真正完成软件的高效迭代与交付工作。这是不可避免的:尽管 Kubernetes 声称自己是“以应用为中心”的基础设施,但它作为一个从 Google Borg 衍生出来的系统级项目,其本身的设计和工作层次还是更多的基础设施领域徘徊。但另一方面,我们绝不可否认的是,Kubernetes 在它的关键路径上,始终保持着对研发侧 “NoOps” 的追求。这种渴望,从它第一天提出“声明式应用管理”理论的时候就已经“昭然若揭”,而 CRD 和 Operator 体系的建立,更让这种应用级别的关心终于有了落地的机会。我们已经看到很多 DevOps 流程正在“下沉”为 Kubernetes 里的声明式对象与控制循环,比如 Tekton CD 项目。 如果 Kubernetes 的未来是 100% 的声明式应用管理,那么我们有理由相信 DevOps 最终会从技术领域消失然后彻底蜕变成一种文化。毕竟,那个时候的运维工程师,可能都会成为 Kubernetes Controller/Operator 的编写者或者设计者。而研发呢?他们可能根本不会知道原来 Kubernetes 这个东西曾经如此显赫的存在过。

有只黑白猫 2020-01-07 11:35:38 0 浏览量 回答数 0

问题

利用 log-pilot + elasticsearch + kibana 搭建 kubernetes 日志解决方案

青蛙跳 2019-12-01 21:33:11 834 浏览量 回答数 0

回答

如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢。我希望这个书单列表内容丰富,可以涵盖很多东西。” 1、《代码大全》 史蒂夫·迈克康奈尔 推荐数:1684 “优秀的编程实践的百科全书,《代码大全》注重个人技术,其中所有东西加起来, 就是我们本能所说的“编写整洁的代码”。这本书有50页在谈论代码布局。” —— Joel Spolsky 对于新手来说,这本书中的观念有点高阶了。到你准备阅读此书时,你应该已经知道并实践过书中99%的观念。– esac Steve McConnell的原作《代码大全》(第1版)是公认的关于编程的最佳实践指南之一, 在过去的十多年间,本书一直在帮助开发人员编写更好的软件。 现在,作者将这本经典著作全新演绎,融入了最前沿的实践技术,加入了上百个崭新的代码示例, 充分展示了软件构建的艺术性和科学性。 McConnell汇集了来自研究机构、学术界以及业界日常实践的主要知识, 把最高效的技术和最重要的原理交织融会为这本既清晰又实用的指南。 无论您的经验水平如何,也不管您在怎样的开发环境中工作,也无论项目是大是小, 本书都将激发您的思维并帮助您构建高品质的代码。 《代码大全(第2版))》做了全面的更新,增加了很多与时俱进的内容,包括对新语言、新的开发过程与方法论的讨论等等。 2、《程序员修炼之道》 推荐数:1504 对于那些已经学习过编程机制的程序员来说,这是一本卓越的书。 或许他们还是在校生,但对要自己做什么,还感觉不是很安全。 就像草图和架构之间的差别。虽然你在学校课堂上学到的是画图,你也可以画的很漂亮, 但如果你觉得你不太知道从哪儿下手,如果某人要你独自画一个P2P的音乐交换网络图,那这本书就适合你了。—— Joel 《程序员修炼之道:从小工到专家》内容简介:《程序员修炼之道》由一系列独立的部分组成, 涵盖的主题从个人责任、职业发展,知道用于使代码保持灵活、并且易于改编和复用的各种架构技术, 利用许多富有娱乐性的奇闻轶事、有思想性的例子及有趣的类比, 全面阐释了软件开发的许多不同方面的最佳实践和重大陷阱。 无论你是初学者,是有经验的程序员,还是软件项目经理,《程序员修炼之道:从小工到专家》都适合你阅读。 3、《计算机程序的构造和解释》 推荐数:916 就个人而言,这本书目前为止对我影响醉倒的一本编程书。 《代码大全》、《重构》和《设计模式》这些经典书会教给你高效的工作习惯和交易细节。 其他像《人件集》、《计算机编程心理学》和《人月神话》这些书会深入软件开发的心理层面。 其他书籍则处理算法。这些书都有自己所属的位置。 然而《计算机程序的构造和解释》与这些不同。 这是一本会启发你的书,它会燃起你编写出色程序的热情; 它还将教会你认识并欣赏美; 它会让你有种敬畏,让你难以抑制地渴望学习更多的东西。 其他书或许会让你成为一位更出色的程序员,但此书将一定会让你成为一名程序员。 同时,你将会学到其他东西,函数式编程(第三章)、惰性计算、元编程、虚拟机、解释器和编译器。 一些人认为此书不适合新手。 个人认为,虽然我并不完全认同要有一些编程经验才能读此书,但我还是一定推荐给初学者。 毕竟这本书是写给著名的6.001,是麻省理工学院的入门编程课程。 此书或许需要多做努力(尤其你在做练习的时候,你也应当如此),但这个价是对得起这本书的。 4、《C程序设计语言》 推荐数:774 这本书简洁易读,会教给你三件事:C 编程语言;如何像程序员一样思考;底层计算模型。 (这对理解“底层”非常重要)—— Nathan 《C程序设计语言》(第2版新版)讲述深入浅出,配合典型例证,通俗易懂,实用性强, 适合作为大专院校计算机专业或非计算机专业的C语言教材,也可以作为从事计算机相关软硬件开发的技术人员的参考书。 《C程序设计语言》(第2版新版)原著即为C语言的设计者之一Dennis M.Ritchie和著名的计算机科学家Brian W.Kernighan合著的 一本介绍C语言的权威经典著作。 我们现在见到的大量论述C语言程序设计的教材和专著均以此书为蓝本。 原著第1版中介绍的C语言成为后来广泛使用的C语言版本——标准C的基础。 人们熟知的“hello,world”程序就是由本书首次引入的,现在,这一程序已经成为所有程序设计语言入门的第一课。 5、《算法导论》 推荐数:671 《代码大全》教你如何正确编程; 《人月神话》教你如何正确管理; 《设计模式》教你如何正确设计…… 在我看来,代码只是一个工具,并非精髓。 开发软件的主要部分是创建新算法或重新实现现有算法。 其他部分则像重新组装乐高砖块或创建“管理”层。 我依然梦想这样的工作,我的大部分时间(>50%)是在写算法,其他“管理”细节则留给其他人…… —— Ran Biron 经典的算法书,被亚马逊网,《程序员》等评选为2006年最受读者喜爱的十大IT图书之一。 算法领域的标准教材,全球多所知名大学选用 MIT名师联手铸就,被誉为“计算机算法的圣经” 编写上采用了“五个一”,即一章介绍一个算法、一种设计技术、一个应用领域和一个相关话题。 6、《重构:改善既有代码的设计》 推荐数:617 《重构:改善既有代码的设计》清晰地揭示了重构的过程,解释了重构的原理和最佳实践方式, 并给出了何时以及何地应该开始挖掘代码以求改善。 书中给出了70多个可行的重构,每个重构都介绍了一种经过验证的代码变换手法的动机和技术。 《重构:改善既有代码的设计》提出的重构准则将帮助你一次一小步地修改你的代码,从而减少了开发过程中的风险。 《重构:改善既有代码的设计》适合软件开发人员、项目管理人员等阅读, 也可作为高等院校计算机及相关专业师生的参考读物。 我想我不得不推荐《重构》:改进现有代码的设计。—— Martin 我必须承认,我最喜欢的编程语录是出自这本书:任何一个傻瓜都能写出计算机能理解的程序, 而优秀的程序员却能写出别人能读得懂的程序。—— Martin Fowler 7、《设计模式》 推荐数:617 自1995年出版以来,本书一直名列Amazon和各大书店销售榜前列。 近10年后,本书仍是Addison-Wesley公司2003年最畅销的图书之一。 中文版销售逾4万册。 就我而言,我认为四人帮编著的《设计模式》是一本极为有用的书。 虽然此书并不像其他建议一样有关“元”编程,但它强调封装诸如模式一类的优秀编程技术, 因而鼓励其他人提出新模式和反模式(antipatterns),并运用于编程对话中。—— Chris Jester-Young 8、《人月神话》 推荐数:588 在软件领域,很少能有像《人月神话》一样具有深远影响力并且畅销不衰的著作。 Brooks博士为人们管理复杂项目提供了最具洞察力的见解。 既有很多发人深省的观点,又有大量软件工程的实践。 本书内容来自Brooks博士在IBM公司System/360家族和OS/360中的项目管理经验。 该书英文原版一经面世,即引起业内人士的强烈反响,后又译为德、法、日、俄中等多种语言,全球销量数百万册。 确立了其在行业内的经典地位。 9、《计算机程序设计艺术》 推荐数:542 《计算机程序设计艺术》系列著作对计算机领域产生了深远的影响。 这一系列堪称一项浩大的工程,自1962年开始编写,计划出版7卷,目前已经出版了4卷。 《美国科学家》杂志曾将这套书与爱因斯坦的《相对论》等书并列称为20世纪最重要的12本物理学著作。 目前Knuth正将毕生精力投入到这部史诗性著作的撰写中。 这是高德纳倾注心血写的一本书。—— Peter Coulton 10、《编译原理》(龙书) 推荐数:462 我很奇怪,居然没人提到龙书。(或许已有推荐,我没有看到)。 我从没忘过此书的第一版封面。 此书让我知道了编译器是多么地神奇绝妙。- DB 11、《深入浅出设计模式》 推荐数:445 强大的写作阵容。 《Head First设计模式》(中文版) 作者Eric Freeman; ElElisabeth Freeman是作家、讲师和技术顾问。 Eric拥有耶鲁大学的计算机科学博士学位,E1isabath拥有耶鲁大学的计算机科学硕士学位。 Kathy Sierra(javaranch.com的创始人)FHBert Bates是畅销的HeadFirst系列书籍的创立者,也是Sun公司Java开发员认证考试的开发者。 本书的产品设计应用神经生物学、认知科学,以及学习理论,这使得这本书能够将这些知识深深地印在你的脑海里, 不容易被遗忘。 本书的编写方式采用引导式教学,不直接告诉你该怎么做,而是利用故事当作引子,带领读者思考并想办法解决问题。 解决问题的过程中又会产生一些新的问题,再继续思考、继续解决问题,这样可以加深体会。 作者以大量的生活化故事当背景,例如第1章是鸭子,第2章是气象站,第3章是咖啡店, 书中搭配大量的插图(几乎每一页都有图),所以阅读起来生动有趣,不会感觉到昏昏欲睡。 作者还利用歪歪斜斜的手写字体,增加“现场感”。 精心设计许多爆笑的对白,让学习过程不会太枯燥。 还有模式告白节目,将设计模式拟人化成节目来宾,畅谈其内在的一切。 每一章都有数目不等的测验题。 每章最后有一页要点整理,这也是精华所在,我都是利用这一页做复习。 我知道四人帮的《设计模式》是一本标准书,但倒不如先看看这部大部头,此书更为简易。 一旦你了解了解了基本原则,可以去看四人帮的那本圣经了。- Calanus 12、《哥德尔、艾舍尔、巴赫书:集异璧之大成》 推荐数:437 如果下昂真正深入阅读,我推荐道格拉斯·侯世达(Douglas Hofstadter)的《哥德尔、艾舍尔、巴赫书》。 他极为深入研究了程序员每日都要面对的问题:递归、验证、证明和布尔代数。 这是一本很出色的读物,难度不大,偶尔有挑战,一旦你要鏖战到底,将是非常值得的。 – Jonik 13、《代码整洁之道》 推荐数:329 细节之中自有天地,整洁成就卓越代码 尽管糟糕的代码也能运行,但如果代码不整洁,会使整个开发团队泥足深陷, 写得不好的代码每年都要耗费难以计数的时间和资源。 然而这种情况并非无法避免。 著名软件专家RoberfC.Marlin在《代码整洁之道》中为你呈现出了革命性的视野。 Martin携同ObjectMetltor公司的同事,从他们有关整洁代码的最佳敏捷实践中提炼出软件技艺的价值观, 以飨读者,让你成为更优秀的程序员——只要你着手研读《代码整洁之道》。 阅读《代码整洁之道》需要你做些什么呢。你将阅读代码——大量代码。 《代码整洁之道》促使你思考代码中何谓正确,何谓错误。 更重要的是,《代码整洁之道》将促使你重新评估自己的专业价值观,以及对自己技艺的承诺。 从《代码整洁之道》中可以学到: 好代码和糟糕的代码之间的区别; 如何编写好代码,如何将糟糕的代码转化为好代码; 如何创建好名称、好函数、好对象和好类; 如何格式化代码以实现其可读性的最大化; 如何在不妨碍代码逻辑的前提下充分实现错误处理; 如何进行单元测试和测试驱动开发。 虽然《代码整洁之道》和《代码大全》有很多共同之处,但它有更为简洁更为实际的清晰例子。 – Craig P. Motlin 14、《Effective C++》和《More Effective C++》 推荐数:297 在我职业生涯早期,Scott Meyer的《Effective C++》和后续的《More Effective C++》都对我的编程能力有着直接影响。 正如当时的一位朋友所说,这些书缩短你培养编程技能的过程,而其他人可能要花费数年。 去年对我影响最大的一本书是《大教堂与市集》,该书教会我很有关开源开发过程如何运作,和如何处理我代码中的Bug。 – John Channing 15、《编程珠玑》 推荐数:282 多年以来,当程序员们推选出最心爱的计算机图书时,《编程珠玑》总是位列前列。 正如自然界里珍珠出自细沙对牡蛎的磨砺,计算机科学大师Jon Bentley以其独有的洞察力和创造力, 从磨砺程序员的实际问题中凝结出一篇篇不朽的编程“珠玑”, 成为世界计算机界名刊《ACM通讯》历史上最受欢迎的专栏, 最终结集为两部不朽的计算机科学经典名著,影响和激励着一代又一代程序员和计算机科学工作者。 本书为第一卷,主要讨论计算机科学中最本质的问题:如何正确选择和高效地实现算法。 尽管我不得不羞愧地承认,书中一半的东西我都没有理解,但我真的推荐《编程珠玑》,书中有些令人惊奇的东西。 – Matt Warren 16、《修改代码的艺术》by Michael Feathers 本书是继《重构》和《重构与模式》之后探讨修改代码技术的又一里程碑式的著作, 而且从涵盖面和深度上都超过了前两部经典。 书中不仅讲述面向对象语言(Java、C#和C++)代码,也有专章讨论C这样的过程式语言。 作者将理解、测试和修改代码的原理、技术和最新工具(自动化重构工具、单元测试框架、仿对象、集成测试框架等), 与解依赖技术和大量开发和设计优秀代码的原则、最佳实践相结合,许多内容非常深入,而且常常发前人所未发。 书中处处体现出作者独到的洞察力,以及多年开发和指导软件项目所积累的丰富经验和深厚功力。 通过这部集大成之作,你不仅能掌握最顶尖的修改代码技术,还可以大大提高对代码和软件开发的领悟力。 我认为没有任何一本书能向这本书一样影响了我的编程观点。 它明确地告诉你如何处理其他人的代码,含蓄地教会你避免哪些(以及为什么要避免)。- Wolfbyte 同意。很多开发人员讨论用干净的石板来编写软件。 但我想几乎所有开发人员的某些时候是在吃其他开发人员的狗食。– Bernard Dy 17、《编码:隐匿在计算机软硬件背后的语言》 这是一本讲述计算机工作原理的书。 不过,你千万不要因为“工作原理”之类的字眼就武断地认为,它是晦涩而难懂的。 作者用丰富的想象和清晰的笔墨将看似繁杂的理论阐述得通俗易懂,你丝毫不会感到枯燥和生硬。 更重要的是,你会因此而获得对计算机工作原理较深刻的理解。 这种理解不是抽象层面上的,而是具有一定深度的,这种深度甚至不逊于“电气工程师”和“程序员”的理解。 不管你是计算机高手,还是对这个神奇的机器充满敬畏之心的菜鸟, 都不妨翻阅一下《编码:隐匿在计算机软硬件背后的语言》,读一读大师的经典作品,必然会有收获。 我推荐Charles Petzold的《编码》。 在这个充满工具和IDE的年代,很多复杂度已经从程序员那“抽取”走了,这本书一本开眼之作。 – hemil 18、《禅与摩托车维修艺术 / Zen and the Art of Motorcycle Maintenance》 对我影响最大的那本书是 Robert Pirsig 的《禅与摩托车维修艺术》。 不管你做什么事,总是要力求完美,彻底了解你手中的工具和任务,更为重要的是, 要有乐趣(因为如果你做事有乐趣,一切将自发引向更好的结果)。 – akr 19、《Peopleware / 人件集:人性化的软件开发》 Demarco 和 Lister 表明,软件开发中的首要问题是人,并非技术。 他们的答案并不简单,只是令人难以置信的成功。 第二版新增加了八章内容。 – Eduardo Molteni 20、《Coders at Work / 编程人生》 这是一本访谈笔录,记录了当今最具个人魅力的15位软件先驱的编程生涯。 包括DonaldKnuth、Jamie Zawinski、Joshua Bloch、Ken Thompson等在内的业界传奇人物,为我们讲述了 他们是怎么学习编程的,在编程过程中发现了什么以及他们对未来的看法, 并对诸如应该如何设计软件等长久以来一直困扰很多程序员的问题谈了自己的观点。 一本非常有影响力的书,可以从中学到一些业界顶级人士的经验,了解他们如何思考并工作。 – Jahanzeb Farooq 21、《Surely You’re Joking, Mr. Feynman! / 别闹了,费曼先生。》 虽然这本书可能有点偏题,但不管你信不信,这本书曾在计算机科学专业课程的阅读列表之上。 一个优秀的角色模型,一本有关好奇心的优秀书籍。 – mike511 22、《Effective Java 中文版》 此书第二版教你如何编写漂亮并高效的代码,虽然这是一本Java书,但其中有很多跨语言的理念。 – Marcio Aguiar 23、《Patterns of Enterprise Application Architecture / 企业应用架构模式》 很奇怪,还没人推荐 Martin Fowler 的《企业应用架构模式》- levi rosol 24、《The Little Schemer》和《The Seasoned Schemer》 nmiranda 这两本是LISP的英文书,尚无中文版。 美国东北大学网站上也有电子版。 25、《交互设计之路》英文名:《The Inmates Are Running The Asylum: Why High Tech Products Drive Us Crazy and How to Restore the Sanity》该书作者:Alan Cooper,人称Visual Basic之父,交互设计之父。 本书是基于众多商务案例,讲述如何创建更好的、高客户忠诚度的软件产品和基于软件的高科技产品的书。 本书列举了很多真实可信的实际例子,说明目前在软件产品和基于软件的高科技产品中,普遍存在着“难用”的问题。 作者认为,“难用”问题是由这些产品中存在着的高度“认知摩擦”引起的, 而产生这个问题的根源在于现今软件开发过程中欠缺了一个为用户利益着想的前期“交互设计”阶段。 “难用”的产品不仅损害了用户的利益,最终也将导致企业的失败。 本书通过一些生动的实例,让人信服地讲述了由作者倡导的“目标导向”交互设计方法在解决“难用”问题方面的有效性, 证实了只有改变现有观念,才能有效地在开发过程中引入交互设计,将产品的设计引向成功。 本书虽然是一本面向商务人员而编写的书,但也适合于所有参与软件产品和基于软件的高科技产品开发的专业人士, 以及关心软件行业和高科技行业现状与发展的人士阅读。 他还有另一本中文版著作:《About Face 3 交互设计精髓》 26、《Why’s (Poignant) Guide to Ruby 》 如果你不是程序员,阅读此书可能会很有趣,但如果你已经是个程序员,可能会有点乏味。 27、《Unix编程艺术》 It is useful regardless operating system you use. – J.F. Sebastian 不管你使用什么操作系统,这本书都很有用。 – J.F. Sebastian 28、《高效程序员的45个习惯:敏捷开发修炼之道》 45个习惯,分为7个方面:工作态度、学习、软件交付、反馈、编码、调试和协作。 每一个具体的习惯里,一开始提出一个谬论,然后展开分析,之后有正队性地提出正确的做法,并设身处地地讲出了正确做法给你个人的“切身感受”,最后列出几条注意事项,帮助你修正自己的做法(“平衡的艺术”)。 29、《测试驱动开发》 前面已经提到的很多书都启发了我,并影响了我,但这本书每位程序员都应该读。 它向我展示了单元测试和TDD的重要性,并让我很快上手。 – Curro 我不关心你的代码有多好或优雅。 如果你没有测试,你或许就如同没有编写代码。 这本书得到的推荐数应该更高些。 人们讨论编写用户喜欢的软件,或既设计出色并健壮的高效代码,但如果你的软件有一堆bug,谈论那些东西毫无意义。– Adam Gent 30、《点石成金:访客至上的网页设计秘笈》 可用性设计是Web设计中最重要也是难度最大的一项任务。 《点石成金-访客至上的网页设计秘笈(原书第二版)》作者根据多年从业的经验,剖析用户的心理, 在用户使用的模式、为扫描进行设计、导航设计、主页布局、可用性测试等方面提出了许多独特的观点, 并给出了大量简单、易行的可用性设计的建议。 本书短小精炼,语言轻松诙谐,书中穿插大量色彩丰富的屏幕截图、趣味丛生的卡通插图以及包含大量信息的图表, 使枯燥的设计原理变得平易近人。 本书适合从事Web设计和Web开发的技术人员阅读,特别适合为如何留住访问者而苦恼的网站/网页设计人员阅读。 这是一本关于Web设计原则而不是Web设计技术的书。 本书作者是Web设计专家,具有丰富的实践经验。 他用幽默的语言为你揭示Web设计中重要但却容易被忽视的问题,只需几个小时, 你便能对照书中讲授的设计原则找到网站设计的症结所在,令你的网站焕然一新。

青衫无名 2019-12-02 01:20:04 0 浏览量 回答数 0

问题

【一周热点】送给程序员终身受用的建议

问问小秘 2019-12-01 22:05:12 4740 浏览量 回答数 3

问题

MaxCompute百问集锦(持续更新20171011)

隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

问题

“Ceph浅析”系列之七——关于Ceph的若干想法:报错

kun坤 2020-06-08 11:04:40 6 浏览量 回答数 1

问题

Apache Flink常见问题汇总【精品问答】

黄一刀 2020-05-19 17:51:47 11230 浏览量 回答数 2

回答

12月17日更新 请问下同时消费多个topic的情况下,在richmap里面可以获取到当前消息所属的topic吗? 各位大佬,你们实时都是怎样重跑数据的? 有木有大神知道Flink能否消费多个kafka集群的数据? 这个问题有人遇到吗? 你们实时读取广业务库到kafka是通过什么读的?kafka connector 的原理是定时去轮询,这样如果表多了,会不会影响业务库的性能?甚至把业务库搞挂? 有没有flink 1.9 连接 hive的例子啊?官网文档试了,没成功 请问各位是怎么解决实时流数据倾斜的? 请问一下,对于有状态的任务,如果任务做代码升级的时候,可否修改BoundedOutOfOrdernessTimestampExtractor的maxOutOfOrderness呢?是否会有影响数据逻辑的地方呢? 老哥们有做过统计从0点开始截止到现在时刻的累计用户数吗? 比如五分钟输出一次,就是7点输出0点到7点的累计用户,7:05输出0点到7:05的累计用户。 但是我这里有多个维度,现在用redis来做的。 想知道有没有更好的姿势? 实时数仓用什么存储介质来存储维表,维表有大有小,大的大概5千万左右。 各位大神有什么建议和经验分享吗? 请教个问题,就是flink的窗口触发必须是有数据才会触发吗?我现在有个这样的需求,就是存在窗口内没有流数据进入,但是窗口结束是要触发去外部系统获取上一个窗口的结果值作为本次窗口的结果值!现在没有流数据进入窗口结束时如何触发? kafkaSource.setStartFromTimestamp(timestamp); 发现kafkasource从指定时间开始消费,有些topic有效,有效topic无效,大佬们有遇到过吗? 各位大佬,flink两个table join的时候,为什么打印不出来数据,已经赋了关联条件了,但是也不报错 各位大佬 请教一下 一个faile的任务 会在这里面存储展示多久啊? 各位大佬,我的程序每五分钟一个窗口做了基础指标的统计,同时还想统计全天的Uv,这个是用State就能实现吗? 大佬们,flink的redis sink是不是只适用redis2.8.5版本? 有CEP 源码中文注释的发出来学习一下吗? 有没有拿flink和tensorflow集成的? 那位大神,给一个java版的flink1.7 读取kafka数据,做实时监控和统计的功能的代码案例。 请问下风控大佬,flink为风控引擎做数据支撑的时候,怎么应对风控规则的不断变化,比如说登录场景需要实时计算近十分钟内登录次数超过20次用户,这个规则可能会变成计算近五分钟内登录次数超过20次的。 想了解一下大家线上Flink作业一般开始的时候都分配多少内存?广播没办法改CEP flink支持多流(大于2流)join吗? 谁能帮忙提供一下flink的多并行度的情况下,怎么保证数据有序 例如map并行度为2 那就可能出现数据乱序的情况啊 请教下现在从哪里可以可以看单任务的运行状况和内存占用情况,flink页面上能看单个任务的内存、cpu 大佬们 flink1.9 停止任务手动保存savepoint的命令是啥? flink 一个流计算多个任务和 还是一个流一个任务好? flink 1.9 on yarn, 自定义个connector里面用了jni, failover以后 就起不来了, 报错重复load so的问题。 我想问一下 这个,怎么解决。 难道flink 里面不能用jni吗。 ide里面调试没有问题,部署到集群就会报错了,可能什么问题? 请教一下对于长时间耗内存很大的任务,大家都是开checkpoint机制,采用rocksdb做状态后端吗? 请问下大佬,flink jdbc读取mysql,tinyin字段类型自动转化为Boolean有没有好的解决方法 Flink 1.9版本的Blink查询优化器,Hive集成,Python API这几个功能好像都是预览版,请问群里有大佬生产环境中使用这些功能了吗? 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 各位大佬,在一个 Job 计算过程中,查询 MySQL 来补全额外数据,是一个好的实践嘛?还是说流处理过程中应该尽量避免查询额外的数据? Flink web UI是jquery写的吗? 12月9日更新 成功做完一次checkpoint后,会覆盖上一次的checkpoint吗? 数据量较大时,flink实时写入hbase能够异步写入吗? flink的异步io,是不是只是适合异步读取,并不适合异步写入呀? 请问一下,flink将结果sink到redis里面会不会对存储的IO造成很大的压力,如何批量的输出结果呢? 大佬们,flink 1.9.0版本里DataStream api,若从kafka里加载完数据以后,从这一个流中获取数据进行两条业务线的操作,是可以的吗? flink 中的rocksdb状态怎么样能可视化的查看有大佬知道吗? 感觉flink 并不怎么适合做hive 中的计算引擎来提升hive 表的查询速度 大佬们,task端rocksdb状态 保存路径默认是在哪里的啊?我想挂载个新磁盘 把状态存到那里去 flink 的state 在窗口滑动到下一个窗口时候 上一个窗口销毁时候 state会自己清除吗? 求助各位大佬,一个sql里面包含有几个大的hop滑动窗口,如15个小时和24个小时,滑动步长为5分钟,这样就会产生很多overlap 数据,导致状态会很快就达到几百g,然后作业内存也很快达到瓶颈就oom了,然后作业就不断重启,很不稳定,请问这个业务场景有什么有效的解决方案么? 使用jdbcsink的时候,如果连接长时间不使用 就会被关掉,有人遇到过吗?使用的是ddl的方式 如何向云邪大佬咨询FLink相关技术问题? 请问各位公司有专门开发自己的实时计算平台的吗? 请问各位公司有专门开发自己的实时计算平台的吗? 有哪位大佬有cdh集成安装flink的文档或者手册? 有哪位大佬有cdh集成安装flink的文档或者手册? 想问下老哥们都是怎么统计一段时间的UV的? 是直接用window然后count嘛? Flink是不是也是这样的? 请问现在如有个实时程序,根据一个mysql的维表来清洗,但是我这个mysql表里面就只有几条信息且可能会变。 我想同一个定时器去读mysql,然后存在对象中,流清洗的时候读取这个数据,这个想法可行吗?我目前在主类里面定义一个对象,然后往里面更新,发现下面的map方法之类的读不到我更新进去的值 有大佬做过flink—sql的血缘分析吗? 12月3日更新 请教一下,为什么我flume已经登录成功了keytab认证的kafka集群,但是就是消费不到数据呢? flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink timestamp转换为date类型,有什么函数吗 Run a single Flink job on YARN 我采用这种模式提交任务,出现无法找到 开启 HA 的ResourceManager Failed to connect to server: xxxxx:8032: retries get failed due to exceeded maximum allowed retries number: 0 有大佬遇到过吗 ? 各位大佬,请问有Flink写S3的方案吗? flink 连接hbase 只支持1.4.3版本? onnector: type: hbase version: "1.4.3" 请问 flink1.9能跑在hadoop3集群上吗? 滑动窗口 排序 报错这个是什么原因呢? 这个pravega和kafka有啥区别? flink 开发里数据源配置了RDS,但是在RDS里没有看到创建的表,是为什么呢? Tumbling Window里的数据,是等窗口期内的数据到齐之后一次性处理,还是到了一条就处理一条啊 双流join后再做time window grouping. 但是双流join会丢失时间属性,请问大家如何解决 stream processing with apache flink,这本书的中译版 现在可以买吗? flink on yarn时,jm和tm占用的内存最小是600M,这个可以修改吗? 各位大佬,使用默认的窗口Trigger,在什么情况下会触发两次啊?窗口关闭后,然后还来了这个窗口期内的数据,并且开了allowedLateness么? flink web里可以像storm那样 看每条数据在该算子中的平均耗时吗? 各位大佬,flink任务的并发数调大到160+以后,每隔几十分钟就会出现一次TM节点连接丢失的异常,导致任务重启。并发在100时运行比较稳定,哪位大佬可以提供下排查的思路? 感觉stateful function 是下一个要发力的点,这个现在有应用案例吗? 我有2个子网(a子网,b子网)用vpn联通,vpn几周可能会断一次。a子网有一个kafka集群,b子网运行我自己的flink集群和应用,b子网的flink应用连接到a子网的kafka集群接收消息来处理入库到数仓去。我的问题是,如果vpn断开,flink consumer会异常整个作业退出吗?如果作业退出,我重连vpn后,能从auto checkpoint再把flink应用恢复到出错时flink kafka consumer应该读取的partition/offset位置吗?flink的checkpoint除了保存自己开发的算子里的state,kafkaconsumer里的partition/offset也会保存和恢复吗? flink的反压为什么不加入metrics呢 hdfs是不是和flink共用一个集群? flink消费kafka,可以从指定时间消费的吗?目前提供的接口只是根据offset消费?有人知道怎么处理? flink 的Keyby是不是只是repartition而已?没有将key相同的数据放到一个组合里面 电商大屏 大家推荐用什么来做吗? 我比较倾向用数据库,因为有些数据需要join其他表,flink充当了什么角色,对这个有点迷,比如统计当天订单量,卖了多少钱,各个省的销量,销售金额,各个品类的销售量销售金额 开源1.9的sql中怎么把watermark给用起来,有大神知道吗? 有没有人能有一些flink的教程 代码之类的分享啊 采用了checkpoint,程序停止了之后,什么都不改,直接重启,还是能接着继续运行吗?如果可以的话,savepoint的意义又是什么呢? 有人做过flink 的tpc-ds测试吗,能不能分享一下操作的流程方法 checkpoint是有时间间隔的,也就可以理解为checkpoint是以批量操作的,那如果还没进行ckecnpoint就挂了,下次从最新的一次checkpoint重启,不是重复消费了? kafka是可以批量读取数据,但是flink是一条一条处理的,应该也可以一条一条提交吧。 各位大佬,flink sql目前是不是不支持tumbling window join,有人了解吗? 你们的HDFS是装在taskmanager上还是完全分开的,请问大佬们有遇到这种情况吗? 大佬们flink检查点存hdfs的话怎么自动清理文件啊 一个128M很快磁盘就满了 有谁遇到过这个问题? 请教一下各位,这段代码里面,我想加一个trigger,实现每次有数据进window时候,就输出,而不是等到window结束再输出,应该怎么加? 麻烦问下 flink on yarn 执行 客户端启动时 报上面错,是什么原因造成的 求大佬指点 ERROR org.apache.flink.client.program.rest.RestClusterClient - Error while shutting down cluster java.util.concurrent.ExecutionException: org.apache.flink.runtime.concurrent.FutureUtils$RetryException: Could not complete the operation. Number of retries has been exhausted. 大家怎么能动态的改变 flink WindowFunction 窗口数据时间 flink on yarn之后。yarn的日志目录被写满,大家如配置的? Flink1.9 启动 yarn-session报这个错误 怎么破? yarn 模式下,checkpoint 是存在 JobManager的,提交任务也是提交给 JobManager 的吧? heckpoint机制,会不会把window里面的数据全部放checkpoint里面? Flink On Yarn的模式下,如果通过REST API 停止Job,并触发savepiont呢 jenkins自动化部署flink的job,一般用什么方案?shell脚本还是api的方式? 各位大佬,开启增量checkpoint 情况下,这个state size 是总的checkpoint 大小,还是增量上传的大小? 想用状态表作为子表 外面嵌套窗口 如何实现呢 因为状态表group by之后 ctime会失去时间属性,有哪位大佬知道的? 你们有试过在同样的3台机器上部署两套kafka吗? 大家有没有比较好的sql解析 组件(支持嵌套sql)? richmapfuntion的open/close方法,和处理数据的map方法,是在同一个线程,还是不同线程调用的? flink on yarn 提交 参数 -p 20 -yn 5 -ys 3 ,我不是只启动了5个container么? Flink的乱序问题怎么解决? 我对数据流先进行了keyBy,print的时候是有数据的,一旦进行了timeWindow滑动窗口就没有数据了,请问是什么情况呢? 搭建flinksql平台的时候,怎么处理udf的呀? 怎么查看sentry元数据里哪些角色有哪些权限? 用java api写的kafka consumer能消费到的消息,但是Flink消费不到,这是为啥? 我state大小如果为2G左右 每次checkpoint会不会有压力? link-table中的udaf能用deltaTrigger么? flink1.7.2,场景是一分钟为窗口计算每分钟传感器的最高温度,同时计算当前分钟与上一分钟最高温 001 Flink集群支持kerberos认证吗?也就是说flink客户端需要向Flink集群进行kerberos认证,认证通过之后客户端才能提交作业到Flink集群运行002 Flink支持多租户吗? 如果要对客户端提交作业到flink进行访问控制,你们有类似的这种使用场景吗? flink可以同时读取多个topic的数据吗? Flink能够做实时ETL(oracle端到oracle端或者多端)么? Flink是否适合普通的关系型数据库呢? Flink是否适合普通的关系型数据库呢? 流窗口关联mysql中的维度表大佬们都是怎么做的啊? 怎么保证整个链路的exactly one episode精准一次,从source 到flink到sink? 在SQL的TUMBLE窗口的统计中,如果没数据进来的,如何让他也定期执行,比如进行count计算,让他输出0? new FlinkKafkaConsumer010[String]("PREWARNING",new JSONKeyValueDeserializationSchema(true), kafkaProps).setStartFromGroupOffsets() ) 我这样new 它说要我传个KeyedDeserializationSchema接口进去 flink里面broadcast state想定时reload怎么做?我用kafka里的stream flink独立模式高可用搭建必需要hadoop吗? 有人用增量cleanupIncrementally的方式来清理状态的嘛,感觉性能很差。 flink sink to hbase继承 RichOutputFormat运行就报错 kafka 只有低级 api 才拿得到 offset 吗? 有个问题咨询下大家,我的flinksql中有一些参数是要从mysql中获取的,比如我flink的sql是select * from aa where cc=?,这个问号的参数需要从mysql中获取,我用普通的jdbc进行连接可以获的,但是有一个问题,就是我mysql的数据改了之后必须重启flink程序才能解决这个问题,但这肯定不符合要求,请问大家有什么好的办法吗? flink里怎样实现多表关联制作宽表 flink写es,因为半夜es集群做路由,导致写入容易失败,会引起source的反压,然后导致checkpoint超时任务卡死,请问有没有办法在下游es处理慢的时候暂停上游的导入来缓解反压? flink 写parquet 文件,使用StreamingFileSink streamingFileSink = StreamingFileSink.forBulkFormat( new Path(path), ParquetAvroWriters.forReflectRecord(BuyerviewcarListLog.class)). withBucketAssigner(bucketAssigner).build(); 报错 java.lang.UnsupportedOperationException: Recoverable writers on Hadoop are only supported for HDFS and for Hadoop version 2.7 or newer 1.7.2 NoWindowInnerJoin这个实现,我看实现了CleanupState可更新过期时间删除当前key状态的接口,是不是这个1.7.2版本即使有个流的key一直没有被匹配到他的状态也会被清理掉,就不会存在内存泄漏的问题了? flink1.7.2 想在Table的UDAF中使用State,但是发现UDAF的open函数的FunctionContext中对于RuntimeContext是一个private,无法使用,大佬,如何在Table的UDAF中使用State啊? Flink有什么性能测试工具吗? 项目里用到了了KafkaTableSourceSinkFactory和JDBCTableSourceSinkFactory。maven打包后,META-INF里只会保留第一个 标签的org.apache.flink.table.factories.TableFactory内容。然后执行时就会有找不到合适factory的报错,请问有什么解决办法吗? 为什么这个这段逻辑 debug的时候 是直接跳过的 各位大佬,以天为单位的窗口有没有遇到过在八点钟的时候会生成一条昨天的记录? 想问一下,我要做一个规则引擎,需要动态改变规则,如何在flink里面执行? flink-1.9.1/bin/yarn-session.sh: line 32: construc 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 一般公司的flink job有没有进程进行守护?有专门的工具或者是自己写脚本?这种情况针对flink kafka能不能通过java获取topic的消息所占空间大小? Flink container was removed这个咋解决的。我有时候没有数据的时候也出现这 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更 问大家个Hive问题,新建的hive外部分区表, 怎么把HDFS数据一次性全部导入hive里 ? flink里面的broadcast state值,会出现broad流的数据还没put进mapstat Flink SQL DDL 创建表时,如何定义字段的类型为proctime? 请问下窗口计算能对历史数据进行处理吗?比如kafka里的写数据没停,窗口计算的应用停掉一段时间再开起 请问下,想统计未退费的订单数量,如果一个订单退费了(发过来一个update流),flink能做到对结果进行-1吗,这样的需求sql支持吗? 使用Flink sql时,对table使用了group by操作。然后将结果转换为流时是不是只能使用的toRetractStream方法不能使用toAppendStream方法。 百亿数据实时去重,有哪位同学实践过吗? 你们的去重容许有误差?因为bloom filter其实只能给出【肯定不存在】和【可能存在】两种结果。对于可能存在这种结果,你们会认为是同一条记录? 我就运行了一个自带的示例,一运行就报错然后web页面就崩了 flink定时加载外部数据有人做过吗? NoSuchMethodError: org.apache.flink.api.java.Utils.resolveFactory(Ljava/lang/ThreadLocal;Ljava/lang/Object;)Ljava/util/Optional 各位知道这个是那个包吗? flink 可以把大量数据写入mysql吗?比如10g flink sql 解析复杂的json可以吗? 在页面上写规则,用flink执行,怎么传递给flink? 使用cep时,如何动态添加规则? 如何基于flink 实现两个很大的数据集的交集 并集 差集? flink的应用场景是?除了实时 各位好,请教一下,滑动窗口,每次滑动都全量输出结果,外部存储系统压力大,是否有办法,只输出变化的key? RichSinkFunction close只有任务结束时候才会去调用,但是数据库连接一直拿着,最后成了数据库连接超时了,大佬们有什么好的建议去处理吗?? 为啥我的自定义函数注册,然后sql中使用不了? 请问一下各位老师,flink flapmap 中的collector.collect经常出现Buffer pool is destroyed可能是什么原因呢? 用asyncIO比直接在map里实现读hbase还慢,在和hbase交互这块儿,每个算子都加了时间统计 请教一下,在yarn上运行,会找不到 org.apache.flink.streaming.util 请问下大佬,flink1.7.2对于sql的支持是不是不怎么好啊 ,跑的数据一大就会报错。 各位大佬,都用什么来监控flink集群? flink 有那种把多条消息聚合成一条的操作吗,比如说每五十条聚合成一条 如何可以让checkpoint 跳过对齐呢? 请问 阿里云实时计算(Blink)支持这4个源数据表吗?DataHub Kafka MQ MaxCompute? 为啥checkpoint时间会越来越长,请问哪位大佬知道是因为啥呢? 请问Flink的最大并行度跟kafka partition数量有关系吗? source的并行度应该最好是跟partition数量一致吧,那剩下的算子并行度呢? Flink有 MLIB库吗,为什么1.9中没有了啊? 请教一下,有没有flink ui的文章呢?在这块内存配置,我给 TM 配置的内存只有 4096 M,但是这里为什么对不上呢?请问哪里可以看 TM 内存使用了多少呢? 请教个问题,fink RichSinkFunction的invoke方法是什么时候被调用的? 请教一下,flink的window的触发条件 watermark 小于 window 的 end_time。这个 watermark 为什么是针对所有数据的呢?没有设计为一个 key 一个 watermark 呢? 就比如说有 key1、key2、key3,有3个 watermark,有 3个 window interval不支持left join那怎么可以实现把窗口内左表的数据也写到下游呢? 各位 1、sink如何只得到最终的结果而不是也输出过程结果 ;2、不同的运算如何不借助外部系统的存储作为另外一个运算的source 请教各位一个问题,flink中设置什么配置可以取消Generic这个泛型,如图报错: 有大佬在吗,线上遇到个问题,但是明明内存还有200多G,然后呢任务cancel不了,台也取消不了程序 flink遇到The assigned slot container_1540803405745_0094_01_000008_1 was removed. 有木有大佬遇到过。在flink on yarn上跑 这个报错是什么意思呢?我使用滑动窗口的时候出现报错 flink 双流union状态过期不清理有遇到的吗? 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更,如果订单表与商品明细join查询,就会出现n条重复数据,这样数据就不准了,flink 这块有没有比较好的实战经验的。 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink 有办法 读取 pytorch的 模型文件吗? 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink timestamp转换为date类型,有什么函数吗 flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink 有办法 读取 pytorch的 模型文件吗? 有没有大佬知道实时报表怎么做?就是统计的结果要实时更新,热数据。 刚接触flink 1.9 求问flink run脚本中怎么没有相关提交到yarn的命令了 请教一下,flink里怎么实现batch sink的操作而不导致数据丢失

问问小秘 2019-12-02 03:19:17 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站