• 关于

    数据采集和处理干什么用的

    的搜索结果

回答

更换服务器~100个是单服务器最大的负荷了你用的是镶嵌式的,要选择服务器机组的那种~刀片式服务器~然后oracl数据库支持分开安装。同步处理~ 你肯定买的是架式服务器~######装ORACLE服务器是刀片式的,6核至强 24G的内存 应该不是服务器瓶颈######oracl装在独立的一台服务器上的话,只支持小形企业和地、市级企业运行 你说的情况,可以理解你的数据量非常庞大,,有可能是省、国家级的数据量了~~ 让你单位给你单独开个服务器房间,更换服务器机柜然后购买刀片式服务器做服务器阵列机组~######数据量倒不会太大,一天1G不到,问题是很多存储过程的逻辑很复杂,一条线程调用存储过程,要等待很久才会返回,直接导致工作线程速度很慢,数据进入速度太快,工作异常状态频繁出现。######必须要实时的存入数据库吗?不能先缓存到服务器,然后让服务器慢慢去处理吗?或者直接将数据记入日志,然后sqlload?######回复 @xinzaibing : 我想到一个蛋疼的方式:数据写文件,文件内容定期入库,程序定期读取数据库计算的结果缓存到内存中。不知道你具体需求,瞎琢磨一个。######回复 @asdfsx : 公司领导一致认为内存不可靠,断电、程序异常什么的...存在内存的数据就没了...真是蛋疼啊######回复 @xinzaibing : 如果数据量不大的话,还有一个方案就是都保存在内存里,然后定时把内存里的结果同步到数据库里。数据库的逻辑挪到程序里..........这个方案比较累啊。另外就是缓存可以加个优先级高低的判断。######目前要求是必须要实时入库,采取写日志文件的方法也可以。 这些数据有一个特点,在某一个时刻会有一个突然出现的峰值,然后又慢慢变少,但是这个时间是不固定的,由于只实用了一条双缓冲队列,所有需要紧急处理的数据和非紧急处理的数据都在队列里,而如果遇到非紧急数据,处理了很长的时间,就直接导致后面的紧急数据失效了...或者导致嵌入式程序判断服务端未收到数据,进而采取重发,导致一条队列里有非常多重复的数据。######我可能会使用数据写入日志文件,然后定时将日志入库的办法操作######大概意思可能是多线程对数据库表的操作导致数据表锁定,性能损失在内耗上了。。那数据表采用行级锁呢?(这样会增大系统开销)我是菜鸟,求教  ######回复 @xinzaibing : 这个应该是属于最初的设计问题,hohoho######回复 @asdfsx : 目前我也在往这方面考虑,如果数据分类处理。那就得大改结构了...唉######回复 @xinzaibing : 建议根据上传的不同数据进行不同的处理,不要一股脑的都放在缓存中,如果是心跳的话,应该立即响应,如果是要处理的数据的话,才需要进行缓存等待处理######ORACLE默认就是行级锁的应该.. 主要是数据的写入速度远远小于数据上传的速度,导致了缓存溢出,紧急数据不能得到及时处理,大量数据出现超时失效,无法对嵌入式的采集器程序作出及时的心跳相应和其他回复(因为都在队列中,无法处理,无心跳的话嵌入式采集器会误认为服务器断线)。最终导致单台服务器接入数据的嵌入式设备的数量太少,不满足需求。######去年刚毕业,由于公司小,一个人搞后台,压力太大啊...大家指指招呗~ @中山野鬼######今天到图书馆看了一本书《让Orcale跑的更快点》,上面说可以从如下几个方面优化: 数据库方面:建适当的索引,固定长度;查询条件比较尽量简化;不同的表放在不同的磁盘里…… 服务层:增大缓存,(有没有数据库连接池不知道你能用上不) 软件层:对Java使用PaperStatement 囫囵吞枣就记得这么多了。。。哭~~######非常感谢...我去看看这本书 :)######我不清楚你的数据采集的内容是什么。不过看的出,对实时性要求高。换我,基本上就一个思路。 1、做个前段服务器,什么事情都不干,只进行数据的压缩。然后所有数据库和计算操作,放到后端。 至于并发,你这种 1W=100台服务器的方式治标不治本。######@中山野鬼 是说对数据进行预处理,提取有效内容?还是就是zip?######回复 @asdfsx : 不一样的。而是数据压缩。采样数据中间,信息密度不会太大的。######老鬼的思路有点像我说的那个数据写日志文件,或者内存缓存定时入库...........都被否定了啊######@xinzaibing 还有一个建议,上传的数据加一个验证,如果上传的数据已经插入缓存,就不要再次插入了。无脑插入插到崩也不是什么好主意啊######回复 @asdfsx : 要回复的,要处理成功后才回复,存库失败或者某些异常导致服务端崩溃重启,就不进行回复,客户端会持续地进行重发,重发到一定次数后,存本地,等恢复正常后发送存本地的数据

kun坤 2020-06-09 11:56:38 0 浏览量 回答数 0

问题

【精品锦集】中间件热门02

问问小秘 2019-12-01 19:52:34 52 浏览量 回答数 0

问题

MaxCompute百问集锦

yq传送门 2019-12-01 20:16:47 2404 浏览量 回答数 1

Quick BI 数据可视化分析平台

2020年入选全球Gartner ABI魔力象限,为中国首个且唯一入选BI产品

问题

MaxCompute百问集锦(持续更新20171011)

隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

回答

面试官心理分析 其实面试官主要是想看看: 第一,你知不知道你们系统里为什么要用消息队列这个东西? 不少候选人,说自己项目里用了 Redis、MQ,但是其实他并不知道自己为什么要用这个东西。其实说白了,就是为了用而用,或者是别人设计的架构,他从头到尾都没思考过。 没有对自己的架构问过为什么的人,一定是平时没有思考的人,面试官对这类候选人印象通常很不好。因为面试官担心你进了团队之后只会木头木脑的干呆活儿,不会自己思考。 第二,你既然用了消息队列这个东西,你知不知道用了有什么好处&坏处? 你要是没考虑过这个,那你盲目弄个 MQ 进系统里,后面出了问题你是不是就自己溜了给公司留坑?你要是没考虑过引入一个技术可能存在的弊端和风险,面试官把这类候选人招进来了,基本可能就是挖坑型选手。就怕你干 1 年挖一堆坑,自己跳槽了,给公司留下无穷后患。 第三,既然你用了 MQ,可能是某一种 MQ,那么你当时做没做过调研? 你别傻乎乎的自己拍脑袋看个人喜好就瞎用了一个 MQ,比如 Kafka,甚至都从没调研过业界流行的 MQ 到底有哪几种。每一个 MQ 的优点和缺点是什么。每一个 MQ 没有绝对的好坏,但是就是看用在哪个场景可以扬长避短,利用其优势,规避其劣势。 如果是一个不考虑技术选型的候选人招进了团队,leader 交给他一个任务,去设计个什么系统,他在里面用一些技术,可能都没考虑过选型,最后选的技术可能并不一定合适,一样是留坑。 面试题剖析 为什么使用消息队列 其实就是问问你消息队列都有哪些使用场景,然后你项目里具体是什么场景,说说你在这个场景里用消息队列是什么? 面试官问你这个问题,期望的一个回答是说,你们公司有个什么业务场景,这个业务场景有个什么技术挑战,如果不用 MQ 可能会很麻烦,但是你现在用了 MQ 之后带给了你很多的好处。 先说一下消息队列常见的使用场景吧,其实场景有很多,但是比较核心的有 3 个:解耦、异步、削峰。 解耦 看这么个场景。A 系统发送数据到 BCD 三个系统,通过接口调用发送。如果 E 系统也要这个数据呢?那如果 C 系统现在不需要了呢?A 系统负责人几乎崩溃...... 在这个场景中,A 系统跟其它各种乱七八糟的系统严重耦合,A 系统产生一条比较关键的数据,很多系统都需要 A 系统将这个数据发送过来。A 系统要时时刻刻考虑 BCDE 四个系统如果挂了该咋办?要不要重发,要不要把消息存起来?头发都白了啊! 如果使用 MQ,A 系统产生一条数据,发送到 MQ 里面去,哪个系统需要数据自己去 MQ 里面消费。如果新系统需要数据,直接从 MQ 里消费即可;如果某个系统不需要这条数据了,就取消对 MQ 消息的消费即可。这样下来,A 系统压根儿不需要去考虑要给谁发送数据,不需要维护这个代码,也不需要考虑人家是否调用成功、失败超时等情况。 总结:通过一个 MQ,Pub/Sub 发布订阅消息这么一个模型,A 系统就跟其它系统彻底解耦了。 面试技巧:你需要去考虑一下你负责的系统中是否有类似的场景,就是一个系统或者一个模块,调用了多个系统或者模块,互相之间的调用很复杂,维护起来很麻烦。但是其实这个调用是不需要直接同步调用接口的,如果用 MQ 给它异步化解耦,也是可以的,你就需要去考虑在你的项目里,是不是可以运用这个 MQ 去进行系统的解耦。在简历中体现出来这块东西,用 MQ 作解耦。 异步 再来看一个场景,A 系统接收一个请求,需要在自己本地写库,还需要在 BCD 三个系统写库,自己本地写库要 3ms,BCD 三个系统分别写库要 300ms、450ms、200ms。最终请求总延时是 3 + 300 + 450 + 200 = 953ms,接近 1s,用户感觉搞个什么东西,慢死了慢死了。用户通过浏览器发起请求,等待个 1s,这几乎是不可接受的。 一般互联网类的企业,对于用户直接的操作,一般要求是每个请求都必须在 200 ms 以内完成,对用户几乎是无感知的。 如果使用 MQ,那么 A 系统连续发送 3 条消息到 MQ 队列中,假如耗时 5ms,A 系统从接受一个请求到返回响应给用户,总时长是 3 + 5 = 8ms,对于用户而言,其实感觉上就是点个按钮,8ms 以后就直接返回了,爽!网站做得真好,真快! 削峰 每天 0:00 到 12:00,A 系统风平浪静,每秒并发请求数量就 50 个。结果每次一到 12:00 ~ 13:00 ,每秒并发请求数量突然会暴增到 5k+ 条。但是系统是直接基于 MySQL 的,大量的请求涌入 MySQL,每秒钟对 MySQL 执行约 5k 条 SQL。 一般的 MySQL,扛到每秒 2k 个请求就差不多了,如果每秒请求到 5k 的话,可能就直接把 MySQL 给打死了,导致系统崩溃,用户也就没法再使用系统了。 但是高峰期一过,到了下午的时候,就成了低峰期,可能也就 1w 的用户同时在网站上操作,每秒中的请求数量可能也就 50 个请求,对整个系统几乎没有任何的压力。 如果使用 MQ,每秒 5k 个请求写入 MQ,A 系统每秒钟最多处理 2k 个请求,因为 MySQL 每秒钟最多处理 2k 个。A 系统从 MQ 中慢慢拉取请求,每秒钟就拉取 2k 个请求,不要超过自己每秒能处理的最大请求数量就 ok,这样下来,哪怕是高峰期的时候,A 系统也绝对不会挂掉。而 MQ 每秒钟 5k 个请求进来,就 2k 个请求出去,结果就导致在中午高峰期(1 个小时),可能有几十万甚至几百万的请求积压在 MQ 中。 这个短暂的高峰期积压是 ok 的,因为高峰期过了之后,每秒钟就 50 个请求进 MQ,但是 A 系统依然会按照每秒 2k 个请求的速度在处理。所以说,只要高峰期一过,A 系统就会快速将积压的消息给解决掉。 消息队列有什么优缺点 优点上面已经说了,就是在特殊场景下有其对应的好处,解耦、异步、削峰。 缺点有以下几个: 系统可用性降低 系统引入的外部依赖越多,越容易挂掉。本来你就是 A 系统调用 BCD 三个系统的接口就好了,ABCD 四个系统还好好的,没啥问题,你偏加个 MQ 进来,万一 MQ 挂了咋整?MQ 一挂,整套系统崩溃,你不就完了?如何保证消息队列的高可用,可以点击这里查看。 系统复杂度提高 硬生生加个 MQ 进来,你怎么保证消息没有重复消费?怎么处理消息丢失的情况?怎么保证消息传递的顺序性?头大头大,问题一大堆,痛苦不已。 一致性问题 A 系统处理完了直接返回成功了,人都以为你这个请求就成功了;但是问题是,要是 BCD 三个系统那里,BD 两个系统写库成功了,结果 C 系统写库失败了,咋整?你这数据就不一致了。 所以消息队列实际是一种非常复杂的架构,你引入它有很多好处,但是也得针对它带来的坏处做各种额外的技术方案和架构来规避掉,做好之后,你会发现,妈呀,系统复杂度提升了一个数量级,也许是复杂了 10 倍。但是关键时刻,用,还是得用的。 综上,各种对比之后,有如下建议: 一般的业务系统要引入 MQ,最早大家都用 ActiveMQ,但是现在确实大家用的不多了,没经过大规模吞吐量场景的验证,社区也不是很活跃,所以大家还是算了吧,我个人不推荐用这个了; 后来大家开始用 RabbitMQ,但是确实 erlang 语言阻止了大量的 Java 工程师去深入研究和掌控它,对公司而言,几乎处于不可控的状态,但是确实人家是开源的,比较稳定的支持,活跃度也高; 不过现在确实越来越多的公司会去用 RocketMQ,确实很不错,毕竟是阿里出品,但社区可能有突然黄掉的风险(目前 RocketMQ 已捐给 Apache,但 GitHub 上的活跃度其实不算高)对自己公司技术实力有绝对自信的,推荐用 RocketMQ,否则回去老老实实用 RabbitMQ 吧,人家有活跃的开源社区,绝对不会黄。 所以中小型公司,技术实力较为一般,技术挑战不是特别高,用 RabbitMQ 是不错的选择;大型公司,基础架构研发实力较强,用 RocketMQ 是很好的选择。 如果是大数据领域的实时计算、日志采集等场景,用 Kafka 是业内标准的,绝对没问题,社区活跃度很高,绝对不会黄,何况几乎是全世界这个领域的事实性规范。

剑曼红尘 2020-04-16 16:34:44 0 浏览量 回答数 0

问题

【archsummit 回顾】阿里云章文嵩:构建大型云计算平台分布式技术的实践

云课堂 2019-12-01 21:03:36 14448 浏览量 回答数 9

问题

大数据被用来犯罪怎么办

游客ftkex2f22paya 2019-12-01 19:34:14 2 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站