• 关于

    机器人工作空间怎么买

    的搜索结果

问题

人工智能技术百问——机器真的能取代人类吗

随着科技的飞速发展,“人工智能”无疑成为了当下最火的词。在这一领域,我们仍处于非常初级的阶段,很多事情我们还不了解。它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、...
yq传送门 2019-12-01 20:27:57 4467 浏览量 回答数 3

问题

【archsummit 回顾】阿里云章文嵩:构建大型云计算平台分布式技术的实践

演讲人:章文嵩博士,阿里集团的高级研究员与副总裁,主要负责基础核心软件研发和云计算产品研发、推进网络软硬件方面的性能优化、搭建下一代高可扩展低碳低成本电子商务基础设施。他也是开放源码及 Linux内...
云课堂 2019-12-01 21:03:36 14448 浏览量 回答数 9

问题

阿里云服务器 如何处理网站高并发流量问题?(含教程)

很多平台一旦做大了,平台的流量就会陡增,同时并发访问的流量也会暴增,原本规划的硬件配置就无法满足当下的流量问题。 那么如何处理好高并发的流量问题呢? 小编将这些分为2个方面&...
元芳啊 2019-12-01 21:54:35 1511 浏览量 回答数 1

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

阿里极客公益活动: 或许你挑灯夜战只为一道难题 或许你百思不解只求一个答案 或许你绞尽脑汁只因一种未知 那么他们来了,阿里系技术专家来云栖问答为你解答技术难题了 他们用户自己手中的技术来帮助用户成长 本次活动特邀百位阿里技术专家对Java常...
管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

回答

从业余程序员到职业程序员 程序员刚入行时,我觉得最重要的是把自己培养成职业的程序员。 我的程序员起步比同龄人都晚了很多,更不用说现在的年轻人了。我大学读的是生物专业,在上大学前基本算是完全没接触过计算机。军训的时候因为很无聊,我和室友每天跑去学校的机房玩,我现在还印象很深刻,我第一次走进机房的时候,别人问,你是要玩windows,还是dos,我那是完全的一抹黑。后来就只记得在机房一堆人都是在练习盲打,军训完,盲打倒是练的差不多了,对计算机就这么产生了浓厚的兴趣,大一的时候都是玩组装机,捣鼓了一些,对计算机的硬件有了那么一些了解。 到大二后,买了一些书开始学习当时最火的网页三剑客,学会了手写HTML、PS的基本玩法之类的,课余、暑假也能开始给人做做网站什么的(那个时候做网站真的好赚钱),可能那样过了个一年左右,做静态的网页就不好赚钱了,也不好找实习工作,于是就开始学asp,写些简单的CRUD,做做留言板、论坛这些动态程序,应该算是在这个阶段接触编程了。 毕业后加入了深圳的一家做政府行业软件的公司,一个非常靠谱和给我空间的Leader,使得自己在那几年有了不错的成长,终于成了一个职业的程序员。 通常来说,业余或半职业的程序员,多数是1个人,或者很小的一个团队一起开发,使得在开发流程、协作工具(例如jira、cvs/svn/git等)、测试上通常会有很大的欠缺,而职业的程序员在这方面则会专业很多。另外,通常职业的程序员做的系统都要运行较长的时间,所以在可维护性上会特别注意,这点我是在加入阿里后理解更深的。一个运行10年的系统,和一个写来玩玩的系统显然是有非常大差别的。 这块自己感觉也很难讲清楚,只能说模模糊糊有个这样的概念。通常在有兴趣的基础上,从业余程序员跨越到成为职业程序员我觉得不会太难。 编程能力的成长 作为程序员,最重要的能力始终是编程能力,就我自己的感受而言,我觉得编程能力的成长主要有这么几个部分: 1、编程能力初级:会用 编程,首先都是从学习编程语言的基本知识学起的,不论是什么编程语言,有很多共同的基本知识,例如怎么写第一个Hello World、if/while/for、变量等,因此我比较建议在刚刚开始学一门编程语言的时候,看看编程语言自己的一些文档就好,不要上来就去看一些高阶的书。我当年学Java的时候上来就看Think in Java、Effective Java之类的,真心好难懂。 除了看文档以外,编程是个超级实践的活,所以一定要多写代码,只有这样才能真正熟练起来。这也是为什么我还是觉得在面试的时候让面试者手写代码是很重要的,这个过程是非常容易判断写代码的熟悉程度的。很多人会说由于写代码都是高度依赖IDE的,导致手写很难,但我绝对相信写代码写了很多的人,手写一段不太复杂的、可运行的代码是不难的。即使像我这种三年多没写过代码的人,让我现在手写一段不太复杂的可运行的Java程序,还是没问题的,前面N年的写代码生涯使得很多东西已经深入骨髓了。 我觉得编程能力初级这个阶段对于大部分程序员来说都不会是问题,勤学苦练,是这个阶段的核心。 2、编程能力中级:会查和避免问题 除了初级要掌握的会熟练的使用编程语言去解决问题外,中级我觉得首先是提升查问题的能力。 在写代码的过程中,出问题是非常正常的,怎么去有效且高效的排查问题,是程序员群体中通常能感受到的大家在编程能力上最大的差距。 解决问题能力强的基本很容易在程序员群体里得到很高的认可。在查问题的能力上,首先要掌握的是一些基本的调试技巧,好用的调试工具,在Java里有JDK自带的jstat、jmap、jinfo,不在JDK里的有mat、gperf、btrace等。工欲善其事必先利其器,在查问题上是非常典型的,有些时候大家在查问题时的能力差距,有可能仅仅是因为别人比你多知道一个工具而已。 除了调试技巧和工具外,查问题的更高境界就是懂原理。一个懂原理的程序员在查问题的水平上和其他程序员是有明显差距的。我想很多的同学应该能感受到,有些时候查出问题的原因仅仅是因为有效的工具,知其然不知其所以然。 我给很多阿里的同学培训过Java排查问题的方法,在这个培训里,我经常也会讲到查问题的能力的培养最主要的也是熟练,多尝试给自己写一些会出问题的程序,多积极的看别人是怎么查问题的,多积极的去参与排查问题,很多最后查问题能力强的人多数仅仅是因为“无他,但手熟尔”。 我自己排查问题能力的提升主要是在2009年和2010年。那两年作为淘宝消防队(处理各种问题和故障的虚拟团队)的成员,处理了很多的故障和问题。当时消防队还有阿里最公认的技术大神——多隆,我向他学习到了很多排查问题的技巧。和他比,我排查问题的能力就是初级的那种。 印象最深刻的是一次我们一起查一个应用cpu us高的问题,我们两定位到是一段代码在某种输入参数的时候会造成cpu us高的原因后,我能想到的继续查的方法是去生产环境抓输入参数,然后再用参数来本地debug看是什么原因。但多隆在看了一会那段代码后,给了我一个输入参数,我拿这个参数一运行,果然cpu us很高!这种case不是一次两次。所以我经常和别人说,我是需要有问题场景才能排查出问题的,但多隆是完全有可能直接看代码就能看出问题的,这是本质的差距。 除了查问题外,更厉害的程序员是在写代码的过程就会很好的去避免问题。大家最容易理解的就是在写代码时处理各种异常情况,这里通常也是造成程序员们之间很大的差距的地方。 写一段正向逻辑的代码,大部分情况下即使有差距,也不会太大,但在怎么很好的处理这个过程中有可能出现的异常上,这个时候的功力差距会非常明显。很多时候一段代码里处理异常逻辑的部分都会超过正常逻辑的代码量。 我经常说,一个优秀程序员和普通程序员的差距,很多时候压根就不需要看什么满天飞的架构图,而只用show一小段的代码就可以。 举一个小case大家感受下。当年有一个严重故障,最后查出的原因是输入的参数里有一个是数组,把这个数组里的值作为参数去查数据库,结果前面输入了一个很大的数组,导致从数据库查了大量的数据,内存溢出了,很多程序员现在看都会明白对入参、出参的保护check,但类似这样的case我真的碰到了很多。 在中级这个阶段,我会推荐大家尽可能的多刻意的去培养下自己这两个方面的能力,成为一个能写出高质量代码、有效排查问题的优秀程序员。 3、编程能力高级:懂高级API和原理 就我自己的经历而言,我是在写了多年的Java代码后,才开始真正更细致的学习和掌握Java的一些更高级的API,我相信多数Java程序员也是如此。 我算是从2003年开始用Java写商业系统的代码,但直到在2007年加入淘宝后,才开始非常认真地学习Java的IO通信、并发这些部分的API。尽管以前也学过也写过一些这样的代码,但完全就是皮毛。当然,这些通常来说有很大部分的原因会是工作的相关性,多数的写业务系统的程序员可能基本就不需要用到这些,所以导致会很难懂这些相对高级一些的API,但这些API对真正的理解一门编程语言,我觉得至关重要。 在之前的程序员成长路线的文章里我也讲到了这个部分,在没有场景的情况下,只能靠自己去创造场景来学习好。我觉得只要有足够的兴趣,这个问题还是不大的,毕竟现在有各种开源,这些是可以非常好的帮助自己创造机会学习的,例如学Java NIO,可以自己基于NIO包一个框架,然后对比Netty,看看哪些写的是不如Netty的,这样会非常有助于真正的理解。 在学习高级API的过程中,以及排查问题的过程中,我自己越来越明白懂编程语言的运行原理是非常重要的,因此我到了后面的阶段开始学习Java的编译机制、内存管理、线程机制等。对于我这种非科班出身的而言,学这些会因为缺乏基础更难很多,但这些更原理性的东西学会了后,对自己的编程能力会有质的提升,包括以后学习其他编程语言的能力,学这些原理最好的方法我觉得是先看看一些讲相关知识的书,然后去翻看源码,这样才能真正的更好的掌握,最后是在以后写代码的过程中、查问题的过程中多结合掌握的原理,才能做到即使在N年后也不会忘。 在编程能力的成长上,我觉得没什么捷径。我非常赞同1万小时理论,在中级、高级阶段,如果有人指点或和优秀的程序员们共事,会好非常多。不过我觉得这个和读书也有点像,到了一定阶段后(例如高中),天分会成为最重要的分水岭,不过就和大部分行业一样,大部分的情况下都还没到拼天分的时候,只需要拼勤奋就好。 系统设计能力的成长 除了少数程序员会进入专深的领域,例如Linux Kernel、JVM,其他多数的程序员除了编程能力的成长外,也会越来越需要在系统设计能力上成长。 通常一个编程能力不错的程序员,在一定阶段后就会开始承担一个模块的工作,进而承担一个子系统、系统、跨多领域的更大系统等。 我自己在工作的第三年开始承担一个流程引擎的设计和实现工作,一个不算小的系统,并且也是当时那个项目里的核心部分。那个阶段我学会了一些系统设计的基本知识,例如需要想清楚整个系统的目标、模块的划分和职责、关键的对象设计等,而不是上来就开始写代码。但那个时候由于我是一个人写整个系统,所以其实对设计的感觉并还没有那么强力的感觉。 在那之后的几年也负责过一些系统,但总体感觉好像在系统设计上的成长没那么多,直到在阿里的经历,在系统设计上才有了越来越多的体会。(点击文末阅读原文,查看:我在系统设计上犯过的14个错,可以看到我走的一堆的弯路)。 在阿里有一次做分享,讲到我在系统设计能力方面的成长,主要是因为三段经历,负责专业领域系统的设计 -> 负责跨专业领域的专业系统的设计 -> 负责阿里电商系统架构级改造的设计。 第一段经历,是我负责HSF。HSF是一个从0开始打造的系统,它主要是作为支撑服务化的框架,是个非常专业领域的系统,放在整个淘宝电商的大系统来看,其实它就是一个很小的子系统,这段经历里让我最深刻的有三点: 1).要设计好这种非常专业领域的系统,专业的知识深度是非常重要的。我在最早设计HSF的几个框的时候,是没有设计好服务消费者/提供者要怎么和现有框架结合的,在设计负载均衡这个部分也反复了几次,这个主要是因为自己当时对这个领域掌握不深的原因造成的; 2). 太技术化。在HSF的阶段,出于情怀,在有一个版本里投入了非常大的精力去引进OSGi以及去做动态化,这个后来事实证明是个非常非常错误的决定,从这个点我才真正明白在设计系统时一定要想清楚目标,而目标很重要的是和公司发展阶段结合; 3). 可持续性。作为一个要在生产环境持续运行很多年的系统而言,怎么样让其在未来更可持续的发展,这个对设计阶段来说至关重要。这里最low的例子是最早设计HSF协议的时候,协议头里竟然没有版本号,导致后来升级都特别复杂;最典型的例子是HSF在早期缺乏了缺乏了服务Tracing这方面的设计,导致后面发现了这个地方非常重要后,全部落地花了长达几年的时间;又例如HSF早期缺乏Filter Chain的设计,导致很多扩展、定制化做起来非常不方便。 第二段经历,是做T4。T4是基于LXC的阿里的容器,它和HSF的不同是,它其实是一个跨多领域的系统,包括了单机上的容器引擎,容器管理系统,容器管理系统对外提供API,其他系统或用户通过这个来管理容器。这个系统发展过程也是各种犯错,犯错的主要原因也是因为领域掌握不深。在做T4的日子里,学会到的最重要的是怎么去设计这种跨多个专业领域的系统,怎么更好的划分模块的职责,设计交互逻辑,这段经历对我自己更为重要的意义是我有了做更大一些系统的架构的信心。 第三段经历,是做阿里电商的异地多活。这对我来说是真正的去做一个巨大系统的架构师,尽管我以前做HSF的时候参与了淘宝电商2.0-3.0的重大技术改造,但参与和自己主导是有很大区别的,这个架构改造涉及到了阿里电商众多不同专业领域的技术团队。在这个阶段,我学会的最主要的: 1). 子系统职责划分。在这种超大的技术方案中,很容易出现某些部分的职责重叠和冲突,这个时候怎么去划分子系统,就非常重要了。作为大架构师,这个时候要从团队的职责、团队的可持续性上去选择团队; 2). 大架构师最主要的职责是控制系统风险。对于这种超大系统,一定是多个专业领域的架构师和大架构师共同设计,怎么确保在执行的过程中对于系统而言最重要的风险能够被控制住,这是我真正的理解什么叫系统设计文档里设计原则的部分。 设计原则我自己觉得就是用来确保各个子系统在设计时都会遵循和考虑的,一定不能是虚的东西,例如在异地多活架构里,最重要的是如何控制数据风险,这个需要在原则里写上,最基本的原则是可接受系统不可用,但也要保障数据一致,而我看过更多的系统设计里设计原则只是写写的,或者千篇一律的,设计原则切实的体现了架构师对目标的理解(例如当时异地多活这个其实开始只是个概念,但做到什么程度才叫做到异地多活,这是需要解读的,也要确保在技术层面的设计上是达到了目标的),技术方案层面上的选择原则,并确保在细节的设计方案里有对于设计原则的承接以及执行; 3). 考虑问题的全面性。像异地多活这种大架构改造,涉及业务层面、各种基础技术层面、基础设施层面,对于执行节奏的决定要综合考虑人力投入、机器成本、基础设施布局诉求、稳定性控制等,这会比只是做一个小的系统的设计复杂非常多。 系统设计能力的成长,我自己觉得最重要的一是先在一两个技术领域做到专业,然后尽量扩大自己的知识广度。例如除了自己的代码部分外,还应该知道具体是怎么部署的,部署到哪去了,部署的环境具体是怎么样的,和整个系统的关系是什么样的。 像我自己,是在加入基础设施团队后才更加明白有些时候软件上做的一个决策,会导致基础设施上巨大的硬件、网络或机房的投入,但其实有可能只需要在软件上做些调整就可以避免,做做研发、做做运维可能是比较好的把知识广度扩大的方法。 第二点是练习自己做tradeoff的能力,这个比较难,做tradeoff这事需要综合各种因素做选择,但这也是所有的架构师最关键的,可以回头反思下自己在做各种系统设计时做出的tradeoff是什么。这个最好是亲身经历,听一些有经验的架构师分享他们选择背后的逻辑也会很有帮助,尤其是如果恰好你也在同样的挑战阶段,光听最终的架构结果其实大多数时候帮助有限。 技术Leader我觉得最好是能在架构师的基础上,后续注重成长的方面还是有挺大差别,就不在这篇里写了,后面再专门来写一篇。 程序员金字塔 我认为程序员的价值关键体现在作品上,被打上作品标签是一种很大的荣幸,作品影响程度的大小我觉得决定了金字塔的层次,所以我会这么去理解程序员的金字塔。 当然,要打造一款作品,仅有上面的两点能力是不够的,作品里很重要的一点是对业务、技术趋势的判断。 希望作为程序员的大伙,都能有机会打造一款世界级的作品,去为技术圈的发展做出贡献。 由于目前IT技术更新速度还是很快的,程序员这个行当是特别需要学习能力的。我一直认为,只有对程序员这个职业真正的充满兴趣,保持自驱,才有可能在这个职业上做好,否则的话是很容易淘汰的。 作者简介: 毕玄,2007年加入阿里,十多年来主要从事在软件基础设施领域,先后负责阿里的服务框架、Hbase、Sigma、异地多活等重大的基础技术产品和整体架构改造。
茶什i 2020-01-10 15:19:35 0 浏览量 回答数 0

回答

在这个信息时代高速发展的情况下,很多人会对自己该往哪个方向发展感到迷茫,下面我就浅显的给大家介绍一下五大流行区域的发展前景。大数据的发展前景:当前大数据行业真的是人才稀缺吗?学了几年后,大数据行业会不会产能过剩?大数据行业最终需要什么样的人才?接下来就带你们看看分析结果:当前大数据行业真的是人才稀缺吗?对!未来人才缺口150万,数据分析人才最稀缺。先看大数据人才缺口有多大?根据LinkedIn(领英)发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中数据分析人才最为稀缺、供给指数最低。同时,数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月。而清华大学计算机系教授武永卫去年透露了一组数据:未来3-5年,中国需要180万数据人才,但目前只有约30万人。大数据行业未来会产能过剩吗?提供大数据技术与应用服务的第三方公司面临调整,未来发展会趋集中关于“大数据概念是否被过度炒作”的讨论,其实2013年的夏季达沃斯就有过。彼时支持“炒作”观点的现场观众达54.5%。对此,持反对意见的北京大学光华管理学院副教授苏萌提出了三个理由:不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;数据分析人才仍然极度匮乏。4年之后,舆论热点已经逐渐从大数据转向人工智能,大数据行业也历经整合。近一年间,一些大数据公司相继出现裁员、业务大调整等情况,部分公司出现亏损。那都是什么公司面临危机呢?基于数据归属,涉及大数据业务的公司其实有两类:一类是自身拥有数据的甲方公司,如亚马逊、阿里巴巴等;另一类是整合数据资源,提供大数据技术与应用服务的第三方公司。目前行业整合出现盈利问题的公司多集中在第三方服务商。对此,LinkedIn(领英)中国技术副总裁王迪表示,第三方服务商提供的更多的是技术或平台,大数据更多还是让甲方公司获益。在王迪看来,大数据业务要产生规模效益,至少要具备三点:算法、计算平台以及数据本身。“第三方大数据创业公司在算法上有一技之长,而计算能力实际上已经匀化了,传统企业如果用好了,和大数据创业公司没有区别,甚至计算能力更强,而数据获取方面,很多数据在传统行业内部并没有共享出来,第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高。”说白了,数据为王。在2013年,拿到千万级A轮融资的大数据企业不足10家,到2015年,拿到千万级以上A轮融资的企业已经超过30家。直到2016年互联网资本寒冬,大数据行业投资热度有所减退,大数据行业是否也存在产能过剩?王迪认为,目前的行业整合属于正常现象,“经过市场的优胜劣汰,第三方服务领域会出现一些做得比较好的公司,其他公司可能被淘汰或转型做一些垂直行业应用。从社会来看,总的需求量一定是增加的,而对于供给侧,经过行业自然的洗牌,最终会集中在几家优秀的行业公司。”需要什么样的大数据人才?今年3月份,教育部公布了第二批获准开设“数据科学与大数据技术”的高校名单,加上第一批获批的北京大学、对外经济贸易大学、中南大学,一共35所高校获批该专业。今年开始,部分院校将招收第一届大数据专业本科生。大数据人才培养涉及到两方面问题:交叉性学科的人才培养方案是否与市场需求相匹配;学科建设的周期与行业快速更新之间的差距怎样弥合。对于第一个问题,“电商热”时期开设的电子商务专业是一个可吸取经验的样本。2000年,教育部高教司批准了第一批高校开设电子商务本科专业。作为一个复合型专业,电子商务的本科教学涵盖了管理、技术、营销三方面的课程。电子商务领域人才需求量大,但企业却无法从电子商务专业中找到合适的人才,原因何在?职业规划专家姜萌认为,并不是某一个专业对应一个行业热点,而是一个专业集群对应一个行业热点。“比如电子商务专业,我们到电子商务公司里会发现,不是学电子商务的人在做这些工作,而是每个专业各司其职,比如计算机、设计、物流管理、营销、广告、金融等等。现在行业的复合型工作都是由一个专业集群来完成的,而不是一个人来复合一堆专业特点。”大数据专业的人才培养也同样走复合型路线,复旦大学大数据学院的招生简章显示,学院本科人才培养以统计学、计算机科学和数学为三大基础支撑性学科,以生物学、医学、环境科学、经济学、社会学、管理学等为应用拓展性学科,具备典型的交叉学科特征。LinkedIn(领英)中国技术副总裁王迪指出,“从企业应用的角度来看,大数据行业里从事相关职能的同学背景是各异的,大数据作为一个人才培养方向还在探索中,在这个阶段,高校尝试开设硕士课程是很好的实践,但开设一类的本科专业还为时过早。”另一方面,专业人才培养的周期较长,而行业热点不断更新轮替,中间产生的时间差使得新兴专业的志愿填报具备了一定风险。王迪认为,“从今天的产业实践上看,大数据领域依然是从现有专业中挑选人才,教育和市场发展总是有一定差距的,学生本科四年,加上硕士阶段已经是七年之后的事情了,产业已经演进了很多,而教学大纲并不会跟进得那么快。”因此,尽管大数据的应用前景毋庸置疑,但在人才培养层面,复合型人才培养方案会不会重走电子商务专业的老路?学校教育如何赶上行业发展速度?这些都是值得进一步商榷的问题。面对热门专业,志愿填报需要注意啥?了解了大数据行业、公司和大数据专业后,姜萌对于考生填报像大数据相关的热门专业,提出了几条建议:报考热的专业和就业热的专业并不一定是重合的,比如软件、计算机、金融,这些专业的就业率实际并没有那么高,地质勘探、石油、遥感等专业,虽然报考上是冷门,但行业需求大,就业率更高。选择热门专业,更需要考虑就业质量。专业就业好,是统计学意义,指的是平均收入水平高,比如金融专业的收入,比其他纯文科专业的平均收入较高,但落实到个体层面,就业情况就不一样了,尤其像金融专业是典型的名校高学历好就业,但对于考试成绩较低的同学来说,如果去一些普通院校、专科院校学习金融,最后就业情况可能还不如会计专业。志愿填报,除了专业,城市因素也很重要:如果想从事金融、互联网的工作,更适合去一线城市,如果是去三、四线城市的学生可以考虑应用面比较广的专业,就是各行各业都能用到的专业,比如会计专业,专科层次的会计和985层次的会计都有就业渠道。如果先选择报考城市,也可以针对所在城市的行业特点选择专业,比如沿海城市外贸相对发达,选择国际贸易、外语类专业就业情况更好,比如武汉有光谷,选择光电类专业更好就业。最终家长和考生更需要考虑个人与专业匹配的问题,金融、计算机等热门专业不是所有人都适合学,好专业不见得对所有个体都是好的。java的发展前景:由于Java的诸多优点,Java的发展前景十分广泛。比如,在我们中国的市场,Java无论在企业级应用,还是在面向大众的服务方面都取得了不少进展,在中国的电信、金融等关键性业务中发挥着举足轻重的作用。由于SUN、TBM、Oracle等国际厂商相继推出各种基于Java技术的应用服务器以及各种应用软件,推动了Java在金融、电信、制造等领域日益广泛的应用,如清华大学计算机系利用Java、XML和Web技术研制开发了多个软件平台,东方科技的TongWeb、中创的Inforweb等J2EE应用服务器。由此可见,在巨大市场需求下,企业对于Java人才的渴求已经是不争的事实。你问我火了这么多年的Java语言的发展前景怎么样?那来看看吧Java在WEB、移动设备以及云计算方面前景广阔,随着云计算以及移动领域的扩张,更多的企业在考虑将其应用部署在Java平台上。无论是本地主机,公共云,Java都是目前最适合的选择。;另外在Oracle的技术投资担保下,Java也是企业在云应用方面回避微软平台、在移动应用方面回避苹果公司的一个最佳选择。Java可以参与制作大部分网络应用程序系统,而且与如今流行的WWW浏览器结合很好,这一优点将促进Java的更大范围的推广。因为在未来的社会,信息将会传送的更加快速,这将推动程序向WEB程序方向发展,由于Java具有编写WEB程序的能力,并且Java与浏览器结合良好,这将使得Java前景充满光明的发展。Python的发展前景:Python程序员的发展前景是怎样的?随着Python的技术的流行, Python在为人们带来工作与生活上的便捷后,关注者们开始慢慢关心Python的发展前景与方向。从自身特性看Python发展Python自身强大的优势决定其不可限量的发展前景。Python作为一种通用语言,几乎可以用在任何领域和场合,角色几乎是无限的。Python具有简单、易学、免费、开源、可移植、可扩展、可嵌入、面向对象等优点,它的面向对象甚至比java和C#、.net更彻底。它是一种很灵活的语言,能帮你轻松完成编程工作。强大的类库支持,使编写文件处理、正则表达式,网络连接等程序变得相当容易。能运行在多种计算机平台和操作系统中,如各位unix,windows,MacOS,OS/2等等,并可作为一种原型开发语言,加快大型程序的开发速度。从企业应用来看Python发展Python被广泛的用在Web开发、运维自动化、测试自动化、数据挖掘等多个行业和领域。一项专业调查显示,75%的受访者将Python视为他们的主要开发语言,反之,其他25%受访者则将其视为辅助开发语言。将Python作为主要开发语言的开发者数量逐年递增,这表明Python正在成为越来越多开发者的开发语言选择。目前,国内不少大企业都已经使用Python如豆瓣、搜狐、金山、腾讯、盛大、网易、百度、阿里、淘宝、热酷、土豆、新浪、果壳等;国外的谷歌、NASA、YouTube、Facebook、工业光魔、红帽等都在应用Python完成各种各样的任务。从市场需求与薪资看Python发展Python得到越来越多公司的青睐,使得Python人才需求逐年增加,从市场整体需求来看,Python在招聘市场上的流行程度也是在逐步上升的,工资水平也是水涨船高。据统计Python平均薪资水平在12K,随着经验的提升,薪资也是逐年增长。学习Python的程序员,除去Python开发工程师、Python高级工程师、Python自动化测试外,也能够朝着Python游戏开发工程师、SEO工程师、Linux运维工程师等方向发展,发展方向较为多元化。随着Python的流行,带动的是它的普及以及市场需求量,所以现在学习Python是个不错的时机。区块链的发展前景:区块链开发 ? 155---0116---2665 ?可是区块链技术到底是什么,大多数人都是模糊没有概念。通俗来讲,如果我们把数据库假设成一本账本,读写数据库就可以看做一种记账的行为,区块链技术的原理就是在一段时间内找出记账最快最好的人,由这个人来记账,然后将账本的这一页信息发给整个系统里的其他所有人。区块链技术也称分布式账本(或账簿)技术,属于互联网数据库技术,由参与者共同完成数据库记录,特点是去中心化和公开透明。此外,在每个区块的信息写入并获得认可后,整个区块链数据库完整保存在互联网的节点中,难以被修改,因此数据库的安全性极高。人们普遍认为,区块链技术是实现数字产品(如货币和知识产权)快速、安全和透明地对等(P2P)转账或转让的重要手段。在以色列Zen Protocol公司,区块链应用软件开发专家阿希尔·曼宁介绍说,他们公司正在开发Zen区块链平台,其将用于支持金融产品在无中介的环境下自动和自由交易。通常,人们将钱存放在银行,依靠银行管理自己的资金。但是,在支配资金时往往会受到银行规定的限制,或在汇款时存在耗时长、费用高等问题。区块链技术平台将让人们首次拥有自己管理和支配钱财的能力,他相信去中心化金融管理体系具有广阔的市场,有望极大地改变传统的金融市场。2018年伊始这一轮区块链的热潮,主要起源于虚拟货币的炒作热情。站在风口,区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。很多人不禁要问“区块链又和比特币又是什么关系?”记者查询了大量资料发现,比特币2009年被一位名叫中本聪的人提出,之后比特币这套去中心化的机制一直稳定运行,这引起很多人对这套历史上并不存在的运行机制强烈关注。于是人们把从比特币技术抽象提取出来的技术运用于其他领域,称之为区块链。这过程就好像人们先发明了面条,然后人们发现其背后面粉不仅可以做面条还可以做馒头、面包。比特币是面条,区块链是面粉。也就是说,区块链和比特币的关系即比特币算是区块链技术的一种应用,或者说一种使用了区块链技术的产品形态。而说到区块链不得不说的就是ICO,它是一种公开发行的初始数字货币。对于投资人来说,出于对市场信号的敏感和长期关注价值投资项目,目前炙手可热的区块链也成为诸多投资人关注的新兴项目之一。“区块链对于我们来说就是省去了中间环节,节约了交易成本,节省了交易时间,但是目前来看各方面环境还不够成熟,有待观望。”一位投资人这样说道。记者发现,在春节期间,不少互金圈的朋友熬夜到凌晨进入某个探讨区块链的微信群热聊,此群还吸引了不少知名人士,诸如明星加入,同时还有大咖在群里解读区块链的投资方式和未来发展等等。一时间,关于区块链的讨论群接二连三出现,也引发了各个行业对区块链的关注。出于对于区块链技术懵懂的状态,记者追问了身边的一些互金圈的朋友,为何如此痴迷区块链?多数朋友认为“区块链能赚钱,抱着试试看的心态,或许能像之前比特币一样从中获取收益。”显然,区块链技术具有广阔的应用潜力,但是在其逐步进入社会改善民众生活的过程中,也面临许多的问题,需要积极去寻求相应的对策,最终让其发挥出潜力。只有这样,10年或20年后人们才能真正享受区块链技术创造的美好环境。人工智能的发展前景:人工智能产业是智能产业发展的核心,是其他智能科技产品发展的基础,国内外的高科技公司以及风险投资机构纷纷布局人工智能产业链。科技部部长万钢3月10日表示,加快实施新一代人工智能科学基础的关键技术系统集成研发,使那些研发成果尽快能够进入到开放平台,在开放使用中再一次把它增强完善。万钢称,马上就要发布人工智能项目指南和细则,来突破基础前沿理论关键部分的技术。人工智能发展趋势据前瞻产业研究院《人工智能行业市场前瞻与投资战略规划分析报告》指出,2017年中国人工智能核心产业规模超过700亿元,随着国家规划的出台,各地人工智能相关建设将逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,增长率达到26.2%。报告认为,从产业投资回报率分析,智能安防、智能驾驶等领域的快速发展都将刺激计算机视觉分析类产品的需求,使得计算机视觉领域具备投资价值;而随着中国软件集成水平和人们生活水平的提高,提供教育、医疗、娱乐等专业化服务的服务机器人和智能无人设备具备投资价值。人工智能现状当前,人工智能受到的关注度持续提升,大量的社会资本和智力、数据资源的汇集驱动人工智能技术研究不断向前推进。从发展层次来看,人工智能技术可分为计算智能、感知智能和认知智能。当前,计算智能和感知智能的关键技术已经取得较大突破,弱人工智能应用条件基本成熟。但是,认知智能的算法尚未突破,前景仍不明朗。今年,随着智力资源的不断汇集,人工智能核心技术的研究重点可能将从深度学习转为认知计算,即推动弱人工智能向强人工智能不断迈进。一方面,在人工智能核心技术方面,在百度等大型科技公司和北京大学、清华大学等重点院校的共同推动下,以实现强人工智能为目标的类脑智能有望率先突破。另一方面,在人工智能支撑技术方面,量子计算、类脑芯片等核心技术正处在从科学实验向产业化应用的转变期,以数据资源汇集为主要方向的物联网技术将更加成熟,这些技术的突破都将有力推动人工智能核心技术的不断演进。工业大数据2022 年我国工业大数据有望突破 1200 亿元, 复合增速 42%。 工业大数据是提升制造智能化水平,推动中国制造业转型升级的关键动力,具体包括企业信息化数据、工业物联网数据,以及外部跨界数据。其中,企业信息化和工业物联网中机器产生的海量时序数据是工业数据的主要来源。工业大数据不仅可以优化现有业务,实现提质增效,而且还有望推动企业业务定位和盈利模式发生重大改变,向个性化定制、智能化生产、网络化协同、服务化延伸等智能化场景转型。预计到 2022 年,中国工业大数据市场规模有望突破 1200亿元,年复合增速 42%。IT的未来是人工智能这是一个指数级增长的时代。过去几十年,信息技术的进步相当程度上归功于芯片上晶体管数目的指数级增加,及由此带来的计算力的极大提升。这就是所谓的摩尔定律。在互联网时代,互联的终端数也是超线性的增长,而网络的效力大致与联网终端数的平方成正比。今天,大数据时代产生的数据正在呈指数级增加。在指数级增长的时代,我们可能会高估技术的短期效应,而低估技术的长期效应。历史的经验告诉我们,技术的影响力可能会远远的超过我们的想象。未来的计算能力人工智能需要强大的计算能力。计算机的性能过去30年提高了一百万倍。随着摩尔定律逐渐趋于物理极限,未来几年,我们期待一些新的技术突破。先谈一下类脑计算。传统计算机系统,长于逻辑运算,不擅长模式识别与形象思维。构建模仿人脑的类脑计算机芯片,我们今天可以以极低的功耗,模拟100万个神经元,2亿5千万个神经突触。未来几年,我们会看到类脑计算机的进一步的发展与应用随着互联网的普及、传感器的泛在、大数据的涌现、电子商务的发展、信息社区的兴起,数据和知识在人类社会、物理空间和信息空间之间交叉融合、相互作用,人工智能发展所处信息环境和数据基础发展了巨大的变化。伴随着科学基础和实现载体取得新的突破,类脑计算、深度学习、强化学习等一系列的技术萌芽预示着内在动力的成长,人工智能的发展已进入一个新的阶段。发展发展前景好,代表你现在学习会比后来者起步快,占有更大的优势,当然,你也要明白兴趣是最好的老师,选择自己感兴趣的相信你学的会更加而牢固。记住,最重要的一点:方向最重要!!!希望大家多多关注. ,加微信zhanglindashuju 可以获取更多资料哦作者:失色的瞳孔链接:https://juejin.im/post/5b1a6531e51d45067e6fc24a来源:掘金著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
孟志昂 2019-12-02 01:45:13 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板