• 关于

    计算机数据出问题什么情况

    的搜索结果

回答

“程序设计 = 算法 + 数据结构”是瑞士计算机科学家Niklaus Wirth于1976年出版的一本书的书名,很快就成了在计算机工作者之间流传的一句名言。斗转星移,尽管新技术方法不断涌现,这句名言依然焕发着无限的生命力,它借助面向对象知识的普及,使数据结构技术更加完善和易于使用。由此,也说明了数据结构在计算机学科中的地位和不可替代的独特作用。 然而,在可视化程序设计的今天,借助于集成开发环境我们可以很方便、快捷地开发部署应用程序,程序设计似乎不再只是计算机专业的人员的专利,很多人以为,只要掌握了几种开发工具就可以成为编程高手了,其实这是一个误区。纵然,我们可以很熟练地掌握一门程序设计语言、熟练地运用各种IDE开发应用程序,但是我们写出的代码是否是优良的。我们的设计是否合理。代码执行是否是高效的。代码风格是否是有美感的。更甚的说我们所写出代码的是否是艺术。 在长达几年的时间内,我总是陷在了一个误区里面:即认为工程能力和算法能力是不相干的两回事,我们似乎可以很轻松地完成一个工程项目,至少我在做一些MIS系统的时候一直都是这么认为的,甚至觉得根本不需要所谓的算法或数据结构。当时一直想不通的是为什么Google、百度这样牛的公司却对ACMer们如此青睐,对于这种招聘的标准感到疑惑不解。为什么他们不在技术(多线程、网络编程、分布式系统等)上做要求,却偏偏只关注这么一小块的算法设计。 我曾经反复地告诉自己“程序设计 = 算法 + 数据结构”在70年代提出是受限于计算机硬件,当时的内存不足、计算能力不强,程序需要设计足够精巧细致。再看当前主流的计算机配置,比70年代的大型机运算能力还要强大,我们好像完全不用担心算法设计的问题。报着这样的想法,我向来都不太重视算法,而且工程中对算法的需求并不多。 只是有一天,我突然发现我只是片面地关注其中一个方面,硬件能力是提升了,但同时人们所面对的信息、数据、运算任务的规模也是极大的膨胀了,而且膨胀的规模比硬件本身运算能力提升的规模还要大很多。算法和数据结构不仅没有贬值,反而比之前那个时代显得更为重要。试想,在互联网迅猛发展的今天,一个中等规模的企业每天所产生的数据量能达到GB级甚至TB级。要处理这样的海量数据不是说单纯的硬件运算能力上来就解决了的,设计优良的算法和数据结构设计能够在1分钟之内完成任务,而一个糟糕的设计则可能需要1个小时的运行。 一般认为,一个数据结构是由数据元素依据某种逻辑联系组织起来的,这种对数据元素间逻辑关系的描述称为数据结构。许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。许多时候,确定了数据结构后,算法就容易得到了。当然,有些情况下事情也会反过来,我们根据特定算法来选择数据结构与之适应。算法则可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。 总的来说,数据结构和算法并不是一门教你编程的课,它们可以脱离任何的计算机程序设计语言,而只需要从抽象意义上去概括描述。说的简单一点,数据结构是一门告诉你数据在计算机里如何组织的课程,而算法是一门告诉你数据在计算机里如何运算的课程,前者是结构学、后者是数学。程序设计就像盖房子,数据结构是砖、瓦,而算法则是设计图纸。你若想盖房子首先必须要有原材料(数据结构),但这些原材料并不能自动地盖起你想要的房子,你必须按照设计图纸(算法)一砖一瓦地去砌,这样你才能拥有你想要的房子。数据结构是程序设计这座大厦的基础,没有基础,无论设计有多么高明,这座大厦不可能建造起来。算法则是程序设计之灵魂,它是程序设计的思想所在,没有灵魂没有思想那不叫程序,只是一堆杂乱无章的符号而已。在程序设计中,数据结构就像物质,而算法则是意识,这在哲学上可以理解为:意识是依赖与物质而存在的,物质是由意识而发展的。双方相互依赖,缺一不可。 当然最经典的数据结构是有限的,包括线性表、栈、队列、串、数组、二叉树、树、图、查找表等,而算法则是琳琅满目的,多种多样的。就好像数据结构是人体的各种组织、器官,算法则是人的思想。你可以用自己的思想去支配你的身体各个可以运动的器官随意运动。如果你想吃苹果,你可以削皮吃,可以带皮吃,只要你愿意,甚至你可以不洗就吃。但无论如何,你的器官还是你的器官,就那么几样,目的只有一个就是吃苹果,而方式却是随心所欲的。这就是算法的灵活性、不固定性。因此可以这样说:数据结构是死的,而算法是活的。 我花了四年时间才走出这个误区,值得庆幸的是不算太晚,而我的梦想是要做一名优秀的架构师,缺乏数据结构和算法的深厚功底,很难设计出高水平的具有专业水准的架构和应用,数据结构和算法则是我实现梦想最坚实的基石。现在,也正是我需要开始沉淀的时刻。程序设计这项伟大的工程,教授于我的将不仅仅是技术这么简单,我期待它能给我以更深的思考与感悟,激发我对生命的热爱,对理想的执着,对卓越的追求。

琴瑟 2019-12-02 01:22:02 0 浏览量 回答数 0

回答

一、ping基本使用详解 在网络中ping是一个十分强大的TCP/IP工具。它的作用主要为: 1、用来检测网络的连通情况和分析网络速度 2、根据域名得到服务器IP 3、根据ping返回的TTL值来判断对方所使用的操作系统及数据包经过路由器数量。 我们通常会用它来直接ping ip地址,来测试网络的连通情况。 类如这种,直接ping ip地址或网关,ping通会显示出以上数据,有朋友可能会问,bytes=32;time<1ms;TTL=128 这些是什么意思。 bytes值:数据包大小,也就是字节。 time值:响应时间,这个时间越小,说明你连接这个地址速度越快。 TTL值:Time To Live,表示DNS记录在DNS服务器上存在的时间,它是IP协议包的一个值,告诉路由器该数据包何时需要被丢弃。可以通过Ping返回的TTL值大小,粗略地判断目标系统类型是Windows系列还是UNIX/Linux系列。 默认情况下,Linux系统的TTL值为64或255,WindowsNT/2000/XP系统的TTL值为128,Windows98系统的TTL值为32,UNIX主机的TTL值为255。 因此一般TTL值: 100~130ms之间,Windows系统 ; 240~255ms之间,UNIX/Linux系统。 当然,我们今天主要了解并不是这些,而是ping的其它参考。 ping命令除了直接ping网络的ip地址,验证网络畅通和速度之外,它还有这些用法。 二、ping -t的使用 不间断地Ping指定计算机,直到管理员中断。 这就说明电脑连接路由器是通的,网络效果很好。下面按按住键盘的Ctrl+c终止它继续ping下去,就会停止了,会总结出运行的数据包有多少,通断的有多少了。 三、ping -a的使用 ping-a解析计算机名与NetBios名。就是可以通过ping它的ip地址,可以解析出主机名。 四、ping -n的使用 在默认情况下,一般都只发送四个数据包,通过这个命令可以自己定义发送的个数,对衡量网络速度很有帮助,比如我想测试发送10个数据包的返回的平均时间为多少,最快时间为多少,最慢时间为多少就可以通过以下获知: 从以上我就可以知道在给47.93.187.142发送10个数据包的过程当中,返回了10个,没有丢失,这10个数据包当中返回速度最快为32ms,最慢为55ms,平均速度为37ms。说明我的网络良好。 如果对于一些不好的网络,比如监控系统中非常卡顿,这样测试,返回的结果可能会显示出丢失出一部分,如果丢失的比较多的话,那么就说明网络不好,可以很直观的判断出网络的情况。 五、ping -l size的使用 -l size:发送size指定大小的到目标主机的数据包。 在默认的情况下Windows的ping发送的数据包大小为32byt,最大能发送65500byt。当一次发送的数据包大于或等于65500byt时,将可能导致接收方计算机宕机。所以微软限制了这一数值;这个参数配合其它参数以后危害非常强大,比如攻击者可以结合-t参数实施DOS攻击。(所以它具有危险性,不要轻易向别人计算机使用)。 例如:ping -l 65500 -t 211.84.7.46 会连续对IP地址执行ping命令,直到被用户以Ctrl+C中断. 这样它就会不停的向211.84.7.46计算机发送大小为65500byt的数据包,如果你只有一台计算机也许没有什么效果,但如果有很多计算机那么就可以使对方完全瘫痪,网络严重堵塞,由此可见威力非同小可。 六、ping -r count 的使用 在“记录路由”字段中记录传出和返回数据包的路由,探测经过的 路由个数,但最多只能跟踪到9个路由。 ping -n 1 -r 9 202.102.224.25 (发送一个数据包,最多记录9个路由) 将经过 9个路由都显示出来了,可以看上图。 ping命令用的较多的就这6类的,大家有可能在项目中会用到的。 七、批量ping网段 对于一个网段ip地址众多,如果单个检测实在麻烦,那么我们可以直接批量ping网段检测,那个ip地址出了问题,一目了然。 先看代码,直接在命令行窗口输入: for /L %D in (1,1,255) do ping 10.168.1.%D IP地址段修改成你要检查的IP地址段。 当输入批量命令后,那么它就自动把网段内所有的ip地址都ping完为止。 那么这段“for /L %D in(1,1,255) do ping 10.168.1.%D” 代码是什么意思呢? 代码中的这个(1,1,255)就是网段起与始,就是检测网段192.168.1.1到192.168.1.255之间的所有的ip地址,每次逐增1,直接到1到255这255个ip检测完为止。

剑曼红尘 2020-03-23 15:44:54 0 浏览量 回答数 0

回答

在这个信息时代高速发展的情况下,很多人会对自己该往哪个方向发展感到迷茫,下面我就浅显的给大家介绍一下五大流行区域的发展前景。大数据的发展前景:当前大数据行业真的是人才稀缺吗?学了几年后,大数据行业会不会产能过剩?大数据行业最终需要什么样的人才?接下来就带你们看看分析结果:当前大数据行业真的是人才稀缺吗?对!未来人才缺口150万,数据分析人才最稀缺。先看大数据人才缺口有多大?根据LinkedIn(领英)发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中数据分析人才最为稀缺、供给指数最低。同时,数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月。而清华大学计算机系教授武永卫去年透露了一组数据:未来3-5年,中国需要180万数据人才,但目前只有约30万人。大数据行业未来会产能过剩吗?提供大数据技术与应用服务的第三方公司面临调整,未来发展会趋集中关于“大数据概念是否被过度炒作”的讨论,其实2013年的夏季达沃斯就有过。彼时支持“炒作”观点的现场观众达54.5%。对此,持反对意见的北京大学光华管理学院副教授苏萌提出了三个理由:不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;数据分析人才仍然极度匮乏。4年之后,舆论热点已经逐渐从大数据转向人工智能,大数据行业也历经整合。近一年间,一些大数据公司相继出现裁员、业务大调整等情况,部分公司出现亏损。那都是什么公司面临危机呢?基于数据归属,涉及大数据业务的公司其实有两类:一类是自身拥有数据的甲方公司,如亚马逊、阿里巴巴等;另一类是整合数据资源,提供大数据技术与应用服务的第三方公司。目前行业整合出现盈利问题的公司多集中在第三方服务商。对此,LinkedIn(领英)中国技术副总裁王迪表示,第三方服务商提供的更多的是技术或平台,大数据更多还是让甲方公司获益。在王迪看来,大数据业务要产生规模效益,至少要具备三点:算法、计算平台以及数据本身。“第三方大数据创业公司在算法上有一技之长,而计算能力实际上已经匀化了,传统企业如果用好了,和大数据创业公司没有区别,甚至计算能力更强,而数据获取方面,很多数据在传统行业内部并没有共享出来,第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高。”说白了,数据为王。在2013年,拿到千万级A轮融资的大数据企业不足10家,到2015年,拿到千万级以上A轮融资的企业已经超过30家。直到2016年互联网资本寒冬,大数据行业投资热度有所减退,大数据行业是否也存在产能过剩?王迪认为,目前的行业整合属于正常现象,“经过市场的优胜劣汰,第三方服务领域会出现一些做得比较好的公司,其他公司可能被淘汰或转型做一些垂直行业应用。从社会来看,总的需求量一定是增加的,而对于供给侧,经过行业自然的洗牌,最终会集中在几家优秀的行业公司。”需要什么样的大数据人才?今年3月份,教育部公布了第二批获准开设“数据科学与大数据技术”的高校名单,加上第一批获批的北京大学、对外经济贸易大学、中南大学,一共35所高校获批该专业。今年开始,部分院校将招收第一届大数据专业本科生。大数据人才培养涉及到两方面问题:交叉性学科的人才培养方案是否与市场需求相匹配;学科建设的周期与行业快速更新之间的差距怎样弥合。对于第一个问题,“电商热”时期开设的电子商务专业是一个可吸取经验的样本。2000年,教育部高教司批准了第一批高校开设电子商务本科专业。作为一个复合型专业,电子商务的本科教学涵盖了管理、技术、营销三方面的课程。电子商务领域人才需求量大,但企业却无法从电子商务专业中找到合适的人才,原因何在?职业规划专家姜萌认为,并不是某一个专业对应一个行业热点,而是一个专业集群对应一个行业热点。“比如电子商务专业,我们到电子商务公司里会发现,不是学电子商务的人在做这些工作,而是每个专业各司其职,比如计算机、设计、物流管理、营销、广告、金融等等。现在行业的复合型工作都是由一个专业集群来完成的,而不是一个人来复合一堆专业特点。”大数据专业的人才培养也同样走复合型路线,复旦大学大数据学院的招生简章显示,学院本科人才培养以统计学、计算机科学和数学为三大基础支撑性学科,以生物学、医学、环境科学、经济学、社会学、管理学等为应用拓展性学科,具备典型的交叉学科特征。LinkedIn(领英)中国技术副总裁王迪指出,“从企业应用的角度来看,大数据行业里从事相关职能的同学背景是各异的,大数据作为一个人才培养方向还在探索中,在这个阶段,高校尝试开设硕士课程是很好的实践,但开设一类的本科专业还为时过早。”另一方面,专业人才培养的周期较长,而行业热点不断更新轮替,中间产生的时间差使得新兴专业的志愿填报具备了一定风险。王迪认为,“从今天的产业实践上看,大数据领域依然是从现有专业中挑选人才,教育和市场发展总是有一定差距的,学生本科四年,加上硕士阶段已经是七年之后的事情了,产业已经演进了很多,而教学大纲并不会跟进得那么快。”因此,尽管大数据的应用前景毋庸置疑,但在人才培养层面,复合型人才培养方案会不会重走电子商务专业的老路?学校教育如何赶上行业发展速度?这些都是值得进一步商榷的问题。面对热门专业,志愿填报需要注意啥?了解了大数据行业、公司和大数据专业后,姜萌对于考生填报像大数据相关的热门专业,提出了几条建议:报考热的专业和就业热的专业并不一定是重合的,比如软件、计算机、金融,这些专业的就业率实际并没有那么高,地质勘探、石油、遥感等专业,虽然报考上是冷门,但行业需求大,就业率更高。选择热门专业,更需要考虑就业质量。专业就业好,是统计学意义,指的是平均收入水平高,比如金融专业的收入,比其他纯文科专业的平均收入较高,但落实到个体层面,就业情况就不一样了,尤其像金融专业是典型的名校高学历好就业,但对于考试成绩较低的同学来说,如果去一些普通院校、专科院校学习金融,最后就业情况可能还不如会计专业。志愿填报,除了专业,城市因素也很重要:如果想从事金融、互联网的工作,更适合去一线城市,如果是去三、四线城市的学生可以考虑应用面比较广的专业,就是各行各业都能用到的专业,比如会计专业,专科层次的会计和985层次的会计都有就业渠道。如果先选择报考城市,也可以针对所在城市的行业特点选择专业,比如沿海城市外贸相对发达,选择国际贸易、外语类专业就业情况更好,比如武汉有光谷,选择光电类专业更好就业。最终家长和考生更需要考虑个人与专业匹配的问题,金融、计算机等热门专业不是所有人都适合学,好专业不见得对所有个体都是好的。java的发展前景:由于Java的诸多优点,Java的发展前景十分广泛。比如,在我们中国的市场,Java无论在企业级应用,还是在面向大众的服务方面都取得了不少进展,在中国的电信、金融等关键性业务中发挥着举足轻重的作用。由于SUN、TBM、Oracle等国际厂商相继推出各种基于Java技术的应用服务器以及各种应用软件,推动了Java在金融、电信、制造等领域日益广泛的应用,如清华大学计算机系利用Java、XML和Web技术研制开发了多个软件平台,东方科技的TongWeb、中创的Inforweb等J2EE应用服务器。由此可见,在巨大市场需求下,企业对于Java人才的渴求已经是不争的事实。你问我火了这么多年的Java语言的发展前景怎么样?那来看看吧Java在WEB、移动设备以及云计算方面前景广阔,随着云计算以及移动领域的扩张,更多的企业在考虑将其应用部署在Java平台上。无论是本地主机,公共云,Java都是目前最适合的选择。;另外在Oracle的技术投资担保下,Java也是企业在云应用方面回避微软平台、在移动应用方面回避苹果公司的一个最佳选择。Java可以参与制作大部分网络应用程序系统,而且与如今流行的WWW浏览器结合很好,这一优点将促进Java的更大范围的推广。因为在未来的社会,信息将会传送的更加快速,这将推动程序向WEB程序方向发展,由于Java具有编写WEB程序的能力,并且Java与浏览器结合良好,这将使得Java前景充满光明的发展。Python的发展前景:Python程序员的发展前景是怎样的?随着Python的技术的流行, Python在为人们带来工作与生活上的便捷后,关注者们开始慢慢关心Python的发展前景与方向。从自身特性看Python发展Python自身强大的优势决定其不可限量的发展前景。Python作为一种通用语言,几乎可以用在任何领域和场合,角色几乎是无限的。Python具有简单、易学、免费、开源、可移植、可扩展、可嵌入、面向对象等优点,它的面向对象甚至比java和C#、.net更彻底。它是一种很灵活的语言,能帮你轻松完成编程工作。强大的类库支持,使编写文件处理、正则表达式,网络连接等程序变得相当容易。能运行在多种计算机平台和操作系统中,如各位unix,windows,MacOS,OS/2等等,并可作为一种原型开发语言,加快大型程序的开发速度。从企业应用来看Python发展Python被广泛的用在Web开发、运维自动化、测试自动化、数据挖掘等多个行业和领域。一项专业调查显示,75%的受访者将Python视为他们的主要开发语言,反之,其他25%受访者则将其视为辅助开发语言。将Python作为主要开发语言的开发者数量逐年递增,这表明Python正在成为越来越多开发者的开发语言选择。目前,国内不少大企业都已经使用Python如豆瓣、搜狐、金山、腾讯、盛大、网易、百度、阿里、淘宝、热酷、土豆、新浪、果壳等;国外的谷歌、NASA、YouTube、Facebook、工业光魔、红帽等都在应用Python完成各种各样的任务。从市场需求与薪资看Python发展Python得到越来越多公司的青睐,使得Python人才需求逐年增加,从市场整体需求来看,Python在招聘市场上的流行程度也是在逐步上升的,工资水平也是水涨船高。据统计Python平均薪资水平在12K,随着经验的提升,薪资也是逐年增长。学习Python的程序员,除去Python开发工程师、Python高级工程师、Python自动化测试外,也能够朝着Python游戏开发工程师、SEO工程师、Linux运维工程师等方向发展,发展方向较为多元化。随着Python的流行,带动的是它的普及以及市场需求量,所以现在学习Python是个不错的时机。区块链的发展前景:区块链开发 ? 155---0116---2665 ?可是区块链技术到底是什么,大多数人都是模糊没有概念。通俗来讲,如果我们把数据库假设成一本账本,读写数据库就可以看做一种记账的行为,区块链技术的原理就是在一段时间内找出记账最快最好的人,由这个人来记账,然后将账本的这一页信息发给整个系统里的其他所有人。区块链技术也称分布式账本(或账簿)技术,属于互联网数据库技术,由参与者共同完成数据库记录,特点是去中心化和公开透明。此外,在每个区块的信息写入并获得认可后,整个区块链数据库完整保存在互联网的节点中,难以被修改,因此数据库的安全性极高。人们普遍认为,区块链技术是实现数字产品(如货币和知识产权)快速、安全和透明地对等(P2P)转账或转让的重要手段。在以色列Zen Protocol公司,区块链应用软件开发专家阿希尔·曼宁介绍说,他们公司正在开发Zen区块链平台,其将用于支持金融产品在无中介的环境下自动和自由交易。通常,人们将钱存放在银行,依靠银行管理自己的资金。但是,在支配资金时往往会受到银行规定的限制,或在汇款时存在耗时长、费用高等问题。区块链技术平台将让人们首次拥有自己管理和支配钱财的能力,他相信去中心化金融管理体系具有广阔的市场,有望极大地改变传统的金融市场。2018年伊始这一轮区块链的热潮,主要起源于虚拟货币的炒作热情。站在风口,区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。很多人不禁要问“区块链又和比特币又是什么关系?”记者查询了大量资料发现,比特币2009年被一位名叫中本聪的人提出,之后比特币这套去中心化的机制一直稳定运行,这引起很多人对这套历史上并不存在的运行机制强烈关注。于是人们把从比特币技术抽象提取出来的技术运用于其他领域,称之为区块链。这过程就好像人们先发明了面条,然后人们发现其背后面粉不仅可以做面条还可以做馒头、面包。比特币是面条,区块链是面粉。也就是说,区块链和比特币的关系即比特币算是区块链技术的一种应用,或者说一种使用了区块链技术的产品形态。而说到区块链不得不说的就是ICO,它是一种公开发行的初始数字货币。对于投资人来说,出于对市场信号的敏感和长期关注价值投资项目,目前炙手可热的区块链也成为诸多投资人关注的新兴项目之一。“区块链对于我们来说就是省去了中间环节,节约了交易成本,节省了交易时间,但是目前来看各方面环境还不够成熟,有待观望。”一位投资人这样说道。记者发现,在春节期间,不少互金圈的朋友熬夜到凌晨进入某个探讨区块链的微信群热聊,此群还吸引了不少知名人士,诸如明星加入,同时还有大咖在群里解读区块链的投资方式和未来发展等等。一时间,关于区块链的讨论群接二连三出现,也引发了各个行业对区块链的关注。出于对于区块链技术懵懂的状态,记者追问了身边的一些互金圈的朋友,为何如此痴迷区块链?多数朋友认为“区块链能赚钱,抱着试试看的心态,或许能像之前比特币一样从中获取收益。”显然,区块链技术具有广阔的应用潜力,但是在其逐步进入社会改善民众生活的过程中,也面临许多的问题,需要积极去寻求相应的对策,最终让其发挥出潜力。只有这样,10年或20年后人们才能真正享受区块链技术创造的美好环境。人工智能的发展前景:人工智能产业是智能产业发展的核心,是其他智能科技产品发展的基础,国内外的高科技公司以及风险投资机构纷纷布局人工智能产业链。科技部部长万钢3月10日表示,加快实施新一代人工智能科学基础的关键技术系统集成研发,使那些研发成果尽快能够进入到开放平台,在开放使用中再一次把它增强完善。万钢称,马上就要发布人工智能项目指南和细则,来突破基础前沿理论关键部分的技术。人工智能发展趋势据前瞻产业研究院《人工智能行业市场前瞻与投资战略规划分析报告》指出,2017年中国人工智能核心产业规模超过700亿元,随着国家规划的出台,各地人工智能相关建设将逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,增长率达到26.2%。报告认为,从产业投资回报率分析,智能安防、智能驾驶等领域的快速发展都将刺激计算机视觉分析类产品的需求,使得计算机视觉领域具备投资价值;而随着中国软件集成水平和人们生活水平的提高,提供教育、医疗、娱乐等专业化服务的服务机器人和智能无人设备具备投资价值。人工智能现状当前,人工智能受到的关注度持续提升,大量的社会资本和智力、数据资源的汇集驱动人工智能技术研究不断向前推进。从发展层次来看,人工智能技术可分为计算智能、感知智能和认知智能。当前,计算智能和感知智能的关键技术已经取得较大突破,弱人工智能应用条件基本成熟。但是,认知智能的算法尚未突破,前景仍不明朗。今年,随着智力资源的不断汇集,人工智能核心技术的研究重点可能将从深度学习转为认知计算,即推动弱人工智能向强人工智能不断迈进。一方面,在人工智能核心技术方面,在百度等大型科技公司和北京大学、清华大学等重点院校的共同推动下,以实现强人工智能为目标的类脑智能有望率先突破。另一方面,在人工智能支撑技术方面,量子计算、类脑芯片等核心技术正处在从科学实验向产业化应用的转变期,以数据资源汇集为主要方向的物联网技术将更加成熟,这些技术的突破都将有力推动人工智能核心技术的不断演进。工业大数据2022 年我国工业大数据有望突破 1200 亿元, 复合增速 42%。 工业大数据是提升制造智能化水平,推动中国制造业转型升级的关键动力,具体包括企业信息化数据、工业物联网数据,以及外部跨界数据。其中,企业信息化和工业物联网中机器产生的海量时序数据是工业数据的主要来源。工业大数据不仅可以优化现有业务,实现提质增效,而且还有望推动企业业务定位和盈利模式发生重大改变,向个性化定制、智能化生产、网络化协同、服务化延伸等智能化场景转型。预计到 2022 年,中国工业大数据市场规模有望突破 1200亿元,年复合增速 42%。IT的未来是人工智能这是一个指数级增长的时代。过去几十年,信息技术的进步相当程度上归功于芯片上晶体管数目的指数级增加,及由此带来的计算力的极大提升。这就是所谓的摩尔定律。在互联网时代,互联的终端数也是超线性的增长,而网络的效力大致与联网终端数的平方成正比。今天,大数据时代产生的数据正在呈指数级增加。在指数级增长的时代,我们可能会高估技术的短期效应,而低估技术的长期效应。历史的经验告诉我们,技术的影响力可能会远远的超过我们的想象。未来的计算能力人工智能需要强大的计算能力。计算机的性能过去30年提高了一百万倍。随着摩尔定律逐渐趋于物理极限,未来几年,我们期待一些新的技术突破。先谈一下类脑计算。传统计算机系统,长于逻辑运算,不擅长模式识别与形象思维。构建模仿人脑的类脑计算机芯片,我们今天可以以极低的功耗,模拟100万个神经元,2亿5千万个神经突触。未来几年,我们会看到类脑计算机的进一步的发展与应用随着互联网的普及、传感器的泛在、大数据的涌现、电子商务的发展、信息社区的兴起,数据和知识在人类社会、物理空间和信息空间之间交叉融合、相互作用,人工智能发展所处信息环境和数据基础发展了巨大的变化。伴随着科学基础和实现载体取得新的突破,类脑计算、深度学习、强化学习等一系列的技术萌芽预示着内在动力的成长,人工智能的发展已进入一个新的阶段。发展发展前景好,代表你现在学习会比后来者起步快,占有更大的优势,当然,你也要明白兴趣是最好的老师,选择自己感兴趣的相信你学的会更加而牢固。记住,最重要的一点:方向最重要!!!希望大家多多关注. ,加微信zhanglindashuju 可以获取更多资料哦作者:失色的瞳孔链接:https://juejin.im/post/5b1a6531e51d45067e6fc24a来源:掘金著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

孟志昂 2019-12-02 01:45:13 0 浏览量 回答数 0

Quick BI 数据可视化分析平台

2020年入选全球Gartner ABI魔力象限,为中国首个且唯一入选BI产品

回答

有编程能力和数据挖掘能力的工程师最火,包括:数据挖掘工程师、机器学习工程师,算法工程师。 今年3月份时,谷歌开发的人工智能AlphaGo打败了全球最顶尖的围棋高手,轰动全世界,AI时代正式拉开序幕。实际上,人工智能这一概念早在上世纪一大批科幻小说陆续发表时,就已被人们接受,而随着科技的发展,人工智能的发展前景更是日益清晰。一个人工智能的诞生需要无数个工程师挥洒汗水。其中,负责开发学习算法、使机器能像人类一样思考问题的数据挖掘工程师更是无比重要。什么人能完成人工智能的开发任务呢。必须指出,人工智能和一般的计算机程序有极大的差别,它应当具有“能够自主学习知识”这一特点,这一特点也被称为“机器学习”。而自学习模型(或者说机器学习能力开发)正是数据挖掘工程师的强项,人工智能的诞生和普及需要一大批数据挖掘工程师。  那么在AI时代,如何才能掌握相关的技能,成为企业需要的数据挖掘人才呢。 第一个门槛是数学 首先,机器学习的第一个门槛是数学知识。机器学习算法需要的数学知识集中在微积分、线性代数和概率与统计当中,具有本科理工科专业的同学对这些知识应该不陌生,如果你已经还给了老师,我还是建议你通过自学或大数据学习社区补充相关知识。所幸的是如果只是想合理应用机器学习算法,而不是做相关方向高精尖的研究,需要的数学知识啃一啃教科书还是基本能理解下来的。 第二个门槛是编程 跨过了第一步,就是如何动手解决问题。所谓工欲善其事必先利其器,如果没有工具,那么所有的材料和框架、逻辑、思路都给你,也寸步难行。因此我们还是得需要合适的编程语言、工具和环境帮助自己在数据集上应用机器学习算法。对于有计算机编程基础的初学者而言,Python是很好的入门语言,很容易上手,同时又活跃的社区支持,丰富的工具包帮助我们完成想法。没有编程基础的同学掌握R或者平台自带的一些脚本语言也是不错的选择。 Make your hands dirty 接下来就是了解机器学习的工作流程和掌握常见的算法。一般机器学习步骤包括: 数据建模:将业务问题抽象为数学问题; 数据获取:获取有代表性的数据,如果数据量太大,需要考虑分布式存储和管理; 特征工程:包括特征预处理与特征选择两个核心步骤,前者主要是做数据清洗,好的数据清洗过程可以使算法的效果和性能得到显著提高,这一步体力活多一些,也比较耗时,但也是非常关键的一个步骤。特征选择对业务理解有一定要求,好的特征工程会降低对算法和数据量的依赖。 模型调优:所谓的训练数据都是在这个环节处理的,简单的说就是通过迭代分析和参数优化使上述所建立的特征工程是最优的。 这些工作流程主要是工程实践上总结出的一些经验。并不是每个项目都包含完整的一个流程,只有大家自己多实践,多积累项目经验,才会有自己更深刻的认识。 翻过了数学和编程两座大山,就是如何实践的问题,其中一个捷径就是积极参加国内外各种数据挖掘竞赛。国外的Kaggle和国内的阿里天池比赛都是很好的平台,你可以在上面获取真实的数据和队友们一起学习和进行竞赛,尝试使用已经学过的所有知识来完成这个比赛本身也是一件很有乐趣的事情。 另外就是企业实习,可以先从简单的统计分析和数据清洗开始做起,积累自己对数据的感觉,同时了解企业的业务需求和生产环境。我们通常讲从事数据科学的要”Make your hands dirty”,就是说要通过多接触数据加深对数据和业务的理解,好厨子都是食材方面的专家,你不和你的“料”打交道,怎么能谈的上去应用好它。 摆脱学习的误区 初学机器学习可能有一个误区,就是一上来就陷入到对各种高大上算法的追逐当中。动不动就讨论我能不能用深度学习去解决这个问题啊。实际上脱离业务和数据的算法讨论是毫无意义的。上文中已经提到,好的特征工程会大大降低对算法和数据量的依赖,与其研究算法,不如先厘清业务问题。任何一个问题都可以用最传统的的算法,先完整的走完机器学习的整个工作流程,不断尝试各种算法深挖这些数据的价值,在运用过程中把数据、特征和算法搞透。真正积累出项目经验才是最快、最靠谱的学习路径。 自学还是培训 很多人在自学还是参加培训上比较纠结。我是这么理解的,上述过程中数学知识需要在本科及研究生阶段完成,离开学校的话基本上要靠自学才能补充这方面的知识,所以建议那些还在学校里读书并且有志于从事数据挖掘工作的同学在学校把数学基础打好,书到用时方恨少,希望大家珍惜在学校的学习时间。 除了数学以外,很多知识的确可以通过网络搜索的方式自学,但前提是你是否拥有超强的自主学习能力,通常拥有这种能力的多半是学霸,他们能够跟据自己的情况,找到最合适的学习资料和最快学习成长路径。如果你不属于这一类人,那么参加职业培训也许是个不错的选择,在老师的带领下可以走少很多弯路。另外任何学习不可能没有困难,也就是学习道路上的各种沟沟坎坎,通过老师的答疑解惑,可以让你轻松迈过这些障碍,尽快实现你的“小”目标。 机器学习这个领域想速成是不太可能的,但是就入门来说,如果能有人指点一二还是可以在短期内把这些经典算法都过一遍,这番学习可以对机器学习的整体有个基本的理解,从而尽快进入到这个领域。师傅领进门,修行靠个人,接下来就是如何钻进去了,好在现在很多开源库给我们提供了实现的方法,我们只需要构造基本的算法框架就可以了,大家在学习过程中应当尽可能广的学习机器学习的经典算法。 学习资料 至于机器学习的资料网上很多,大家可以找一下,我个人推荐李航老师的《统计机器学习》和周志华老师的《机器学习》这两门书,前者理论性较强,适合数学专业的同学,后者读起来相对轻松一些,适合大多数理工科专业的同学。

管理贝贝 2019-12-02 01:21:46 0 浏览量 回答数 0

回答

参考:https://www.iteblog.com/archives/2530.html分布式和去中心化(Distributed and Decentralized)Cassandra 是分布式的,这意味着它可以运行在多台机器上,并呈现给用户一个一致的整体。事实上,在一个节点上运行 Cassandra 是没啥用的,虽然我们可以这么做,并且这可以帮助我们了解它的工作机制,但是你很快就会意识到,需要多个节点才能真正了解 Cassandra 的强大之处。它的很多设计和实现让系统不仅可以在多个节点上运行,更为多机架部署进行了优化,甚至一个 Cassandra 集群可以运行在分散于世界各地的数据中心上。你可以放心地将数据写到集群的任意一台机器上,Cassandra 都会收到数据。对于很多存储系统(比如 MySQL, Bigtable),一旦你开始扩展它,就需要把某些节点设为主节点,其他则作为从节点。但 Cassandra 是无中心的,也就是说每个节点都是一样的。与主从结构相反,Cassandra 的协议是 P2P 的,并使用 gossip 来维护存活或死亡节点的列表。关于 gossip 可以参见《分布式原理:一文了解 Gossip 协议》。去中心化这一事实意味着 Cassandra 不会存在单点失效。Cassandra 集群中的所有节点的功能都完全一样, 所以不存在一个特殊的主机作为主节点来承担协调任务。有时这被叫做服务器对称(server symmetry)。综上所述,Cassandra 是分布式、无中心的,它不会有单点失效,所以支持高可用性。弹性可扩展(Elastic Scalability)可扩展性是指系统架构可以让系统提供更多的服务而不降低使用性能的特性。仅仅通过给现有的机器增加硬件的容量、内存进行垂直扩展,是最简单的达到可扩展性的手段。而水平扩展则需要增加更多机器,每台机器提供全部或部分数据,这样所有主机都不必负担全部业务请求。但软件自己需要有内部机制来保证集群中节点间的数据同步。弹性可扩展是指水平扩展的特性,意即你的集群可以不间断的情况下,方便扩展或缩减服务的规模。这样,你就不需要重新启动进程,不必修改应用的查询,也无需自己手工重新均衡数据分布。在 Cassandra 里,你只要加入新的计算机,Cassandra 就会自动地发现它并让它开始工作。高可用和容错(High Availability and Fault Tolerance)从一般架构的角度来看,系统的可用性是由满足请求的能力来量度的。但计算机可能会有各种各样的故障,从硬件器件故障到网络中断都有可能。如何计算机都可能发生这些情况,所以它们一般都有硬件冗余,并在发生故障事件的情况下会自动响应并进行热切换。对一个需要高可用的系统,它必须由多台联网的计算机构成,并且运行于其上的软件也必须能够在集群条件下工作,有设备能够识别节点故障,并将发生故障的中端的功能在剩余系统上进行恢复。Cassandra 就是高可用的。你可以在不中断系统的情况下替换故障节点,还可以把数据分布到多个数据中心里,从而提供更好的本地访问性能,并且在某一数据中心发生火灾、洪水等不可抗灾难的时候防止系统彻底瘫痪。可调节的一致性(Tuneable Consistency)2000年,加州大学伯克利分校的 Eric Brewer 在 ACM 分布式计算原理会议提出了著名的 CAP 定律。CAP 定律表明,对于任意给定的系统,只能在一致性(Consistency)、可用性(Availability)以及分区容错性(Partition Tolerance)之间选择两个。关于 CAP 定律的详细介绍可参见《分布式系统一致性问题、CAP定律以及 BASE 理论》以及《一篇文章搞清楚什么是分布式系统 CAP 定理》。所以 Cassandra 在设计的时候也不得不考虑这些问题,因为分区容错性这个是每个分布式系统必须考虑的,所以只能在一致性和可用性之间做选择,而 Cassandra 的应用场景更多的是为了满足可用性,所以我们只能牺牲一致性了。但是根据 BASE 理论,我们其实可以通过牺牲强一致性获得可用性。Cassandra 提供了可调节的一致性,允许我们选定需要的一致性水平与可用性水平,在二者间找到平衡点。因为客户端可以控制在更新到达多少个副本之前,必须阻塞系统。这是通过设置副本因子(replication factor)来调节与之相对的一致性级别。通过副本因子(replication factor),你可以决定准备牺牲多少性能来换取一致性。 副本因子是你要求更新在集群中传播到的节点数(注意,更新包括所有增加、删除和更新操作)。客户端每次操作还必须设置一个一致性级别(consistency level)参数,这个参数决定了多少个副本写入成功才可以认定写操作是成功的,或者读取过程中读到多少个副本正确就可以认定是读成功的。这里 Cassandra 把决定一致性程度的权利留给了客户自己。所以,如果需要的话,你可以设定一致性级别和副本因子相等,从而达到一个较高的一致性水平,不过这样就必须付出同步阻塞操作的代价,只有所有节点都被更新完成才能成功返回一次更新。而实际上,Cassandra 一般都不会这么来用,原因显而易见(这样就丧失了可用性目标,影响性能,而且这不是你选择 Cassandra 的初衷)。而如果一个客户端设置一致性级别低于副本因子的话,即使有节点宕机了,仍然可以写成功。总体来说,Cassandra 更倾向于 CP,虽然它也可以通过调节一致性水平达到 AP;但是不推荐你这么设置。面向行(Row-Oriented)Cassandra 经常被看做是一种面向列(Column-Oriented)的数据库,这也并不算错。它的数据结构不是关系型的,而是一个多维稀疏哈希表。稀疏(Sparse)意味着任何一行都可能会有一列或者几列,但每行都不一定(像关系模型那样)和其他行有一样的列。每行都有一个唯一的键值,用于进行数据访问。所以,更确切地说,应该把 Cassandra 看做是一个有索引的、面向行的存储系统。Cassandra 的数据存储结构基本可以看做是一个多维哈希表。这意味着你不必事先精确地决定你的具体数据结构或是你的记录应该包含哪些具体字段。这特别适合处于草创阶段,还在不断增加或修改服务特性的应用。而且也特别适合应用在敏捷开发项目中,不必进行长达数月的预先分析。对于使用 Cassandra 的应用,如果业务发生变化了,只需要在运行中增加或删除某些字段就行了,不会造成服务中断。当然, 这不是说你不需要考虑数据。相反,Cassandra 需要你换个角度看数据。在 RDBMS 里, 你得首先设计一个完整的数据模型, 然后考虑查询方式, 而在 Cassandra 里,你可以首先思考如何查询数据,然后提供这些数据就可以了。灵活的模式(Flexible Schema)Cassandra 的早期版本支持无模式(schema-free)数据模型,可以动态定义新的列。 无模式数据库(如 Bigtable 和 MongoDB)在访问大量数据时具有高度可扩展性和高性能的优势。 无模式数据库的主要缺点是难以确定数据的含义和格式,这限制了执行复杂查询的能力。为了解决这些问题,Cassandra 引入了 Cassandra Query Language(CQL),它提供了一种通过类似于结构化查询语言(SQL)的语法来定义模式。 最初,CQL 是作为 Cassandra 的另一个接口,并且基于 Apache Thrift 项目提供无模式的接口。 在这个过渡阶段,术语“模式可选”(Schema-optional)用于描述数据模型,我们可以使用 CQL 的模式来定义。并且可以通过 Thrift API 实现动态扩展以此添加新的列。 在此期间,基础数据存储模型是基于 Bigtable 的。从 3.0 版本开始,不推荐使用基于 Thrift API 的动态列创建的 API,并且 Cassandra 底层存储已经重新实现了,以更紧密地与 CQL 保持一致。 Cassandra 并没有完全限制动态扩展架构的能力,但它的工作方式却截然不同。 CQL 集合(比如 list、set、尤其是 map)提供了在无结构化的格式里面添加内容的能力,从而能扩展现有的模式。CQL 还提供了改变列的类型的能力,以支持 JSON 格式的文本的存储。因此,描述 Cassandra 当前状态的最佳方式可能是它支持灵活的模式。高性能(High Performance)Cassandra 在设计之初就特别考虑了要充分利用多处理器和多核计算机的性能,并考虑在分布于多个数据中心的大量这类服务器上运行。它可以一致而且无缝地扩展到数百台机器,存储数 TB 的数据。Cassandra 已经显示出了高负载下的良好表现,在一个非常普通的工作站上,Cassandra 也可以提供非常高的写吞吐量。而如果你增加更多的服务器,你还可以继续保持 Cassandra 所有的特性而无需牺牲性能。

封神 2019-12-02 02:00:50 0 浏览量 回答数 0

问题

怎样实现数据存储的管理维护

elinks 2019-12-01 21:14:17 9098 浏览量 回答数 0

回答

0段—非程序员: 初学编程者,遇到问题,完全是懵懵懂懂,不知道该怎么编程解决问题。也就是说,还是门外汉,还不能称之为“程序员”。计算机在他面前还是一个神秘的黑匣子。 1段—基础程序员: 学习过一段时间编程后,接到任务,可以编写程序完成任务。 编写出来的代码,正常情况下是能够工作的,但在实际运行中,碰到一些特殊条件就会出现各类BUG。也就是说,具备了开发Demo软件的能力,但开发的软件真正交付给客户使用,恐怕会被客户骂死。 程序员程序是写好了,但到底为什么它有时能正常工作,有时又不行,程序员自己也不知道。 运行中遇到了bug,或者需求改变,需要修改代码或者添加代码,很快程序就变得结构混乱,代码膨胀,bug丛生。很快,就连最初的开发者自己也不愿意接手维护这个程序了。 2段—数据结构: 经过一段时间的编程实践后,程序员会认识到“数据结构+算法=程序”这一古训的含义。他们会使用算法来解决问题。进而,他们会认识到,算法本质上是依附于数据结构的,好的数据结构一旦设计出来,那么好的算法也会应运而生。 设计错误的数据结构,不可能生长出好的算法。 记得某一位外国先贤曾经说过:“给我看你的数据结构!” 3段—面向对象: 再之后,程序员就会领略面向对象程序设计的强大威力。大多数现代编程语言都是支持面向对象的。但并不是说,你使用面向对象编程语言编程,你用上了类,甚至继承了类,你就是在写面向对象的代码了。 我曾经见过很多用Java,Python,Ruby写的面向过程的代码。 只有你掌握了接口,掌握了多态,掌握了类和类,对象和对象之间的关系,你才真正掌握了面向对象编程技术。 就算你用的是传统的不支持面向对象的编程语言,只要你心中有“对象”,你依然可以开发出面向对象的程序。 如,我用C语言编程的时候,会有意识的使用面向对象的技巧来编写和设计程序。用struct来模拟类,把同一类概念的函数放在一起模拟类。如果你怀疑用C语言是否能编写出面向对象的代码,你可以看一下Linux内核,它是用C语言编写的,但你也可以看到它的源代码字里行间散发出的浓浓的“对象”的味道。 答案来源于网络

养狐狸的猫 2019-12-02 02:20:35 0 浏览量 回答数 0

回答

1.产品2.UI3.CSS4.JS5.后端(Java/php/python)6.DBA(mysql/oracle)7.运维(OP) 8.测试(QA)9.算法(分类/聚类/关系抽取/实体识别)10.搜索(Lucene/Solr/elasticSearch)11.大数据工程师(Hadoop)12.Android13.IOS14.运营 一.产品1 工作内容:了解用户需求,做竞品调研,画产品原型,写产品文档,讲解产品需求,测试产品Bug,收集用户反馈,苦练金刚罩以防止程序员拿刀砍。2 需要技能:PPT,Word, Axure,XP,MVP,行业知识,沟通。 二. UI1 工作内容:收到产品原型,给原型上色,偶尔会自作主张调整下原型的位置,出不同的风格给老板和客户选,然后听他们的意见给出一个自己极不喜欢的风格,最好给Android,IOS或者是CSS做好标注,还有的需要直接帮他们切好图,最后要练出来象素眼,看看这些不靠谱的程序员们有没有上错色或者是有偏差。2 需要技能:PS,Illustrator,Sketch,耐性,找素材。 三. CSS1 工作内容:产品设计好原型,UI做出来了效果图,剩下的就是CSS工程师用代码把静态文件写出来的。 2 需要技能:环境【IDE(WEBStorm,Sublime,EditPlus),源码管理(SVN/Git) ,WEB服务器(nginx)】基础【PS,域名,Html,Html5,CSS,CSS3】扩展【自适应,响应式,Bootstrap,Less,Flex】 四 .JS 1 工作内容:JS工程师其实分成两类,在之前讲CSS的时候已经提到过,一个是套页面的,一个是前后端分离的。对这两个概念还是分不太清的,可以回过头去看CSS的部分。 2 需要技能:环境【IDE(WEBStorm,Sublime,EditPlus),源码管理(SVN/Git) ,WEB服务器(nginx)】基础【Http,REST,跨域,语法,组件,F12,Json,Websocket】框架【JQuery,AngularJS,Bower,RequireJS,GruntJS,ReactJS,PhoneGap】业务【金融,教育,医疗,汽车,房产等等等等各种行业】 五 .后端(Java/python/go) 1 工作内容:大部分的后端工程师都停留在功能实现的层面上。这是现在国内二流或者是三流的公司的现状,甚至是在某些一流的公司。很多时候都是架构师出了架构设计,更多的外包公司根本就是有DBA来做设计,然后后端程序员从JS到CSS到Java全写,完全就是一个通道,所有的复杂逻辑全部交给DB来做,这也是几年前DBA很受重视的原因。 2 需要技能:环境【IDE(Idea/Eclipse,Maven,jenkins,Nexus,Jetty,Shell,Host),源码管理(SVN/Git) ,WEB服务器(nginx,tomcat,Resin)】基础【Http,REST,跨域,语法,Websocket,数据库,计算机网络,操作系统,算法,数据结构】框架【Spring,AOP,Quartz,Json TagLib,tiles,activeMQ,memcache,redis,mybatis,log4j,junit等等等等等】业务【金融,教育,医疗,汽车,房产等等等等各种行业】。 六 .DBA  1 工作内容:如果你做了一个DBA,基本上会遇到两种情况。一种是你的后端工程师懂架构,知道怎么合便使用DB,知道如何防止穿透DB,那么恭喜你,你只是需要当一个DB技术兜底的顾问就好,基本上没什么活可以做,做个监控,写个统计就好了。你可以花时间在MongoDB了,Hadoop了这些,随便玩玩儿。再按照我之前说的,做好数据备份。如果需求变动比较大,往往会牵涉到一些线上数据的更改,那么就在发布的时候安静的等着,等着他们出问题。。。。如果不出问题就可以回家睡觉了。 2 需要技能:环境【Linux,Mysql,Oracle,MongoDB,Hadoop】工具【各种DB的版本,工具,备份,日志等】。 七. 运维  1 工作内容:运维的工作大概分成几个部分,我对于修真院学习运维的少年们都这么说,大概是:A。基础环境的搭建和常用软件的安装和配置(兼网管的还有各种程控机),常用软件指的是SVN,Git,邮箱这种,更细节的内容请参考修真院对于运维职业的介绍。B。日常的发布和维护,如刚刚讲到的一样,测试环境和线上环境的发布和记录,原则上,对线上所有的变更都应该有记录。C。数据的备份和服务的监控&安全配置。各种数据,都要做好备份和回滚的手段,提前准备好各种紧急预案,服务的监制要做好。安全始终都是不怎么被重点考虑的问题,因为这个东西无底洞,你永远不知道做到什么程度算是比较安全了,所以大多数都是看着情况来。D。运维工具的编写。这一点在大的云服务器商里格外常见,大公司也是一样的。E。Hadoop相关的大数据体系架构的运维,确实有公司在用几百台机器做Hadoop,所以虽然不常见,我还是列出来吧。 2 需要技能:环境【Linux,Mysql,Oracle,MongoDB,Hadoop,nginx,apache,F5,lvs,vpn,iptable,svn,git,memcache,redis】工具【linux 常用工具,Mysql常用工具,Jenkins,zabbix,nagios】自动化运维【openstack,docker,ansible】语言【shell,python】 八 .QA  1 工作内容:QA需要了解需求,很多公司会要求QA写测试用例,我觉得是扯淡。完全是在浪费时间。通常开发三周,QA测试的时间只有一周到一周半。还有关于提前写测试用例的,都不靠谱。 2 需要技能:流程【Bug修复流程,版本发布流程】工具【禅道,BugZilla,Jira,Excel表格来统计Bug数,自动化测试】性格【严谨,耐心】 九. 算法工程师  1 工作内容:算法工程师的工作内容,大部分时间都是在调优。就是调各种参数和语料,寻找特征,验证结果,排除噪音。也会和Hadoop神马的打一些交道,mahout神马的,我那个时候还在用JavaML。现在并不知道有没有什么更好用的工具了。有的时候还要自己去标注语料---当然大部分人都不爱做这个事儿,会找漂亮的小编辑去做。2 需要技能:基础【机器学习,数据挖掘】工具【Mahout,JavaML等其他的算法工具集】 十. 搜索工程师  1 工作内容: 所以搜索现在其实分成两种。一种是传统的搜索。包括:A。抓取 B。解析C。去重D。处理E。索引F。查询另一种是做为架构的搜索。并不包括之前的抓取解析去重,只有索引和查询。A。索引B。查询 2 需要技能:环境【Linux】框架【Luence,Slor,ElasticSearch,Cassandra,MongoDB】算法【倒排索引,权重计算公式,去重算法,Facet搜索的原理,高亮算法,实时索引】 十一. 大数据工程师  1 工作内容:工作内容在前期会比较多一些,基础搭建还是一个挺讲究的事儿。系统搭建好之后呢,大概是两种,一种是向大数据部门提交任务,跑一圈给你。一种是持续的文本信息处理中增加新的处理模块,像我之前说的增加个分类啦,实体识别神马的。好吧第一种其实我也不记得是从哪得来的印象了,我是没有见到过的。架构稳定了之后,大数据部门的工作并不太多,常常会和算法工程师混到一起来。其他的应该就是大数据周边产品的开发工作了。再去解决一些Bug什么的。2 需要技能:环境【Linux】框架【Hadoo,spark,storm,pig,hive,mahout,zookeeper 】算法【mapreduce,hdfs,zookeeper】。 十二. Android工程师  1 工作内容:Android工程师的日常就是听产品经理讲需求,跟后端定接口,听QA反馈哪款机器不兼容,闹着申请各种测试机,以及悲催的用Android做IOS的控件。 2 需要技能:环境【Android Studio,Maven,Gradle】基础【数据结构,Java,计算机网络】组件【IM,地图,支付,拍照,视频,音频,统计,分享,手势密码】 十三. IOS工程师  1 工作内容:IOS工程师的工作内容真的挺简单的,听需求,定接口。做个适配,抛弃一下iphone4。还有啥。。马丹,以我为数不多的IOS知识来讲,真的不知道还有啥了。我知道的比较复杂的系统也是各种背景高斯模糊,各种渐变,各种图片滤镜处理,其他并没有什么。支付,地图,统计这些东西。 嗯。2 需要技能:环境【Xcode】基础【数据结构,Object,计算机网络】组件【IM,地图,支付,拍照,视频,音频,统计,分享,手势密码】

行者武松 2019-12-02 01:21:45 0 浏览量 回答数 0

问题

时间复杂度 7月1日 【今日算法】

游客ih62co2qqq5ww 2020-07-02 23:54:51 6 浏览量 回答数 1

回答

在PaaS层中一个复杂的通用应用就是大数据平台。大数据是如何一步一步融入云计算的呢?首先我们来看一下大数据里面的数据,就分三种类型,一种叫结构化的数据,一种叫非结构化的数据,还有一种叫半结构化的数据。 大数据拥抱云计算 在PaaS层中一个复杂的通用应用就是大数据平台。大数据是如何一步一步融入云计算的呢? 1 数据不大也包含智慧 一开始这个大数据并不大。原来才有多少数据?现在大家都去看电子书,上网看新闻了,在我们80后小时候,信息量没有那么大,也就看看书、看看报,一个星期的报纸加起来才有多少字?如果你不在一个大城市,一个普通的学校的图书馆加起来也没几个书架,是后来随着信息化的到来,信息才会越来越多。 首先我们来看一下大数据里面的数据,就分三种类型,一种叫结构化的数据,一种叫非结构化的数据,还有一种叫半结构化的数据。 结构化的数据:即有固定格式和有限长度的数据。例如填的表格就是结构化的数据,国籍:中华人民共和国,民族:汉,性别:男,这都叫结构化数据。 非结构化的数据:现在非结构化的数据越来越多,就是不定长、无固定格式的数据,例如网页,有时候非常长,有时候几句话就没了;例如语音,视频都是非结构化的数据。 半结构化数据:是一些XML或者HTML的格式的,不从事技术的可能不了解,但也没有关系。 其实数据本身不是有用的,必须要经过一定的处理。例如你每天跑步带个手环收集的也是数据,网上这么多网页也是数据,我们称为Data。数据本身没有什么用处,但数据里面包含一个很重要的东西,叫做信息(Information)。 数据十分杂乱,经过梳理和清洗,才能够称为信息。信息会包含很多规律,我们需要从信息中将规律总结出来,称为知识(Knowledge),而知识改变命运。信息是很多的,但有人看到了信息相当于白看,但有人就从信息中看到了电商的未来,有人看到了直播的未来,所以人家就牛了。如果你没有从信息中提取出知识,天天看朋友圈也只能在互联网滚滚大潮中做个看客。 所以数据的应用分这四个步骤:数据、信息、知识、智慧。 最终的阶段是很多商家都想要的。你看我收集了这么多的数据,能不能基于这些数据来帮我做下一步的决策,改善我的产品。例如让用户看视频的时候旁边弹出广告,正好是他想买的东西;再如让用户听音乐时,另外推荐一些他非常想听的其他音乐。 用户在我的应用或者网站上随便点点鼠标,输入文字对我来说都是数据,我就是要将其中某些东西提取出来、指导实践、形成智慧,让用户陷入到我的应用里面不可自拔,上了我的网就不想离开,手不停地点、不停地买。 很多人说双十一我都想断网了,我老婆在上面不断地买买买,买了A又推荐B,老婆大人说,“哎呀,B也是我喜欢的啊,老公我要买”。你说这个程序怎么这么牛,这么有智慧,比我还了解我老婆,这件事情是怎么做到的呢? 2 数据如何升华为智慧 数据的处理分几个步骤,完成了才最后会有智慧。 第一个步骤叫数据的收集。首先得有数据,数据的收集有两个方式: 第一个方式是拿,专业点的说法叫抓取或者爬取。例如搜索引擎就是这么做的:它把网上的所有的信息都下载到它的数据中心,然后你一搜才能搜出来。比如你去搜索的时候,结果会是一个列表,这个列表为什么会在搜索引擎的公司里面?就是因为他把数据都拿下来了,但是你一点链接,点出来这个网站就不在搜索引擎它们公司了。比如说新浪有个新闻,你拿百度搜出来,你不点的时候,那一页在百度数据中心,一点出来的网页就是在新浪的数据中心了。 第二个方式是推送,有很多终端可以帮我收集数据。比如说小米手环,可以将你每天跑步的数据,心跳的数据,睡眠的数据都上传到数据中心里面。 第二个步骤是数据的传输。一般会通过队列方式进行,因为数据量实在是太大了,数据必须经过处理才会有用。可系统处理不过来,只好排好队,慢慢处理。 第三个步骤是数据的存储。现在数据就是金钱,掌握了数据就相当于掌握了钱。要不然网站怎么知道你想买什么?就是因为它有你历史的交易的数据,这个信息可不能给别人,十分宝贵,所以需要存储下来。 第四个步骤是数据的处理和分析。上面存储的数据是原始数据,原始数据多是杂乱无章的,有很多垃圾数据在里面,因而需要清洗和过滤,得到一些高质量的数据。对于高质量的数据,就可以进行分析,从而对数据进行分类,或者发现数据之间的相互关系,得到知识。 比如盛传的沃尔玛超市的啤酒和尿布的故事,就是通过对人们的购买数据进行分析,发现了男人一般买尿布的时候,会同时购买啤酒,这样就发现了啤酒和尿布之间的相互关系,获得知识,然后应用到实践中,将啤酒和尿布的柜台弄的很近,就获得了智慧。 第五个步骤是对于数据的检索和挖掘。检索就是搜索,所谓外事不决问Google,内事不决问百度。内外两大搜索引擎都是将分析后的数据放入搜索引擎,因此人们想寻找信息的时候,一搜就有了。 另外就是挖掘,仅仅搜索出来已经不能满足人们的要求了,还需要从信息中挖掘出相互的关系。比如财经搜索,当搜索某个公司股票的时候,该公司的高管是不是也应该被挖掘出来呢?如果仅仅搜索出这个公司的股票发现涨的特别好,于是你就去买了,其实其高管发了一个声明,对股票十分不利,第二天就跌了,这不坑害广大股民么?所以通过各种算法挖掘数据中的关系,形成知识库,十分重要。 3 大数据时代,众人拾柴火焰高 当数据量很小时,很少的几台机器就能解决。慢慢的,当数据量越来越大,最牛的服务器都解决不了问题时,怎么办呢?这时就要聚合多台机器的力量,大家齐心协力一起把这个事搞定,众人拾柴火焰高。 对于数据的收集:就IoT来讲,外面部署这成千上万的检测设备,将大量的温度、湿度、监控、电力等数据统统收集上来;就互联网网页的搜索引擎来讲,需要将整个互联网所有的网页都下载下来。这显然一台机器做不到,需要多台机器组成网络爬虫系统,每台机器下载一部分,同时工作,才能在有限的时间内,将海量的网页下载完毕。 对于数据的传输:一个内存里面的队列肯定会被大量的数据挤爆掉,于是就产生了基于硬盘的分布式队列,这样队列可以多台机器同时传输,随你数据量多大,只要我的队列足够多,管道足够粗,就能够撑得住。 对于数据的存储:一台机器的文件系统肯定是放不下的,所以需要一个很大的分布 式文件系统来做这件事情,把多台机器的硬盘打成一块大的文件系统。 对于数据的分析:可能需要对大量的数据做分解、统计、汇总,一台机器肯定搞不定,处理到猴年马月也分析不完。于是就有分布式计算的方法,将大量的数据分成小份,每台机器处理一小份,多台机器并行处理,很快就能算完。例如著名的Terasort对1个TB的数据排序,相当于1000G,如果单机处理,怎么也要几个小时,但并行处理209秒就完成了。 所以说什么叫做大数据?说白了就是一台机器干不完,大家一起干。可是随着数据量越来越大,很多不大的公司都需要处理相当多的数据,这些小公司没有这么多机器可怎么办呢? 4 大数据需要云计算,云计算需要大数据 说到这里,大家想起云计算了吧。当想要干这些活时,需要很多的机器一块做,真的是想什么时候要就什么时候要,想要多少就要多少。 例如大数据分析公司的财务情况,可能一周分析一次,如果要把这一百台机器或者一千台机器都在那放着,一周用一次非常浪费。那能不能需要计算的时候,把这一千台机器拿出来;不算的时候,让这一千台机器去干别的事情? 谁能做这个事儿呢?只有云计算,可以为大数据的运算提供资源层的灵活性。而云计算也会部署大数据放到它的PaaS平台上,作为一个非常非常重要的通用应用。因为大数据平台能够使得多台机器一起干一个事儿,这个东西不是一般人能开发出来的,也不是一般人玩得转的,怎么也得雇个几十上百号人才能把这个玩起来。 所以说就像数据库一样,其实还是需要有一帮专业的人来玩这个东西。现在公有云上基本上都会有大数据的解决方案了,一个小公司需要大数据平台的时候,不需要采购一千台机器,只要到公有云上一点,这一千台机器都出来了,并且上面已经部署好了的大数据平台,只要把数据放进去算就可以了。 云计算需要大数据,大数据需要云计算,二者就这样结合了。 人工智能拥抱大数据 机器什么时候才能懂人心 虽说有了大数据,人的欲望却不能够满足。虽说在大数据平台里面有搜索引擎这个东西,想要什么东西一搜就出来了。但也存在这样的情况:我想要的东西不会搜,表达不出来,搜索出来的又不是我想要的。 例如音乐软件推荐了一首歌,这首歌我没听过,当然不知道名字,也没法搜。但是软件推荐给我,我的确喜欢,这就是搜索做不到的事情。当人们使用这种应用时,会发现机器知道我想要什么,而不是说当我想要时,去机器里面搜索。这个机器真像我的朋友一样懂我,这就有点人工智能的意思了。 人们很早就在想这个事情了。最早的时候,人们想象,要是有一堵墙,墙后面是个机器,我给它说话,它就给我回应。如果我感觉不出它那边是人还是机器,那它就真的是一个人工智能的东西了。 让机器学会推理 怎么才能做到这一点呢?人们就想:我首先要告诉计算机人类的推理的能力。你看人重要的是什么?人和动物的区别在什么?就是能推理。要是把我这个推理的能力告诉机器,让机器根据你的提问,推理出相应的回答,这样多好? 其实目前人们慢慢地让机器能够做到一些推理了,例如证明数学公式。这是一个非常让人惊喜的一个过程,机器竟然能够证明数学公式。但慢慢又发现其实这个结果也没有那么令人惊喜。因为大家发现了一个问题:数学公式非常严谨,推理过程也非常严谨,而且数学公式很容易拿机器来进行表达,程序也相对容易表达。 教给机器知识 因此,仅仅告诉机器严格的推理是不够的,还要告诉机器一些知识。但告诉机器知识这个事情,一般人可能就做不来了。可能专家可以,比如语言领域的专家或者财经领域的专家。 语言领域和财经领域知识能不能表示成像数学公式一样稍微严格点呢?例如语言专家可能会总结出主谓宾定状补这些语法规则,主语后面一定是谓语,谓语后面一定是宾语,将这些总结出来,并严格表达出来不就行了吗?后来发现这个不行,太难总结了,语言表达千变万化。 人工智能这个阶段叫做专家系统。专家系统不易成功,一方面是知识比较难总结,另一方面总结出来的知识难以交给计算机。因为你自己还迷迷糊糊,觉得似乎有规律,就是说不出来,又怎么能够通过编程教给计算机呢? 算了,教不会你自己学吧 于是人们想到:机器是和人完全不一样的物种,干脆让机器自己学习好了。

茶什i 2019-12-31 13:13:50 0 浏览量 回答数 0

回答

以前上网很快,最近1周网速突然很慢,我是3个人共用一个路由器的,以前3个人用时也是很快。现在是我看视频很卡,用了优化大师优化,c盘文件及桌面文件都清理了,用360也清理了垃圾文件,用小红伞杀毒也没杀出病毒,就是老样子。现在两个人用一个,也是很慢,到半夜了在搜狐视频或是酷六什么那看电影,只剩我一个人在用,还是卡。 请问高手能帮我诊断下怎么回事,或是怎么设置下改变下状况。另一个人也是发现网速慢了,我们都是一个样子,可能是被盗了吗? 我用360查看网络连接,system id process 的连接很多,显示是没有连接上,状态是等待,都是端口80,目标归属地什么北京联通,大连联通,深圳联通的,有7个左右,我qq也没开啊,想结束也结束不了,只是在迅雷看看里看电影,没有装他的插件。把它关了还是有。向高手请教?插件只有搜狗输入法,迅雷,360,迅雷看看没有其他的 " 网速变慢的原因有很多可能,比如网络本身的问题、网卡硬件问题,有或者是系统问题等等。可以通过其他联网设备确认下是否有网速变慢的情况;如果网络本身没有问题(其他设备可以正常连接),问题就出现电脑本身: 1,、疑难解答 可以先试试更新网卡驱动,若无效,我们可以利用系统自身提供的【疑难解答】功能来寻求解决。直接搜索进入【疑难解答】然后点击右侧的对应项目,选择【运行疑难解答】,按照向导提示进行操作即可,看是否能够解决网络连接问题。 <img src=""https://gss0.baidu.com/-fo3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=f415cd6cda3f8794d3aa4028e22b22cc/a6efce1b9d16fdfac901e83aba8f8c5495ee7bf0.jpg""> <img src=""https://gss0.baidu.com/-Po3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=1695c9ff00f41bd5da06e0f261eaadf3/f2deb48f8c5494ee9b9421cd23f5e0fe98257eab.jpg""> 2、网络重置 上述均不能解决的话,最后可通过进行网络重置来彻底解决。路径:【开始】—【设置】—【网络和Internet】—【状态】,在右侧列表中找到【网络重置】并点击,按提示完成操作即可。 <img src=""https://gss0.baidu.com/-Po3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=e6034daa9c58d109c4b6a1b4e168e087/11385343fbf2b211a844ab9ac48065380dd78eff.jpg""> 另外,在有限的硬件条件下,想让现有的网速能够快一些,具体可以参考以下步骤: 步骤1. Win+R组合键后输入gpedit.msc进入组策略编辑器,依次进入“计算机配置-Windows设置”后,再右侧找到“基于策略的Qos”的这个选项。 <img src=""https://gss0.baidu.com/-Po3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=c08ee009a564034f0f98ca009ff35509/a71ea8d3fd1f41341c7f2baa2b1f95cad0c85e9d.jpg""> 步骤2. 在“基于策略的Qos”上点击鼠标右键,选择“高级QoS设置”,在入站TCP流量选项卡中,勾选”制定入站TCP吞吐量级别“,选择最后那个”级别3“。 <img src=""https://gss0.baidu.com/9fo3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=f340223fb8fd5266a77e34129b28bb13/e1fe9925bc315c604623453b83b1cb13485477ab.jpg""> 注意的:如果在更改完设置后发现上网时系统出现假死、卡顿等问题,可以把上面的“制定入站TCP吞吐量级别“设置调整到“级别2”,减少数据处理对系统硬件的压力(内存小于4GB,则建议使用默认最小吞吐量)。 “高级QoS设置“是什么呢? 通过高级服务质量 (QoS) 设置,您可以管理带宽使用以及计算机处理应用程序和服务设置的 DSCP 标记(而不是组策略设置的标记)的方式。高级 QoS 设置仅可在计算机级别应用,而 QoS 策略在计算机级别和用户级别均可应用。 若要更改吞吐量级别,选中“指定入站 TCP 吞吐量级别”复选框,然后根据下表选择吞吐量级别。吞吐量级别可以等于或小于最大值,具体取决于网络条件。 <img src=""https://gss0.baidu.com/9vo3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=eea0cfe33bfae6cd0ce1a3673f83231c/ca1349540923dd542fc589bcdf09b3de9d8248ab.jpg"">" 一、网络自身问题 您想要连接的目标网站所在的服务器带宽不足或负载过大。处理办法很简单,请换个时间段再上或者换个目标网站。 二、网线问题导致网速变慢 我们知道,双绞线是由四对线按严格的规定紧密地绞和在一起的,用来减少串扰和背景噪音的影响。同时,在T568A标准和T568B标准中仅使用了双绞线的 1、2和3、6四条线,其中,1、2用于发送,3、6用于接收,而且1、2必须来自一个绕对,3、6必须来自一个绕对。只有这样,才能最大限度地避免串扰,保证数据传输。本人在实践中发现不按正确标准(T586A、T586B)制作的网线,存在很大的隐患。表现为:一种情况是刚开始使用时网速就很慢;另一种情况则是开始网速正常,但过了一段时间后,网速变慢。后一种情况在台式电脑上表现非常明显,但用笔记本电脑检查时网速却表现为正常。对于这一问题本人经多年实践发现,因不按正确标准制作的网线引起的网速变慢还同时与网卡的质量有关。一般台式计算机的网卡的性能不如笔记本电脑的,因此,在用交换法排除故障时,使用笔记本电脑检测网速正常并不能排除网线不按标准制作这一问题的存在。我们现在要求一律按T586A、T586B标准来压制网线,在检测故障时不能一律用笔记本电脑来代替台式电脑。 三、网络中存在回路导致网速变慢 当网络涉及的节点数不是很多、结构不是很复杂时,这种现象一般很少发生。但在一些比较复杂的网络中,经常有多余的备用线路,如无意间连上时会构成回路。比如网线从网络中心接到计算机一室,再从计算机一室接到计算机二室。同时从网络中心又有一条备用线路直接连到计算机二室,若这几条线同时接通,则构成回路,数据包会不断发送和校验数据,从而影响整体网速。这种情况查找比较困难。为避免这种情况发生,要求我们在铺设网线时一定养成良好的习惯:网线打上明显的标签,有备用线路的地方要做好记载。当怀疑有此类故障发生时,一般采用分区分段逐步排除的方法。 四、网络设备硬件故障引起的广播风暴而导致网速变慢 作为发现未知设备的主要手段,广播在网络中起着非常重要的作用。然而,随着网络中计算机数量的增多,广播包的数量会急剧增加。当广播包的数量达到30%时,网络的传输效率将会明显下降。当网卡或网络设备损坏后,会不停地发送广播包,从而导致广播风暴,使网络通信陷于瘫痪。因此,当网络设备硬件有故障时也会引起网速变慢。当怀疑有此类故障时,首先可采用置换法替换集线器或交换机来排除集线设备故障。如果这些设备没有故障,关掉集线器或交换机的电源后,DOS下用 “Ping”命令对所涉及计算机逐一测试,找到有故障网卡的计算机,更换新的网卡即可恢复网速正常。网卡、集线器以及交换机是最容易出现故障引起网速变慢的设备。 五、网络中某个端口形成了瓶颈导致网速变慢 实际上,路由器广域网端口和局域网端口、交换机端口、集线器端口和服务器网卡等都可能成为网络瓶颈。当网速变慢时,我们可在网络使用高峰时段,利用网管软件查看路由器、交换机、服务器端口的数据流量;也可用 Netstat命令统计各个端口的数据流量。据此确认网络数据流通瓶颈的位置,设法增加其带宽。具体方法很多,如更换服务器网卡为100M或1000M、安装多个网卡、划分多个VLAN、改变路由器配置来增加带宽等,都可以有效地缓解网络瓶颈,可以最大限度地提高数据传输速度。 六、蠕虫病毒的影响导致网速变慢 通过E-mail散发的蠕虫病毒对网络速度的影响越来越严重,危害性极大。这种病毒导致被感染的用户只要一上网就不停地往外发邮件,病毒选择用户个人电脑中的随机文档附加在用户机子的通讯簿的随机地址上进行邮件发送。成百上千的这种垃圾邮件有的排着队往外发送,有的又成批成批地被退回来堆在服务器上。造成个别骨干互联网出现明显拥塞,网速明显变慢,使局域网近于瘫痪。因此,我们必须及时升级所用杀毒软件;计算机也要及时升级、安装系统补丁程序,同时卸载不必要的服务、关闭不必要的端口,以提高系统的安全性和可靠性。 七、防火墙的过多使用 防火墙的过多使用也可导致网速变慢,处理办法不必多说,卸载下不必要的防火墙只保留一个功能强大的足以。 八、系统资源不足 您可能加载了太多的运用程序在后台运行,请合理的加载软件或删除无用的程序及文件,将资源空出,以达到提高网速的目的。 您好,如您的宽带出现故障,可关注“中国联通”微信公众号,点击“客户服务>宽带报障>常见故障指引”,查看对应故障的处理方式。 如仍无法解决,可通过以下方式自助报障: 【方式一】关注“中国联通”微信公众号,点击“客户服务>宽带报障>在线报障”; 【方式二】登录中国联通手机营业厅APP,点击“服务>宽带>宽带办理服务>宽带报障”。 1...用360安全卫士查一下启动项,可能是垃圾插件太多了。现在P2P插件很吸血的。优化一下。 2...把3台电脑恢复系统,还有问题就是线路的问题了。 你把路由器 关掉重启 或者 重装 网卡驱动 试试吧。 最好还是重装。 重装还不好使 就是 宽带问题。

保持可爱mmm 2019-12-02 02:14:41 0 浏览量 回答数 0

回答

算法的本质是解决问题的方法,是思想 在早期的时候,人们遇到新问题,必须要去解决它,经过“冥思苦想”,“反复探索尝试”,    最后总结归纳。这才形成了今天我们学习的各种算法。如果无法领会到解决问题的思想,无法总结归纳,就会有:“学算法有什么用。”。不知道为什么学,自然会认为学了没意义,没有用处。 2.一个算法应该具有以下五个重要的特征: ①有穷性: 算法的有穷性是指算法必须能在执行有限个步骤之后终止,换句话说就是一个算法必须总是在执行有穷步之后结束,且每一步都可在有穷时间内完成。②确定性:算法中的每条指令必须有确切的定义,不会产生二义性,并且对于相同的输入只能得出相同的输出。③可行性:算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性)。④输入: 一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件,这些输入取自于某个特定的对象集合。 ⑤输出:一个算法有一个或多个的输出,这些输出是同输入有着特定关系的量,没有输出的算法是毫无意义的。 算法总是要解决特定的问题,问题来源就是算法的输入,期望的结果就是算法的输出,没有输入输出的算法是无意义的。3.算法设计的5个要求:①正确性:最基本要求,算法必须能解决某个问题的需求。②可读性:算法的可读性有助于人的阅读与交流,容易调试和修改。③健壮性:当输入的数据非法时,算法能适当做出反应或进行处理,而不会产生莫名其妙的输出结果。④效率性:算法是为了解决大规模问题,因此需要运行效率足够快。⑤存储性:算法在执行过程中,所需要的最大存储空间,应该尽可能的占用小。效率性与存储性都与问题规模有关,求100人的平均分与求1000人的平均分,同一个算法的所花费的执行时间与存储空间显然是不一样的。 正确性,可读性,健壮性不仅仅是算法设计的要求,而是贯穿整个软件设计层次。单对于算法本身来说,我们最关注的层面是效率性。千万不能死板的认为,算法就是计算机程序。算法是一切解决问题的思想,语言描述,伪代码,流程图,各种符号或者控制表格同样是算法。

行者武松 2019-12-02 01:17:57 0 浏览量 回答数 0

回答

您列出了五个主要的CHARACTER SET麻烦案例。 最佳实践 展望未来,最好使用CHARACTER SET utf8mb4和COLLATION utf8mb4_unicode_520_ci。(管道中有更新版本的Unicode排序规则。) utf8mb4是的超集utf8,它处理4字节utf8代码,表情符号和某些中文需要这些代码。 在MySQL之外,“ UTF-8”是指所有大小的编码,因此实际上与MySQL相同utf8mb4,而不是utf8。 在下文中,我将尝试使用这些拼写和大写字母来区分MySQL内部和外部。 您应该做什么概述 将您的编辑器等设置为UTF-8。 HTML表单应以开头 。 将您的字节编码为UTF-8。 建立UTF-8作为客户端中使用的编码。 声明列/表CHARACTER SET utf8mb4(使用进行检查SHOW CREATE TABLE。) 在HTML的开头 存储的例程获取当前的字符集/排序规则。他们可能需要重建。 UTF-8贯穿始终 有关计算机语言的更多详细信息(及其后续部分) 测试数据 使用工具或工具查看数据SELECT是不可信的。太多这样的客户端,尤其是浏览器,试图补偿不正确的编码,并向您显示正确的文本,即使数据库已损坏。因此,选择一个包含非英语文本的表和列,然后执行 SELECT col, HEX(col) FROM tbl WHERE ... 正确存储的UTF-8的十六进制将为 对于空格(任何语言): 20 对于英语: 4x,5x,6x,或者7x 在西欧大部分地区,带重音符号的字母应为 Cxyy 西里尔文,希伯来文和波斯文/阿拉伯文: Dxyy 亚洲大部分地区: Exyyzz 表情符号和一些中文: F0yyzzww 更多细节 出现问题的具体原因和解决方法 截断的文字(Se为Señor): 要存储的字节未编码为utf8mb4。解决这个问题。 另外,在读取过程中检查连接是否为UTF-8。 黑钻石与问号(Se�or对Señor); 存在以下情况之一: 情况1(原始字节不是 UTF-8): 要存储的字节未编码为utf8。解决这个问题。 的连接(或SET NAMES为)INSERT 和所述SELECT不UTF8 / utf8mb4。解决这个问题。 另外,检查数据库中的列是否为CHARACTER SET utf8(或utf8mb4)。 情况2(原始字节为 UTF-8): 的连接(或SET NAMES)SELECT不是utf8 / utf8mb4。解决这个问题。 另外,检查数据库中的列是否为CHARACTER SET utf8(或utf8mb4)。 仅当浏览器设置为时,才会出现黑色菱形 。 问号(常规的,不是黑钻石)(Se?or用于Señor): 要存储的字节未编码为utf8 / utf8mb4。解决这个问题。 数据库中的列不是CHARACTER SET utf8(或utf8mb4)。解决这个问题。(使用SHOW CREATE TABLE。) 另外,在读取过程中检查连接是否为UTF-8。 Mojibake(Señorfor Señor):(此讨论也适用于Double Encoding,它不一定可见。) 要存储的字节需要UTF-8编码。解决这个问题。 当INSERTing和SELECTing文本的连接需要指定utf8或utf8mb4。解决这个问题。 该列需要声明CHARACTER SET utf8(或utf8mb4)。解决这个问题。 HTML应该以开头 。 如果数据看起来正确,但排序不正确,则说明您选择了错误的排序规则,或者没有适合您的排序规则,或者您使用Double Encoding。 通过执行SELECT .. HEX ..上述操作,可以确认双重编码。 é should come back C3A9, but instead shows C383C2A9 The Emoji  should come back F09F91BD, but comes back C3B0C5B8E28098C2BD 也就是说,十六进制的长度大约是它的两倍。这是由于从latin1(或任何其他形式)转换为utf8,然后将这些字节视为latin1并重复转换而引起的。排序(和比较)无法正常进行,因为例如,排序就像字符串是Señor。来源:stack overflow

保持可爱mmm 2020-05-08 09:56:27 0 浏览量 回答数 0

回答

  算法,数据结构是关键,另外还有组合数学,特别是集合与图论,概率论也重要。推荐买一本《算法导论》,那本书行,看起来超爽。。。基本掌握语法还不行啊,语法的超熟练掌握,不然出了错误很难调试的。。。最重要的是超牛皮的头脑啦,分析能力,逻辑推理能力很重要。ACM很好玩啦,祝你成功。。。   acm是3人一组的,以学校为单位报名的,也就是说要得到学校同意,还要有2个一起搞的。其实可能是你不知道你们学校搞acm的地方,建议你好好询问下你们学校管科技创新方面的人。建议你找几个兴趣相同的一起做,互相探讨效果好多了,团队合作也是acm要求的3大能力之一。   数据结构远远不够的,建议你看算法导论,黑书,oj的话个人觉得还是poj好,有水题有好题,而且做的人多,要解题报告什么的也好找。我们就是一些做acm的学生一起搞,也没老师,这样肯定能行的。   基础的话是语言,然后数据结构,然后算法。   ACM有三个方向:算法,数学,实现   要求三种能力:英文,自学,团队协作   简单的说,你要能读懂英文的题意描述,要有一门acm能使用的编程语言,要会数据结构,有一点数学基础,一点编程方面天赋,要有兴趣和毅力(最重要),就具有做ACM的基本条件了。   做acm我推荐c,c++也可以,java在某些情况下好用,但是大多数情况的效率和代码量都不大好,所以建议主用c++,有些题目用java   还有什么问题,可以问我啊。   不好意思,没见过用java描述的acm书籍,大多数是用伪命令,其他有的用的c,c++,老一些的用pascal。java只是用来做高精度的一些题的,个人觉得不用专门看这方面的书,java的基本部分学好就够用了。所以我还是推荐主用c++,在高精度和个别题再用java。你可以找找java描述的算法设计与分析,这个好像有   数据结构:C语言版 清华大学出版社 严蔚敏 《数据结构》   算法:清华大学出版社 王晓东 《算法设计与分析》   麻省理工大学 中译本:机械工业出版社 《算法导论》   基本上这三本书就已经足够了,建议一般水平的人先不要看算法导论,待另外两本书看的差不多的时候,再看算法导论加深理解。   另外还有很多针对性更强的书籍,不过针对性太强,这里就不多介绍了。   以上一些都是些算法方面的书,最好的方式就是做题与看书相结合,很多在线做题的网站,PKU,ZOJ很多,推荐PKU,题目比较多,参与的人比较多。做一段时间的题,然后看书,研究算法,再做题,这样进步比较快。   还有关于ACM竞赛,我有自己的一点话说。   首先说下ACM/ICPC是个团队项目,最后的参赛名额是按照学校为单位的,所以找到志同道合的队友和学校的支持是很重要的。   刚刚接触信息学领域的同学往往存在很多困惑,不知道从何入手学习,在这篇文章里,我希望能将自己不多的经验与大家分享,希望对各位有所帮助。   一、语言是最重要的基本功   无论侧重于什么方面,只要是通过计算机程序去最终实现的竞赛,语言都是大家要过的第一道关。亚洲赛区的比赛支持的语言包括C/C++与JAVA。笔者首先说说JAVA,众所周知,作为面向对象的王牌语言,JAVA在大型工程的组织与安全性方面有着自己独特的优势,但是对于信息学比赛的具体场合,JAVA则显得不那么合适,它对于输入输出流的操作相比于C++要繁杂很多,更为重要的是JAVA程序的运行速度要比C++慢10倍以上,而竞赛中对于JAVA程序的运行时限却往往得不到同等比例的放宽,这无疑对算法设计提出了更高的要求,是相当不利的。其实,笔者并不主张大家在这种场合过多地运用面向对象的程序设计思维,因为对于小程序来说这不旦需要花费更多的时间去编写代码,也会降低程序的执行效率。   接着说C和C++。许多现在参加讲座的同学还在上大一,C的基础知识刚刚学完,还没有接触过C++,其实在赛场上使用纯C的选手还是大有人在的,它们主要是看重了纯C在效率上的优势,所以这部分同学如果时间有限,并不需要急着去学习新的语言,只要提高了自己在算法设计上的造诣,纯C一样能发挥巨大的威力。   而C++相对于C,在输入输出流上的封装大大方便了我们的操作,同时降低了出错的可能性,并且能够很好地实现标准流与文件流的切换,方便了调试的工作。如果有些同学比较在意这点,可以尝试C和C++的混编,毕竟仅仅学习C++的流操作还是不花什么时间的。   C++的另一个支持来源于标准模版库(STL),库中提供的对于基本数据结构的统一接口操作和基本算法的实现可以缩减我们编写代码的长度,这可以节省一些时间。但是,与此相对的,使用STL要在效率上做出一些牺牲,对于输入规模很大的题目,有时候必须放弃STL,这意味着我们不能存在“有了STL就可以不去管基本算法的实现”的想法;另外,熟练和恰当地使用STL必须经过一定时间的积累,准确地了解各种操作的时间复杂度,切忌对STL中不熟悉的部分滥用,因为这其中蕴涵着许多初学者不易发现的陷阱。   通过以上的分析,我们可以看出仅就信息学竞赛而言,对语言的掌握并不要求十分全面,但是对于经常用到的部分,必须十分熟练,不允许有半点不清楚的地方,下面我举个真实的例子来说明这个道理——即使是一点很细微的语言障碍,都有可能酿成错误:   在去年清华的赛区上,有一个队在做F题的时候使用了cout和printf的混合输出,由于一个带缓冲一个不带,所以输出一长就混乱了。只是因为当时judge team中负责F题的人眼睛尖,看出答案没错只是顺序不对(答案有一页多,是所有题目中最长的一个输出),又看了看程序发现只是输出问题就给了个Presentation error(格式错)。如果审题的人不是这样而是直接给一个 Wrong Answer,相信这个队是很难查到自己错在什么地方的。   现在我们转入第二个方面的讨论,基础学科知识的积累。   二、以数学为主的基础知识十分重要   虽然被定性为程序设计竞赛,但是参赛选手所遇到的问题更多的是没有解决问题的思路,而不是有了思路却死活不能实现,这就是平时积累的基础知识不够。今年World Final的总冠军是波兰华沙大学,其成员出自于数学系而非计算机系,这就是一个鲜活的例子。竞赛中对于基础学科的涉及主要集中于数学,此外对于物理、电路等等也可能有一定应用,但是不多。因此,大一的同学也不必为自己还没学数据结构而感到不知从何入手提高,把数学捡起来吧。下面我来谈谈在竞赛中应用的数学的主要分支。   1、离散数学——作为计算机学科的基础,离散数学是竞赛中涉及最多的数学分支,其重中之重又在于图论和组合数学,尤其是图论。   图论之所以运用最多是因为它的变化最多,而且可以轻易地结合基本数据结构和许多算法的基本思想,较多用到的知识包括连通性判断、DFS和BFS,关节点和关键路径、欧拉回路、最小生成树、最短路径、二部图匹配和网络流等等。虽然这部分的比重很大,但是往往也是竞赛中的难题所在,如果有初学者对于这部分的某些具体内容暂时感到力不从心,也不必着急,可以慢慢积累。   竞赛中设计的组合计数问题大都需要用组合数学来解决,组合数学中的知识相比于图论要简单一些,很多知识对于小学上过奥校的同学来说已经十分熟悉,但是也有一些部分需要先对代数结构中的群论有初步了解才能进行学习。组合数学在竞赛中很少以难题的形式出现,但是如果积累不够,任何一道这方面的题目却都有可能成为难题。   2、数论——以素数判断和同余为模型构造出来的题目往往需要较多的数论知识来解决,这部分在竞赛中的比重并不大,但只要来上一道,也足以使知识不足的人冥思苦想上一阵时间。素数判断和同余最常见的是在以密码学为背景的题目中出现,在运用密码学常识确定大概的过程之后,核心算法往往要涉及数论的内容。   3、计算几何——计算几何相比于其它部分来说是比较独立的,就是说它和其它的知识点很少有过多的结合,较常用到的部分包括——线段相交的判断、多边形面积的计算、内点外点的判断、凸包等等。计算几何的题目难度不会很大,但也永远不会成为最弱的题。   4、线性代数——对线性代数的应用都是围绕矩阵展开的,一些表面上是模拟的题目往往可以借助于矩阵来找到更好的算法。   5、概率论——竞赛是以黑箱来判卷的,这就是说你几乎不能动使用概率算法的念头,但这也并不是说概率就没有用。关于这一点,只有通过一定的练习才能体会。   6、初等数学与解析几何——这主要就是中学的知识了,用的不多,但是至少比高等数学多,我觉得熟悉一下数学手册上的相关内容,至少要知道在哪儿能查到,还是必要的。   7、高等数学——纯粹运用高等数学来解决的题目我接触的只有一道,但是一些题目的叙述背景往往需要和这部分有一定联系,掌握得牢固一些总归没有坏处。   以上就是竞赛所涉及的数学领域,可以说范围是相当广的。我认识的许多人去搞信息学的竞赛就是为了逼着自己多学一点数学,因为数学是一切一切的基础。   三、数据结构与算法是真正的核心   虽然数学十分十分重要,但是如果让三个只会数学的人参加比赛,我相信多数情况下会比三个只会数据结构与算法的人得到更为悲惨的结局。   先说说数据结构。掌握队列、堆栈和图的基本表达与操作是必需的,至于树,我个人觉得需要建树的问题有但是并不多。(但是树往往是很重要的分析工具)除此之外,排序和查找并不需要对所有方式都能很熟练的掌握,但你必须保证自己对于各种情况都有一个在时间复杂度上满足最低要求的解决方案。说到时间复杂度,就又该说说哈希表了,竞赛时对时间的限制远远多于对空间的限制,这要求大家尽快掌握“以空间换时间”的原则策略,能用哈希表来存储的数据一定不要到时候再去查找,如果实在不能建哈希表,再看看能否建二叉查找树等等——这都是争取时间的策略,掌握这些技巧需要大家对数据结构尤其是算法复杂度有比较全面的理性和感性认识。   接着说说算法。算法中最基本和常用的是搜索,主要是回溯和分支限界法的使用。这里要说的是,有些初学者在学习这些搜索基本算法是不太注意剪枝,这是十分不可取的,因为所有搜索的题目给你的测试用例都不会有很大的规模,你往往察觉不出程序运行的时间问题,但是真正的测试数据一定能过滤出那些没有剪枝的算法。实际上参赛选手基本上都会使用常用的搜索算法,题目的区分度往往就是建立在诸如剪枝之类的优化上了。   常用算法中的另一类是以“相似或相同子问题”为核心的,包括递推、递归、贪心法和动态规划。这其中比较难于掌握的就是动态规划,如何抽象出重复的子问题是很多题目的难点所在,笔者建议初学者仔细理解图论中一些以动态规划为基本思想所建立起来的基本算法(比如Floyd-Warshall算法),并且多阅读一些定理的证明,这虽然不能有什么直接的帮助,但是长期坚持就会对思维很有帮助。   四、团队配合   通过以上的介绍大家也可以看出,信息学竞赛对于知识面覆盖的非常广,想凭一己之力全部消化这些东西实在是相当困难的,这就要求我们尽可能地发挥团队协作的精神。同组成员之间的熟练配合和默契的形成需要时间,具体的情况因成员的组成不同而不同,这里我就不再多说了。   五、练习、练习、再练习   知识的积累固然重要,但是信息学终究不是看出来的,而是练出来的,这是多少前人最深的一点体会,只有通过具体题目的分析和实践,才能真正掌握数学的使用和算法的应用,并在不断的练习中增加编程经验和技巧,提高对时间复杂度的感性认识,优化时间的分配,加强团队的配合。总之,在这里光有纸上谈兵是绝对不行的,必须要通过实战来锻炼自己。   大家一定要问,我们去哪里找题做,又如何检验程序是否正确呢。这大可不必担心,现在已经有了很多网上做题的站点,这些站点提供了大量的题库并支持在线判卷,你只需要把程序源码提交上去,马上就可以知道自己的程序是否正确,运行所使用的时间以及消耗的内存等等状况。下面我给大家推荐几个站点,笔者不建议大家在所有这些站点上做题,选择一个就可以了,因为每个站点的题都有一定的难易比例,系统地做一套题库可以使你对各种难度、各种类型的题都有所认识。   1、Ural:   Ural是中国学生对俄罗斯的Ural州立大学的简称 ,那里设立了一个Ural Online Problem Set,并且支持Online Judge。Ural的不少题目算法性和趣闻性都很强,得到了国内广大学生的厚爱。根据“信息学初学者之家”网站的统计,Ural的题目类型大概呈如下的分布:   题型   搜索   动态规划   贪心   构造   图论   计算几何   纯数学问题   数据结构   其它   所占比例   约10%   约15%   约5%   约5%   约10%   约5%   约20%   约5%   约25%   这和实际比赛中的题型分布也是大体相当的。有兴趣的朋友可以去看看。   2、UVA:   UVA代表西班牙Valladolid大学(University de Valladolid)。该大学有一个那里设立了一个PROBLEM SET ARCHIVE with ONLINE JUDGE ,并且支持ONLINE JUDGE,形式和Ural大学的题库类似。不过和Ural不同的是,UVA题目多的多,而且比较杂,而且有些题目的测试数据比较刁钻。这使得刚到那里做题的朋友往往感觉到无所适从,要么难以找到合适的题目,要么Wrong Answer了很多次以后仍然不知道错在那里。 如果说做Ural题目主要是为了训练算法,那么UVA题目可以训练全方位的基本功和一些必要的编程素质。UVA和许多世界知名大学联合办有同步网上比赛,因此那里强人无数,不过你先要使自己具有听懂他们在说什么的素质:)   3、ZOJ:   ZOJ是浙江大学建立的ONLINE JUDGE,是中国大学建立的第一个同类站点,也是最好和人气最高的一个,笔者和许多班里的同学就是在这里练习。ZOJ虽然也定位为一个英文网站,但是这里的中国学生比较多,因此让人觉得很亲切。这里目前有500多道题目,难易分配适中,且涵盖了各大洲的题目类型并配有索引,除此之外,ZOJ的JUDGE系统是几个网站中表现得比较好的一个,很少出现Wrong Answer和Presentation error混淆的情况。这里每月也办有一次网上比赛,只要是注册的用户都可以参加。   说起中国的ONLINE JUDGE,去年才开始参加ACM竞赛的北京大学现在也建立了自己的提交系统;而我们学校也是去年开始参加比赛,现在也有可能推出自己的提交系统,如果能够做成,到时候大家就可以去上面做题了。同类网站的飞速发展标志着有越来越多的同学有兴趣进入信息学的领域探索,这是一件好事,同时也意味着更激烈的竞争。

小旋风柴进 2019-12-02 01:20:20 0 浏览量 回答数 0

回答

API(Application Programming Interface,应用程序编程接口)是一套用来控制Windows的各个部件(从桌面的外观到为一个新进程分配的内存)的外观和行为的一套预先定义的Windows函数.用户的每个动作都会引发一个或几个函数的运行以告诉Windows发生了什么. 这在某种程度上很象Windows的天然代码.其他的语言只是提供一种能自动而且更容易的访问API的方法.VB在这方面作了很多工作.它完全隐藏了API并且提供了在Windows环境下编程的一种完全不同的方法. 这也就是说,你用VB写出的每行代码都会被VB转换为API函数传递给Windows.例如,Form1.Print...VB 将会以一定的参数(你的代码中提供的,或是默认参数)调用TextOut 这个API函数. 。同样,当你点击窗体上的一个按钮时,Windows会发送一个消息给窗体(这对于你来说是隐藏的),VB获取这个调用并经过分析后生成一个特定事件(Button_Click). API函数包含在Windows系统目录下的动态连接库文件中(如User32.dll,GDI32.dll,Shell32.dll...). API 声明 正如在"什么是API"中所说,API函数包含在位于系统目录下的DLL文件中.你可以自己输入API函数的声明,但VB提供了一种更简单的方法,即使用API Text Viewer. 要想在你的工程中声明API函数,只需运行API Text Viewer,打开Win32api.txt(或.MDB如果你已经把它转换成了数据库的话,这样可以加快速度.注:微软的这个文件有很多的不足,你可以试一下本站提供下载的api32.txt),选择"声明",找到所需函数,点击"添加(Add)"并"复制(Copy)",然后粘贴(Paste)到你的工程里.使用预定义的常量和类型也是同样的方法. 你将会遇到一些问题: 假设你想在你的窗体模块中声明一个函数.粘贴然后运行,VB会告诉你:编译错误...Declare 语句不允许作为类或对象模块中的 Public 成员...看起来很糟糕,其实你需要做的只是在声明前面添加一个Private(如 Private Declare Function...).--不要忘了,可是这将使该函数只在该窗体模块可用. 在有些情况下,你会得到"不明确的名称"这样的提示,这是因为函数.常量或其他的什么东西共用了一个名称.由于绝大多数的函数(也可能是全部,我没有验证过)都进行了别名化,亦即意味着你可以通过Alias子句使用其它的而不是他们原有的名称,你只需简单地改变一下函数名称而它仍然可以正常运行. API 分为四种类型: 远程过程调用(RPC):通过作用在共享数据缓存器上的过程(或任务)实现程序间的通信。 标准查询语言(SQL):是标准的访问数据的查询语言,通过通用数据库实现应用程序间的数据共享。 文件传输:文件传输通过发送格式化文件实现应用程序间数据共享。 信息交付:指松耦合或紧耦合应用程序间的小型格式化信息,通过程序间的直接通信实现数据共享。 当前应用于 API 的标准包括 ANSI 标准 SQL API。另外还有一些应用于其它类型的标准尚在制定之中。API 可以应用于所有计算机平台和操作系统。这些 API 以不同的格式连接数据(如共享数据缓存器、数据库结构、文件框架)。每种数据格式要求以不同的数据命令和参数实现正确的数据通信,但同时也会产生不同类型的错误。因此,除了具备执行数据共享任务所需的知识以外,这些类型的 API 还必须解决很多网络参数问题和可能的差错条件,即每个应用程序都必须清楚自身是否有强大的性能支持程序间通信。相反由于这种 API 只处理一种信息格式,所以该情形下的信息交付 API 只提供较小的命令、网络参数以及差错条件子集。正因为如此,交付 API 方式大大降低了系统复杂性,所以当应用程序需要通过多个平台实现数据共享时,采用信息交付 API 类型是比较理想的选择。 API 与图形用户接口(GUI)或命令接口有着鲜明的差别: API 接口属于一种操作系统或程序接口,而后两者都属于直接用户接口。 有时公司会将 API 作为其公共开放系统。也就是说,公司制定自己的系统接口标准,当需要执行系统整合、自定义和程序应用等操作时,公司所有成员都可以通过该接口标准调用源代码,该接口标准被称之为开放式 API。 da'an'lai'yu'na'w'n答案来源网络,供您参考

问问小秘 2019-12-02 02:13:03 0 浏览量 回答数 0

回答

Kotlin的简介 Kotlin是由JetBrains公司(IDEA开发者)所开发的编程语言,其名称来自于开发团队附近的科特林岛。 多平台开发 JVM :Android; Server-Side Javascript:前端 Native(beta) :开发原生应用 windows、macos、linux Swift与Kotlin非常像 http://nilhcem.com/swift-is-like-kotlin/ kotlin发展历程 image.png java发展历程 image.png JVM语言的原理 image.png JVM规范与java规范是相互独立的 只要生成的编译文件匹配JVM字节码规范,任何语言都可以由JVM编译运行. Kotlin也是一种JVM语言,完全兼容java,可以与java相互调用;Kotlin语言的设计受到Java、C#、JavaScript、Scala、Groovy等语言的启发 kotlin的特性 下面不会罗列kotlin中具体的语法,会介绍我认为比较重要的特性,以及特性背后的东西。 类型推断 空类型设计 函数式编程 类型推断 image.png 类型推断是指编程语言中在编译期自动推导出值的数据类型。推断类型的能力让很多编程任务变得容易,让程序员可以忽略类型标注的同时仍然允许类型检查。 在开发环境中,我们往往写出表达式,然后可以用快捷键来生成变量声明,往往都是很准的,这说明了编译器其实是可以很准确的推断出来类型的。编程语言所具备的类型推断能力可以把类型声明的任务由开发者转到了编译器. java中声明变量的方式是类型写在最前面,后面跟着变量名,这就迫使开发者在声明变量时就要先思考变量的类型要定义成什么,而在一些情况下比如使用集合、泛型类型的变量,定义类型就会变得比较繁琐。 Kotlin中声明变量,类型可以省略,或者放到变量名后面,这可以降低类型的权重,从必选变为可选,降低开发者思维负担。java10中也引入了类型推断。 Javascript中声明变量也是用关键字var,但是还是有本质区别的,Kotlin中的类型推断并不是变成动态类型、弱类型,类型仍然是在编译期就已经决定了的,Kotlin仍然是静态类型、强类型的编程语言。javascript由于是弱类型语言,同一个变量可以不经过强制类型转换就被赋不同数据类型的值, 编程语言的一个趋势就是抽象程度越来越高,编译器做更多的事情。 空类型设计 空类型的由来 image.png 托尼·霍尔(Tony Hoare),图灵奖得主 托尼·霍尔是ALGOL语言的设计者,该语言在编程语言发展历史上非常重要,对其他编程语言产生重大影响,大多数近代编程语言(包括C语言)皆使用类似ALGOL的语法。他在一次大会上讨论了null应用的设计: “我把 null 引用称为自己的十亿美元错误。它的发明是在1965 年,那时我用一个面向对象语言( ALGOL W )设计了第一个全面的引用类型系统。我加入了null引用设计,仅仅是因为实现起来非常容易。它导致了数不清的错误、漏洞和系统崩溃,可能在之后 40 年中造成了十亿美元的损失。” null引用存在的问题 以java为例,看null引用的设计到底存在哪些问题 空指针问题NPE 编译时不能对空指针做出检查,运行时访问null对象就会出现错误,这个就是工程中常见的空指针异常。 null本身没有语义,会存在歧义 值未被初始化 值不存在 也许表示一种状态 逻辑上有漏洞 Java中,null可以赋值给任何引用,比如赋值给String类型变量,String a = null,但是null并不是String类型: a instanceof String 返回的是false,这个其实是有些矛盾的。所以当持有一个String类型的变量,就存在两种情况,null或者真正的String. 解决NPE的方式 防御式代码 在访问对象前判空,但会有冗余代码;会规避问题,而隐藏真正的问题 抛出异常给调用方处理 方法中传参传入的空值、无效值,抛出受检查异常给上层调用方 增加注解 Android中可以增加@NonNull注解,编译时做额外检查 空状态对象设计模式 空状态对象是一个实现接口但是不做任何业务逻辑的对象,可以取代判空检查;这样的空状态对象也可以在数据不可用的时候提供默认的行为 java8 Optional类 java8中引入了Optional类,来解决广泛存在的null引用问题.官方javadoc文档介绍 A container object which may or may not contain a non-null value. If a value is present, isPresent() will return true and get() will return the value. Additional methods that depend on the presence or absence of a contained value are provided, such as orElse() (return a default value if value not present) and ifPresent() (execute a block of code if the value is present). 来看一下是如何实现的。 举一个访问对象读取熟悉的例子 java 8 之前 : image.png java 8: image.png 总结: 1.用Optional还是会比较繁琐,这个也说明了设计一个替代null的方案还是比较难的。 optional的耗时大约是普通判空的数十倍,主要是涉及泛型、使用时多创键了一个对象的创建;数据比较大时,会造成性能损失。 java8 引入Optional的意义在于提示调用者,用特殊类型包装的变量可能为空,在使用取出时需要判断 Kotlin的空类型设计 Kotlin中引入了可空类型和不可空类型的区分,可以区分一个引用可以容纳null,还是不能容纳null。 String vs String? String 类型表示变量不能为空,String?则表示变量可以为空 String?含义是String or null.这两种是不同的类型. 比如: var a:String = “abc” //ok var a:String = null //不允许 var b :String? = null //ok a=b // 不允许 String?类型的值不能给String类型的值赋值 这样就将类型分成了可空类型和不可能类型,每一个类型都有这样的处理;Kotlin中访问非空类型变量永远不会出现空指针异常。 同样上面的例子,采用Kotlin去写,就会简洁很多 image.png 编程范式-函数式编程 编程范式是什么? 编程范式是程序员看待程序和写程序的观点 主要的类型 非结构化编程 结构化编程 面向对象编程 命令式编程 函数式编程 这些类型并不是彼此互斥的,而是按照不同的维度做的划分,一种编程语言可能都支持多个编程范式 非结构化编程 第一代的高级语言往往是非结构化编程 比如 BASIC语言 每一行的代码前面都有一个数字作为行号,通常使用GOTO的跳跃指令来实现判断和循环. 看一下下面这段代码是做什么的: image.png 实际上做的是:程序在屏幕上显示数字 1 到 10 及其对应的平方 采用这种方式写程序,大量的使用goto实现逻辑的跳转,代码一长,可读性和维护性就比较差了,形成“面条式代码” 结构化编程 采用顺序、分支、循环结构来表达,禁用或者少用GOTO; 并用子程序来组织代码,采用自顶向下的方式来写程序 代表语言是C语言 实现同样的逻辑: image.png 可见采用结构化编程,代码的逻辑会更清晰。 面向对象编程 思想: 将计算机程序视为一组对象的集合,而每个对象都可以接收其他对象发过来的消息,并处理这些消息,计算机程序的执行就是一系列消息在各个对象之间传递。 特性: 封装性、继承性、多态性。 命令式编程 把计算机程序视为一系列的命令集合 主要思想是关注计算机执行的步骤,即一步一步告诉计算机先做什么再做什么。 “先做这,再做那”,强调“怎么做” 实现: 用变量来储存数据,用语句来执行指令,改变变量状态。 基本所有的常见的编程语言都具有此范式 函数式编程 声明式语法,描述要什么,而不是怎么做 类似于SQL语句 语言: kotlin swift python javascript scala 函数是第一等公民 可以赋值给变量,可作为参数传入另一个函数,也可作为函数的返回值 纯函数 y=f(x) 只要输入相同,返回值不变 没有副作用:不修改函数的外部状态 举个栗子 公司部门要进行outing,去哪里是个问题,要考虑多个因素,比如花费、距离、天数等等,有多个备选地点进行选择。 定义一个数据类: image.png 要进行筛选了,分别用sql,kotlin,java来实现 找出花费低于2000元的outing地点信息 SQL image.png Kotlin image.png java 7 image.png 可见kotin的写法还是比较接近于sql的思想的,声明式的写法,而不管具体如何实现;其中的:place->place.money<2000 就是函数,可以作为参数传递给fliter这个高阶函数;而且这个函数没有副作用,不改变外部状态。 再来一个复杂一点的: 找出花费低于5000元,时间不多于4天,按照距离排序的outing地点名称 SQL image.png Kotlin: image.png java 7 image.png 由此可见用kotlin的函数式写法,会更简洁,逻辑也更清晰,这段代码的目标一目了然,这种清晰在于实现了业务逻辑与控制逻辑的分离,业务逻辑就是由函数实现的,比如place->place.money<500,而控制逻辑是由filter,sorterBy等高阶函数实现的。 而java的传统写法是基于对数据的操作,避免不了遍历的操作,业务逻辑与控制逻辑交织在了一起,这段代码的目的就不是那么容易清晰看到的了。 总结 kotlin是实用的现代编程语言,吸收了众多编程语言的优点,支持类型推断、空类型安全、函数式编程、DSL等特性,非常值得学习和使用。

问问小秘 2020-04-30 16:33:40 0 浏览量 回答数 0

问题

线性表 7月8日 【今日算法】

游客ih62co2qqq5ww 2020-07-09 07:47:37 504 浏览量 回答数 1

回答

什么是机器学习? 如果人类能够训练机器从过去的数据中学习呢?嗯,这被称为机器学习,但它不仅仅是学习,它还涉及理解和推理,所以今天我们将学习机器学习的基础知识。 插一段《Python3入门机器学习经典算法与应用》这门课程中的解释: 人类是怎么学习的?通过给大脑输入一定的资料,经过学习总结得到知识和经验,有当类似的任务时可以根据已有的经验做出决定或行动。 机器学习(Machine Learning)的过程与人类学习的过程是很相似的。机器学习算法本质上就是获得一个 f(x) 函数表示的模型,如果输入一个样本 x 给 f(x) 得到的结果是一个类别,解决的就是一个分类问题,如果得到的是一个具体的数值那么解决的就是回归问题。 机器学习与人类学习的整体机制是一致的,有一点区别是人类的大脑只需要非常少的一些资料就可以归纳总结出适用性非常强的知识或者经验,例如我们只要见过几只猫或几只狗就能正确的分辨出猫和狗,但对于机器来说我们需要大量的学习资料,但机器能做到的是智能化不需要人类参与。 简单的示例 保罗听新歌,他根据歌曲的节奏、强度和声音的性别来决定喜欢还是不喜欢。 为了简单起见,我们只使用速度和强度。所以在这里,速度是在 x 轴上,从缓慢到快速,而强度是在 y 轴上,从轻到重。我们看到保罗喜欢快节奏和高亢的歌曲,而他不喜欢慢节奏和轻柔的歌曲。 现在我们知道了保罗的选择,让我们看看保罗听一首新歌,让我们给它命名这首歌 A,歌曲 A 速度快,强度飙升,所以它就在这里的某个地方。看看数据,你能猜出球在哪里会喜欢这首歌? ![7.jpg](https://ucc.alicdn.com/pic/d eveloper-ecology/a61a1dd9937f4aa4bba873397609969b.jpg) 对,保罗喜欢这首歌。 通过回顾保罗过去的选择,我们能够很容易地对未知的歌曲进行分类。假设现在保罗听了一首新歌,让我们把它贴上 B 的标签,B 这首歌就在这里的某个地方,节奏中等,强度中等,既不放松也不快速, 既不轻缓也不飞扬。 现在你能猜出保罗喜欢还是不喜欢它吗?不能猜出保罗会喜欢或不喜欢它,其他选择还不清楚。没错,我们可以很容易地对歌曲 A 进行分类,但是当选择变得复杂时,就像歌曲B 一样。机器学习可以帮你解决这个问题。 让我们看看如何。在歌曲 B 的同一个例子中,如果我们在歌曲 B 周围画一个圆圈,我们会看到有四个绿色圆点表示喜欢,而一个红色圆点不喜欢。 如果我们选择占大多数比例的绿色圆点,我们可以说保罗肯定会喜欢这首歌,这就是一个基本的机器学习算法,它被称为 K 近邻算法, 这只是众多机器学习算法之一中的一个小例子。 但是当选择变得复杂时会发生什么?就像歌曲 B 的例子一样,当机器学习进入时,它会学习数据,建立预测模型,当新的数据点进来时,它可以很容易地预测它。数据越多,模型越好,精度越高。 机器学习的分类 机器学习的方式有很多,它可以是监督学习、无监督学习或强化学习。 监督学习 让我们首先快速了解监督学习。假设你的朋友给你 100 万个三种不同货币的硬币,比如说一个是 1 欧元,一个是 1 欧尔,每个硬币有不同的重量,例如,一枚 1 卢比的硬币重 3 克, 一欧元重 7 克,一欧尔重 4 克,你的模型将预测硬币的货币。在这里,体重成为硬币的特征,而货币成为标签,当你将这些数据输入机器学习模型时,它会学习哪个特征与哪个结果相关联。 例如,它将了解到,如果一枚硬币是三克,它将是一枚卢比硬币。根据新硬币的重量,你的模型将预测货币。因此,监督学习使用标签数据来训练模型。在这里,机器知道对象的特征以及与这些特征相关的标签。 无监督学习 在这一点上,让我们看看与无监督学习的区别。假设你有不同球员的板球数据集。当您将此数据集送给机器时,机器会识别玩家性能的模式,因此它会在 x 轴上使用各自的 Achatz 对这些数据进行处理,同时在 y 轴上运行 在查看数据时,你会清楚地看到有两个集群,一个集群是得分高,分较少的球员,而另一个集群是得分较少但得分较多的球员,所以在这里我们将这两个集群解释为击球手和投球手。 需要注意的重要一点是,这里没有击球手、投球手的标签,因此 使用无标签数据的学习是无监督学习。因此,我们了解了数据被标记的监督学习和数据未标记的无监督学习。 强化学习 然后是强化学习,这是一种基于奖励的学习,或者我们可以说它的工作原理是反馈。 在这里,假设你向系统提供了一只狗的图像,并要求它识别它。系统将它识别为一只猫,所以你给机器一个负面反馈,说它是狗的形象,机器会从反馈中学习。最后,如果它遇到任何其他狗的图像,它将能够正确分类,那就是强化学习。 让我们看一个流程图,输入给机器学习模型,然后根据应用的算法给出输出。如果是正确的,我们将输出作为最终结果,否则我们会向火车模型提供反馈,并要求它预测,直到它学 机器学习的应用 你有时不知道在当今时代,机器学习是如何成为可能的,那是因为今天我们有大量可用的数据,每个人都在线,要么进行交易,要么上网,每分钟都会产生大量数据,数据是分析的关键。 此外,计算机的内存处理能力也在很大程度上增加,这有助于他们毫不拖延地处理手头如此大量的数据。 是的,计算机现在拥有强大的计算能力,所以有很多机器学习的应用。 仅举几例,机器学习用于医疗保健,在医疗保健中,医生可以预测诊断,情绪分析。 科技巨头在社交媒体上所做的推荐是另一个有趣的应用。金融部门的机器学习欺诈检测,并预测电子商务部门的客户流失。 小测验 我希望你已经理解了监督和无监督学习,所以让我们做一个快速测验,确定给定的场景是使用监督还是非监督学习。 场景 1:  Facebook 从一张标签照片相册中识别出你的朋友场景 2: Netflix 根据某人过去的电影选择推荐新电影场景 3: 分析可疑交易的银行数据并标记欺诈交易 场景 1: Facebook 在一张标签照片相册中的照片中识别你的朋友解释: 这是监督学习。在这里,Facebook 正在使用标记的照片来识别这个人。因此,标记的照片成为图片的标签,我们知道当机器从标记的数据中学习时,它是监督学习。 场景 2: 根据某人过去的音乐选择推荐新歌解释: 这是监督学习。该模型是在预先存在的标签 (歌曲流派) 上训练分类器。这是 Netflix,Pandora 和 Spotify 一直在做的事情,他们收集您已经喜欢的歌曲/电影,根据您的喜好评估功能,然后根据类似功能推荐新电影/歌曲。 场景 3: 分析可疑交易的银行数据并标记欺诈交易解释: 这是无监督学习。在这种情况下,可疑交易没有定义,因此没有 “欺诈” 和 “非欺诈” 的标签。该模型试图通过查看异常交易来识别异常值,并将其标记为 “欺诈”。

剑曼红尘 2020-04-15 19:05:53 0 浏览量 回答数 0

回答

没有一个初步的战略 大多数没有计算机科学或数据分析背景的工程师想要在数据科学中开始一个新的职业生涯,他们没有一个明确的战略,没有成为数据科学家、分析师或工程师的明确步骤。他们试图尽可能快地用信息填满自己的脑袋,而不是真正深入到特定的主题;他们倾向于一次注册多个在线课程,从不同的网站下载几个备忘单,阅读许多作者的文章,但没有一个结构化的计划。在开始这段旅程之前,我强烈建议你制定一个学习计划,并列出一些日常习惯,以实现你的目标,增强你的分析和编程技能。对你想从事的行业使用的最流行的编程语言和软件进行自己的研究,搜索最广泛使用的库和包,并根据你的目标选择最适合你的编程语言和软件。坚持和练习会使你成为大师。 尝试同时学习几种编程语言和软件 新程序员常常会受到诱惑,想要同时学习几种编程语言和软件,把它们作为技术技能写进简历。虽然你可能认为这是一种营销自己的策略,但它往往会适得其反。拥有数据科学、数据分析师和数据工程职位的公司和组织更有可能要求应聘者具备一种或两种或最多三种编程语言和软件的坚实背景。很少有职位要求你同时精通Python, R, SQL, C, c , c#, Matlab, Java, Ruby。相反,你应该研究一下你更可能在某个特定行业或公司使用的编程语言和软件;掌握你的编程和分析技能,并成为真正的专家。你将认识到,所有编程语言之间共享一个公共逻辑和类似的函数,在此之后,从一种语言到另一种语言的转换只需要学习一种不同的语法,而不需要学习它背后的整个逻辑。 没有在代码上写注释 尽管这听起来很明显,而且是一个无关紧要的任务,但它代表了一种很好的策略,可以跟踪每一行或每一块代码执行的操作,以便返回到暂停的项目。在最初的代码编写过程中,程序员对项目的目的和目标有了清晰而清晰的认识;他们知道自己想要编写的程序背后的逻辑步骤和追求的结果。然而,由于多种原因(经济约束、信息缺失、优先级的改变),所有的项目都很容易暂停,这将迫使程序员切换到不同的任务,而让先前的任务保持不变。一个中断的项目需要的时间越长,就越不容易记住它的位置和缺失的点。这里是注释发挥作用的地方。试着在你认为有必要的地方使用它们;记住要足够清晰,并记住它们应该允许代码程序员和执行者理解代码背后的逻辑步骤。 在代码编写过程中不要求反馈 在你的经理要求你做什么,他/她希望你做什么,客户要求什么,和你实际做什么之间总是有很大的差距。当你在开发一个程序或新代码时,试着把它分成几个阶段,并在进入下一个阶段之前征求反馈。在每个阶段结束后得到反馈,这将让你知道你是否正确,或者是否需要根据客户的要求进行更改。这并不意味着你无法理解其他人的要求,而是将其视为利益相关者之间的想法和期望的统一。如果在偏离正轨的情况下,你收到反馈的频率越高,你需要进行的修改就越少。请记住,持续的沟通对于每一个项目的成功实施都是至关重要的。 没有测试你当前的知识 你可能已经看了很多逐步编程教程。你可能也读过许多数据科学书籍和编程书。你可能已经完成了许多编程训练营的练习。下一步是什么?测试你目前的知识。这种训练营和课程的真正价值不在于证书本身,而在于你学到的知识,并能成功地应用于解决某个问题。老实说,每个人都可以通过参加在线课程来获得证书,只要跳过大部分的课程就可以了;公司和组织都非常清楚这一点。尝试把自己推向新的极限,在网上寻找编程挑战,尝试头脑风暴,在没有太多帮助资源的情况下编写代码。这并不意味着你在实际工作中不会用到它们,但它会让你感觉更舒服,更安全,更少依赖它们。 没有充分利用优缺点 在某种程度上,你可能会觉得使用一种特定的编程语言和软件是很舒服的,而你可能会发现学习一种新的语言和软件是没有用的。我曾多次听到数据分析师争论哪种编程语言在能力、可用库和包、在线资源和流行程度方面是最好的。但是,你必须足够谦虚,认识到总有从另一种语言、库、包或软件中学习新东西的空间。每种编程语言和软件都有其优点和缺点,但是我们的目标是充分利用它们,并具有足够的灵活性,以确定最适合用于特定任务以解决特定问题的语言和软件。 假设你什么都知道 相信我,没有人什么都知道。数据科学领域非常广泛,每天都要学习新东西。库、包、函数、方法和算法的总数非常多。永远保持好奇,保持谦虚,如果你认为你知道的很多,你实际知道的就很少。 原文链接: https://blog.csdn.net/fendouaini/article/details/103252444

茶什i 2020-01-15 11:57:21 0 浏览量 回答数 0

问题

【算法】五分钟算法小知识:Linux的进程、线程、文件描述符是什么?

游客ih62co2qqq5ww 2020-05-09 11:28:57 0 浏览量 回答数 0

回答

没有一个初步的战略 大多数没有计算机科学或数据分析背景的工程师想要在数据科学中开始一个新的职业生涯,他们没有一个明确的战略,没有成为数据科学家、分析师或工程师的明确步骤。他们试图尽可能快地用信息填满自己的脑袋,而不是真正深入到特定的主题;他们倾向于一次注册多个在线课程,从不同的网站下载几个备忘单,阅读许多作者的文章,但没有一个结构化的计划。在开始这段旅程之前,我强烈建议你制定一个学习计划,并列出一些日常习惯,以实现你的目标,增强你的分析和编程技能。对你想从事的行业使用的最流行的编程语言和软件进行自己的研究,搜索最广泛使用的库和包,并根据你的目标选择最适合你的编程语言和软件。坚持和练习会使你成为大师。 尝试同时学习几种编程语言和软件 新程序员常常会受到诱惑,想要同时学习几种编程语言和软件,把它们作为技术技能写进简历。虽然你可能认为这是一种营销自己的策略,但它往往会适得其反。拥有数据科学、数据分析师和数据工程职位的公司和组织更有可能要求应聘者具备一种或两种或最多三种编程语言和软件的坚实背景。很少有职位要求你同时精通Python, R, SQL, C, c , c#, Matlab, Java, Ruby。相反,你应该研究一下你更可能在某个特定行业或公司使用的编程语言和软件;掌握你的编程和分析技能,并成为真正的专家。你将认识到,所有编程语言之间共享一个公共逻辑和类似的函数,在此之后,从一种语言到另一种语言的转换只需要学习一种不同的语法,而不需要学习它背后的整个逻辑。 3.没有在代码上写注释 尽管这听起来很明显,而且是一个无关紧要的任务,但它代表了一种很好的策略,可以跟踪每一行或每一块代码执行的操作,以便返回到暂停的项目。在最初的代码编写过程中,程序员对项目的目的和目标有了清晰而清晰的认识;他们知道自己想要编写的程序背后的逻辑步骤和追求的结果。然而,由于多种原因(经济约束、信息缺失、优先级的改变),所有的项目都很容易暂停,这将迫使程序员切换到不同的任务,而让先前的任务保持不变。一个中断的项目需要的时间越长,就越不容易记住它的位置和缺失的点。这里是注释发挥作用的地方。试着在你认为有必要的地方使用它们;记住要足够清晰,并记住它们应该允许代码程序员和执行者理解代码背后的逻辑步骤。 在代码编写过程中不要求反馈 在你的经理要求你做什么,他/她希望你做什么,客户要求什么,和你实际做什么之间总是有很大的差距。当你在开发一个程序或新代码时,试着把它分成几个阶段,并在进入下一个阶段之前征求反馈。在每个阶段结束后得到反馈,这将让你知道你是否正确,或者是否需要根据客户的要求进行更改。这并不意味着你无法理解其他人的要求,而是将其视为利益相关者之间的想法和期望的统一。如果在偏离正轨的情况下,你收到反馈的频率越高,你需要进行的修改就越少。请记住,持续的沟通对于每一个项目的成功实施都是至关重要的。 没有测试你当前的知识 你可能已经看了很多逐步编程教程。你可能也读过许多数据科学书籍和编程书。你可能已经完成了许多编程训练营的练习。下一步是什么?测试你目前的知识。这种训练营和课程的真正价值不在于证书本身,而在于你学到的知识,并能成功地应用于解决某个问题。老实说,每个人都可以通过参加在线课程来获得证书,只要跳过大部分的课程就可以了;公司和组织都非常清楚这一点。尝试把自己推向新的极限,在网上寻找编程挑战,尝试头脑风暴,在没有太多帮助资源的情况下编写代码。这并不意味着你在实际工作中不会用到它们,但它会让你感觉更舒服,更安全,更少依赖它们。 没有充分利用优缺点 在某种程度上,你可能会觉得使用一种特定的编程语言和软件是很舒服的,而你可能会发现学习一种新的语言和软件是没有用的。我曾多次听到数据分析师争论哪种编程语言在能力、可用库和包、在线资源和流行程度方面是最好的。但是,你必须足够谦虚,认识到总有从另一种语言、库、包或软件中学习新东西的空间。每种编程语言和软件都有其优点和缺点,但是我们的目标是充分利用它们,并具有足够的灵活性,以确定最适合用于特定任务以解决特定问题的语言和软件。 假设你什么都知道 相信我,没有人什么都知道。数据科学领域非常广泛,每天都要学习新东西。库、包、函数、方法和算法的总数非常多。永远保持好奇,保持谦虚,如果你认为你知道的很多,你实际知道的就很少。 ———————————————— 版权声明:本文为CSDN博主「磐创 AI」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/fendouaini/article/details/103252444

jiewuyu 2020-01-15 10:01:22 0 浏览量 回答数 0

回答

首先,需要明确一点,如果操作系统被安装在D盘,就会发现少有软件会自动识别系统路径并出现D盘的默认安装位置,然而还是有些软件会显示C盘,这和软件安装包有关。所以,C盘并不是绝对的,但一定是很多软件开发商的默契所在,那些可以自动识别系统分区并默认了安装位置为系统盘所在的软件便是在尊重Windows系统的设计。也有像腾讯产品这样自动检测安装目录并创建次目录的软件,但这样人性化设计的安装步骤只存在一小部分。Windows系统中: Program Files和Program Files(x86)是用来存放程序本体的, ProgramData和%user%/appdata是用来存放程序数据的。当你的程序本体出现问题,你只需要重新安装程序,你的用户数据依然会保存。当你要还原程序设置,你只需要从ProgramData或者%user%/appdata中删掉程序的配置文件,就能够把程序还原到初始设置。程序在安装过程中向对应的注册表位置写入软件信息和卸载程序的路径,这样就可以通过控制面板统一的管理程序。所以,绿色软件还是要慎用, 这种脱离了系统管控的东西还是少用为妙。那软件装在C盘好吗?先说说为什么很多用户会在软件安装在C盘和D盘之间选择后者。原因之一:在N年前,硬盘容量还不像现在这样海量,20G就可被称为大容量硬盘的年代,计算机的C盘作为系统盘,在安装完操作系统后基本就没多大空间了,所以当时人们的习惯是将软件安装在非系统盘,以免因为系统盘剩下的空间过小导致虚拟内存不足(那年代物理内存容量也不像现在这么恐怖的,256M跑xp的也有,运行大型软件,例如游戏啥的,虚拟内存还是很必要的。)原因之二:有人说过了,操作系统并非不坏金身,总有挂了的时候,而windows不像类unix环境那样,挂了你自己还可以鼓捣鼓捣,说不定就起来了,windows挂了之后当时大多数人,包括所谓的“高手”们,采用的均是简单粗暴但最有效的方式,格了系统盘重装。 这时备份你的个人文件就是个问题,当时并没有太多的简单易用的系统维护环境可选。(基本都是DOS,一则这东西界面不是那么友好,二则系统被你用崩溃了肯定不是一两天的事儿,在没有文件管理器的情况下把少则数百多则上千的文件从系统盘复制到别的盘符并非易事)。如今呢,咱赶上好时候了,硬件配置大幅提升,使得系统盘空间不够用的情况越来越少了,可以为C盘分担更多的空间,以便在C盘安装软件。并且有了很多较为易用的系统维护环境,基本都是基于PE,用光盘或U盘或网络启动,而不少主板厂商由于BIOS容量激增也开发出了一些基于BIOS的系统维护环境,功能也相当强大。所以,这件事可以遗忘了,不用再强逼自己把软件安装在其他分区中。

独步清客 2019-12-02 00:44:06 0 浏览量 回答数 0

回答

数据库课程设计 “数据库课程设计”是数据库系统及应用课程的后续实验课,是进一步巩固学生的数据库知识,加强学生的实际动手能力和提高学生综合素质。 一、 课程设计目的 课程设计为学生提供了一个既动手又动脑,独立实践的机会,将课本上的理论知识和实际有机的结合起来,锻炼学生的分析解决实际问题的能力。提高学生适应实际,实践编程的能力。课程设计的目的: 1. 加深对数据库原理、程序设计语言的理论知识的理解和应用水平; 2. 在理论和实验教学基础上进一步巩固已学基本理论及应用知识并加以综合提高; 3. 学会将知识应用于实际的方法,提高分析和解决问题的能力,增强动手能力; 4. 为毕业设计和以后工作打下必要基础。 二、课程设计要求 运用数据库原理的基本理论与应用知识,在微机RDBMS(SQL Server)的环境上建立一个数据库应用系统。要求把现实世界的事物及事物之间的复杂关系抽象为信息世界的实体及实体之间联系的信息模型,再转换为机器世界的数据模型和数据文件,并对数据文件实施检索、更新和控制等操作。 1. 用E-R图设计选定题目的信息模型; 2. 设计相应的关系模型,确定数据库结构; 3. 分析关系模式各属于第几范式,阐明理由; 4. 设计应用系统的系统结构图,确定系统功能; 5. 通过设计关系的主码约束、外码约束和使用CHECK实现完整性控制; 6. 为参照关系设计插入、删除、修改触发器; 7. 实现应用程序设计、编程、优化功能; 8. 对系统的各个应用程序进行集成和调试,进一步优化系统功能、改善系统用户界面完成实验内容所指定的各项要求; 9. 分析遇到的问题,总结并写出课程设计报告; 10. 自我评价 三、实验环境 开发环境VC++、C#、ASP或JAVA;ODBC/JDBC;数据库SQL Server 四、上机实现内容 1. 创建数据库的结构 2. 创建各基本表的结构 3. 编制系统各功能模块,完成数据的管理(增、删、改)及统计查询。对于程序运行界面不做考核的重点。 五、课程设计考核 1.对学生到实验室的情况进行不定时统计; 2.出勤率+课程设计报告+课程设计所开发的应用系统+其他(上机抽查和提问)=综合评定成绩。 3.课程设计结束时请将下列资料上交: (1) 课程设计报告; (2) 所开发的应用系统的源程序、安装和使用说明; (3) 将(1)(2)中的资料压缩成一个压缩包,压缩包文件的命名规则:班级+学号(末2位)+姓名(例如:计科090101王鹏晓); (4) 班长将本班每人的(3)中的压缩包刻录成光盘连同打印的课程设计报告收齐,交给任课教师。 附录﹑课程设计题目 题目1:课程设计选题管理系统(1,24) 包括三大模块:  课程设计题目维护与查询:题目的添加、修改和删除;按题目类型、名称和关键字查询以及已选与未选题目的查询;  学生信息维护与查询;  学生选题维护与管理:学生选题及查询; 具体功能细化:  前台学生选题:学生上网登录系统进行选题;  前台教师出题:  教师添加、修改和删除题目;  教师确认学生的选题;  后台管理出题和选题  添加用户及权限 题目2:书店管理系统(23) 包括四大模块:  售书(图书销售管理及销售统计,查询)  进书(通过书目,向发行商下定单订购图书)  库存(图书库存,统计)  相关查询 题目3:图书馆管理系统(11) 包括四大模块:  图书的查询  借书  还书  图书的预约 题目4:库存管理系统(8) 包括四大模块:  商品目录建立  商品入库管理  商品出库管理  商品库存查询 题目5:工资管理系统(1 人)41 包括四大模块:  系统数据初始化  员工基本信息数据的输入、修改、删除;  员工个人信息及工资表的查询;  员工工资的计算; 参考数据如下:  员工基本状况:包括员工号、员工姓名、性别、所在部门、工资级别、工资等级等。  工资级别和工资金额:包括工资等级、工资额。  企业部门及工作岗位信息:包括部门名称、工作岗位名称、工作岗位工资等。  工龄和工资金额:包括工龄及对应工资额。  公司福利表:包括福利名称、福利值。  工资信息:包括员工号、员工姓名、员工基础工资、员工岗位工资、员工工龄工资、公司福利、员工实得工资。 题目6:酒店客房管理系统 (1 人)14,26 包括四大模块:  前台操作:包括开房登记、退房结账和房状态查看  预订管理:包括预订房间、预订入住和解除预订  信息查询:包括在住客人列表、预订客人列表和历史客人列表  报表统计:包括开房记录统计、退房结账和预订房间统计  员工基本信息数据的输入、修改、删除; 参考数据如下:  住店管理:客人姓名、证件号码、房号、入住时期、预计离开日期、结账离开日期、应付金额  客人信息:姓名、性别、证件类型、证件号码、联系电话  房间信息:房号、房类型、价格、押金、房状态 预订房间  客人姓名、性别、房类型、房号、价格、证件类型、证件号码、联系电话、入住日期、预计离开日期、历史信息 题目7:旅行社管理信息系统(1 人)3 包括如下模块:  旅游团队、团队团员及旅游路线相关信息的输入  旅游团队、团队团员及旅游路线相关信息的维护(修改、浏览、删除和撤销)  旅游团队管理信息的查询(如按团队编号)  团队团员基本情况的查询(可选多种方式)  旅游路线相关信息的查询(如按线路编号)  旅游路线排行榜发布。  数据备份,更改密码。 参考数据如下:  团员信息表(路线编号,团队编号,团员编号,姓名,性别,电话,通信地址,身份证号码, 团费交否,备注)  线路信息表(路线名称,团费,简介,图形,路线编号)  团队信息表(团队编号,路线编号,团员人数,出发日期,返程日期)  旅游团队信息表(团队编号,团队负责人,团员人数,建团时间,是否出发,团费,盈亏) 密码信息(操作员,密码) 题目8:报刊订阅管理系统 (1 人)25,35 包括如下模块:  登录功能:登录统为身份验证登录。分为管理员登录和一般用户登录。分别通过不 同的用户名和密码进入报刊订阅管理界面,新的用户需要注册。  录入新信息功能:对于管理员,包括新用户信息和新报刊信息的录入功能,信息一旦 提交就存入到后台数据库中;普通用户自行注册进行可以修改个人信息。  订阅功能:用户可以订阅报刊,系统自动计算所需金额,并显示在界面上;管理员不 可订阅报刊,必须以用户身份订阅报刊。  查询功能:用户可以查询并显示自己所订阅的信息;管理员可以按人员、报刊、部门 分类查询。查询出的信息显示在界面上,并且可以预览和打印出结果。  统计功能:管理员可以按用户、部门、报刊统计报刊的销售情况,并对一些重要的订 阅信息进行统计;普通用户可以统计出自己的订阅情况,并且可以预览和打印出结果。  系统维护功能:数据的安全管理,主要是依靠管理员对数据库里的信息进行备份和恢 复,数据库备份后,如果出了什么意外可以恢复数据库到当时备份的状态,这提高了系统和 数据的安全性,有利于系统的维护 参考数据如下:  管理员表(Adminuser) :管理员名、密码。  部门表(Department) :部门号,部门名。  用户表(Users) :用户账号、密码、真实姓名、身 份证号、联系电话,联系地址,部门号(和部门表有关)等。  报刊类别表(NewspaperClass) :分类编号、 分类名称。  报刊信息表(Newspaper) :报刊代号、报刊名称、出版 报社、出版周期、季度报价、内容介绍、分类编号(和报刊类别表有关)等。  订单表(Order) :订单编号、用户编号、报刊代号、订阅份数、订阅月数等。 题目9:计算机等级考试教务管理系统(2 人)32 包括四大模块:  用户设置:对考点代码,考点名称进行设置,设置用户与密码;系统复位:即清除上一次考试数据(在之前存入历史)  报名管理: 报各库录入(姓名不能不空,之间不能有空格) 增加、删除、修改、浏览  准考证管理:准考证生成规则:xxx+yy+zz+kk,其中 XXX 为考点代码;YY 为语言代码,XX 为考场号,KK 为座位号 同一级别、语言应根据报名初始库信息按随机数生成准考证,同一考点最多可有 99*30=2970 名考生;如已生成准考证号,再重新生成准考证号,应该给予提示。 准考证打印  考务管理:考生信息查询、浏览、打印  成绩管理:成绩数据录入、接收 成绩合成(总成绩=笔试成绩*0.6+上机成绩*0.4),按大于或等于 60 合格 参考数据如下:  初始报名表(准考证号(为空) ,报名号(主键) ,级别+语言种类(外键) ,姓名,性别, 出生年份,民族,身份证号,联系地址,联系电话,照片,备注,参加培训)  含准考证号的报名表(准考证号(为主键) ,报名号,级别+语言种类(外键) ,姓名,性别, 出生年份,民族,身份证号,联系地址,联系电话,照片,备注,参加培训)  成绩表(准考证号,笔试成绩,上机成绩,总成绩) 级别语言代码表(级别语言代码,级别+语言)  用户信息表(考点代码,考点名称,用户名,密码) 题目10:人事管理系统(1 人)21 包括四大模块:  登录管理:包括操作员管理,口令设置,权限管理  人员管理:包括人事数据维护、人事信息查询和人事信息统计  工资管理  部门管理:包括部门表,职称表和年份表  查询及报表打印 参考数据如下:  人事表(编号,姓名,性别,出生日期,工作日期,部门代码,职称,婚否,简历,相片)  工资表(基本工资,岗位津贴,奖励,应发工资,水电,保险,实发工资)  部门表(代码,部门名称)  职称表(职称代码,职称名称)  年份表(年份代码,年份名称)  操作员表(操作员代码,操作员姓名,口令,部门,电话) 系统日志表(操作员代号,操作员姓名,登录时间,离开时间) 题目11:商品销售管理系统(1 人)19 包括四大模块:  用户登录  基本信息管理:包括销售情况、商品信息、库存表、员工表等信息的录入、浏览、修改、撤销、删除和查询等  商品销售管理:包括商品售出、退回和入库  盘点:包括库存盘点、当日销售盘点 参考数据如下:  商品信息表(商品编号,商品名称,品牌,型号,销售单价) 商品编号=类别代码(1 位)+品名代码(1 位)+品牌代码(2 位)+型号代码(2 位)  销售情况表(成交编号,商品编号,销售数量,总金额,销售日期,员工编号)  库存表(商品编号,供货商编号,进货日期,进货价,库存数量)  员工表(员工编号,员工姓名,性别,基本工资,职务,密码)  供货商表(供货商编号,供货商名称,所在地,联系电话)  员工资料表(员工编号,员工姓名,是否党员,简历,照片) 题目12:学生成绩管理系统(1 人)29 包括四大模块:  基本数据管理:包括院系管理,专业管理(设置院系下面的专业),班级管理(设置专业下面的班级),课程管理(设置相应专业下面的课程)  学生信息管理:包括基本信息录入、基本信息修改  学生成绩管理:包括学生成绩录入、学生成绩修改  信息查询:包括基本信息查询、成绩信息查询、学校人数统计  系统管理:用户管理、数据备份和系统帮助 参考数据如下:  院系信息(院系代码,院系名称)  院系专业信息(班级、院系代码,专业)  学生基本信息(班号,学号,姓名,性别,出生年月,籍贯,政治面貌,身份证号,入学年月,家庭地址,邮政编码,图片信息,备注)  学生成绩表(学号,课号,成绩,备注)  课程表(课号,课程名称,学期,备注)  班表(班号,班级名称)  用户信息表(用户名,密码,用户标识) 题目13:火车售票管理系统(4 人)36 包括四大模块:  售票管理  订票管理  信息查询  系统维护 参考数据如下:  车次信息表(车次,始发站,终点站,发车时间,到达时间)  订票信息表(车次,座位号,发车时期,发车时间,座位等级,票价)  车次座位等级分配及座位占用表(车次,座位号,座位等级,票价,占用标志)  用户信息表(用户名,密码,用户标识) 题目14:小型物业管理系统(1 人) 包括四大模块:  房源管理:对原始资料的录入、修改、查询和刷新。一般用户可以查询与房间有关 的统计资料;物业主管可其进行增、删、改、插等操作  租房管理:对房产出租,退租以及租房面积调整。其中物业主管可对其进行房租金 额计算和收款操作,一般用户对其查询  水电处理:根据租房资料,结合当月水、电量进行分摊,完成应收水电费。其中物 业主管对其进行计算,其他查询  交款处理:提供收款和发票打印以及交款数据查询  查询处理:对租房资料、交款资料,发票资料进行查询 参考数据如下:  房源资料(名称,面积,月租,物业,仓库)  租房资料(名称,面积,单位,月租,物业,押金,仓库)  水电资料(单位,电量,水量,电费,水费)  交费资料(收费项目,应收日期,应收金额,已收金额,未收金额,本次收款)  发票资料(单位,房租,电费,水费,物业)  权限资料(用户,密码,房源管理,租房管理,水电管理,交费管理,发票管理,系统维护) 其中系统管理员,有权进行系统维护;单位内部物业主管,有权进行物业资源调配、单元出 租,退租和收款开票操作;物业管理员,有权进行水电处理和收款处理等操行;租户代表, 有权进行种类费的查询操作 题目15:机房收费管理系统(1 人)7,34 包括四大模块:  登录模块  上机管理模块 说明:上机登记时,余额不足 3 元或卡处于挂失状态,则拒绝登记 每位同学的一次上机形成一条记录,每 36S 遍历一次上机记录表,对表中所有正上机字段为 TRUE 的记录的上机用时增加 36S,同时从上机卡表的余额减少  上机卡管理模块  充值挂失模块  查找统计模块:统计某天上机的总时数、每次上机的平均时数和机房的收入;某学 生上机的次数、上机总时数、每次上机平均时间;挂失和查询余 参考数据如下:  上机卡(卡号,姓名,专业班级,余额,状态) 状态的取值有:正常(能自费上机)  挂失上机记录(卡号,上机日期,开始时间,上机用时,正上机,管理号代码),上机用时记录学生上机时间(S);正上机是一个布尔型,为 True 表示正上机,每 36 秒刷新 其上机用时并扣除上机费用,为 False 表示上机结束。上机记录表永久保存,用于事后查询 和统计 管理员(代码,姓名,口令)  题目16:高校药房管理(1 人)31 包括四大模块:  基础数据处理:包括医生和药剂师名单的录入,修改,删除及查询  营业数据处理:包括药品进货上柜,处理划价,配药,柜存药品查询,处方综合查 询,交接班结转清。 参考数据如下:  药品信息表(货号,货名,计量单位,进货数量,进货单价,出售单价,进货日期,收货人 和供应商)  处方信息(编号,患者姓名,医生姓名,药剂师姓名,处方日期,配药日期) 处方药品信息(处方编号,药品货号,计量单位,配药数量,销售单价,已配药否)  医生名单和药剂师名单表(姓名)  题目17:考勤管理系统(2 人)40 包括四大模块:  记录每个员工每天所有进入公司的时刻和离开公司的时刻。  每天结束时自动统计当天的工作时间  每天结束时自动统计当天迟到或早退的次数。  对于弹性工作制,每天结束时自动统计当月的工时,并自动算出当月欠缺或富余的 时间  每个月末统计该月的工作时间判断是束足够  每个月末统计该月的工作天数并判断是否足够  管理人员查询并修改工作时间(特殊情况下修改)  管理人员账户管理(如设置密码等)  管理人员设定早退及迟到的条件,每个月的工作时间  管理人员设定每个月的工作日期及放假日期 参考数据如下:  员工信息(工号,姓名,年龄,入职时间,职位,性别,密码)  配置信息(上班时间小时,上班时间分钟,下班时间小时,下班时间分钟,每天工作时间)  每月统计数据表(工号,姓名,剩余的时间,迟到的次数,早退的次数,工作天数)  每天统计信息表(工号,姓名,小时,分钟,动作,时间) 其中动作指的时入或离开公司  题目18:单位房产管理系统(2 人)33,10 包括四大模块:  系统模块:完成数据库维护、系统关闭功能  物业费用模块:完成本月物业的计费、历史资料查询和财务部门接口传送数据、物 业相关费用单价设置  房屋资源模块:对房屋资源进行添加、列表显示、查询  职工信息模块:对职工进行添加、列表显示、查询以及相应部门、职务进行维护  帮助模块:对用户使用本系统提供在线帮助 参考数据如下:  职工(编号,姓名,性别,参加工作时间,行政职务,专业技术职务,评上最高行政职务时 间,评上最高专业技术职务时间,双职工姓名,现居住房号,档案号,房产证号,所在部门 编号,是否为户主)  部门(编号,部门名称) 住房级别表(编号,级别,住房标准,控制标准,级别分类)  房产情况(编号,房号,使用面积,现居住人 id,上一个居住人 id,最早居住人 ID,阳台面积)  物业费用(编号,房号,水基数,水现在值,电基数,电现在值,燃气基数,燃气现在值, 当前年份,当前月份)  价格标准(编号,水单价,电单价,燃气单价) 题目19:标准化考试系统 (2 人)15,39 功能要求: 设计一个简单的标准化考试系统,仅有单项选择题、多项选择题和判断题功能即可。 包括四大模块:  题库管理:实现试题的录入、修改、删除功能;  考试子系统:能够实现考生做题、结果自动存入到数据库中,有时间提示;  选择身份(登录)功能:系统能够记录考生输入的登录信息及交卷信息;  自动评分功能:考生交卷后能自动评分;  查看成绩功能:能够查询考生相关信息(包含成绩等)。 参考数据如下: 其它可供选择的题目: 网上教务评教系统130,127,133 16 学生日常行为评分管理系统232,110,230 网上鲜花店 38 基于BS结构的工艺品销售系统12 基于BS结构的校园二手物品交易网站 37 大学生就业管理系统201,208,234 题库及试卷管理系统 数据库原理及应用 课程设计报告 题目: 课程设计选题管理系统 所在学院: 班 级: 学 号: 姓 名: 李四 指导教师: 2011年12月 日 目录 一、 概述 二、需求分析 三、概念设计 四、逻辑设计 五、系统实现 六、小结 一、概述

玄学酱 2019-12-02 01:22:25 0 浏览量 回答数 0

问题

不搞清这8大算法思想,刷再多题效果也不好的 7月23日 【今日算法】

游客ih62co2qqq5ww 2020-07-29 11:10:09 3 浏览量 回答数 1

问题

云时代软件服务

笑傲江虎 2019-12-01 21:59:08 11432 浏览量 回答数 1

问题

【精品问答】110+数据挖掘面试题集合

珍宝珠 2019-12-01 21:56:45 2713 浏览量 回答数 3

问题

原创文章:云时代软件服务

domen 2019-12-01 21:59:08 9189 浏览量 回答数 0

问题

【精品问答】python技术1000问(2)

问问小秘 2019-12-01 22:03:02 3129 浏览量 回答数 1

回答

一、系统迁移捅了13亿用户的娄子 故事,是从一桩“离婚再嫁”的案子开始的。 离婚再嫁的主角,是英国银行TSB。 2015年,TSB银行结束了与劳埃德银行(Lloyds Bank)长达20年的“婚姻”,从他们合并的集团中拆分出来,并卖身给了新欢、西班牙公司萨瓦德尔(Sabadell)集团,收购价17亿英镑,按当时的汇率大概是158亿人民币。 然而,过去的20年,世界变了太多,银行业也进步了太多。20年的“婚姻”留给TSB银行的,还有和“前夫”剪不断理还乱的IT系统。 TSB银行540万客户的数十亿记录,都还留在“前夫”劳埃德银行的系统里,而且因为缘分已断,不能白嫖人家的系统,每年还要给前夫交1亿英镑(大约9.3亿人民币)的费用。 这就好像肉身虽然已经和“新欢”在一起,但支付宝和微信账号还是跟“前夫”共用一套,而且还要给“前夫”付账号租金,自然令人不爽。 于是,在筹备了许久之后,2018年,他们终于要行动了:把“前夫”IT系统里的客户信息记录,迁移到“新欢”专门为TSB银行准备的新系统里。 他们把迁移的日子,定在了4月22日星期日的晚上,先把银行的IT系统离线,迁移完之后再上线,恢复客户访问自己银行账户的权限。 为了这场迁移,他们已经投入了超过2500人年的人力成本,西班牙“新欢”集团的CEO在前一年的圣诞节就大声放话:这是全欧洲史无前例的大项目,我们投入了1000多名专业人才,将极大地促进我们在英国的增长。 不过,虽然大佬们在台上豪言壮语,实际上负责迁移的员工们心里却慌得一逼。这个迁移项目本来要筹备18个月,结果时间超了,预算也超了,事情难办的很。 Flag果然不能立太早,打脸的结果很快就来了。 迁移结束,客户的访问权限,他们以为万无一失,但就在20分钟后,收到了问题报告: 有的客户发现自己的钱不见了; 有的客户花了一点小钱,账户里却记录成了花费数千美元; 有的客户登录上去之后,发现不是自己的账户,而是看到了别人的银行账户。 13亿客户的账户记录都出了问题,于是,他们把TSB银行骂成狗,金融监管机构们则连夜找银行喝茶。 而此后的几个星期,银行都在拼命的恢复系统,但数以百万计的客户们已经人心惶惶,拼命的把自己存在TSB银行的钱取出来。 TSB银行,被自己捅的篓子扔进了地狱模式。 而问题的根源,在于测试。 英国金融监管机构金融行为监管局(FCA)首席执行官Andrew Bailey在事故几周后对外公开表示,造成系统混乱的很大原因在于缺少测试,而TSB银行请来救急的IBM专家也发现,TSB银行没有采用严格的上线标准。 而且由于地球上的金融体系都是相连的,事故所造成的错误被永久的保留在了金融体系里,不可逆转。 这起弥天大祸,也让TSB银行赔了很多钱。为了赔偿客户、解决系统出问题后浑水摸鱼的交易、找第三方帮忙总共花了3.302亿英镑,按当时汇率算大约28.4亿人民币。 而TSB的乙方、IT提供商Sabis也因为这起事故收到了1.53亿英镑(超过13亿人民币)的赔偿账单。 而受此影响,TSB银行当年亏损了1.054亿英镑(9.2亿人民币),CEO Paul Pester引咎辞职。 业绩这么差,银行的经营也难以为继,今年11月底TSB关闭了英国86个分行,至少400个工作岗位也因此消失。 二、银行系统很复杂 信息化时代,银行的IT系统也变得越来越复杂。 六十年前,人们只能选择在柜台存取现金,普通客户并没有机会直接接触计算机系统。当时,银行虽然也启用了巨型计算机,但它们只会在一天或一周交易结束的时候对纸质数据进行汇总。 也就是说,银行的IT系统仅由银行员工使用,银行与客户在柜台上的交互用的还是纸质工具。 这种情况在1967年发生了改变。 这一年,世界上第一台自动柜员机(ATM)在英国诞生,并被安装到伦敦北部的巴克莱银行Enfield分行。从此,银行和客户交互的方式发生重大变革。 ITRS Group首席执行官盖伊·沃伦(Guy Warren)解释说: 直到真正的ATM和在线银行业务出现,公众才可以直接访问银行的IT系统。 这还仅仅是个开始。 全球互联的时代,互联网和移动银行的发展进一步拉近了客户和银行IT系统之间的距离,而这样的系统,也越来越成为银行赖以运营的关键所在。 或许你会觉得,登个支付宝/微信,亮出付款码,让小钱钱在银行跟银行之间发生小小的流动,并没有什么难度。但事实上,每一次信息的加载和刷新背后,都发生了复杂的数据移动: 每一次动作可能关联到许多个单独的系统,所有这些系统都必须彼此交互,并与核心大型计算机连通。系统要现在后端复制数据,将现金从一个账户转移到另一个账户,保持同步更新。 而这样的运算量,还要乘以数十亿倍。 根据世界银行的数据,现在,全球至少有69%的成年人都拥有银行账户。人们每一天都在通过银行账户支付账单、贷款还款、订阅各种服务……并且,这些活动常常是跨行,甚至跨国进行的。 一家银行内部的多个IT系统(移动银行、ATM等),不仅需要彼此交互,甚至还必须跟其他国家的银行建立联系。比如我在国内办了一张visa信用卡,在美国也要能消费才行。 三、迁移问题很麻烦 TSB正是栽在了这样的高度复杂性上。 IBM在为TSB编写的报告中指出:新应用程序的组合,对先进微服务的应用和双活数据中心的使用,导致了TSB生产中的复合风险。 如何正确地处理银行IT系统迁移中出现的问题,对于任何一个银行来说,都是不小的挑战。 其中,大量的事前规划和测试工作是不可避免的。 像汇丰银行这样的跨国银行,具有高度复杂、相互关联的系统,这些系统会定期进行测试、迁移和更新。 即使在这方面如此经验丰富,汇丰银行的前IT主管兰开斯特仍坦承:诀窍就是让员工在这件事上付出更多的时间。 他还指出,TSB的IT系统迁移是一件很复杂的事: 我不确定他们是不是真的意识到了这件事的复杂程度。他们甚至没有完全想好要怎么去测试系统。 FCA首席执行官Andrew Bailey则表示: TSB的这一事故反映出他们缺少强大的回归测试。 注:回归测试是软件测试的一种,旨在检验软件原有功能在修改后是否保持完整 而最新的事故报告也引起了hacker news上网友们的热烈讨论。 有网友表示,如果TSB能选择小规模多次迁移,而不是在某一天进行大爆炸式迁移,那这种严重的事故可能就不会发生。 花几周/几个月的时间在生产过程中进行检查,以确保旧数据库和新数据库返回的结构相同。最终,将数据都转移到新数据库中,并在一段时间之后再关闭旧的数据库。这样做效果是比较好的。 而对测试不足导致了银行系统瘫痪的这一调查结论,有人吐槽说: 作为测试工程师,我一点也不意外。花费更多的时间、投入更多的人员来打造更好的测试架构,对于很多公司来说都是“可以节省的成本”。 经理们总是在设定的上线日期前问:“测试咋能花那么多时间?!”真要出事了他们又开始甩锅了。 也有网友严厉批评道:TSB的问题不应该说是测试不足,而是在多个层面上都测试不足,并且缺少可恢复的备份。 也有人指出,避免出错最简单的办法就是减少变化。 问题在于,无论是银行还是其他领域的公司,业务都是在不断进化的。 根据FCA发布的数据,从2017年到2018年,英国金融服务部门报告的技术中断增加了187%。 盖伊·沃伦就认为:系统停机不会消失。问题在于,可接受的度在哪里? 你怎么看呢?在评论区留下你的看法~

有只黑白猫 2020-01-20 11:22:13 0 浏览量 回答数 0

回答

基础:比如计算机系统、算法、编译原理等等 Web开发: 主要是Web开发相关的内容,包括HTML/CSS/JS(前端页面)、Servlet/JSP(J2EE)以及Mysql(数据库)相关的知识。它们的学习顺序应该是从前到后,因此最先学习的应该是HTML/CSS/JS(前端页面),这部分内容你可以去上面的那个runoob网站上找。J2EE:你需要学习的是Servlet/JSP(J2EE)部分,这部分是Java后端开发必须非常精通的部分,因此这部分是这三部分中最需要花精力的。关于Servlet/Jsp部分视频的选择,业界比较认可马士兵的视频 。最后一步,你需要学会使用数据库,mysql是个不错的入门选择,而且Java领域里主流的关系型数据库就是mysql。这部分一般在你学习Servlet/Jsp的时候,就会接触到的,其中的JDBC部分就是数据库相关的部分。你不仅要学会使用JDBC操作数据库,还要学会使用数据库客户端工具,比如navicat,sqlyog,二选一即可。开发框架:目前比较主流的是SSM框架,即spring、springmvc、mybatis。你需要学会这三个框架的搭建,并用它们做出一个简单的增删改查的Web项目。你可以不理解那些配置都是什么含义,以及为什么要这么做,这些留着后面你去了解。但你一定要可以快速的利用它们三个搭建出一个Web框架,你可以记录下你第一次搭建的过程,相信我,你一定会用到的。还要提一句的是,你在搭建SSM的过程中,可能会经常接触到一个叫maven的工具。这个工具也是你以后工作当中几乎是必须要使用的工具,所以你在搭建SSM的过程中,也可以顺便了解一下maven的知识。在你目前这个阶段,你只需要在网络上了解一下maven基本的使用方法即可,一些高端的用法随着你工作经验的增加,会逐渐接触到的。在这一年里,你至少需要看完《Java编程思想》这本书。这本书的内容是帮助你对于Java有一个更加深入的了解,是Java基础的升级版。 总而言之,这个阶段的核心学习思想就是,在工作中实践,并且更加深入的了解Java基础。对于参加工作1年到2年的同学。这部分时间段的同学,已经对Java有了一个更加深入的了解。但是对于面向对象的体会可能还不够深刻,编程的时候还停留在完成功能的层次,很少会去考虑设计的问题。于是这个时候,设计模式就来了。我当时看的是《大话设计模式》这本书,并且写了完整版的设计模式博客。因此,我要求大家,最多在你工作一年的时候,必须开始写博客,而设计模式就是你博客的开端。此外,设计模式并不是你这一年唯一的任务,你还需要看一些关于代码编写优化的书。比如《重构 改善既有代码的设计》,《effective java》。总而言之,这个阶段,你的核心任务就是提高你的代码能力,要能写出一手优雅的代码。对于参加工作2年到3年的同学有的同学在这个时候觉得自己已经很牛逼了,于是忍不住开始慢慢松懈。请记住,你还嫩的多。这个阶段,有一本书是你必须看的,它叫做《深入理解Java虚拟机》。这本书绝对是Java开发者最重要的书,没有之一。在我眼里,这本书的重要性还要高于《Java编程思想》。这本书的内容是帮助你全面的了解Java虚拟机,在这个阶段,你一定已经知道Java是运行在JVM之上的。所以,对于JVM,你没有任何理由不了解它。这个时候,你应该去更加深入的了解并发相关的知识,而这部分内容,我比较推荐《Java并发编程实战》这本书。只要你把这本书啃下来了,并发的部分基本已经了解了十之六七。与此同时,这个阶段你要做的事情还远不止如此。这个时候,你应该对于你所使用的框架应该有了更深入的了解,对于Java的类库也有了更深入的了解。因此,你需要去看一些JDK中的类的源码,也包括你所使用的框架的源码。这些源码能看懂的前提是,你必须对设计模式非常了解。否则的话,你看源码的过程中,永远会有这样那样的疑问,这段代码为什么要这么写?为什么要定义这个接口,它看起来好像很多余?由此也可以看出,这些学习的过程是环环相扣的,如果你任何一个阶段拉下来了,那么你就真的跟不上了,或者说是一步慢步步慢。而且我很负责的告诉你,我在这个阶段的时候,所学习的东西远多于这里所罗列出来的。总而言之,这个阶段,你需要做的是深入了解Java底层和Java类库(比如并发那本书就是Java并发包java.concurrent的内容),也就是JVM和JDK的相关内容。而且还要更深入的去了解你所使用的框架,方式比较推荐看源码或者看官方文档。另外,还有一种学习的方式,在2年这个阶段,也应该启用了,那就是造轮子。不要听信那套“不要重复造轮子”的论调,那是公司为了节省时间成本编造出来的。重复造轮子或许对别人没有价值,因为你造的轮子可能早就有了,而且一般情况下你造出来的轮子还没有现存的好。  但是对别人没有价值,不代表对你自己没有价值。一个造轮子的过程,是一个从无到有的过程。这个过程可以对你进行系统的锻炼,它不仅考察你的编码能力,还考察你的框架设计能力,你需要让你的轮子拥有足够好的扩展性、健壮性。而且在造轮子的过程中,你会遇到各种各样的难题,这些难题往往又是你学习的契机。当你把轮子造好的时候,你一定会发现,其实你自己收获了很多。所以,这个阶段,除了上面提到的了解JVM、JDK和框架源码以外,也请你根据别人优秀的源码,去造一个任何你能够想象出来的轮子。第四部分:参加工作3年到4年的同学这个阶段的同学,提升已经是很难了,而且这个阶段的学习往往会比较多样化。因为在前3年的过程中,你肯定或多或少接触过一些其它的技术,比如大数据、分布式缓存、分布式消息服务、分布式计算、软负载均衡等等。这些技术,你能精通任何一项,都将是你未来面试时巨大的优势,因此如果你对某一项技术感兴趣的话,  这个时候可以深入去研究一下。这项技术不一定是你工作所用到的,但一定是相关的。而且在研究一门新技术时,切忌朝三暮四。有的同学今天去整整大数据,搞搞Hadoop、hbase一类的东西。过不了一段时间,就觉得没意思,又去研究分布式缓存,比如redis。然后又过不了一段时间,又去研究分布式计算,比如整整Mapreduce或者storm。结果到最后,搞得自己好像什么都会一样,在简历上大言不惭的写上大数据、分布式缓存、分布式计算都了解,其实任何一个都只是浮于表面。到时候面试官随便一问,就把你给识破了。我比较推崇的基础书籍有三本,分别是《深入理解计算机系统》,《tcp/ip详解 卷一、二、三》,《数据结构与算法》。其中TCP/IP有三本书,但我们这里把这三本看成是一本大书。这三本分别适合三种人,《深入理解计算机系统》比较适合一直从事Java Web开发和APP后端开发工作的人群。《tcp/ip详解 卷一、二、三》比较适合做网络编程的人群,比如你使用netty去开发的话,那么就要对TCP/IP有更深入的了解。而《数据结构与算法》这本书,则比较适合做计算研究工作的人,比如刚才提到的分布式计算。另外,我要强调的是,这里所说的适合,并不是其它两本对你就没有用。比如你做Java Web和APP后端开发,《tcp/ip详解 卷一、二、三》这本书对你的作用也是很大的。这里只是分出个主次关系而已,你要是时间足够的话,能把三本都精读那当然最好不过了。第五部分:参加工作4年到5年的同学经过前面一年的历练,相信你在自己所钻研的领域已经有了自己一定的见解,这个时候,技术上你应该已经遇到瓶颈了。这个时候不要着急提高自己的技术,已经是时候提高你的影响力了,你可以尝试去一些知名的公司去提高你的背景,你可以发表一些文章去影响更多的人。当然,你也可以去Github创建一个属于你的开源项目,去打造自己的产品。  这次的开源项目不同于之前的造轮子,你这个时候是真的要去尽量尝试造出来真正对别人有价值的轮子。技术学到这个阶段,很容易遇到瓶颈,而且往往达到一定程度后,你再深入下去的收效就真的微乎其微了,除非你是专门搞学术研究的。然而很可惜,大部分程序猿做不到这一步,那是科学家做的事情。这个时候提高影响力不仅仅是因为技术上容易遇到瓶颈,更多的是影响力可以给你创造更多的机会。程序猿在某种程度上和明星很像,一个好的电视剧和电影就可以成就一批明星,程序猿有的时候也是,一个好的项目就可以成就一群程序猿。比如国内几个脍炙人口的项目,像淘宝、支付宝、QQ、百度、微信等等。这每一个项目,都成就了一批程序猿。我敢说,这里面任何一个项目,如果你是它的核心开发,光是这样一个Title,就已经是你非常大的优势。更何况还不止如此,Title说到底也是个名头,更重要的是,这种项目在做的时候,对你的历练一定也是非常给力的。

hiekay 2019-12-02 01:40:04 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 阿里云双十一主会场 阿里云双十一新人会场 1024程序员加油包 阿里云双十一拼团会场 场景化解决方案 阿里云双十一直播大厅