• 关于

    字符串操作一般会出现什么故障

    的搜索结果

回答

详细解答可以参考官方帮助文档  各运营商 DNS 也就是“本地 DNS”,主要是指各地电信运营商提供的域名解析服务器。 您的网站、邮箱等应用的域名,通过设置域名解析来达到访问效果。互联网的 DNS 提供正常的域名解析指向服务,而您本地电脑设置的 DNS 服务器,则是获取互联网上的这些解析地址,本地 DNS 是否正常,直接决定了能否上网或顺利打开网站。一般来说系统内是采用自动设置 DNS 服务器地址,环境多样性造成有时候会出现一些问题,如以下例子,我们需要自行更改自己电脑的 DNS 来进行解决: 在访问网站的过程中,我们或许经常会遭遇无法访问网页的现象,遇到这种现象时,相信多数人会认为是网络掉线,或者是目标网站出现了问题,可是在一番仔细排查之后,并不是由这些因素引起的,那么究竟是什么原因让网页内容无法打开呢? 事实上,在网络连接以及目标服务器都正常的情况下,造成网页无法打开现象最可能的原因就是 DNS 服务发生了意外,导致网站地址被无法正常解析,就像开车找不到目的地了,而且自动设置的DNS 服务运行不正常的现象十分常见。那么如何能够确认网页打开故障就是 DNS 服务引起的呢?遇到 DNS 服务运行不正常时,我们又该如何让 DNS 服务快速恢复常态呢? 通常情况下,我们访问某个目标网站时都是通过输入形如“www.aaa.com”格式的网址来完成访问任务的,以域名的形式来访问网站内容,输入的网站地址会被自动解析翻译成 IP 地址;一旦 DNS 服务器运行不正常,无法提供地址解析服务或者将域名解析成错误的 IP 地址时,我们就无法通过网站域名的形式打开目标站点的页面内容了。 在遇到网页内容无法打开,并且怀疑 DNS 服务运行不正常时,我们首先要做的事情就是可以利用 Windows 系统自带的 nslookup 命令来确认一下本地的 DNS 服务是否真的运行不正常,下面就是确认 DNS 服务运行是否正常的具体操作步骤: 首先在本地工作站系统桌面中打开“开始”菜单,并执行其中的“运行”命令,从弹出的系统对话框中输入字符串命令“cmd”,单击“确定”按钮后,将系统屏幕切换到 MS-DOS 命令行工作模式; 其次在 DOS 命令行中输入字符串命令“nslookup -q=ns www.net.cn”,单击回车键后要是在地址解析过程中 DNS 服务运行不正常的话,那我们会在结果界面中只看到“DNS request timed out,timeout was 2 seconds”这样的提示信息。   在确认网站内容无法打开是由于地址不能被解析后,我们下一步就是要进行 DNS 修改,进入到本地工作站的 TCP/IP 属性设置窗口,将 DNS 地址更换成其他能够运行正常的 DNS 服务器地址,就能解决无法打开网页的问题了,如下图中举例为 google 和万网提供的 DNS 地址,您也可以在网上搜索其他的 DNS 使用。 如您在一个内部网络中,可以请单位网络管理人员检查一下局域网内部的 DNS 服务器是否运行正常,只要解决了 DNS 服务器的运行故障,一般就能够顺利解决网页无法打开故障了。 (图中以win7系统为例,如XP系统,也可在控制面板中找到网络与连接,之后具体更改流程则是一样的)    l ?例1: google 提供的 DNS :8.8.8.8和8.8.4.4    例2:万网的 DNS:223.5.5.5 和 223.6.6.6 因为 DNS 服务受到本身与网络线路等方面的因素,所以遇到 DNS 服务运行不正常的现象是有小机率发生的事情,面对这种故障现象我们只要依照本文所提供的应对要决进行逐一尝试,相信 DNS 解析错误故障一定会快速被排除掉。      

2019-12-01 23:32:18 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档  各运营商 DNS 也就是“本地 DNS”,主要是指各地电信运营商提供的域名解析服务器。 您的网站、邮箱等应用的域名,通过设置域名解析来达到访问效果。互联网的 DNS 提供正常的域名解析指向服务,而您本地电脑设置的 DNS 服务器,则是获取互联网上的这些解析地址,本地 DNS 是否正常,直接决定了能否上网或顺利打开网站。一般来说系统内是采用自动设置 DNS 服务器地址,环境多样性造成有时候会出现一些问题,如以下例子,我们需要自行更改自己电脑的 DNS 来进行解决: 在访问网站的过程中,我们或许经常会遭遇无法访问网页的现象,遇到这种现象时,相信多数人会认为是网络掉线,或者是目标网站出现了问题,可是在一番仔细排查之后,并不是由这些因素引起的,那么究竟是什么原因让网页内容无法打开呢? 事实上,在网络连接以及目标服务器都正常的情况下,造成网页无法打开现象最可能的原因就是 DNS 服务发生了意外,导致网站地址被无法正常解析,就像开车找不到目的地了,而且自动设置的DNS 服务运行不正常的现象十分常见。那么如何能够确认网页打开故障就是 DNS 服务引起的呢?遇到 DNS 服务运行不正常时,我们又该如何让 DNS 服务快速恢复常态呢? 通常情况下,我们访问某个目标网站时都是通过输入形如“www.aaa.com”格式的网址来完成访问任务的,以域名的形式来访问网站内容,输入的网站地址会被自动解析翻译成 IP 地址;一旦 DNS 服务器运行不正常,无法提供地址解析服务或者将域名解析成错误的 IP 地址时,我们就无法通过网站域名的形式打开目标站点的页面内容了。 在遇到网页内容无法打开,并且怀疑 DNS 服务运行不正常时,我们首先要做的事情就是可以利用 Windows 系统自带的 nslookup 命令来确认一下本地的 DNS 服务是否真的运行不正常,下面就是确认 DNS 服务运行是否正常的具体操作步骤: 首先在本地工作站系统桌面中打开“开始”菜单,并执行其中的“运行”命令,从弹出的系统对话框中输入字符串命令“cmd”,单击“确定”按钮后,将系统屏幕切换到 MS-DOS 命令行工作模式; 其次在 DOS 命令行中输入字符串命令“nslookup -q=ns www.net.cn”,单击回车键后要是在地址解析过程中 DNS 服务运行不正常的话,那我们会在结果界面中只看到“DNS request timed out,timeout was 2 seconds”这样的提示信息。   在确认网站内容无法打开是由于地址不能被解析后,我们下一步就是要进行 DNS 修改,进入到本地工作站的 TCP/IP 属性设置窗口,将 DNS 地址更换成其他能够运行正常的 DNS 服务器地址,就能解决无法打开网页的问题了,如下图中举例为 google 和万网提供的 DNS 地址,您也可以在网上搜索其他的 DNS 使用。 如您在一个内部网络中,可以请单位网络管理人员检查一下局域网内部的 DNS 服务器是否运行正常,只要解决了 DNS 服务器的运行故障,一般就能够顺利解决网页无法打开故障了。 (图中以win7系统为例,如XP系统,也可在控制面板中找到网络与连接,之后具体更改流程则是一样的)    l ?例1: google 提供的 DNS :8.8.8.8和8.8.4.4    例2:万网的 DNS:223.5.5.5 和 223.6.6.6 因为 DNS 服务受到本身与网络线路等方面的因素,所以遇到 DNS 服务运行不正常的现象是有小机率发生的事情,面对这种故障现象我们只要依照本文所提供的应对要决进行逐一尝试,相信 DNS 解析错误故障一定会快速被排除掉。      

2019-12-01 23:32:18 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

X-Engine是阿里云数据库产品事业部自研的联机事务处理OLTP(On-Line Transaction Processing)数据库存储引擎。作为自研数据库POLARDB的存储引擎之一,已经广泛应用在阿里集团内部诸多业务系统中,包括交易历史库、钉钉历史库等核心应用,大幅缩减了业务成本,同时也作为双十一大促的关键数据库技术,挺过了数百倍平时流量的冲击。 为什么设计一个新的存储引擎 X-Engine的诞生是为了应对阿里内部业务的挑战,早在2010年,阿里内部就大规模部署了MySQL数据库,但是业务量的逐年爆炸式增长,数据库面临着极大的挑战: 极高的并发事务处理能力(尤其是双十一的流量突发式暴增)。 超大规模的数据存储。 这两个问题虽然可以通过扩展数据库节点的分布式方案解决,但是堆机器不是一个高效的手段,我们更想用技术的手段将数据库性价比提升到极致,实现以少量资源换取性能大幅提高的目的。 传统数据库架构的性能已经被仔细的研究过,数据库领域的泰斗,图灵奖得主Michael Stonebreaker就此写过一篇论文 《OLTP Through the Looking Glass, and What We Found There》 ,指出传统关系型数据库,仅有不到10%的时间是在做真正有效的数据处理工作,剩下的时间都浪费在其它工作上,例如加锁等待、缓冲管理、日志同步等。 造成这种现象的原因是因为近年来我们所依赖的硬件体系发生了巨大的变化,例如多核(众核)CPU、新的处理器架构(Cache/NUMA)、各种异构计算设备(GPU/FPGA)等,而架构在这些硬件之上的数据库软件却没有太大的改变,例如使用B-Tree索引的固定大小的数据页(Page)、使用ARIES算法的事务处理与数据恢复机制、基于独立锁管理器的并发控制等,这些都是为了慢速磁盘而设计,很难发挥出现有硬件体系应有的性能。 基于以上原因,阿里开发了适合当前硬件体系的存储引擎,即X-Engine。 X-Engine架构 全新架构的X-Engine存储引擎不仅可以无缝对接兼容MySQL(得益于MySQL Pluginable Storage Engine特性),同时X-Engine使用分层存储架构。 因为目标是面向大规模的海量数据存储,提供高并发事务处理能力和降低存储成本,在大部分大数据量场景下,数据被访问的机会是不均等的,访问频繁的热数据实际上占比很少,X-Engine根据数据访问频度的不同将数据划分为多个层次,针对每个层次数据的访问特点,设计对应的存储结构,写入合适的存储设备。 X-Engine使用了LSM-Tree作为分层存储的架构基础,并进行了重新设计: 热数据层和数据更新使用内存存储,通过内存数据库技术(Lock-Free index structure/append only)提高事务处理的性能。 流水线事务处理机制,把事务处理的几个阶段并行起来,极大提升了吞吐。 访问频度低的数据逐渐淘汰或是合并到持久化的存储层次中,并结合多层次的存储设备(NVM/SSD/HDD)进行存储。 对性能影响比较大的Compaction过程做了大量优化: 拆分数据存储粒度,利用数据更新热点较为集中的特征,尽可能的在合并过程中复用数据。 精细化控制LSM的形状,减少I/O和计算代价,有效缓解了合并过程中的空间增大。 同时使用更细粒度的访问控制和缓存机制,优化读的性能。 技术特点 利用FPGA硬件加速Compaction过程,使得系统上限进一步提升。这个技术属首次将硬件加速技术应用到在线事务处理数据库存储引擎中,相关论文 《FPGA-Accelerated Compactions for LSM-based Key Value Store》 已经被2020年的顶级会议FAST'20接收。 通过数据复用技术减少数据合并代价,同时减少缓存淘汰带来的性能抖动。 使用多事务处理队列和流水线处理技术,减少线程上下文切换代价,并计算每个阶段任务量配比,使整个流水线充分流转,极大提升事务处理性能。相对于其他类似架构的存储引擎(例如RocksDB),X-Engine的事务处理性能有10倍以上提升。 X-Engine使用的Copy-on-write技术,避免原地更新数据页,从而对只读数据页面进行编码压缩,相对于传统存储引擎(例如InnoDB),使用X-Engine可以将存储空间降低至10%~50%。 Bloom Filter快速判定数据是否存在,Surf Filter判断范围数据是否存在,Row Cache缓存热点行,加速读取性能。 LSM基本逻辑 LSM的本质是所有写入操作直接以追加的方式写入内存。每次写到一定程度,即冻结为一层(Level),并写入持久化存储。所有写入的行,都以主键(Key)排序好后存放,无论是在内存中,还是持久化存储中。在内存中即为一个排序的内存数据结构(Skiplist、B-Tree、etc),在持久化存储也作为一个只读的全排序持久化存储结构。 普通的存储系统若要支持事务处理,需要加入一个时间维度,为每个事务构造出一个不受并发干扰的独立视域。例如存储引擎会对每个事务定序并赋予一个全局单调递增的事务版本号(SN),每个事务中的记录会存储这个SN以判断独立事务之间的可见性,从而实现事务的隔离机制。 如果LSM存储结构持续写入,不做其他的动作,那么最终会成为如下结构。 这种结构对于写入是非常友好的,只要追加到最新的内存表中即完成,为实现故障恢复,只需记录Redo Log,因为新数据不会覆盖旧版本,追加记录会形成天然的多版本结构。 但是如此累积,冻结的持久化层次越来越多,会对查询会产生不利的影响。例如对同一个key,不同事务提交产生的多版本记录会散落在各个层次中;不同的key也会散落在不同层次中。读操作需要查找各个层并合并才能得到最终结果。 因此LSM引入了Compaction操作解决这个问题,Compaction操作有2种作用: 控制LSM层次形状 一般的LSM形状都是层次越低,数据量越大(倍数关系),目的是为了提升读性能。 通常存储系统的数据访问都有局部性,大量的访问都集中在少部分数据上,这也是缓存系统能有效工作的基本前提。在LSM存储结构中,如果把访问频率高的数据尽可能放在较高的层次上,存放在快速存储设备中(例如NVM、DRAM),而把访问频率低的数据放在较低层次中,存放在廉价慢速存储设备中。这就是X-Engine的冷热分层概念。 合并数据 Compaction操作不断的把相邻层次的数据合并,并写入更低层次。合并的过程实际上是把要合并的相邻两层或多层的数据读出来,按key排序,相同的key如果有多个版本,只保留新的版本(比当前正在执行的活跃事务中最小版本号新),丢掉旧版本数据,然后写入新的层,这个操作非常耗费资源。 合并数据除了考虑冷热分层以外,还需要考虑其他维度,例如数据的更新频率,大量的多版本数据在查询的时候会浪费更多的I/O和CPU,因此需要优先进行合并以减少记录的版本数量。X-Engine综合考虑了各种策略形成自己的Compaction调度机制。 高度优化的LSM X-Engine的memory tables使用了无锁跳表(Locked-free SkipList),并发读写的性能较高。在持久化层如何实现高效,就需要讨论每层的细微结构。 数据组织 X-Engine的每层都划分成固定大小的Extent,存放每个层次中的数据的一个连续片段(Key Range)。为了快速定位Extent,为每层Extents建立了一套索引(Meta Index),所有这些索引,加上所有的memory tables(active/immutable)一起组成了一个元数据树(Metadata Tree),root节点为Metadata Snapshot,这个树结构类似于B-Tree。 X-Engine中除了当前的正在写入的active memory tables以外,其他结构都是只读的,不会被修改。给定某个时间点,例如LSN=1000,上图中的Metadata Snapshot 1引用到的结构即包含了LSN=1000时的所有的数据的快照,因此这个结构被称为Snapshot。 即便是Metadata结构本身,也是一旦生成就不会被修改。所有的读请求都是以Snapshot为入口,这是X-Engine实现Snapshot级别隔离的基础。前文说过随着数据写入,累积数据越多,会执行Compaction操作、冻结memory tables等,这些操作都是用Copy-on-write实现,即每次都将修改产生的结果写入新的Extent,然后生成新的Meta Index结构,最终生成新的Metadata Snapshot。 例如执行一次Compaction操作会生成新的Metadata Snapshot,如下图所示。 可以看到Metadata Snapshot 2相对于Metadata Snapshot 1并没有太多的变化,仅仅修改了发生变更的一些叶子节点和索引节点。 事务处理 得益于LSM的轻量化写机制,写入操作固然是其明显的优势,但是事务处理不只是把更新的数据写入系统那么简单,还要保证ACID(原子性、一致性、隔离性、持久性),涉及到一整套复杂的流程。X-Engine将整个事务处理过程分为两个阶段: 读写阶段 校验事务的冲突(写写冲突、读写冲突),判断事务是否可以执行、回滚重试或者等锁。如果事务冲突校验通过,则把修改的所有数据写入Transaction Buffer。 提交阶段 写WAL、写内存表,以及提交并返回用户结果,这里面既有I/O操作(写日志、返回消息),也有CPU操作(拷贝日志、写内存表)。 为了提高事务处理吞吐,系统内会有大量事务并发执行,单个I/O操作比较昂贵,大部分存储引擎会倾向于聚集一批事务一起提交,称为Group Commit,能够合并I/O操作。但是一组事务提交的过程中,还是有大量等待过程的,例如写入日志到磁盘过程中,除了等待落盘无所事事。 X-Engine为了进一步提升事务处理的吞吐,使用流水线技术,把提交阶段分为4个独立的更精细的阶段: 拷贝日志到缓冲区(Log Buffer) 日志落盘(Log Flush) 写内存表(Write memory table) 提交返回(Commit) 事务到了提交阶段,可以自由选择执行流水线中任意一个阶段,只要流水线任务的大小划分得当,就能充分并行起来,流水线处于接近满载状态。另外这里利用的是事务处理的线程,而非后台线程,每个线程在执行的时候,选择流水线中的一个阶段执行任务,或者空闲后处理其他请求,没有等待,也无需切换,充分利用了每个线程的能力。 读操作 LSM处理多版本数据的方式是新版本数据记录会追加在老版本数据后面,从物理上看,一条记录不同的版本可能存放在不同的层,在查询的时候需要找到合适的版本(根据事务隔离级别定义的可见性规则),一般查询都是查找最新的数据,总是由最高的层次往低层次找。 对于单条记录的查找而言,一旦找到便可以终止,如果记录在比较高的层次,例如memory tables,很快便可以返回;如果记录已经落入了很低的层次,那就得逐层查找,也许Bloom Filter可以跳过某些层次加快这个旅程,但毕竟还是有很多的I/O操作。X-Engine针对单记录查询引入了Row Cache,在所有持久化的层次的数据之上做了一个缓存,在memory tables中没有命中的单行查询,在Row Cache之中也会被捕获。Row Cache需要保证缓存了所有持久化层次中最新版本的记录,而这个记录是可能发生变化的,例如每次flush将只读的memory tables写入持久化层次时,就需要恰当的更新Row Cache中的缓存记录,这个操作比较微妙,需要精心的设计。 对于范围扫描而言,因为没法确定一个范围的key在哪个层次中有数据,只能扫描所有的层次做合并之后才能返回最终的结果。X-Engine采用了一系列的手段,例如SuRF(SIGMOD'18 best paper)提供range scan filter减少扫描层数、异步I/O与预取。 读操作中最核心的是缓存设计,Row Cache负责单行查询,Block Cache负责Row Cache的漏网之鱼,也用来进行范围扫描。由于LSM的Compaction操作会一次更新大量的Data Block,导致Block Cache中大量数据短时间内失效,导致性能的急剧抖动,因此X-Engine做了很多的优化: 减少Compaction的粒度。 减少Compaction过程中改动的数据。 Compaction过程中针对已有的缓存数据做定点更新。 Compaction Compaction操作是比较重要的,需要把相邻层次交叉的Key Range数据读取合并,然后写到新的位置。这是为前面简单的写入操作付出的代价。X-Engine为优化这个操作重新设计了存储结构。 如前文所述,X-Engine将每一层的数据划分为固定大小的Extent,一个Extent相当于一个小而完整的排序字符串表(SSTable),存储了一个层次中的一个连续片段,连续片段又进一步划分为一个个连续的更小的片段Data Block,相当于传统数据库中的Page,只不过Data Block是只读而且不定长的。 回看并对比Metadata Snapshot 1和Metadata Snapshot 2,可以发现Extent的设计意图。每次修改只需要修改少部分有交叠的数据,以及涉及到的Meta Index节点。两个Metadata Snapshot结构实际上共用了大量的数据结构,这被称为数据复用技术(Data Reuse),而Extent大小正是影响数据复用率的关键,Extent作为一个完整的被复用的物理结构,需要尽可能的小,这样与其他Extent数据交叉点会变少,但又不能非常小,否则需要索引过多,管理成本太大。 X-Engine中Compaction的数据复用是非常彻底的,假设选取两个相邻层次(Level1, Level2)中的交叉的Key Range所涵盖的Extents进行合并,合并算法会逐行进行扫描,只要发现任意的物理结构(包括Data Block和Extent)与其他层中的数据没有交叠,则可以进行复用。只不过Extent的复用可以修改Meta Index,而Data Block的复用只能拷贝,即便如此也可以节省大量的CPU。 一个典型的数据复用在Compaction中的过程可以参考下图。 可以看出数据复用的过程是在逐行迭代的过程中完成的,不过这种精细的数据复用带来另一个副作用,即数据的碎片化,所以在实际操作的过程中也需要根据实际情况进行分析。 数据复用不仅给Compaction操作本身带来好处,降低操作过程中的I/O与CPU消耗,更对系统的综合性能产生一系列的影响。例如c、Compaction过程中数据不用完全重写,大大降低了写入时空间的增大;大部分数据保持原样,数据缓存不会因为数据更新而失效,减少合并过程中因缓存失效带来的读性能抖动。 实际上,优化Compaction的过程只是X-Engine工作的一部分,更重要的是优化Compaction调度的策略,选什么样的Extent、定义compaction任务的粒度、执行的优先级等,都会对整个系统性能产生影响,可惜并不存在什么完美的策略,X-Engine积累了一些经验,定义了很多规则,而探索更合理的调度策略是未来一个重要方向。 适用场景 请参见X-Engine最佳实践。 如何使用X-Engine 请参见使用X-Engine引擎。 后续发展 作为MySQL的存储引擎,持续地提升MySQL系统的兼容能力是一个重要目标,后续会根据需求的迫切程度逐步加强原本取消的一些功能,例如外键,以及对一些数据结构、索引类型的支持。 X-Engine作为存储引擎,核心的价值还在于性价比,持续提升性能降低成本,是一个长期的根本目标,X-Engine还在Compaction调度、缓存管理与优化、数据压缩、事务处理等方向上进行深层次的探索。 X-Engine不仅仅局限为一个单机的数据库存储引擎,未来还将作为自研分布式数据库POLARDB分布式版本的核心,提供企业级数据库服务。

游客yl2rjx5yxwcam 2020-03-08 13:24:40 0 浏览量 回答数 0

回答

简介 ES是一个基于RESTful web接口并且构建在Apache Lucene之上的开源分布式搜索引擎。 同时ES还是一个分布式文档数据库,其中每个字段均可被索引,而且每个字段的数据均可被搜索,能够横向扩展至数以百计的服务器存储以及处理PB级的数据。 可以在极短的时间内存储、搜索和分析大量的数据。通常作为具有复杂搜索场景情况下的核心发动机。 ES就是为高可用和可扩展而生的。一方面可以通过升级硬件来完成系统扩展,称为垂直或向上扩展(Vertical Scale/Scaling Up)。 另一方面,增加更多的服务器来完成系统扩展,称为水平扩展或者向外扩展(Horizontal Scale/Scaling Out)。尽管ES能够利用更强劲的硬件,但是垂直扩展毕竟还是有它的极限。真正的可扩展性来自于水平扩展,通过向集群中添加更多的节点来分担负载,增加可靠性。ES天生就是分布式的,它知道如何管理多个节点来完成扩展和实现高可用性。意味应用不需要做任何的改动。 Gateway,代表ES索引的持久化存储方式。在Gateway中,ES默认先把索引存储在内存中,然后当内存满的时候,再持久化到Gateway里。当ES集群关闭或重启的时候,它就会从Gateway里去读取索引数据。比如LocalFileSystem和HDFS、AS3等。 DistributedLucene Directory,它是Lucene里的一些列索引文件组成的目录。它负责管理这些索引文件。包括数据的读取、写入,以及索引的添加和合并等。 River,代表是数据源。是以插件的形式存在于ES中。  Mapping,映射的意思,非常类似于静态语言中的数据类型。比如我们声明一个int类型的变量,那以后这个变量只能存储int类型的数据。比如我们声明一个double类型的mapping字段,则只能存储double类型的数据。 Mapping不仅是告诉ES,哪个字段是哪种类型。还能告诉ES如何来索引数据,以及数据是否被索引到等。 Search Moudle,搜索模块,支持搜索的一些常用操作 Index Moudle,索引模块,支持索引的一些常用操作 Disvcovery,主要是负责集群的master节点发现。比如某个节点突然离开或进来的情况,进行一个分片重新分片等。这里有个发现机制。 发现机制默认的实现方式是单播和多播的形式,即Zen,同时也支持点对点的实现。另外一种是以插件的形式,即EC2。 Scripting,即脚本语言。包括很多,这里不多赘述。如mvel、js、python等。    Transport,代表ES内部节点,代表跟集群的客户端交互。包括 Thrift、Memcached、Http等协议 RESTful Style API,通过RESTful方式来实现API编程。 3rd plugins,代表第三方插件。 Java(Netty),是开发框架。 JMX,是监控。 使用案例 1、将ES作为网站的主要后端系统 比如现在搭建一个博客系统,对于博客帖子的数据可以直接在ES上存储,并且使用ES来进行检索,统计。ES提供了持久化的存储、统计和很多其他数据存储的特性。 注意:但是像其他的NOSQL数据存储一样,ES是不支持事务的,如果要事务机制,还是考虑使用其他的数据库做真实库。 2、将ES添加到现有系统 有些时候不需要ES提供所有数据的存储功能,只是想在一个数据存储的基础之上使用ES。比如已经有一个复杂的系统在运行,但是现在想加一个搜索的功能,就可以使用该方案。 3、将ES作为现有解决方案的后端部分 因为ES是开源的系统,提供了直接的HTTP接口,并且现在有一个大型的生态系统在支持他。比如现在我们想部署大规模的日志框架、用于存储、搜索和分析海量的事件,考虑到现有的工具可以写入和读取ES,可以不需要进行任何开发,配置这些工具就可以去运作。 设计结构 1、逻辑设计 文档 文档是可以被索引的信息的基本单位,它包含几个重要的属性: 是自我包含的。一篇文档同时包含字段和他们的取值。 是层次型的。文档中还可以包含新的文档,一个字段的取值可以是简单的,例如location字段的取值可以是字符串,还可以包含其他字段和取值,比如可以同时包含城市和街道地址。 拥有灵活的结构。文档不依赖于预先定义的模式。也就是说并非所有的文档都需要拥有相同的字段,并不受限于同一个模式 {   "name":"meeting",   "location":"office",   "organizer":"yanping" } {   "name":"meeting",   "location":{     "name":"sheshouzuo",        "date":"2019-6-28"   },   "memebers":["leio","shiyi"] } 类型 类型是文档的逻辑容器,类似于表格是行的容器。在不同的类型中,最好放入不同的结构的文档。 字段 ES中,每个文档,其实是以json形式存储的。而一个文档可以被视为多个字段的集合。 映射 每个类型中字段的定义称为映射。例如,name字段映射为String。 索引 索引是映射类型的容器一个ES的索引非常像关系型世界中的数据库,是独立的大量文档集合。   关系型数据库与ES的结构上的对比 2、物理设计 节点 一个节点是一个ES的实例,在服务器上启动ES之后,就拥有了一个节点,如果在另一个服务器上启动ES,这就是另一个节点。甚至可以在一台服务器上启动多个ES进程,在一台服务器上拥有多个节点。多个节点可以加入同一个集群。 当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示: 节点主要有3种类型,第一种类型是client_node,主要是起到请求分发的作用,类似路由。第二种类型是master_node,是主的节点,所有的新增,删除,数据分片都是由主节点操作(elasticsearch底层是没有更新数据操作的,上层对外提供的更新实际上是删除了再新增),当然也能承担搜索操作。第三种类型是date_node,该类型的节点只能做搜索操作,具体会分配到哪个date_node,就是由client_node决定,而data_node的数据都是从master_node同步过来的 分片 一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。   为了解决这个问题,ES提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。 分片之所以重要,主要有两方面的原因:   1、允许你水平分割/扩展你的内容容量 允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量 至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由ES管理的,对于作为用户的你来说,这些都是透明的。   2、在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,ES允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。 复制之所以重要,主要有两方面的原因: (1)在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。 (2)扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行 总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。   默认情况下,ES中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。 3、插件HEAD elasticsearch-head是一个界面化的集群操作和管理工具 ● node:即一个 Elasticsearch 的运行实例,使用多播或单播方式发现 cluster 并加入。 ● cluster:包含一个或多个拥有相同集群名称的 node,其中包含一个master node。 ● index:类比关系型数据库里的DB,是一个逻辑命名空间。 ● alias:可以给 index 添加零个或多个alias,通过 alias 使用index 和根据index name 访问index一样,但是,alias给我们提供了一种切换index的能力,比如重建了index,取名● customer_online_v2,这时,有了alias,我要访问新 index,只需要把 alias 添加到新 index 即可,并把alias从旧的 index 删除。不用修改代码。 ● type:类比关系数据库里的Table。其中,一个index可以定义多个type,但一般使用习惯仅配一个type。 ● mapping:类比关系型数据库中的 schema 概念,mapping 定义了 index 中的 type。mapping 可以显示的定义,也可以在 document 被索引时自动生成,如果有新的 field,Elasticsearch 会自动推测出 field 的type并加到mapping中。 ● document:类比关系数据库里的一行记录(record),document 是 Elasticsearch 里的一个 JSON 对象,包括零个或多个field。 ● field:类比关系数据库里的field,每个field 都有自己的字段类型。 ● shard:是一个Lucene 实例。Elasticsearch 基于 Lucene,shard 是一个 Lucene 实例,被 Elasticsearch 自动管理。之前提到,index 是一个逻辑命名空间,shard 是具体的物理概念,建索引、查询等都是具体的shard在工作。shard 包括primary shard 和 replica shard,写数据时,先写到primary shard,然后,同步到replica shard,查询时,primary 和 replica 充当相同的作用。replica shard 可以有多份,也可以没有,replica shard的存在有两个作用,一是容灾,如果primary shard 挂了,数据也不会丢失,集群仍然能正常工作;二是提高性能,因为replica 和 primary shard 都能处理查询。另外,如上图右侧红框所示,shard数和replica数都可以设置,但是,shard 数只能在建立index 时设置,后期不能更改,但是,replica 数可以随时更改。但是,由于 Elasticsearch 很友好的封装了这部分,在使用Elasticsearch 的过程中,我们一般仅需要关注 index 即可,不需关注shard。   shard、node、cluster 在物理上构成了 Elasticsearch 集群,field、type、index 在逻辑上构成一个index的基本概念,在使用 Elasticsearch 过程中,我们一般关注到逻辑概念就好,就像我们在使用MySQL 时,我们一般就关注DB Name、Table和schema即可,而不会关注DBA维护了几个MySQL实例、master 和 slave 等怎么部署的一样。 ES中的索引原理 (1)传统的关系型数据库 二叉树查找效率是logN,同时插入新的节点不必移动全部节点,所以用树型结构存储索引,能同时兼顾插入和查询的性能。因此在这个基础上,再结合磁盘的读取特性(顺序读/随机读),传统关系型数据库采用了B-Tree/B+Tree这样的数据结构做索引 (2)ES 采用倒排索引 那么,倒排索引是个什么样子呢? 首先,来搞清楚几个概念,为此,举个例子: 假设有个user索引,它有四个字段:分别是name,gender,age,address。画出来的话,大概是下面这个样子,跟关系型数据库一样 Term(单词):一段文本经过分析器分析以后就会输出一串单词,这一个一个的就叫做Term Term Dictionary(单词字典):顾名思义,它里面维护的是Term,可以理解为Term的集合 Term Index(单词索引):为了更快的找到某个单词,我们为单词建立索引 Posting List(倒排列表):倒排列表记录了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。(PS:实际的倒排列表中并不只是存了文档ID这么简单,还有一些其它的信息,比如:词频(Term出现的次数)、偏移量(offset)等,可以想象成是Python中的元组,或者Java中的对象) (PS:如果类比现代汉语词典的话,那么Term就相当于词语,Term Dictionary相当于汉语词典本身,Term Index相当于词典的目录索引) 我们知道,每个文档都有一个ID,如果插入的时候没有指定的话,Elasticsearch会自动生成一个,因此ID字段就不多说了 上面的例子,Elasticsearch建立的索引大致如下: name字段: age字段: gender字段: address字段: Elasticsearch分别为每个字段都建立了一个倒排索引。比如,在上面“张三”、“北京市”、22 这些都是Term,而[1,3]就是Posting List。Posting list就是一个数组,存储了所有符合某个Term的文档ID。 只要知道文档ID,就能快速找到文档。可是,要怎样通过我们给定的关键词快速找到这个Term呢? 当然是建索引了,为Terms建立索引,最好的就是B-Tree索引(MySQL就是B树索引最好的例子)。 我们查找Term的过程跟在MyISAM中记录ID的过程大致是一样的 MyISAM中,索引和数据是分开,通过索引可以找到记录的地址,进而可以找到这条记录 在倒排索引中,通过Term索引可以找到Term在Term Dictionary中的位置,进而找到Posting List,有了倒排列表就可以根据ID找到文档了 (PS:可以这样理解,类比MyISAM的话,Term Index相当于索引文件,Term Dictionary相当于数据文件) (PS:其实,前面我们分了三步,我们可以把Term Index和Term Dictionary看成一步,就是找Term。因此,可以这样理解倒排索引:通过单词找到对应的倒排列表,根据倒排列表中的倒排项进而可以找到文档记录) 为了更进一步理解,用两张图来具现化这一过程: (至于里面涉及的更加高深的数据压缩技巧,以及多个field联合查询利用跳表的数据结构快速做运算来查询,这些大家有兴趣可以自己去了解)

问问小秘 2020-04-29 15:40:48 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 阿里云双十一主会场 阿里云双十一新人会场 1024程序员加油包 阿里云双十一拼团会场 场景化解决方案 阿里云双十一直播大厅