• 关于

    去中心化网络是什么

    的搜索结果

回答

从比特币出现到现在,我们一直为比特币的理念--去中心化而着迷不已,但是我们真的能做到去中心化吗?这是否只是一个乌托邦? 首先,人类社会是多中心化的,即使全世界所有的人被随机打乱,还是很快形成一个个国家,社会和利益团体。为什么?因为这样你才能有更大的话语权,你才能更好的保证自己的利益。一方面,大的利益机构之间不断抱团,另一方面,小的利益机构的生存空间不断被压缩,乃至消亡。所以有位人生导师和专员说,未来社会可能是自治的,专员不这么认为,至少我认为在自己有生之前,应该只能看到人治的社会。 那区块链呢?我们无法在现实世界完成的理想,能否在区块链中得到实现?专员对此表示悲观状态。 以比特币为例,中本聪利用PoW算法并且在区块链尝试,成功的做到了一个小目标--人人平等,所有人都要遵循比特币的挖矿协议,没有人能够例外。但是有一件事他没办法阻止--上天对每个人的给与是不同的。有一些人的机器好,有一些人的机器差,挖出来的比特币数量完全不一样,而前者可以有更多的前去买更好的机器,长此以往,贫富差距越来越大。 这个时候弱者能怎么办? 要么退出这个游戏,要么抱团,依附强者。所以,一个个矿池出现,开始以一个共同体进行发声,和其他强者进行对话,竞争。所以你看,比特币虽然号称是去中心化的,然而现在早已经是多中心化的,很多大的矿池都垄断着10%以上的算力,而专员前段时间还听到一个新闻--比特大陆旗下三家子公司的算力总和超过了51%.也就是说,如果他们愿意,他们可以操纵比特币网络的走向,获得至少99%的收益。 以太坊和EOS 以太坊也是一样,也是多中心化的。EOS人家更直接,一开始上来就说,我要搞21个超级节点,反正都是多中心的,我就直接摆在明面上,我就那么多中心节点,你们自己去争,能争到都是你们的。 专员上面说了那么多,只是想表达一个观点--人类社会是多中心的,区块链也是。 那区块链就做不到完全去中心化吗? 专员倒觉得有机会,但是条件比较苛刻。 首先,完全的去中心化意味着无人监管。 无人监管看起来很理想,但是实际上暗潮涌动,你不能假设所有人都是好人,事实上所有人都可能是坏人。比特币一开始饱受抨击,为啥,因为有很多大毒枭利用比特币进行非法的操作,比如洗qian.这就是技术的阴暗面,你可以用技术造福人类,就有人会用技术来完成自己的私欲。当然,技术本身是无罪的,有罪的是利用技术犯罪的那些人,但是你无法保证所有人都不去踩这条红线。国家作为治理犯罪、维护平衡的主体,必须要对上述这些行为进行监管,否则会出乱子。 其次,完全的去中心化意味着投机成本降低,投机者的行为更不好预测。 还是以比特币为例,去年一大堆团队搞IFO,进行比特币分叉,忽悠散户去买IFO的代币。糖果嘛,反正是不要钱的,随便砸呗,总会有人接盘的。还是那句话,所有人都赚钱了,钱从哪里来? 第三,完全的去中心化意味着开发进度缓慢。 以以太坊为例,以太坊作为一个自发的社区,其对社区成员没有一个约束力,如果你是社区开发者,项目开发到一半忽然发现自己手里的代币已经让你财务自由了,还写毛线代码,所以以太坊的PoS、分片搞了那么久才出来,也是这个原因。 而EOS前期通过Block.one这家公司进行宣传、开发的运作,以BM为主要负责人进行推进,才在短时间内迅速成为有机会挑战ETH的产品。如果使用纯社区的形式,估计这个进程要推迟2-3年。 第四,有人的地方就有江湖。 对于利益无关方来说,当然是希望越公开透明,越去中心化越好,但是对于有利益冲突方而言,当然尽量希望保证自己的利益。打个比如,如果这个时候BTC修改共识算法,弱化了矿池的能力,说不准会引起大的矿场场主立刻硬分叉,到时候主链变侧链,侧链变主链,事实上,这并不是没有可能的一件事。 而EOS就直接推动了这一进程的发展,一开始就划了21个位置,你们自己争好了,最后能成为超级节点的机构一定不弱,即使弱也不会跟其他节点差很多。
问问小秘 2019-12-02 03:07:13 0 浏览量 回答数 0

回答

说到区块链,我们必然会谈及它的共识机制。不了解区块链的共识机制,就无法理解区块链的真正意义。那么,今日份的区块链的共识机制了解一下? 共识机制是什么? 什么是共识?直取它的字面意思,就是"共同的认识". 人与人是不同的,这种不同不仅体现在身材、长相、能力,更体现在文化、观点、想法、利益诉求等等方面。 共识,简而言之,就是一个群体的成员在某一方面达成的一致意见。 我们了解到,信任是社会运转中的一大痛点,银行有自己的信用体系,过去的金融体系服务于只服务于极少的企业家,因为建立信用体系耗资巨大。后来支付宝有了芝麻信用,信用已经关系到生活的很多方面,信用卡额度、花呗额度,芝麻信用高出国还可以免签。我们正享受着信用给我们带来的便捷。 区块链本质是去中心化,去中心化的核心是共识机制,区块链上的共识机制主要解决由谁来构造区块,以及如何维护区块链统一的问题。 区块链共识机制的目标是使所有的诚实节点保存一致的区块链视图,同时满足两个性质: 1)一致性:所有诚实节点保存的区块链的前缀部分完全相同。 2)有效性:由某诚实节点发布的信息终将被其他所有诚实节点记录在自己的区块链中。 区块链的自信任主要体现于分布于区块链中的用户无须信任交易的另一方,也无须信任一个中心化的机构,只需要信任区块链协议下的软件系统即可实现交易。 共识机制是什么?PoW 、PoS 、DPOW都是什么意思? 共识机制的必要性? 分布式系统中,多个主机通过异步通信方式组成网络集群。在这样的一个异步系统中,需要主机之间进行状态复制,以保证每个主机达成一致的状态共识。错误信息可能出现在异步系统内并不断传播,因此需要在默认不可靠的异步网络中定义容错协议,以确保各主机达成安全可靠的状态共识,这就是共识机制诞生的必要性。 这种自信任的前提是区块链的共识机制(consensus),即在一个互不信任的市场中,要想使各节点达成一致的充分必要条件是每个节点出于对自身利益最大化的考虑,都会自发、诚实地遵守协议中预先设定的规则,判断每一笔记录的真实性,最终将判断为真的记录记入区块链之中。attachments-2018-08-9yY7VRHa5b738e3d96021.jpg 换句话说,如果各节点具有各自独立的利益并互相竞争,则这些节点几乎不可能合谋欺骗你,而当节点们在网络中拥有公共信誉时,这一点体现得尤为明显。区块链技术正是运用一套基于共识的数学算法,在机器之间建立"信任"网络,从而通过技术背书而非中心化信用机构来进行全新的信用创造。 当今区块链的几种共识机制介绍 区块链上的共识机制有多种,但任何一种都不是完美无缺,或者说适用于所有应用场景的。 PoW 工作量证明 整个系统中每个节点为整个系统提供计算能力(简称算力),通过一个竞争机制,让计算工作完成最出色的节点获得系统的奖励,即完成新生成货币的分配,简单理解就是多劳多得,bitcoin、LTC等货币型区块链就应用POW机制。 优点 完全去中心化节点自由进出,算法简单,容易实现破坏系统花费的成本巨大,只要网络破坏者的算力不超过网络总算力的50%,网络的交易状态就能达成一致 缺点 浪费能源,这是最大的缺点区块的确认时间难以缩短,如bitcoin每秒只能做7笔交易,不适合商业应用新的区块链必须找到一种不同的散列算法,否则就会面临bitcoin的算力攻击对节点的性能网络环境要求高容易产生分叉,需要等待多个确认无法达成最终一致性 PoS 权益证明 也称股权证明,类似于你把财产存在银行,这种模式会根据你持有加密货币的数量和时间,分配给你相应的利息。 优点 对节点性能要求低,达成共识时间短 缺点 没有最终一致性,需要检查点机制来弥补最终性 DPOW 委托股权证明 DPOW是 PoS 的进化方案,在常规 PoW和 PoS 中,任何一个新加入的区块,都需要被整个网络所有节点做确认,非常影响效率。 DPoS则类似于现代董事会的投票机制,通过选举代表来进行投票和决策。被选举出的n个记账节点来做新区块的创建、验证、签名和相互监督,这样就极大地减少了区块创建和确认所需要消耗的时间和算力成本。 优点 大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证 缺点 牺牲了去中心化的概念,不适合公有链 PBFT 实用拜占庭容错 实用拜占庭容错机制是一种采用"许可投票、少数服从多数"来选举领导者并进行记账的共识机制,该共识机制允许拜占庭容错,允许强监督节点参与,具备权限分级能力,性能更高,耗能更低,而且每轮记账都会由全网节点共同选举领导者,允许33%的节点作恶,容错率为33%.实用拜占庭容错特别适合联盟链的应用场景。 优点 会背离中心化,加密货币的存在及奖励机制会产生马太效应,让社区中的穷者更穷,富者更富共识效率高,可实现高频交易 缺点 当系统只剩下33%的节点运行时,系统会停止运行 dBFT 授权拜占庭容错 这种机制是用权益来选出记账人,然后记账人之间通过拜占庭容错算法达成共识。授权拜占庭容错机制最核心的一点,就是最大限度地确保系统的最终性,使区块链能够适用于真正的金融应用场景。 优点 专业化的记账人可以容忍任何类型的错误记账由多人协同完成,每一个区块都有最终性,不会分叉算法的可靠性有严格的数学证明 缺点 当三分之一或以上记账人停止工作后,系统将无法提供服务当三分之一或以上记账人联合作恶,可能会使系统出现分叉 Pool 验证池 基于传统的分布式一致性技术,加上数据验证机制。 优点 不需要加密货币也可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础上,实现秒级共识验证。 缺点 去中心化程度不如bitcoin,更适合多方参与的多中心商业模式。 Paxos 这是一种传统的分布式一致性算法,是一种基于选举领导者的共识机制。领导者节点拥有绝对权限,并允许强监督节点参与,其性能高,资源消耗低。所有节点一般有线下准入机制,但选举过程中不允许有作恶节点,不具备容错性。 Paxos算法中将节点分为三种类型: proposer:提出一个提案,等待大家批准为结案。往往是客户端担任该角色 acceptor:负责对提案进行投票。往往是服务端担任该角色 learner:被告知结案结果,并与之统一,不参与投票过程。可能为客户端或服务端 Paxos 能保证在超过50%的正常节点存在时,系统能达成共识。 瑞波共识机制 瑞波共识算法使一组节点能够基于特殊节点列表形成共识,初始特殊节点列表就像一个俱乐部,要接纳一个新成员,必须由该俱乐部51%的会员投票通过。共识遵循这些核心成员的"51%权利",外部人员则没有影响力。由于该俱乐部由中心化开始,它将一直是中心化的,而如果它开始腐化,股东们什么也做不了。与bitcoin及Peercoin一样,瑞波系统将股东们与其投票权隔开,因此,它比其他系统更中心化。 Peercoin Peercoin(点点币,PPC),混合了POW工作量证明及POS权益证明方式,其中POW主要用于发行货币,未来预计随着挖矿难度上升,产量降低,系统安全主要由POS维护。 在区块链网络中,由于应用场景的不同,所设计的目标各异,不同的区块链系统采用了不同的共识算法。每种共识算法都不是完美的,都有其优点和局限性。 区块链解决了在不可信信道上传输可信信息、价值转移的问题,而共识机制解决了区块链如何分布式场景下达成一致性的问题。 虽然区块链目前还处于发展的早期,行业发展还面临着一些阻碍,但社会已经足够多地认识到区块链的价值,区块链发展的脚步绝不会停滞不前,行业发展也定会找到突破阻碍的方法。
问问小秘 2019-12-02 03:07:12 0 浏览量 回答数 0

回答

kafka 很多说不需要安装zk的是因为他们都使用了kafka自带的zk 至于kafka为什么使用zk,你首先要知道zk的作用, 作为去中心化的集群模式。 需要要消费者知道现在那些生产者(对于消费者而言,kafka就是生产者)是可用的。 如果没了zk消费者如何知道呢?如果每次消费者在消费之前都去尝试连接生产者测试下是否连接成功,效率呢? 所以kafka需要zk,在kafka的设计中就依赖了zk了。 答案来源于网络
养狐狸的猫 2019-12-02 03:02:55 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

100+款试用云产品,最长免费试用12个月!拨打95187-1,咨询专业上云建议!

回答

也就是说两台服务器A,B,一个应用部署在A服务器上,想要调用B服务器上应用提供的函数/方法,由于不在一个内存空间,不能直接调用,需要通过网络来表达调用的语义和传达调用的数据。 比如说,A服务器想调用B服务器上的一个方法: User getUserByName(String userName) 1、建立通信 首先要解决通讯的问题:即A机器想要调用B机器,首先得建立起通信连接。 主要是通过在客户端和服务器之间建立TCP连接,远程过程调用的所有交换的数据都在这个连接里传输。连接可以是按需连接,调用结束后就断掉,也可以是长连接,多个远程过程调用共享同一个连接。 通常这个连接可以是按需连接(需要调用的时候就先建立连接,调用结束后就立马断掉),也可以是长连接(客户端和服务器建立起连接之后保持长期持有,不管此时有无数据包的发送,可以配合心跳检测机制定期检测建立的连接是否存活有效),多个远程过程调用共享同一个连接。 2、服务寻址 要解决寻址的问题,也就是说,A服务器上的应用怎么告诉底层的RPC框架,如何连接到B服务器(如主机或IP地址)以及特定的端口,方法的名称名称是什么。 通常情况下我们需要提供B机器(主机名或IP地址)以及特定的端口,然后指定调用的方法或者函数的名称以及入参出参等信息,这样才能完成服务的一个调用。 可靠的寻址方式(主要是提供服务的发现)是RPC的实现基石,比如可以采用Redis或者Zookeeper来注册服务等等。 2.1、从服务提供者的角度看: 当服务提供者启动的时候,需要将自己提供的服务注册到指定的注册中心,以便服务消费者能够通过服务注册中心进行查找; 当服务提供者由于各种原因致使提供的服务停止时,需要向注册中心注销停止的服务; 服务的提供者需要定期向服务注册中心发送心跳检测,服务注册中心如果一段时间未收到来自服务提供者的心跳后,认为该服务提供者已经停止服务,则将该服务从注册中心上去掉。 2.2、从调用者的角度看: 服务的调用者启动的时候根据自己订阅的服务向服务注册中心查找服务提供者的地址等信息; 当服务调用者消费的服务上线或者下线的时候,注册中心会告知该服务的调用者; 服务调用者下线的时候,则取消订阅。 3、网络传输 3.1、序列化 当A机器上的应用发起一个RPC调用时,调用方法和其入参等信息需要通过底层的网络协议如TCP传输到B机器,由于网络协议是基于二进制的,所有我们传输的参数数据都需要先进行序列化(Serialize)或者编组(marshal)成二进制的形式才能在网络中进行传输。然后通过寻址操作和网络传输将序列化或者编组之后的二进制数据发送给B机器。 **3.2、反序列化 ** 当B机器接收到A机器的应用发来的请求之后,又需要对接收到的参数等信息进行反序列化操作(序列化的逆操作),即将二进制信息恢复为内存中的表达方式,然后再找到对应的方法(寻址的一部分)进行本地调用(一般是通过生成代理Proxy去调用, 通常会有JDK动态代理、CGLIB动态代理、Javassist生成字节码技术等),之后得到调用的返回值。 4、服务调用 B机器进行本地调用(通过代理Proxy和反射调用)之后得到了返回值,此时还需要再把返回值发送回A机器,同样也需要经过序列化操作,然后再经过网络传输将二进制数据发送回A机器,而当A机器接收到这些返回值之后,则再次进行反序列化操作,恢复为内存中的表达方式,最后再交给A机器上的应用进行相关处理(一般是业务逻辑处理操作)。 通常,经过以上四个步骤之后,一次完整的RPC调用算是完成了,另外可能因为网络抖动等原因需要重试等。
剑曼红尘 2020-03-15 15:40:38 0 浏览量 回答数 0

回答

都说区块链其实是一串数据所组成的,但是大家有没有想过这个问题,就是,如果区块链是由数据构成的话,那么这个具体的数据是存放在哪呢?又是如何去保存个人的信息数据的呢?所以小编就希望以这篇文章给各位朋友科普下! 2018年是区块链技术进入公众视野的一年。我们意识到,除了数字货币的惊人崛起以外,基于这项技术的应用还可以重塑其他很多市场。 但就像任何突然声名鹊起、开始应用于大量真实案例的新兴技术一样,如今围绕着区块链的根本特性,出现了一些问题,其中很多问题应该会成为今后一年里的主要焦点。主要的问题在于可扩展性。尽管如此,这些问题的存在反而说明,区块链技术已经取得长足发展。科技领袖们认为,区块链可以撑起互联网的下一阶段,创造出"去中心化"的互联网。 当我们展望这种新的去中心化互联网时,必须考虑其最重要的方面之一:去中心化存储。 在传统网络中,所有的参与者都在记录各不相同的副本,从而导致账本无法达成一致。这直接增加了时间成本,同时也增加了人力等相关的间接成本。而在基于区块链的共享账本中,在交易确认后,将无法篡改。同时使企业节省了成本和时间,同时也降低了风险。区块链技术使交易自动化,提高了参与者之间的透明度,保证了交易记录的完整性,提升了客户信任度。 区块链的优势体现在共识一致性、容错性、近乎实时的交易、灵活变更资产所有权。没有任何一个参与者可以独自控制账本的信息流向。区块链技术提升了参与记账节点信息流向的公正和准确性。 区块链技术的不可篡改性降低了监管机构的管理费用,提高了审计的透明度。 使用区块链技术在网络上执行的智能合同拥有不可更改、自动化和智能化等特点。商业机构使用区块链技术有很多优势,例如降低成本,提高业务执行速度,降低合同履约风险等。 区块链使用了协议规定的密码机制进行了认证,保证不会被篡改和伪造,因此任何交易双方之间的价值交换活动都是可以被追踪和查询到的。 如果想要在区块链中修改"账本记录",需要把整个链条上的加密数据进行破解和修改,其难度相当大,这是区块链的结构所决定的。 区块链很安全的原因就是采用了分布式存储的方式。就算是黑客破解和修改了随意一个节点的信息,也会没有什么作用的,但是篡改者如果把大半数的系统节点数据都篡改的话,这样才能真正的去篡改数据! 所以区块链的数据是存放在节点上的,但是又不是以中心的模式储存的,所以请各位朋友一定要牢记这个事情,但是大家不要担心自己的数据被泄露,因为这个数据是不会被篡改的,所以是安全的!
问问小秘 2019-12-02 03:07:14 0 浏览量 回答数 0

回答

http接口是在接口不多、系统与系统交互较少的情况下,解决信息孤岛初期常使用的一种通信手段;优点就是简单、直接、开发方便。利用现成的http协议进行传输。但是如果是一个大型的网站,内部子系统较多、接口非常多的情况下,RPC框架的好处就显示出来了,首先就是长链接,不必每次通信都要像http一样去3次握手什么的,减少了网络开销;其次就是RPC框架一般都有注册中心,有丰富的监控管理;发布、下线接口、动态扩展等,对调用方来说是无感知、统一化的操作。第三个来说就是安全性。最后就是最近流行的服务化架构、服务化治理,RPC框架是一个强力的支撑。 socket只是一个简单的网络通信方式,只是创建通信双方的通信通道,而要实现rpc的功能,还需要对其进行封装,以实现更多的功能。 RPC一般配合netty框架、spring自定义注解来编写轻量级框架,其实netty内部是封装了socket的,较新的jdk的IO一般是NIO,即非阻塞IO,在高并发网站中,RPC的优势会很明显
剑曼红尘 2020-03-15 15:30:21 0 浏览量 回答数 0

问题

为什么你的云厂商可能会换IP,开发者如何避免被影响?

最近在V2EX等各个技术社区看到不少开发者在说“阿里云换服务器换 IP 活动又来了 云主机的IP变更是不是一个临时现象呢?在各家云厂商是否是一个常见的现象。其实翻一下互联网上记录,我们可以发现其实早在2016...
趁我还年轻 2019-12-01 21:13:24 4587 浏览量 回答数 3

问题

【精品问答】初识区块链必备干货

今年“区块链”再次迎来了高光时刻,然而在一些公司市值飙升的背后,你真正了解区块链吗? 以下是我们精心为大家准备的区块链知识,希望能帮到您,也希望您能通过我们的分享了解现在...
问问小秘 2019-12-01 21:52:48 3113 浏览量 回答数 2

问题

让云计算真正省钱,解决云存储架构九个问题让云计算真正省钱

如何从存储架构层面,使企业的数据中心更适合云计算的环境?要解决这一问题,先要弄清楚什么是云计算,以及“云”对企业的存储有哪些需求。  据分析机构预测,到2012年...
hamtyb 2019-12-01 20:27:33 11001 浏览量 回答数 4

问题

dubbo 的工作原理?注册中心挂了的问题?说说一次 rpc 请求的流程?【Java问答】47期

面试题 说一下的 dubbo 的工作原理?注册中心挂了可以继续通信吗?说说一次 rpc 请求的流程? 面试官心理分析 MQ、ES、Redis、Dubbo,上来先问你一些思考性的问...
剑曼红尘 2020-06-30 09:02:47 8 浏览量 回答数 1

回答

最近,我问了我一个朋友他对"智能合约"的看法。他是一名开发者,我想他可能会有一些有趣的见解。令我惊讶的是,他并不知道智能合约是什么。我感到特别惊讶,因为我们讨论了一年多的加密货币、美国证券交易委员会(SEC)以及许多与区块链相关的其他事情。在计算机领域深耕的人怎么可能会不知道智能合约是什么? 事实上,相比区块链行业的其它概念,智能合约可能会更令加密货币爱好者们感到困惑。因此,要解释这个概念并不容易,尤其是向那些刚刚理解区块链是什么的人解释更不容易。因此,这一概念依旧十分神秘。希望这篇文章可以清楚地解释好这一概念。 什么是智能合约? 想象一下,如果你需要卖掉一栋房子,那么这将是一个复杂而艰巨的过程,不但需要处理大量的文书工作、与不同公司和人员进行沟通,而且还得冒着各类高风险。这就是为什么绝大多数房屋卖家决定寻找房地产经纪,来帮助处理所有文书工作、推销房产,并在协商开始时充当中介、监督交易直至交易结束。 此外,该经纪机构还提供委托付款服务,这在此类交易中尤其有用,因为此类交易所涉及的金额通常很大,你将无法完全信任将要与你进行交易的人。然而,在交易成功完成之后,卖方和买方的经纪机构将获得房产卖出价格的7%作为佣金。这对卖方来说是相当大的经济损失。 在这种情况下,智能合约就可以真正派上用场,可以有效地变革整个行业,同时也减少了所需流程。或许最重要的是,智能合约能解决信任问题。智能合约基于"If-Then"("如果-那么")原则,这意味着只有商定的金额被发送到系统时,房屋的所有权才会被转移给买方。 智能合约也可以作为委托付款服务,这意味着资金和所有权都将被存储在系统中,并在同一时间被分发给各参与方。此外,该交易被数百人见证和验证,因此保证了交付是无差错的。由于双方之间不再存在信任问题,因此也不再需要中介。所有房地产经纪能做的都可以预先编程为智能合约,这同时也为卖方和买方节省了大量资金。 这只是智能合约潜在用途的一个例子。智能合约能够帮助货币、财产和其他任何有价值的东西的交易,确保交易过程完全透明,其不但无需中介服务及其附带费用,还消除了双方之间的信任问题。特定智能合约的代码包括了各方商定的所有条款和条件,有关交易本身的信息则被记录在区块链中,即去中心化的分布式公共账本。 智能合约是如何运作的? 简而言之,智能合约很像自动售货机。你只需将所需数量的加密货币放入智能合约中,而你所交易的,房屋所有权等就会自动存入你的账户。所有的规则和处罚不仅在智能合约预先定义了,而且也由智能合约强制执行。 相互依存 智能合约可以独立运行,但也可以与任何其他智能合约一起运行。当它们彼此依赖时,它们可以以某种方式被设置。例如,成功完成一个特定的智能合约可以触发另一个智能合约的启动,依此类推。从理论上讲,整个系统和组织完全可以依靠智能合约运行。某种程度上,这已经在各种加密货币系统中实现了,在这些系统中,所有的规则都是预先定义好的,因此,网络本身可以独立自主地运行。 智能合约的对象 从本质上讲,每个智能合约都有三个不可或缺的部分(也称为对象)。第一个对象是签署方(两方或多方使用智能合约,同意或不同意使用数字签名的协议条款)。 第二个对象是合约的主题。它只能是智能合约环境中存在的对象。或者,智能合约必须可以不受阻碍地直接访问该对象。尽管智能合约早在1996年就被讨论过,但正是这一特定对象阻碍了智能合约的发展。这个问题直到2009年出现第一个加密货币后才得到部分解决。 最后,任何智能合约都必须包含特定条款。这些条款都需要使用数学方法及适用于特定智能合约环境的编程语言进行完整描述。这些条款包括了所有参与方的预期要求以及与所述条款相关的所有规则、奖励与惩罚。 环境 为了使智能合约能够正常运行,智能合约必须在特定的合适环境中运行。首先,智能合约环境需要支持公钥加密,这使得用户能够使用其独特的、专门生成的加密代码来签署交易。这正是绝大多数现有加密货币所用的系统。 其次,它们需要一个开源和去中心化的数据库,合同各方都可以彼此完全信任,并且履约流程完全自动化。此外,为了实现智能合约,整个环境必须自身是去中心化的。区块链,尤其是以太坊区块链,是运行智能合约的理想环境。 最后,智能合约所使用的数据,来源必须完全可靠。这就需要使用根SSL安全证书、HTTPS和其他已经广泛被使用并在大多数现代软件上自动实现的安全连接协议。 智能合约带来了什么? 自治 智能合约消除了对第三方中介的需求,基本上使你能够完全控制合约。 信任 任何人都无法窃取或弄丢你的文件,因为它们已被加密并安全地存储在一个安全的公开账本中。此外,你不必信任你正与之交易的人,也不必指望他们会信任你,因为公正的智能合约系统基本上解决了信任问题。 节约 由于使用了智能合约,你就不需要公证人、房地产经纪人、顾问及其他众多中介机构的援助。这样也就与他们的服务相关的高额费用无关了。 安全 如果智能合约正确执行,它将是极难破解的。此外,智能合约的完美环境受到复杂的加密保护,它可确保你文档的安全。 高效 通过使用智能合约,你将节省通常浪费在手动处理大量纸质文档并将其发送或运送到特定地点等的大量时间。 谁发明了智能合约?谁在使用智能合约? 1996年,计算机科学家和密码学家Nick Szabo首次提出了智能合约。几年后,Szabo重新定义了这一概念并发布了几篇相关文章,他阐述了通过在互联网上陌生人之间设计的电子商务协议来建立合同法相关商业实践的概念。 然而,智能合约的概念直到2009年才被实现,当时第一个加密货币比特币连同它的区块链一齐出现,后者则最终为智能合约提供了合适的环境。有趣的是,Nick Szabo在1998年设计了一种称为比特黄金(Bit Gold)的去中心化数字货币。虽然它没有被实现,但它已经具备了10年后比特币可吹嘘的许多功能。 如今,智能合约主要与加密货币有关。而且,可以公平地说,它们彼此互相依赖,因为去中心化的加密货币协议本质上是具有去中心化安全性的加密智能合约。智能合约现在被广泛应用于大多数加密货币网络中,并且其也是以太坊最杰出和最被大肆宣传的特点之一。 你知道什么是智能合约吗?币圈聚贤庄来跟你分析一下! 智能合约用例 虽然世界各国政府、金融监管机构和银行对加密货币的立场从极其谨慎变成谨慎接受,但加密货币背后的技术,区块链和智能合约,已被广泛认为是具有革命性的,并且正在各个层面实现这些技术。 例如,美国信托与清算公司(DTCC)和四大银行(美银美林、花旗、瑞士信贷和摩根大通)成功地使用Axoni开发的智能合约交易区块链信用违约掉期。智能合约使用了诸如个人交易详情及相应风险指标之类的信息,据一篇新闻稿称,这提高了合作伙伴和监管机构信息处理上的透明度。 类似的事情到处都在发生。由61家日本银行和韩国银行组成的财团一直在测试Ripple的区块链和智能合约,以实现两国之间的跨境资金转移。这一新系统将于今年推出。就连俄罗斯政府控制的俄罗斯联邦储蓄银行(Sberbank),都在俄罗斯这样一个众所周知的反加密货币国家测试以太坊区块链及其智能合约。 测试结果是俄罗斯联邦储蓄银行加入了以太坊企业联盟(EEA),这是一个由100多家企业组成的联盟,其中包括了思科、英国石油、荷兰国际集团(ING)、微软等顶级企业。该联盟旨在开发一种面向商业用途的区块链,用它可以开发和实现这些公司所需的智能合约。 由于智能合约是与加密货币相关联的,因此它们仍主要被应用到金融领域和银行业。尽管如此,世界各国政府都可以使用这项技术,使得投票系统更加便利而透明。供应链可以使用它来监控货物并自动执行所涉及的所有任务和支付。房地产、医疗保健、税收、保险及其他众多行业都可以受益于智能合约的使用。 智能合约的缺点 智能合约仍是一项未成熟的技术,仍然容易出现问题。例如,构成合约的代码必须是完美无漏洞的。它也会出现错误,有时候,这些错误会被欺诈者所利用。就像DAO被黑事件一样,把资金存放在代码有漏洞的智能合约中资金就可能被盗走。 此外,这项新奇的技术也带来了很多问题。政府将如何决定监管此类合约?他们将如何进行征税?如果合约无法访问其主题,或者发生了任何意外情况,将会是什么情况?这是在传统合约签订时可能发生的,传统合同可以在法庭上被撤销,但区块链要求智能合约无论如何都要按照"代码即法律"的规则去执行。 然而,大多数这些问题的存在纯粹是因为智能合约仍未是一项成熟的技术。但这项技术肯定会随着时间的推移而逐渐完善。毫无疑问,智能合约将会成为我们社会不可或缺的一部分。
问问小秘 2019-12-02 03:07:11 0 浏览量 回答数 0

问题

爱上阿里云

自阿里云上线就开始用了,主要涉及ECS, RDS、云监控,领域包括:网络游戏、物联网数据处理中心、还有一些个人网站。整体来讲使用非常顺畅,虽然期间也去试用过某动物云,但效...
南开阿当 2019-12-01 21:58:23 8271 浏览量 回答数 0

回答

KeepInTouch是一个遵循区块链物联网概念的'全民人身安全'平台。 根据全球网络安全市场由市场规模预测确定,自2014年的市场规模为710亿美元,到2019年将超过1550亿美元。 (Garner)曾预测全球信息安全支出自2014年达到711亿美元,而数据丢失预防领域的增长速度创新高,达18.9%. 2015-2025网络安全市场预测:Visiongain发布了关于网络、数据、终端、应用及云安全、身份管理及安全运营领先企业的预测报告。报告指出,网络安全市场将在2015年达到754亿美元(与高德纳的预测相差不大),而市场对信息安全解决方案的需求持续高增长。 MarketsandMarkets报告指出,到2019年,网络安全市场预计增长至1557.4亿美元,复合年增长率(CAGR)从2014年至2019年将增长10.3%.航空、国防及情报垂直行业将成为网络安全解决方案的最热门提供商。北美洲将成为最大市场,亚太地区及欧洲、中东和非洲地区在市场新引力方面有望增长。 全球每年在移动及网络安全方面的支出预测为110亿美元,且不断增长。 "2014年美国的移动网络流量首次超过台式电脑,手机成为上网最为便捷、成本效益最高的设备,"AVGTechnologies公司(为Windows、iOS及安卓设备提供客户安全、隐私、业绩及备份移动应用及软件全球最大的提供商之一)的首席技术官YuvalBen-Itzhak说道,"因此,我们将看到移动app成为黑客的首要目标,而App应用商店里那些未经开发者维护的应用将成为最容易受攻击的目标之一。" 传统的"网络安全"+"人身安全"势必需要结合,而区块链技术的出现,将会使得结合成本大大降低! KeepInTouch,基于区块链技术的去中心化、账目公开、不可篡改,可追踪等优势,将极大降低在社会经济活动中的信任成本,进而重构一切经济组织形态,带来金融与科技产业颠覆性的革命。但由于现实社会中实体经济产业链条长、历史悠久且利益相关者众多,高成本的人身安全防护等问题如何保证这一课题将会是一个需要极其漫长的时间去解决的过程。 KeepInTouch定义为基于物联网概念的'全民人身安全'平台,将发行KIT代币通过KIT代币的自由流通,使KIT成为一个完全遵循自由市场经济规则的网络经济体,每一个对他人的人身安全有贡献的个体,都能在其中获得收益回报(包括但不限于安保服务,KIT回报等)。 KeepInTouch用户会拥有一些基本权利,形成你我共享物联网安全的互助场景: 在KeepInTouch平台中,基于安全防护贡献的收入将分享给用户;安全互助的用户可以将自己的定位地点,安全相关内容等发布,在被浏览和确认的同时获得收入,可以通过广泛的平台传播渠道得到收益分成。 此外,用户在KeepInTouch中的个人主页、内容、社交关系、行为数据都共享于所有平台用户,任何应用或个人读取或使用这些数据,必须得到用户授权,用户可以对自己授权的数据上报物联网安全平台,以便相关政府与安保机构以及对安保有贡献的用户进行确认。 KeepInTouch能解决什么问题? "物联网"概念的网络结构,让每个对安全有贡献的个体,都能分享收益(获得一定数量的KIT),同时提升自身安全防护。 安全的贡献:分享自己的移动轨迹信息,由有需要的第三方安保系统使用,获得第三方安保系统付出的KIT.利用去中心化、不可篡改的属性,降低安保机构的安保合作成本。 并一定程度实现追踪即将'被加害人'与不法分子之间的行动轨迹。 在KeepInTouch物联网人身安全平台中,任何基于自有权益的行为都将得到支持。KeepInTouch的底层架构并开放端口,使KeepInTouch生态中的所有人都能够通过开发Dapp创建新的应用场景并从中获益。此外,任何第三方安保应用可以接入KeepInTouch-SDK,在用户授权下直接调用KeepInTouch账号、社交关系与支付系统与安保信息等,规避传统渠道的高额分成,减少确认事件与解决事件的成本。 KeepInTouch的发展方向:将可提高人与网络安全的相关信息全部公开,提升全球安保防范,降低犯罪几率。
问问小秘 2019-12-02 03:07:12 0 浏览量 回答数 0

回答

现在区块链这个概念很多人都理解,并且对于以太坊这个数字货币也有不少人是知道的,那么这两者之间到底存在什么关系呢? 以太坊是一项基于比特币中技术和概念运用到计算机的创新。以太坊本身仿制了很多比特币的技术,以此来维护计算机平台。以太坊平台可以安全的运行用户想要的任何程序。 以太坊是可编程的区块链。 以太坊是并不是给用户一系列预先设定好的操作(例如比特币交易),而是允许用户按照自己的意愿创建复杂的操作。 这样一来,以太坊是就可以作为多种类型去中心化区块链应用的平台,包括加密货币在内但并不仅限于此。 和其他区块链一样,以太坊也有一个点对---- 点网络协议。以太坊区块链数据库由众多连接到网络的节点来维护和更新。每个网络节点都运行着以太坊模拟机并执行相同的指令。因此,人们有时形象地称以太坊为"世界电脑". 区块链1.0主要是指比特币,区块链2.0延伸到一切资产,而区块链3.0则超越了货币,超越了金融领域,甚至超越了商业领域,延伸到一切领域,渗透到我们生活的方方面面,包括政治、社交、教育、医疗等。按照行内人士的预测和构想,区块链3.0时代在未来5年将会得以实现,那时,区块链将变得和互联网一样被所有大众认知和接受,从而全面颠覆我们的生活。 麦肯锡公司向美国联邦保险咨询委员会提交了一份区块链技术报告,报告把2009年至2016年称为"黑暗时代",认为此期间所有区块链解决方案都基于比特币,而区块链的新时代将从2016年开始。届时,区块链应用将变得空前广泛。应用麦肯锡报告中的一句原话:基于区块链目前的发展速度,我们认为区块链解决方案也许会在未来5年实现全部潜力。 其实以太坊就是利用区块链技术去做成的,并且在原来的步骤当中还增加了更多更复杂的操作,让区块链技术更加的完善,所以以太坊和区块链的关系,就是一个应用的关系,可以让区块链技术得到更好的发扬!
问问小秘 2019-12-02 03:07:13 0 浏览量 回答数 0

问题

电商网站的商品详情页系统架构【Java问答学堂】61期

小型电商网站的商品详情页系统架构 小型电商网站的页面展示采用页面全量静态化的思想。数据库中存放了所有的商品信息,页面静态化系统,将数据填充进静态模板中,形成静态化页面,推入 Ngin...
剑曼红尘 2020-07-20 13:08:17 1491 浏览量 回答数 2

问题

【精品问答】Java技术1000问(1)

为了方便Java开发者快速找到相关技术问题和答案,开发者社区策划了Java技术1000问内容,包含最基础的如何学Java、实践中遇到的技术问题、RocketMQ面试、Java容器部署实践等维度内容。 我们会以每...
问问小秘 2019-12-01 21:57:43 46087 浏览量 回答数 16

问题

为什么高管应该站在网络安全防御的第一线

当前,每个企业都意识到了日益严重的网络攻击风险,然而,很少有公司真正对重要信息采取了足够的保护。这里的关键就是,企业的高层领导需要担当起网络安全防护的领导角色。最近麦肯锡的专家Tuck...
虎笑 2019-12-01 22:08:54 8175 浏览量 回答数 3

问题

【百问百答】《5G+AI 智慧文娱前沿技术解读》

注:问题中对回答答案及问题有疑问欢迎指出,我会尽快修改!!!——————————————————————————— 如何用技术带给用户更加流畅且个性化的体验,...
Pony马 2021-03-12 18:06:04 101 浏览量 回答数 0

问题

如何自己设计一个类似 Dubbo 的 RPC 框架?【Java问答学堂】54期

面试题 如何自己设计一个类似 Dubbo 的 RPC 框架? 面试官心理分析 说实话,就这问题,其实就跟问你如何自己设计一个 MQ 一样的道理,就考两个: 你有没...
剑曼红尘 2020-07-09 10:30:28 30 浏览量 回答数 1

回答

在PaaS层中一个复杂的通用应用就是大数据平台。大数据是如何一步一步融入云计算的呢?首先我们来看一下大数据里面的数据,就分三种类型,一种叫结构化的数据,一种叫非结构化的数据,还有一种叫半结构化的数据。 大数据拥抱云计算 在PaaS层中一个复杂的通用应用就是大数据平台。大数据是如何一步一步融入云计算的呢? 1 数据不大也包含智慧 一开始这个大数据并不大。原来才有多少数据?现在大家都去看电子书,上网看新闻了,在我们80后小时候,信息量没有那么大,也就看看书、看看报,一个星期的报纸加起来才有多少字?如果你不在一个大城市,一个普通的学校的图书馆加起来也没几个书架,是后来随着信息化的到来,信息才会越来越多。 首先我们来看一下大数据里面的数据,就分三种类型,一种叫结构化的数据,一种叫非结构化的数据,还有一种叫半结构化的数据。 结构化的数据:即有固定格式和有限长度的数据。例如填的表格就是结构化的数据,国籍:中华人民共和国,民族:汉,性别:男,这都叫结构化数据。 非结构化的数据:现在非结构化的数据越来越多,就是不定长、无固定格式的数据,例如网页,有时候非常长,有时候几句话就没了;例如语音,视频都是非结构化的数据。 半结构化数据:是一些XML或者HTML的格式的,不从事技术的可能不了解,但也没有关系。 其实数据本身不是有用的,必须要经过一定的处理。例如你每天跑步带个手环收集的也是数据,网上这么多网页也是数据,我们称为Data。数据本身没有什么用处,但数据里面包含一个很重要的东西,叫做信息(Information)。 数据十分杂乱,经过梳理和清洗,才能够称为信息。信息会包含很多规律,我们需要从信息中将规律总结出来,称为知识(Knowledge),而知识改变命运。信息是很多的,但有人看到了信息相当于白看,但有人就从信息中看到了电商的未来,有人看到了直播的未来,所以人家就牛了。如果你没有从信息中提取出知识,天天看朋友圈也只能在互联网滚滚大潮中做个看客。 所以数据的应用分这四个步骤:数据、信息、知识、智慧。 最终的阶段是很多商家都想要的。你看我收集了这么多的数据,能不能基于这些数据来帮我做下一步的决策,改善我的产品。例如让用户看视频的时候旁边弹出广告,正好是他想买的东西;再如让用户听音乐时,另外推荐一些他非常想听的其他音乐。 用户在我的应用或者网站上随便点点鼠标,输入文字对我来说都是数据,我就是要将其中某些东西提取出来、指导实践、形成智慧,让用户陷入到我的应用里面不可自拔,上了我的网就不想离开,手不停地点、不停地买。 很多人说双十一我都想断网了,我老婆在上面不断地买买买,买了A又推荐B,老婆大人说,“哎呀,B也是我喜欢的啊,老公我要买”。你说这个程序怎么这么牛,这么有智慧,比我还了解我老婆,这件事情是怎么做到的呢? 2 数据如何升华为智慧 数据的处理分几个步骤,完成了才最后会有智慧。 第一个步骤叫数据的收集。首先得有数据,数据的收集有两个方式: 第一个方式是拿,专业点的说法叫抓取或者爬取。例如搜索引擎就是这么做的:它把网上的所有的信息都下载到它的数据中心,然后你一搜才能搜出来。比如你去搜索的时候,结果会是一个列表,这个列表为什么会在搜索引擎的公司里面?就是因为他把数据都拿下来了,但是你一点链接,点出来这个网站就不在搜索引擎它们公司了。比如说新浪有个新闻,你拿百度搜出来,你不点的时候,那一页在百度数据中心,一点出来的网页就是在新浪的数据中心了。 第二个方式是推送,有很多终端可以帮我收集数据。比如说小米手环,可以将你每天跑步的数据,心跳的数据,睡眠的数据都上传到数据中心里面。 第二个步骤是数据的传输。一般会通过队列方式进行,因为数据量实在是太大了,数据必须经过处理才会有用。可系统处理不过来,只好排好队,慢慢处理。 第三个步骤是数据的存储。现在数据就是金钱,掌握了数据就相当于掌握了钱。要不然网站怎么知道你想买什么?就是因为它有你历史的交易的数据,这个信息可不能给别人,十分宝贵,所以需要存储下来。 第四个步骤是数据的处理和分析。上面存储的数据是原始数据,原始数据多是杂乱无章的,有很多垃圾数据在里面,因而需要清洗和过滤,得到一些高质量的数据。对于高质量的数据,就可以进行分析,从而对数据进行分类,或者发现数据之间的相互关系,得到知识。 比如盛传的沃尔玛超市的啤酒和尿布的故事,就是通过对人们的购买数据进行分析,发现了男人一般买尿布的时候,会同时购买啤酒,这样就发现了啤酒和尿布之间的相互关系,获得知识,然后应用到实践中,将啤酒和尿布的柜台弄的很近,就获得了智慧。 第五个步骤是对于数据的检索和挖掘。检索就是搜索,所谓外事不决问Google,内事不决问百度。内外两大搜索引擎都是将分析后的数据放入搜索引擎,因此人们想寻找信息的时候,一搜就有了。 另外就是挖掘,仅仅搜索出来已经不能满足人们的要求了,还需要从信息中挖掘出相互的关系。比如财经搜索,当搜索某个公司股票的时候,该公司的高管是不是也应该被挖掘出来呢?如果仅仅搜索出这个公司的股票发现涨的特别好,于是你就去买了,其实其高管发了一个声明,对股票十分不利,第二天就跌了,这不坑害广大股民么?所以通过各种算法挖掘数据中的关系,形成知识库,十分重要。 3 大数据时代,众人拾柴火焰高 当数据量很小时,很少的几台机器就能解决。慢慢的,当数据量越来越大,最牛的服务器都解决不了问题时,怎么办呢?这时就要聚合多台机器的力量,大家齐心协力一起把这个事搞定,众人拾柴火焰高。 对于数据的收集:就IoT来讲,外面部署这成千上万的检测设备,将大量的温度、湿度、监控、电力等数据统统收集上来;就互联网网页的搜索引擎来讲,需要将整个互联网所有的网页都下载下来。这显然一台机器做不到,需要多台机器组成网络爬虫系统,每台机器下载一部分,同时工作,才能在有限的时间内,将海量的网页下载完毕。 对于数据的传输:一个内存里面的队列肯定会被大量的数据挤爆掉,于是就产生了基于硬盘的分布式队列,这样队列可以多台机器同时传输,随你数据量多大,只要我的队列足够多,管道足够粗,就能够撑得住。 对于数据的存储:一台机器的文件系统肯定是放不下的,所以需要一个很大的分布 式文件系统来做这件事情,把多台机器的硬盘打成一块大的文件系统。 对于数据的分析:可能需要对大量的数据做分解、统计、汇总,一台机器肯定搞不定,处理到猴年马月也分析不完。于是就有分布式计算的方法,将大量的数据分成小份,每台机器处理一小份,多台机器并行处理,很快就能算完。例如著名的Terasort对1个TB的数据排序,相当于1000G,如果单机处理,怎么也要几个小时,但并行处理209秒就完成了。 所以说什么叫做大数据?说白了就是一台机器干不完,大家一起干。可是随着数据量越来越大,很多不大的公司都需要处理相当多的数据,这些小公司没有这么多机器可怎么办呢? 4 大数据需要云计算,云计算需要大数据 说到这里,大家想起云计算了吧。当想要干这些活时,需要很多的机器一块做,真的是想什么时候要就什么时候要,想要多少就要多少。 例如大数据分析公司的财务情况,可能一周分析一次,如果要把这一百台机器或者一千台机器都在那放着,一周用一次非常浪费。那能不能需要计算的时候,把这一千台机器拿出来;不算的时候,让这一千台机器去干别的事情? 谁能做这个事儿呢?只有云计算,可以为大数据的运算提供资源层的灵活性。而云计算也会部署大数据放到它的PaaS平台上,作为一个非常非常重要的通用应用。因为大数据平台能够使得多台机器一起干一个事儿,这个东西不是一般人能开发出来的,也不是一般人玩得转的,怎么也得雇个几十上百号人才能把这个玩起来。 所以说就像数据库一样,其实还是需要有一帮专业的人来玩这个东西。现在公有云上基本上都会有大数据的解决方案了,一个小公司需要大数据平台的时候,不需要采购一千台机器,只要到公有云上一点,这一千台机器都出来了,并且上面已经部署好了的大数据平台,只要把数据放进去算就可以了。 云计算需要大数据,大数据需要云计算,二者就这样结合了。 人工智能拥抱大数据 机器什么时候才能懂人心 虽说有了大数据,人的欲望却不能够满足。虽说在大数据平台里面有搜索引擎这个东西,想要什么东西一搜就出来了。但也存在这样的情况:我想要的东西不会搜,表达不出来,搜索出来的又不是我想要的。 例如音乐软件推荐了一首歌,这首歌我没听过,当然不知道名字,也没法搜。但是软件推荐给我,我的确喜欢,这就是搜索做不到的事情。当人们使用这种应用时,会发现机器知道我想要什么,而不是说当我想要时,去机器里面搜索。这个机器真像我的朋友一样懂我,这就有点人工智能的意思了。 人们很早就在想这个事情了。最早的时候,人们想象,要是有一堵墙,墙后面是个机器,我给它说话,它就给我回应。如果我感觉不出它那边是人还是机器,那它就真的是一个人工智能的东西了。 让机器学会推理 怎么才能做到这一点呢?人们就想:我首先要告诉计算机人类的推理的能力。你看人重要的是什么?人和动物的区别在什么?就是能推理。要是把我这个推理的能力告诉机器,让机器根据你的提问,推理出相应的回答,这样多好? 其实目前人们慢慢地让机器能够做到一些推理了,例如证明数学公式。这是一个非常让人惊喜的一个过程,机器竟然能够证明数学公式。但慢慢又发现其实这个结果也没有那么令人惊喜。因为大家发现了一个问题:数学公式非常严谨,推理过程也非常严谨,而且数学公式很容易拿机器来进行表达,程序也相对容易表达。 教给机器知识 因此,仅仅告诉机器严格的推理是不够的,还要告诉机器一些知识。但告诉机器知识这个事情,一般人可能就做不来了。可能专家可以,比如语言领域的专家或者财经领域的专家。 语言领域和财经领域知识能不能表示成像数学公式一样稍微严格点呢?例如语言专家可能会总结出主谓宾定状补这些语法规则,主语后面一定是谓语,谓语后面一定是宾语,将这些总结出来,并严格表达出来不就行了吗?后来发现这个不行,太难总结了,语言表达千变万化。 人工智能这个阶段叫做专家系统。专家系统不易成功,一方面是知识比较难总结,另一方面总结出来的知识难以交给计算机。因为你自己还迷迷糊糊,觉得似乎有规律,就是说不出来,又怎么能够通过编程教给计算机呢? 算了,教不会你自己学吧 于是人们想到:机器是和人完全不一样的物种,干脆让机器自己学习好了。
茶什i 2019-12-31 13:13:50 0 浏览量 回答数 0

回答

区块链(blockchian)技术是随比特币等数字加密货币兴起的一种新型分布式数据组织方法及运算方式,通过去中心化来集体维护一个可靠数据库的技术。该技术将一段时间内的两两配对数据(比特币中指交易)打包成数据块(block),然后利用具有激励性质的共识算法让点对点对等网(p2p网络)中的所有节点产生的数据块保持一致,并生成数据指纹验证其有效性然后链接(chain)下一个数据块。在这个过程中,所有节点的地位都是对等的,没有所谓的服务器和客户端之分,因此被称为去中心化的方式,这很好地解决了数据在存储和共享环节中存在的安全和信任问题。通过区块链技术,在数据共享过程中可明确数据的来源、所有权和使用权,达到数据在存储上不可篡改、在流通上路径可追溯、在数据管理上可审计的目的,保证数据在存储、共享、审计等环节中的安全,实现真正意义上的数据全流程管理,进一步拓展数据的流通渠道、促进数据的共享共用、激发数据的价值挖掘、增强数据在流通中的信任。同时,基于区块链的分布式共享“总账”这一特点,在平台安全方面,可达到有效消除单点故障、抵御网络攻击的目的。这些特点使得区块链技术特别适合应用于具有保密要求的大数据运算领域。 近年来,国外已有一些研究机构和企业将区块链应用在电子证件认证和身份认证领域(见图1-1)。2015年7月,区块链初创公司ShoCard获150万美元投资,将实体身份证件的数据指纹保存在区块链上。用户用手机扫描自己的身份证件,ShoCard应用会把证件信息加密后保存在用户本地,把数据指纹保存到区块链。区块链上的数据指纹受一个私钥控制,只有持有私钥的用户自己才有权修改,ShoCard本身无权修改。同时,为了防范用户盗用他人身份证件扫描上传,ShoCard还允许银行等机构对用户的身份进行背书,确保真实性。2015年9月,去中心化的管理项目比特国(Bitnation)在区块链上实施“电子公民”(e-Residents)计划。用户在其官网上通过区块链登记成为Bitnation的“公民”,并获得Bitnation“世界公民身份证”。2015年12月,Bitnation与爱沙尼亚政府签署协议,将为“电子公民”项目提供公证服务,无论他们身居何处,在何处做生意,都可以在区块链上享受结婚证明、出生证明、商务合同和其他服务。区块链是一个公共账本,全世界数以千万计的计算机都存储着其副本,具备公开公证的可复制性与不可更改性,比目前各国使用的传统公证方法更安全。2016年6月,美国国安局向区块链初创公司Factom拨款19.9万美元用于物联网设备数字身份安全性开发,利用区块链技术来验证物联网设备,阻止因设备欺骗而导致的非授权访问,以此来确保数据完整性;美国区块链公司Certchain为文档建立数据指纹,提供去中心化的文件所有权证明;OneName公司则提供了另一种身份服务,即任何比特币的用户都可以把自己的比特币地址和自己的姓名、Twitter、Facebook等账号绑定起来,相当于为每个社交账户提供了一个公开的比特币地址和进行数字签名的能力。 在国内,有一些研究机构也在开展区块链在电子政务方面的应用研究。闵旭蓉等人[6]设计了一种电子证照共享平台,利用区块链技术的去中心化、不可篡改、分布式共同记账、非对称加密和数据安全存储等特点,实现电子证照的安全可信共享,实现各地、各部门和各层级间政务数据的互联互通,支撑政府高效施政。黄步添等人[7]明确了电子证照参与者的权利和义务,基于联盟链思想和轮值机制,设计区块链平台的系统架构、数据结构和业务流程,提供电子证照的颁发、存储、更新、验证等功能,实现多中心、协同式电子证照管理,从而为电子证照拥有者以及相关应用系统提供便捷的电子证照服务。蒋海等人[8]提供了一种区块链身份构建及验证方法,有效缓解了因个别认证机构的问题影响用户身份信息准确性的情况,然而其原始数据来源为第三方认证机构,未能解决数据的真实性问题,且其只进行身份验证,未与其他证件锚定,扩展性不强,发挥的作用有限。 此外,有一些教育和科研机构将区块链技术应用于教育证书领域。2015 年,麻省理工学院的媒体实验室(The MIT MediaLab)应用区块链技术研发了学习证书平台,并发布了一个类似“比特币钱包”的手机App[9]。学习者可以利用该App存储和分享自己的学习证书,随身携带、随时展示,且拥有重申成绩的权力。学习者不能擅自更改学习证书的内容,但能自主决定将什么证书展示给哪个访问者。在查询时,将数字证书的密钥点对点地发送给用人单位或学生等有关需求方,确保证书不会被恶意查询。无独有偶,位于旧金山的软件培训机构—Holberton School从2017年开始利用区块链技术记录学历,并在区块链上共享学生的学历证书信息。同样,学分也可以通过这项技术认证和交换。对于学生来说,这一应用拓宽了他们获得教育评价的途径,方便了学习记录和学历信息的保存。从更长远的眼光来看,利用区块链记录跨地区、跨院校甚至跨国学习者的信息,可以使在不同环境中学习的学习者获得同样有效的学习记录。区块链技术在教育证书方面可能的应用方式包括:为在线教育提供有公信力和低成本的证书系统;作为智能合约,完成教育契约和存证;作为分布式的学习记录存储,记录学习轨迹,共享学习学分。从应用规模和范围来看,区块链在教育领域的应用范围可以小到单个教育机构、学校联盟,大到全国甚至全球性的教育互认互通联盟。
问问小秘 2019-12-02 03:10:04 0 浏览量 回答数 0

回答

前言 这期我想写很久了,但是因为时间的原因一直拖到了现在,我以为一两天就写完了,结果从构思到整理资料,再到写出来用了差不多一周的时间吧。 你们也知道丙丙一直都是创作鬼才来的,所以我肯定不会一本正经的写,我想了好几个切入点,最后决定用一个完整的电商系统作为切入点,带着大家看看,我们需要学些啥,我甚至还收集配套视频和资料,暖男石锤啊,这期是呕心沥血之作,不要白嫖了。 正文 在写这个文章之前,我花了点时间,自己臆想了一个电商系统,基本上算是麻雀虽小五脏俱全,我今天就用它开刀,一步步剖析,我会讲一下我们可能会接触的技术栈可能不全,但是够用,最后给个学习路线。 Tip:请多欣赏一会,每个点看一下,看看什么地方是你接触过的,什么技术栈是你不太熟悉的,我觉得还算是比较全的,有什么建议也可以留言给我。 不知道大家都看了一下没,现在我们就要庖丁解牛了,我从上到下依次分析。 前端 你可能会会好奇,你不是讲后端学习路线嘛,为啥还有前端的部分,我只能告诉你,傻瓜,肤浅。 我们可不能闭门造车,谁告诉你后端就不学点前端了? 前端现在很多也了解后端的技术栈的,你想我们去一个网站,最先接触的,最先看到的是啥? 没错就是前端,在大学你要是找不到专门的前端同学,去做系统肯定也要自己顶一下前端的,那我觉得最基本的技术栈得熟悉和了解吧,丙丙现在也是偶尔会开发一下我们的管理系统主要是VUE和React。 在这里我列举了我目前觉得比较简单和我们后端可以了解的技术栈,都是比较基础的。 作为一名后端了解部分前端知识还是很有必要的,在以后开发的时候,公司有前端那能帮助你前后端联调更顺畅,如果没前端你自己也能顶一下简单的页面。 HTML、CSS、JS、Ajax我觉得是必须掌握的点,看着简单其实深究或者去操作的话还是有很多东西的,其他作为扩展有兴趣可以了解,反正入门简单,只是精通很难很难。 在这一层不光有这些还有Http协议和Servlet,request、response、cookie、session这些也会伴随你整个技术生涯,理解他们对后面的你肯定有不少好处。 Tip:我这里最后删除了JSP相关的技术,我个人觉得没必要学了,很多公司除了老项目之外,新项目都不会使用那些技术了。 前端在我看来比后端难,技术迭代比较快,知识好像也没特定的体系,所以面试大厂的前端很多朋友都说难,不是技术多难,而是知识多且复杂,找不到一个完整的体系,相比之下后端明朗很多,我后面就开始讲后端了。 网关层: 互联网发展到现在,涌现了很多互联网公司,技术更新迭代了很多个版本,从早期的单机时代,到现在超大规模的互联网时代,几亿人参与的春运,几千亿成交规模的双十一,无数互联网前辈的造就了现在互联网的辉煌。 微服务,分布式,负载均衡等我们经常提到的这些名词都是这些技术在场景背后支撑。 单机顶不住,我们就多找点服务器,但是怎么将流量均匀的打到这些服务器上呢? 负载均衡,LVS 我们机器都是IP访问的,那怎么通过我们申请的域名去请求到服务器呢? DNS 大家刷的抖音,B站,快手等等视频服务商,是怎么保证同时为全国的用户提供快速的体验? CDN 我们这么多系统和服务,还有这么多中间件的调度怎么去管理调度等等? zk 这么多的服务器,怎么对外统一访问呢,就可能需要知道反向代理的服务器。 Nginx 这一层做了反向负载、服务路由、服务治理、流量管理、安全隔离、服务容错等等都做了,大家公司的内外网隔离也是这一层做的。 我之前还接触过一些比较有意思的项目,所有对外的接口都是加密的,几十个服务会经过网关解密,找到真的路由再去请求。 这一层的知识点其实也不少,你往后面学会发现分布式事务,分布式锁,还有很多中间件都离不开zk这一层,我们继续往下看。 服务层: 这一层有点东西了,算是整个框架的核心,如果你跟我帅丙一样以后都是从事后端开发的话,我们基本上整个技术生涯,大部分时间都在跟这一层的技术栈打交道了,各种琳琅满目的中间件,计算机基础知识,Linux操作,算法数据结构,架构框架,研发工具等等。 我想在看这个文章的各位,计算机基础肯定都是学过的吧,如果大学的时候没好好学,我觉得还是有必要再看看的。 为什么我们网页能保证安全可靠的传输,你可能会了解到HTTP,TCP协议,什么三次握手,四次挥手。 还有进程、线程、协程,什么内存屏障,指令乱序,分支预测,CPU亲和性等等,在之后的编程生涯,如果你能掌握这些东西,会让你在遇到很多问题的时候瞬间get到点,而不是像个无头苍蝇一样乱撞(然而丙丙还做得不够)。 了解这些计算机知识后,你就需要接触编程语言了,大学的C语言基础会让你学什么语言入门都会快点,我选择了面向对象的JAVA,但是也不知道为啥现在还没对象。 JAVA的基础也一样重要,面向对象(包括类、对象、方法、继承、封装、抽象、 多态、消息解析等),常见API,数据结构,集合框架,设计模式(包括创建型、结构型、行为型),多线程和并发,I/O流,Stream,网络编程你都需要了解。 代码会写了,你就要开始学习一些能帮助你把系统变得更加规范的框架,SSM可以会让你的开发更加便捷,结构层次更加分明。 写代码的时候你会发现你大学用的Eclipse在公司看不到了,你跟大家一样去用了IDEA,第一天这是什么玩意,一周后,真香,但是这玩意收费有点贵,那免费的VSCode真的就是不错的选择了。 代码写的时候你会接触代码的仓库管理工具maven、Gradle,提交代码的时候会去写项目版本管理工具Git。 代码提交之后,发布之后你会发现很多东西需要自己去服务器亲自排查,那Linux的知识点就可以在里面灵活运用了,查看进程,查看文件,各种Vim操作等等。 系统的优化很多地方没优化的空间了,你可能会尝试从算法,或者优化数据结构去优化,你看到了HashMap的源码,想去了解红黑树,然后在算法网上看到了二叉树搜索树和各种常见的算法问题,刷多了,你也能总结出精华所在,什么贪心,分治,动态规划等。 这么多个服务,你发现HTTP请求已经开始有点不满足你的需求了,你想开发更便捷,像访问本地服务一样访问远程服务,所以我们去了解了Dubbo,Spring cloud。 了解Dubbo的过程中,你发现了RPC的精华所在,所以你去接触到了高性能的NIO框架,Netty。 代码写好了,服务也能通信了,但是你发现你的代码链路好长,都耦合在一起了,所以你接触了消息队列,这种异步的处理方式,真香。 他还可以帮你在突发流量的时候用队列做缓冲,但是你发现分布式的情况,事务就不好管理了,你就了解到了分布式事务,什么两段式,三段式,TCC,XA,阿里云的全局事务服务GTS等等。 分布式事务的时候你会想去了解RocketMQ,因为他自带了分布式事务的解决方案,大数据的场景你又看到了Kafka。 我上面提到过zk,像Dubbo、Kafka等中间件都是用它做注册中心的,所以很多技术栈最后都组成了一个知识体系,你先了解了体系中的每一员,你才能把它们联系起来。 服务的交互都从进程内通信变成了远程通信,所以性能必然会受到一些影响。 此外由于很多不确定性的因素,例如网络拥塞、Server 端服务器宕机、挖掘机铲断机房光纤等等,需要许多额外的功能和措施才能保证微服务流畅稳定的工作。 **Spring Cloud **中就有 Hystrix 熔断器、Ribbon客户端负载均衡器、Eureka注册中心等等都是用来解决这些问题的微服务组件。 你感觉学习得差不多了,你发现各大论坛博客出现了一些前沿技术,比如容器化,你可能就会去了解容器化的知识,像**Docker,Kubernetes(K8s)**等。 微服务之所以能够快速发展,很重要的一个原因就是:容器化技术的发展和容器管理系统的成熟。 这一层的东西呢其实远远不止这些的,我不过多赘述,写多了像个劝退师一样,但是大家也不用慌,大部分的技术都是慢慢接触了,工作中慢慢去了解,去深入的。 好啦我们继续沿着图往下看,那再往下是啥呢? 数据层: 数据库可能是整个系统中最值钱的部分了,在我码文字的前一天,刚好发生了微盟程序员删库跑路的操作,删库跑路其实是我们在网上最常用的笑话,没想到还是照进了现实。 这里也提一点点吧,36小时的故障,其实在互联网公司应该是个笑话了吧,权限控制没做好类似rm -rf 、fdisk、drop等等这样的高危命令是可以实时拦截掉的,备份,全量备份,增量备份,延迟备份,异地容灾全部都考虑一下应该也不至于这样,一家上市公司还是有点点不应该。 数据库基本的事务隔离级别,索引,SQL,主被同步,读写分离等都可能是你学的时候要了解到的。 上面我们提到了安全,不要把鸡蛋放一个篮子的道理大家应该都知道,那分库的意义就很明显了,然后你会发现时间久了表的数据大了,就会想到去接触分表,什么TDDL、Sharding-JDBC、DRDS这些插件都会接触到。 你发现流量大的时候,或者热点数据打到数据库还是有点顶不住,压力太大了,那非关系型数据库就进场了,Redis当然是首选,但是MongoDB、memcache也有各自的应用场景。 Redis使用后,真香,真快,但是你会开始担心最开始提到的安全问题,这玩意快是因为在内存中操作,那断点了数据丢了怎么办?你就开始阅读官方文档,了解RDB,AOF这些持久化机制,线上用的时候还会遇到缓存雪崩击穿、穿透等等问题。 单机不满足你就用了,他的集群模式,用了集群可能也担心集群的健康状态,所以就得去了解哨兵,他的主从同步,时间久了Key多了,就得了解内存淘汰机制…… 他的大容量存储有问题,你可能需要去了解Pika…. 其实远远没完,每个的点我都点到为止,但是其实要深究每个点都要学很久,我们接着往下看。 实时/离线/大数据 等你把几种关系型非关系型数据库的知识点,整理清楚后,你会发现数据还是大啊,而且数据的场景越来越多多样化了,那大数据的各种中间件你就得了解了。 你会发现很多场景,不需要实时的数据,比如你查你的支付宝去年的,上个月的账单,这些都是不会变化的数据,没必要实时,那你可能会接触像ODPS这样的中间件去做数据的离线分析。 然后你可能会接触Hadoop系列相关的东西,比如于Hadoop(HDFS)的一个数据仓库工具Hive,是建立在 Hadoop 文件系统之上的分布式面向列的数据库HBase 。 写多的场景,适合做一些简单查询,用他们又有点大材小用,那Cassandra就再合适不过了。 离线的数据分析没办法满足一些实时的常见,类似风控,那Flink你也得略知一二,他的窗口思想还是很有意思。 数据接触完了,计算引擎Spark你是不是也不能放过…… 搜索引擎: 传统关系型数据库和NoSQL非关系型数据都没办法解决一些问题,比如我们在百度,淘宝搜索东西的时候,往往都是几个关键字在一起一起搜索东西的,在数据库除非把几次的结果做交集,不然很难去实现。 那全文检索引擎就诞生了,解决了搜索的问题,你得思考怎么把数据库的东西实时同步到ES中去,那你可能会思考到logstash去定时跑脚本同步,又或者去接触伪装成一台MySQL从服务的Canal,他会去订阅MySQL主服务的binlog,然后自己解析了去操作Es中的数据。 这些都搞定了,那可视化的后台查询又怎么解决呢?Kibana,他他是一个可视化的平台,甚至对Es集群的健康管理都做了可视化,很多公司的日志查询系统都是用它做的。 学习路线 看了这么久你是不是发现,帅丙只是一直在介绍每个层级的技术栈,并没说到具体的一个路线,那是因为我想让大家先有个认知或者说是扫盲吧,我一样用脑图的方式汇总一下吧,如果图片被平台二压了。 资料/学习网站 Tip:本来这一栏有很多我准备的资料的,但是都是外链,或者不合适的分享方式,博客的运营小姐姐提醒了我,所以大家去公众号回复【路线】好了。 絮叨 如果你想去一家不错的公司,但是目前的硬实力又不到,我觉得还是有必要去努力一下的,技术能力的高低能决定你走多远,平台的高低,能决定你的高度。 如果你通过努力成功进入到了心仪的公司,一定不要懈怠放松,职场成长和新技术学习一样,不进则退。 丙丙发现在工作中发现我身边的人真的就是实力越强的越努力,最高级的自律,享受孤独(周末的歪哥)。 总结 我提到的技术栈你想全部了解,我觉得初步了解可能几个月就够了,这里的了解仅限于你知道它,知道他是干嘛的,知道怎么去使用它,并不是说深入了解他的底层原理,了解他的常见问题,熟悉问题的解决方案等等。 你想做到后者,基本上只能靠时间上的日积月累,或者不断的去尝试积累经验,也没什么速成的东西,欲速则不达大家也是知道的。 技术这条路,说实话很枯燥,很辛苦,但是待遇也会高于其他一些基础岗位。 所实话我大学学这个就是为了兴趣,我从小对电子,对计算机都比较热爱,但是现在打磨得,现在就是为了钱吧,是不是很现实?若家境殷实,谁愿颠沛流离。 但是至少丙丙因为做软件,改变了家庭的窘境,自己日子也向小康一步步迈过去。 说做程序员改变了我和我家人的一生可能夸张了,但是我总有一种下班辈子会因为我选择走这条路而改变的错觉。 我是敖丙,一个在互联网苟且偷生的工具人。 创作不易,本期硬核,不想被白嫖,各位的「三连」就是丙丙创作的最大动力,我们下次见! 本文 GitHub https://github.com/JavaFamily 已经收录,有大厂面试完整考点,欢迎Star。 该回答来自:敖丙
剑曼红尘 2020-03-06 11:35:37 0 浏览量 回答数 0

回答

参考:https://www.iteblog.com/archives/2530.html分布式和去中心化(Distributed and Decentralized)Cassandra 是分布式的,这意味着它可以运行在多台机器上,并呈现给用户一个一致的整体。事实上,在一个节点上运行 Cassandra 是没啥用的,虽然我们可以这么做,并且这可以帮助我们了解它的工作机制,但是你很快就会意识到,需要多个节点才能真正了解 Cassandra 的强大之处。它的很多设计和实现让系统不仅可以在多个节点上运行,更为多机架部署进行了优化,甚至一个 Cassandra 集群可以运行在分散于世界各地的数据中心上。你可以放心地将数据写到集群的任意一台机器上,Cassandra 都会收到数据。对于很多存储系统(比如 MySQL, Bigtable),一旦你开始扩展它,就需要把某些节点设为主节点,其他则作为从节点。但 Cassandra 是无中心的,也就是说每个节点都是一样的。与主从结构相反,Cassandra 的协议是 P2P 的,并使用 gossip 来维护存活或死亡节点的列表。关于 gossip 可以参见《分布式原理:一文了解 Gossip 协议》。去中心化这一事实意味着 Cassandra 不会存在单点失效。Cassandra 集群中的所有节点的功能都完全一样, 所以不存在一个特殊的主机作为主节点来承担协调任务。有时这被叫做服务器对称(server symmetry)。综上所述,Cassandra 是分布式、无中心的,它不会有单点失效,所以支持高可用性。弹性可扩展(Elastic Scalability)可扩展性是指系统架构可以让系统提供更多的服务而不降低使用性能的特性。仅仅通过给现有的机器增加硬件的容量、内存进行垂直扩展,是最简单的达到可扩展性的手段。而水平扩展则需要增加更多机器,每台机器提供全部或部分数据,这样所有主机都不必负担全部业务请求。但软件自己需要有内部机制来保证集群中节点间的数据同步。弹性可扩展是指水平扩展的特性,意即你的集群可以不间断的情况下,方便扩展或缩减服务的规模。这样,你就不需要重新启动进程,不必修改应用的查询,也无需自己手工重新均衡数据分布。在 Cassandra 里,你只要加入新的计算机,Cassandra 就会自动地发现它并让它开始工作。高可用和容错(High Availability and Fault Tolerance)从一般架构的角度来看,系统的可用性是由满足请求的能力来量度的。但计算机可能会有各种各样的故障,从硬件器件故障到网络中断都有可能。如何计算机都可能发生这些情况,所以它们一般都有硬件冗余,并在发生故障事件的情况下会自动响应并进行热切换。对一个需要高可用的系统,它必须由多台联网的计算机构成,并且运行于其上的软件也必须能够在集群条件下工作,有设备能够识别节点故障,并将发生故障的中端的功能在剩余系统上进行恢复。Cassandra 就是高可用的。你可以在不中断系统的情况下替换故障节点,还可以把数据分布到多个数据中心里,从而提供更好的本地访问性能,并且在某一数据中心发生火灾、洪水等不可抗灾难的时候防止系统彻底瘫痪。可调节的一致性(Tuneable Consistency)2000年,加州大学伯克利分校的 Eric Brewer 在 ACM 分布式计算原理会议提出了著名的 CAP 定律。CAP 定律表明,对于任意给定的系统,只能在一致性(Consistency)、可用性(Availability)以及分区容错性(Partition Tolerance)之间选择两个。关于 CAP 定律的详细介绍可参见《分布式系统一致性问题、CAP定律以及 BASE 理论》以及《一篇文章搞清楚什么是分布式系统 CAP 定理》。所以 Cassandra 在设计的时候也不得不考虑这些问题,因为分区容错性这个是每个分布式系统必须考虑的,所以只能在一致性和可用性之间做选择,而 Cassandra 的应用场景更多的是为了满足可用性,所以我们只能牺牲一致性了。但是根据 BASE 理论,我们其实可以通过牺牲强一致性获得可用性。Cassandra 提供了可调节的一致性,允许我们选定需要的一致性水平与可用性水平,在二者间找到平衡点。因为客户端可以控制在更新到达多少个副本之前,必须阻塞系统。这是通过设置副本因子(replication factor)来调节与之相对的一致性级别。通过副本因子(replication factor),你可以决定准备牺牲多少性能来换取一致性。 副本因子是你要求更新在集群中传播到的节点数(注意,更新包括所有增加、删除和更新操作)。客户端每次操作还必须设置一个一致性级别(consistency level)参数,这个参数决定了多少个副本写入成功才可以认定写操作是成功的,或者读取过程中读到多少个副本正确就可以认定是读成功的。这里 Cassandra 把决定一致性程度的权利留给了客户自己。所以,如果需要的话,你可以设定一致性级别和副本因子相等,从而达到一个较高的一致性水平,不过这样就必须付出同步阻塞操作的代价,只有所有节点都被更新完成才能成功返回一次更新。而实际上,Cassandra 一般都不会这么来用,原因显而易见(这样就丧失了可用性目标,影响性能,而且这不是你选择 Cassandra 的初衷)。而如果一个客户端设置一致性级别低于副本因子的话,即使有节点宕机了,仍然可以写成功。总体来说,Cassandra 更倾向于 CP,虽然它也可以通过调节一致性水平达到 AP;但是不推荐你这么设置。面向行(Row-Oriented)Cassandra 经常被看做是一种面向列(Column-Oriented)的数据库,这也并不算错。它的数据结构不是关系型的,而是一个多维稀疏哈希表。稀疏(Sparse)意味着任何一行都可能会有一列或者几列,但每行都不一定(像关系模型那样)和其他行有一样的列。每行都有一个唯一的键值,用于进行数据访问。所以,更确切地说,应该把 Cassandra 看做是一个有索引的、面向行的存储系统。Cassandra 的数据存储结构基本可以看做是一个多维哈希表。这意味着你不必事先精确地决定你的具体数据结构或是你的记录应该包含哪些具体字段。这特别适合处于草创阶段,还在不断增加或修改服务特性的应用。而且也特别适合应用在敏捷开发项目中,不必进行长达数月的预先分析。对于使用 Cassandra 的应用,如果业务发生变化了,只需要在运行中增加或删除某些字段就行了,不会造成服务中断。当然, 这不是说你不需要考虑数据。相反,Cassandra 需要你换个角度看数据。在 RDBMS 里, 你得首先设计一个完整的数据模型, 然后考虑查询方式, 而在 Cassandra 里,你可以首先思考如何查询数据,然后提供这些数据就可以了。灵活的模式(Flexible Schema)Cassandra 的早期版本支持无模式(schema-free)数据模型,可以动态定义新的列。 无模式数据库(如 Bigtable 和 MongoDB)在访问大量数据时具有高度可扩展性和高性能的优势。 无模式数据库的主要缺点是难以确定数据的含义和格式,这限制了执行复杂查询的能力。为了解决这些问题,Cassandra 引入了 Cassandra Query Language(CQL),它提供了一种通过类似于结构化查询语言(SQL)的语法来定义模式。 最初,CQL 是作为 Cassandra 的另一个接口,并且基于 Apache Thrift 项目提供无模式的接口。 在这个过渡阶段,术语“模式可选”(Schema-optional)用于描述数据模型,我们可以使用 CQL 的模式来定义。并且可以通过 Thrift API 实现动态扩展以此添加新的列。 在此期间,基础数据存储模型是基于 Bigtable 的。从 3.0 版本开始,不推荐使用基于 Thrift API 的动态列创建的 API,并且 Cassandra 底层存储已经重新实现了,以更紧密地与 CQL 保持一致。 Cassandra 并没有完全限制动态扩展架构的能力,但它的工作方式却截然不同。 CQL 集合(比如 list、set、尤其是 map)提供了在无结构化的格式里面添加内容的能力,从而能扩展现有的模式。CQL 还提供了改变列的类型的能力,以支持 JSON 格式的文本的存储。因此,描述 Cassandra 当前状态的最佳方式可能是它支持灵活的模式。高性能(High Performance)Cassandra 在设计之初就特别考虑了要充分利用多处理器和多核计算机的性能,并考虑在分布于多个数据中心的大量这类服务器上运行。它可以一致而且无缝地扩展到数百台机器,存储数 TB 的数据。Cassandra 已经显示出了高负载下的良好表现,在一个非常普通的工作站上,Cassandra 也可以提供非常高的写吞吐量。而如果你增加更多的服务器,你还可以继续保持 Cassandra 所有的特性而无需牺牲性能。
封神 2019-12-02 02:00:50 0 浏览量 回答数 0

回答

在这个信息时代高速发展的情况下,很多人会对自己该往哪个方向发展感到迷茫,下面我就浅显的给大家介绍一下五大流行区域的发展前景。大数据的发展前景:当前大数据行业真的是人才稀缺吗?学了几年后,大数据行业会不会产能过剩?大数据行业最终需要什么样的人才?接下来就带你们看看分析结果:当前大数据行业真的是人才稀缺吗?对!未来人才缺口150万,数据分析人才最稀缺。先看大数据人才缺口有多大?根据LinkedIn(领英)发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中数据分析人才最为稀缺、供给指数最低。同时,数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月。而清华大学计算机系教授武永卫去年透露了一组数据:未来3-5年,中国需要180万数据人才,但目前只有约30万人。大数据行业未来会产能过剩吗?提供大数据技术与应用服务的第三方公司面临调整,未来发展会趋集中关于“大数据概念是否被过度炒作”的讨论,其实2013年的夏季达沃斯就有过。彼时支持“炒作”观点的现场观众达54.5%。对此,持反对意见的北京大学光华管理学院副教授苏萌提出了三个理由:不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;数据分析人才仍然极度匮乏。4年之后,舆论热点已经逐渐从大数据转向人工智能,大数据行业也历经整合。近一年间,一些大数据公司相继出现裁员、业务大调整等情况,部分公司出现亏损。那都是什么公司面临危机呢?基于数据归属,涉及大数据业务的公司其实有两类:一类是自身拥有数据的甲方公司,如亚马逊、阿里巴巴等;另一类是整合数据资源,提供大数据技术与应用服务的第三方公司。目前行业整合出现盈利问题的公司多集中在第三方服务商。对此,LinkedIn(领英)中国技术副总裁王迪表示,第三方服务商提供的更多的是技术或平台,大数据更多还是让甲方公司获益。在王迪看来,大数据业务要产生规模效益,至少要具备三点:算法、计算平台以及数据本身。“第三方大数据创业公司在算法上有一技之长,而计算能力实际上已经匀化了,传统企业如果用好了,和大数据创业公司没有区别,甚至计算能力更强,而数据获取方面,很多数据在传统行业内部并没有共享出来,第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高。”说白了,数据为王。在2013年,拿到千万级A轮融资的大数据企业不足10家,到2015年,拿到千万级以上A轮融资的企业已经超过30家。直到2016年互联网资本寒冬,大数据行业投资热度有所减退,大数据行业是否也存在产能过剩?王迪认为,目前的行业整合属于正常现象,“经过市场的优胜劣汰,第三方服务领域会出现一些做得比较好的公司,其他公司可能被淘汰或转型做一些垂直行业应用。从社会来看,总的需求量一定是增加的,而对于供给侧,经过行业自然的洗牌,最终会集中在几家优秀的行业公司。”需要什么样的大数据人才?今年3月份,教育部公布了第二批获准开设“数据科学与大数据技术”的高校名单,加上第一批获批的北京大学、对外经济贸易大学、中南大学,一共35所高校获批该专业。今年开始,部分院校将招收第一届大数据专业本科生。大数据人才培养涉及到两方面问题:交叉性学科的人才培养方案是否与市场需求相匹配;学科建设的周期与行业快速更新之间的差距怎样弥合。对于第一个问题,“电商热”时期开设的电子商务专业是一个可吸取经验的样本。2000年,教育部高教司批准了第一批高校开设电子商务本科专业。作为一个复合型专业,电子商务的本科教学涵盖了管理、技术、营销三方面的课程。电子商务领域人才需求量大,但企业却无法从电子商务专业中找到合适的人才,原因何在?职业规划专家姜萌认为,并不是某一个专业对应一个行业热点,而是一个专业集群对应一个行业热点。“比如电子商务专业,我们到电子商务公司里会发现,不是学电子商务的人在做这些工作,而是每个专业各司其职,比如计算机、设计、物流管理、营销、广告、金融等等。现在行业的复合型工作都是由一个专业集群来完成的,而不是一个人来复合一堆专业特点。”大数据专业的人才培养也同样走复合型路线,复旦大学大数据学院的招生简章显示,学院本科人才培养以统计学、计算机科学和数学为三大基础支撑性学科,以生物学、医学、环境科学、经济学、社会学、管理学等为应用拓展性学科,具备典型的交叉学科特征。LinkedIn(领英)中国技术副总裁王迪指出,“从企业应用的角度来看,大数据行业里从事相关职能的同学背景是各异的,大数据作为一个人才培养方向还在探索中,在这个阶段,高校尝试开设硕士课程是很好的实践,但开设一类的本科专业还为时过早。”另一方面,专业人才培养的周期较长,而行业热点不断更新轮替,中间产生的时间差使得新兴专业的志愿填报具备了一定风险。王迪认为,“从今天的产业实践上看,大数据领域依然是从现有专业中挑选人才,教育和市场发展总是有一定差距的,学生本科四年,加上硕士阶段已经是七年之后的事情了,产业已经演进了很多,而教学大纲并不会跟进得那么快。”因此,尽管大数据的应用前景毋庸置疑,但在人才培养层面,复合型人才培养方案会不会重走电子商务专业的老路?学校教育如何赶上行业发展速度?这些都是值得进一步商榷的问题。面对热门专业,志愿填报需要注意啥?了解了大数据行业、公司和大数据专业后,姜萌对于考生填报像大数据相关的热门专业,提出了几条建议:报考热的专业和就业热的专业并不一定是重合的,比如软件、计算机、金融,这些专业的就业率实际并没有那么高,地质勘探、石油、遥感等专业,虽然报考上是冷门,但行业需求大,就业率更高。选择热门专业,更需要考虑就业质量。专业就业好,是统计学意义,指的是平均收入水平高,比如金融专业的收入,比其他纯文科专业的平均收入较高,但落实到个体层面,就业情况就不一样了,尤其像金融专业是典型的名校高学历好就业,但对于考试成绩较低的同学来说,如果去一些普通院校、专科院校学习金融,最后就业情况可能还不如会计专业。志愿填报,除了专业,城市因素也很重要:如果想从事金融、互联网的工作,更适合去一线城市,如果是去三、四线城市的学生可以考虑应用面比较广的专业,就是各行各业都能用到的专业,比如会计专业,专科层次的会计和985层次的会计都有就业渠道。如果先选择报考城市,也可以针对所在城市的行业特点选择专业,比如沿海城市外贸相对发达,选择国际贸易、外语类专业就业情况更好,比如武汉有光谷,选择光电类专业更好就业。最终家长和考生更需要考虑个人与专业匹配的问题,金融、计算机等热门专业不是所有人都适合学,好专业不见得对所有个体都是好的。java的发展前景:由于Java的诸多优点,Java的发展前景十分广泛。比如,在我们中国的市场,Java无论在企业级应用,还是在面向大众的服务方面都取得了不少进展,在中国的电信、金融等关键性业务中发挥着举足轻重的作用。由于SUN、TBM、Oracle等国际厂商相继推出各种基于Java技术的应用服务器以及各种应用软件,推动了Java在金融、电信、制造等领域日益广泛的应用,如清华大学计算机系利用Java、XML和Web技术研制开发了多个软件平台,东方科技的TongWeb、中创的Inforweb等J2EE应用服务器。由此可见,在巨大市场需求下,企业对于Java人才的渴求已经是不争的事实。你问我火了这么多年的Java语言的发展前景怎么样?那来看看吧Java在WEB、移动设备以及云计算方面前景广阔,随着云计算以及移动领域的扩张,更多的企业在考虑将其应用部署在Java平台上。无论是本地主机,公共云,Java都是目前最适合的选择。;另外在Oracle的技术投资担保下,Java也是企业在云应用方面回避微软平台、在移动应用方面回避苹果公司的一个最佳选择。Java可以参与制作大部分网络应用程序系统,而且与如今流行的WWW浏览器结合很好,这一优点将促进Java的更大范围的推广。因为在未来的社会,信息将会传送的更加快速,这将推动程序向WEB程序方向发展,由于Java具有编写WEB程序的能力,并且Java与浏览器结合良好,这将使得Java前景充满光明的发展。Python的发展前景:Python程序员的发展前景是怎样的?随着Python的技术的流行, Python在为人们带来工作与生活上的便捷后,关注者们开始慢慢关心Python的发展前景与方向。从自身特性看Python发展Python自身强大的优势决定其不可限量的发展前景。Python作为一种通用语言,几乎可以用在任何领域和场合,角色几乎是无限的。Python具有简单、易学、免费、开源、可移植、可扩展、可嵌入、面向对象等优点,它的面向对象甚至比java和C#、.net更彻底。它是一种很灵活的语言,能帮你轻松完成编程工作。强大的类库支持,使编写文件处理、正则表达式,网络连接等程序变得相当容易。能运行在多种计算机平台和操作系统中,如各位unix,windows,MacOS,OS/2等等,并可作为一种原型开发语言,加快大型程序的开发速度。从企业应用来看Python发展Python被广泛的用在Web开发、运维自动化、测试自动化、数据挖掘等多个行业和领域。一项专业调查显示,75%的受访者将Python视为他们的主要开发语言,反之,其他25%受访者则将其视为辅助开发语言。将Python作为主要开发语言的开发者数量逐年递增,这表明Python正在成为越来越多开发者的开发语言选择。目前,国内不少大企业都已经使用Python如豆瓣、搜狐、金山、腾讯、盛大、网易、百度、阿里、淘宝、热酷、土豆、新浪、果壳等;国外的谷歌、NASA、YouTube、Facebook、工业光魔、红帽等都在应用Python完成各种各样的任务。从市场需求与薪资看Python发展Python得到越来越多公司的青睐,使得Python人才需求逐年增加,从市场整体需求来看,Python在招聘市场上的流行程度也是在逐步上升的,工资水平也是水涨船高。据统计Python平均薪资水平在12K,随着经验的提升,薪资也是逐年增长。学习Python的程序员,除去Python开发工程师、Python高级工程师、Python自动化测试外,也能够朝着Python游戏开发工程师、SEO工程师、Linux运维工程师等方向发展,发展方向较为多元化。随着Python的流行,带动的是它的普及以及市场需求量,所以现在学习Python是个不错的时机。区块链的发展前景:区块链开发 ? 155---0116---2665 ?可是区块链技术到底是什么,大多数人都是模糊没有概念。通俗来讲,如果我们把数据库假设成一本账本,读写数据库就可以看做一种记账的行为,区块链技术的原理就是在一段时间内找出记账最快最好的人,由这个人来记账,然后将账本的这一页信息发给整个系统里的其他所有人。区块链技术也称分布式账本(或账簿)技术,属于互联网数据库技术,由参与者共同完成数据库记录,特点是去中心化和公开透明。此外,在每个区块的信息写入并获得认可后,整个区块链数据库完整保存在互联网的节点中,难以被修改,因此数据库的安全性极高。人们普遍认为,区块链技术是实现数字产品(如货币和知识产权)快速、安全和透明地对等(P2P)转账或转让的重要手段。在以色列Zen Protocol公司,区块链应用软件开发专家阿希尔·曼宁介绍说,他们公司正在开发Zen区块链平台,其将用于支持金融产品在无中介的环境下自动和自由交易。通常,人们将钱存放在银行,依靠银行管理自己的资金。但是,在支配资金时往往会受到银行规定的限制,或在汇款时存在耗时长、费用高等问题。区块链技术平台将让人们首次拥有自己管理和支配钱财的能力,他相信去中心化金融管理体系具有广阔的市场,有望极大地改变传统的金融市场。2018年伊始这一轮区块链的热潮,主要起源于虚拟货币的炒作热情。站在风口,区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。很多人不禁要问“区块链又和比特币又是什么关系?”记者查询了大量资料发现,比特币2009年被一位名叫中本聪的人提出,之后比特币这套去中心化的机制一直稳定运行,这引起很多人对这套历史上并不存在的运行机制强烈关注。于是人们把从比特币技术抽象提取出来的技术运用于其他领域,称之为区块链。这过程就好像人们先发明了面条,然后人们发现其背后面粉不仅可以做面条还可以做馒头、面包。比特币是面条,区块链是面粉。也就是说,区块链和比特币的关系即比特币算是区块链技术的一种应用,或者说一种使用了区块链技术的产品形态。而说到区块链不得不说的就是ICO,它是一种公开发行的初始数字货币。对于投资人来说,出于对市场信号的敏感和长期关注价值投资项目,目前炙手可热的区块链也成为诸多投资人关注的新兴项目之一。“区块链对于我们来说就是省去了中间环节,节约了交易成本,节省了交易时间,但是目前来看各方面环境还不够成熟,有待观望。”一位投资人这样说道。记者发现,在春节期间,不少互金圈的朋友熬夜到凌晨进入某个探讨区块链的微信群热聊,此群还吸引了不少知名人士,诸如明星加入,同时还有大咖在群里解读区块链的投资方式和未来发展等等。一时间,关于区块链的讨论群接二连三出现,也引发了各个行业对区块链的关注。出于对于区块链技术懵懂的状态,记者追问了身边的一些互金圈的朋友,为何如此痴迷区块链?多数朋友认为“区块链能赚钱,抱着试试看的心态,或许能像之前比特币一样从中获取收益。”显然,区块链技术具有广阔的应用潜力,但是在其逐步进入社会改善民众生活的过程中,也面临许多的问题,需要积极去寻求相应的对策,最终让其发挥出潜力。只有这样,10年或20年后人们才能真正享受区块链技术创造的美好环境。人工智能的发展前景:人工智能产业是智能产业发展的核心,是其他智能科技产品发展的基础,国内外的高科技公司以及风险投资机构纷纷布局人工智能产业链。科技部部长万钢3月10日表示,加快实施新一代人工智能科学基础的关键技术系统集成研发,使那些研发成果尽快能够进入到开放平台,在开放使用中再一次把它增强完善。万钢称,马上就要发布人工智能项目指南和细则,来突破基础前沿理论关键部分的技术。人工智能发展趋势据前瞻产业研究院《人工智能行业市场前瞻与投资战略规划分析报告》指出,2017年中国人工智能核心产业规模超过700亿元,随着国家规划的出台,各地人工智能相关建设将逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,增长率达到26.2%。报告认为,从产业投资回报率分析,智能安防、智能驾驶等领域的快速发展都将刺激计算机视觉分析类产品的需求,使得计算机视觉领域具备投资价值;而随着中国软件集成水平和人们生活水平的提高,提供教育、医疗、娱乐等专业化服务的服务机器人和智能无人设备具备投资价值。人工智能现状当前,人工智能受到的关注度持续提升,大量的社会资本和智力、数据资源的汇集驱动人工智能技术研究不断向前推进。从发展层次来看,人工智能技术可分为计算智能、感知智能和认知智能。当前,计算智能和感知智能的关键技术已经取得较大突破,弱人工智能应用条件基本成熟。但是,认知智能的算法尚未突破,前景仍不明朗。今年,随着智力资源的不断汇集,人工智能核心技术的研究重点可能将从深度学习转为认知计算,即推动弱人工智能向强人工智能不断迈进。一方面,在人工智能核心技术方面,在百度等大型科技公司和北京大学、清华大学等重点院校的共同推动下,以实现强人工智能为目标的类脑智能有望率先突破。另一方面,在人工智能支撑技术方面,量子计算、类脑芯片等核心技术正处在从科学实验向产业化应用的转变期,以数据资源汇集为主要方向的物联网技术将更加成熟,这些技术的突破都将有力推动人工智能核心技术的不断演进。工业大数据2022 年我国工业大数据有望突破 1200 亿元, 复合增速 42%。 工业大数据是提升制造智能化水平,推动中国制造业转型升级的关键动力,具体包括企业信息化数据、工业物联网数据,以及外部跨界数据。其中,企业信息化和工业物联网中机器产生的海量时序数据是工业数据的主要来源。工业大数据不仅可以优化现有业务,实现提质增效,而且还有望推动企业业务定位和盈利模式发生重大改变,向个性化定制、智能化生产、网络化协同、服务化延伸等智能化场景转型。预计到 2022 年,中国工业大数据市场规模有望突破 1200亿元,年复合增速 42%。IT的未来是人工智能这是一个指数级增长的时代。过去几十年,信息技术的进步相当程度上归功于芯片上晶体管数目的指数级增加,及由此带来的计算力的极大提升。这就是所谓的摩尔定律。在互联网时代,互联的终端数也是超线性的增长,而网络的效力大致与联网终端数的平方成正比。今天,大数据时代产生的数据正在呈指数级增加。在指数级增长的时代,我们可能会高估技术的短期效应,而低估技术的长期效应。历史的经验告诉我们,技术的影响力可能会远远的超过我们的想象。未来的计算能力人工智能需要强大的计算能力。计算机的性能过去30年提高了一百万倍。随着摩尔定律逐渐趋于物理极限,未来几年,我们期待一些新的技术突破。先谈一下类脑计算。传统计算机系统,长于逻辑运算,不擅长模式识别与形象思维。构建模仿人脑的类脑计算机芯片,我们今天可以以极低的功耗,模拟100万个神经元,2亿5千万个神经突触。未来几年,我们会看到类脑计算机的进一步的发展与应用随着互联网的普及、传感器的泛在、大数据的涌现、电子商务的发展、信息社区的兴起,数据和知识在人类社会、物理空间和信息空间之间交叉融合、相互作用,人工智能发展所处信息环境和数据基础发展了巨大的变化。伴随着科学基础和实现载体取得新的突破,类脑计算、深度学习、强化学习等一系列的技术萌芽预示着内在动力的成长,人工智能的发展已进入一个新的阶段。发展发展前景好,代表你现在学习会比后来者起步快,占有更大的优势,当然,你也要明白兴趣是最好的老师,选择自己感兴趣的相信你学的会更加而牢固。记住,最重要的一点:方向最重要!!!希望大家多多关注. ,加微信zhanglindashuju 可以获取更多资料哦作者:失色的瞳孔链接:https://juejin.im/post/5b1a6531e51d45067e6fc24a来源:掘金著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
孟志昂 2019-12-02 01:45:13 0 浏览量 回答数 0

问题

入侵防御系统怎样主宰网络安全市场金牌

当前的入侵防御系统在性能、功能多样性、易用性,以及服务方面都与用户需求有着不小的差距。未来的入侵防御系统只有在这几个方面都取得技术突破性进展,才有资格站上最高领奖台。在没有第三方机构提出未来入侵防御系统模型之前&...
elinks 2019-12-01 21:15:22 9640 浏览量 回答数 0

问题

dubbo 负载均衡策略和集群容错策略都有哪些?动态代理策略呢?【Java问答学堂】49期

面试题 dubbo 负载均衡策略和集群容错策略都有哪些?动态代理策略呢? 面试官心理分析 继续深问吧,这些都是用 dubbo 必须知道的一些东西,你得知道基本原理,...
剑曼红尘 2020-07-02 17:35:03 17 浏览量 回答数 1

问题

【精品问答】Java必备核心知识1000+(附源码)

为了方便Java开发者快速找到相关技术问题和答案,开发者社区策划了Java技术1000问内容,包含最基础的如何学Java、实践中遇到的技术问题、RocketMQ面试、Java容器部署实践等维度内容。 我们会以每...
问问小秘 2019-12-01 22:00:28 870 浏览量 回答数 1

问题

“Ceph浅析”系列之七——关于Ceph的若干想法:报错

本篇文章的内容,主要是笔者在调研分析Ceph过程中产生的一些思考。因为其中的内容比较自由发散,且大多是笔者的个人见解,故此另启一文进行讨论。   7.1    关于Ceph的性能 目...
kun坤 2020-06-08 11:04:40 6 浏览量 回答数 1

问题

游戏云间之三:游戏运维

一款游戏产品上线,仅仅从技术角度来讲,分为软件层次的游戏代码研发,及硬件层次的代码部署上线。劈开代码研发方面不讲,游戏的部署上线,成为我们一个很头疼的问题。为什么头疼&#...
起航 2019-12-01 21:43:27 23458 浏览量 回答数 17

问题

分布式服务接口的幂等性如何设计(比如不能重复扣款)?【Java问答学堂】52期

面试题 分布式服务接口的幂等性如何设计(比如不能重复扣款)? 面试官心理分析 从这个问题开始,面试官就已经进入了实际的生产问题的面试了。 一个分布式系统中的某个接口࿰...
剑曼红尘 2020-07-08 09:15:27 3 浏览量 回答数 1

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT 阿里云科技驱动中小企业数字化