• 关于

    连续性检查是什么

    的搜索结果

问题

浅谈服务器的可用性

pittman 2019-12-01 21:42:33 8159 浏览量 回答数 1

问题

为什么SSH 登录时出现如下错误:Maximum amount of failed attempts was reached

boxti 2019-12-01 21:59:27 1705 浏览量 回答数 0

问题

浅谈GPU虚拟化技术(三)GPU SRIOV及vGPU调度

福利达人 2019-12-01 22:04:32 4047 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

经典网络ECS配置SQL Server发布与订阅的方法是什么

boxti 2019-12-01 21:31:26 1346 浏览量 回答数 0

问题

【精品问答】python技术1000问(1)

问问小秘 2019-12-01 21:57:48 455812 浏览量 回答数 21

回答

Java之JVM垃圾回收 内存结构以及垃圾回收算法前言:由于小组技术分享的需要,懂的不是很多所以我就找了这个我自己感兴趣的知识点给大家做个简单的介绍。由于是新人,算不了很懂,只是总结性的讲了些概念性的东西。给大家分享的同时,算是给自己做个笔记吧。作为Java语言的核心之一,JVM垃圾回收帮我们解决了让我们很头疼的垃圾回收问题。我们不需要像VC++一样,作为内存管理的统治者需要我们对我们分配的每一块内存进行回收,否则就会造成内存泄露问题。是不是只要有JVM存在我们就不会出现内存泄露问题,出现内存泄露问题我们又该怎么办,如果我们想提高我们程序的稳定性和其他性能我们能从什么地方下手!!!相信这些问题是我们程序过程中不可逾越的。了解JVM的内存分配及其相应的垃圾回收机制,不仅仅是可以了解底层的JVM运行机制,而且对于程序性能的优化和提升还是很有必要的。一、JVM内存分配区域结构图一从图一可以看出JVM中的内存分配包括PC Register(PC寄存器) JVM栈 堆(Heap) 方法区域(MethodArea)运行时常量池(RuntimeConstant Pool) 本地方法堆栈(NativeMethod Stacks),这几部分区域但是从程序员的角度来看我们只关注JVM Heap和JVM Stack,因为这两部分是直接关系程序运行期间的内存状态,所以我会主要介绍这两部分内存,其他的我只是给出了简单的一些概念性解释:PC Register(Program Counter 寄存器):主要作用是记录当前线程所执行的字节码的行号。方法区域(MethodArea):方法区域存放了所加载的类的信息(名称、修饰符等)、类中的静态变量、类中定义为final类型的常量、类中的Field信息、类中的方法信息,法区域也是全局共享的,它在虚拟机启动时在一定的条件下它也会被GC,当方法区域需要使用的内存超过其允许的大小时,会抛出OutOfMemory的错误信息。运行时常量池(RuntimeConstant Pool):存放的为类中的固定的常量信息、方法和Field的引用信息等,其空间从方法区域中分配。本地方法堆栈(NativeMethod Stacks):JVM采用本地方法堆栈来支持native方法的执行,此区域用于存储每个native方法调用的状态。JVM栈:主要存放一些基本类型的变量和对象的引用变量。JVM堆:用来存放由 new 创建的对象和数组Java 虚拟机的自动垃圾回收器来管理(注意数组也是对象,所以说数组也是存放在JVM堆中)。由于栈中存放的是主要存放一些基本类型的变量和对象的引用变量,所以当过了变量的作用区域或者是当程序运行结束后它所占用的内存会自动的释放掉,所以不用来关心,下面我们主要来说的是堆内存的分配以及回收的算法。二、JVM堆内存介绍工欲善其事,必先利其器。所以了解堆内存的内部结构是很必要的。在Jvm中堆空间划分为三个代:年轻代(Young Generation)、年老代(Old Generation)和永久代(Permanent Generation)。年轻带主要是动态的存储,年轻带主要储存新产生的对象,年老代储存年龄大些的对象,永久带主要是存储的是java的类信息,包括解析得到的方法、属性、字段等。永久带基本不参与垃圾回收。所以说我们说的垃圾回收主要是针对年轻代和年老代。图二年轻代又分成3个部分,一个eden区和两个相同的survior区。刚开始创建的对象都是放置在eden区的。分成这样3个部分,主要是为了生命周期短的对象尽量留在年轻带。当eden区申请不到空间的时候,进行minorGC,把存活的对象拷贝到survior。年老代主要存放生命周期比较长的对象,比如缓存对象。(经过IBM的一个研究机构研究数据表明,基本上80%-98%的对象都会在年轻代的Eden区死掉从而本回收掉,所以说真正进入到老年代的对象很少,这也是为什么MinorGC比MajorGC更加频繁的原因)具体JVM内存垃圾回收过程描述如下 :1、对象在Eden区完成内存分配2、当Eden区满了,再创建对象,会因为申请不到空间,触发minorGC,进行young(eden+1survivor)区的垃圾回收3、minorGC时,Eden不能被回收的对象被放入到空的survivor(Eden肯定会被清空),另一个survivor里不能被GC回收的对象也会被放入这个survivor,始终保证一个survivor是空的4、当做第3步的时候,如果发现survivor满了,则这些对象被copy到old区,或者survivor并没有满,但是有些对象已经足够Old,也被放入Old区 XX:MaxTenuringThreshold5、当Old区被放满的之后,进行fullGC补充: MinorGC:年轻代所进行的垃圾回收,非常频繁,一般回收速度也比较快。 MajorGC:老年代进行的垃圾回收,发生一次MajorGC至少伴随一次MinorGC,一般比MinorGC速度慢十倍以上。 FullGC:整个堆内存进行的垃圾回收,很多时候是MajorGC 以后就是堆内存结构已经大致的垃圾回收过程。三、对象分配原则1.对象优先分配在Eden区,如果Eden区没有足够的空间时,虚拟机执行一次Minor GC。2.大对象直接进入老年代(大对象是指需要大量连续内存空间的对象)。这样做的目的是避免在Eden区和两个Survivor区之间发生大量的内存拷贝(新生代采用复制算法收集内存)。3.长期存活的对象进入老年代。虚拟机为每个对象定义了一个年龄计数器,如果对象经过了1次Minor GC那么对象会进入Survivor区,之后每经过一次Minor GC那么对象的年龄加1,知道达到阀值对象进入老年区。4.动态判断对象的年龄。如果Survivor区中相同年龄的所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象可以直接进入老年代。5.空间分配担保。每次进行Minor GC时,JVM会计算Survivor区移至老年区的对象的平均大小,如果这个值大于老年区的剩余值大小则进行一次Full GC,如果小于检查HandlePromotionFailure设置,如果true则只进行Monitor GC,如果false则进行Full GC。四、垃圾收集器作为JVM中的核心之一垃圾收集器,主要完成的功能包括:(1)发现无用信息对象;(2)回收被无用对象占用的内存空间,使该空间可被程序再次使用。所以说我们在实现垃圾收集器的同时就要实现两个算法一个是发现无用的对象第二就是回收该对象的内存。收集器主要分为引用计数器和跟踪收集器两种,Sun JDK中采用跟踪收集器作为GC实现策略。发现无用对象只要的实现算法包括引用计数法和根搜索算法,引用计数法主要是JVM的早期实现方法,因为引用计数无法解决循环引用的问题,所以现在JVM实现的主要是根搜索算法,引用计数法:堆中的每个对象对应一个引用计数器。当每一次创建一个对象并赋给一个变量时,引用计数器置为1。当对象被赋给任意变量时,引用计数器每次加1当对象出了作用域后(该对象丢弃不再使用),引用计数器减1,一旦引用计数器为0,对象就不可用从而可以被回收。 根搜索算法:通过一系列的名为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。目前的收集器主要有三种:串行收集器:使用单线程处理所有垃圾回收工作,因为无需多线程交互,所以效率比较高并行收集器:对年轻代进行并行垃圾回收,因此可以减少垃圾回收时间。一般在多线程多处理器机器上使用并发收集器:可以保证大部分工作都并发进行(应用不停止),垃圾回收只暂停很少的时间,此收集器适合对响应时间要求比较高的中、大规模应用五、垃圾收集器的回收算法Copying算法:算法:复制采用的方式为从根集合扫描出存活的对象,并将找到的存活对象复制到一块新的完全未使用的空间中。 过程: 此算法把内存空间划为两个相等的区域,每次只使用其中一个区域。垃圾回收时,遍历当前使用区域,把正在使用中的对象复制到另外一个区域中。次算法每次只处理正在使用中的对象,因此复制成本比较小,同时复制过去以后还能进行相应的内存整理,不过出现“碎片”问题。当然,此算法的缺点也是很明显的,就是需要两倍内存空间。Mark-Sweep算法: 算法:标记-清除采用的方式为从根集合开始扫描,对存活的对象进行标记,标记完毕后,再扫描整个空间中未标记的对象,并进行回收。 过程: 第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除。它停止所有工作,收集器从根开始访问每一个活跃的节点,标记它所访问的每一个节点。走过所有引用后,收集就完成了,然后就对堆进行清除(即对堆中的每一个对象进行检查),所有没有标记的对象都作为垃圾回收并返回空闲列表。Mark-Compact算法: 算法:标记阶段与“Mark-Sweep”算法相同,但在清除阶段有所不同。在回收不存活对象所占用的内存空间后,会将其他所有存活对象都往左端空闲的空间进行移动,并更新引用其对象指针。过程:此算法结合了“标记-清除”和“复制”两个算法的优点。也是分两阶段,第一阶段从根节点开始标记所有被引用对象,第二阶段遍历整个堆,把清除未标记对象并且把存活对象“压缩”到堆的其中一块,按顺序排放。此算法避免了“标记-清除”的碎片问题,同时也避免了“复制”算法的空间问题。Sun JDK GC策略:新生代算法实现:Copying,Copying,Copying旧生代算发实现:Mark-Sweep-Compact,Mark –Compact,Mark –Sweep!!六、JvisuaVM 工具如果我们想优化自己的程序,那么我们就必须清楚的了解不同代码程序所消耗的性能多少,作为JDK的一部分,这个工具给我们提供了很大的帮助。这个工具可以在JDK的bin目录下找到,功能很强大,可以注意利用

auto_answer 2019-12-02 01:56:35 0 浏览量 回答数 0

回答

tl; dr:您可能应该使用一维方法。 注意:在不填充书本的情况下比较动态1d或动态2d存储模式时,无法深入研究影响性能的细节,因为代码的性能取决于很多参数。如有可能,进行配置文件。 1.什么更快? 对于密集矩阵,一维方法可能更快,因为它提供了更好的内存局部性以及更少的分配和释放开销。 2.较小的是? 与2D方法相比,Dynamic-1D消耗的内存更少。后者还需要更多分配。 备注 我出于以下几个原因给出了一个很长的答案,但我想首先对您的假设做一些评论。 我可以想象,重新计算1D数组(y + x * n)的索引可能比使用2D数组(x,y)慢 让我们比较这两个函数: int get_2d (int **p, int r, int c) { return p[r][c]; } int get_1d (int *p, int r, int c) { return p[c + C*r]; } Visual Studio 2015 RC为这些功能(启用了优化功能)生成的(非内联)程序集是: ?get_1d@@YAHPAHII@Z PROC push ebp mov ebp, esp mov eax, DWORD PTR _c$[ebp] lea eax, DWORD PTR [eax+edx*4] mov eax, DWORD PTR [ecx+eax*4] pop ebp ret 0 ?get_2d@@YAHPAPAHII@Z PROC push ebp mov ebp, esp mov ecx, DWORD PTR [ecx+edx*4] mov eax, DWORD PTR _c$[ebp] mov eax, DWORD PTR [ecx+eax*4] pop ebp ret 0 区别是mov(2d)与lea(1d)。前者的延迟为3个周期,最大吞吐量为每个周期2个,而后者的延迟为2个周期,最大吞吐量为每个周期3个。(根据指令表-Agner Fog, 由于差异很小,我认为索引重新计算不会产生很大的性能差异。我希望几乎不可能将这种差异本身确定为任何程序的瓶颈。 这将我们带到下一个(也是更有趣的)点: ...但是我可以想象一维可能在CPU缓存中... 是的,但是2d也可能在CPU缓存中。有关为什么1d仍然更好的说明,请参见缺点:内存局部性。 长答案,或者为什么对于简单 /小的矩阵,动态二维数据存储(指针到指针或向量矢量)是“不好的” 。 注意:这是关于动态数组/分配方案[malloc / new / vector等]。静态2D数组是一个连续的内存块,因此不受我将在此处介绍的不利影响。 问题 为了能够理解为什么动态数组的动态数组或向量的矢量最有可能不是选择的数据存储模式,您需要了解此类结构的内存布局。 使用指针语法的示例案例 int main (void) { // allocate memory for 4x4 integers; quick & dirty int ** p = new int*[4]; for (size_t i=0; i<4; ++i) p[i] = new int[4]; // do some stuff here, using p[x][y] // deallocate memory for (size_t i=0; i<4; ++i) delete[] p[i]; delete[] p; } 缺点 内存位置 对于此“矩阵”,您分配一个包含四个指针的块和四个包含四个整数的块。所有分配都不相关,因此可以导致任意存储位置。 下图将使您了解内存的外观。 对于真正的二维情况: 紫色正方形是其p自身占据的存储位置。 绿色方块将存储区域p点组装为(4 x int*)。 4个连续的蓝色方块的4个区域是每个int*绿色区域所指向的区域 对于在1d情况下映射的2d: 绿色方块是唯一需要的指针 int * 蓝色方块组合了所有矩阵元素的存储区域(16 x int)。 实际2D与映射2D内存布局 这意味着(例如,使用左侧布局时)(例如,使用缓存),与连续存储模式(如右侧所示)相比,您可能会发现性能较差。 假设高速缓存行是“一次传输到高速缓存中的数据量”,并想象一个程序一个接一个地访问整个矩阵。 如果您具有正确对齐的32位值的4 4矩阵,则具有64字节高速缓存行(典型值)的处理器能够“一次性”读取数据(4 * 4 * 4 = 64字节)。如果您开始处理而缓存中还没有数据,则将面临缓存未命中,并且将从主内存中获取数据。由于且仅当连续存储(并正确对齐)时,此负载才能装入整个缓存行,因此可以立即读取整个矩阵。处理该数据时可能不会再有任何遗漏。 在动态的“真实二维”系统中,每行/列的位置都不相关,处理器需要分别加载每个内存位置。即使只需要64个字节,在最坏的情况下,为4个不相关的内存位置加载4条高速缓存行实际上会传输256个字节并浪费75%的吞吐量带宽。如果使用2d方案处理数据,您将再次在第一个元素上遇到缓存未命中(如果尚未缓存)。但是现在,从主内存中第一次加载后,只有第一行/列会在缓存中,因为所有其他行都位于内存中的其他位置,并且不与第一行/列相邻。一旦到达新的行/列,就会再次出现高速缓存未命中,并从主内存执行下一次加载。 长话短说:2d模式具有较高的缓存未命中率,而1d方案由于数据的局部性而具有更好的性能潜力。 频繁分配/取消分配 N + 1创建所需的NxM(4×4)矩阵需要多达(4 + 1 = 5)个分配(使用new,malloc,allocator :: allocate或其他方法)。 也必须应用相同数量的适当的各自的重新分配操作。 因此,与单个分配方案相比,创建/复制此类矩阵的成本更高。 随着行数的增加,情况变得更加糟糕。 内存消耗开销 我假设int的大小为32位,指针的大小为32位。(注意:系统依赖性。) 让我们记住:我们要存储一个4×4 int矩阵,表示64个字节。 对于NxM矩阵,使用提出的指针对指针方案存储,我们消耗了 NMsizeof(int) [实际的蓝色数据] + Nsizeof(int) [绿色指针] + sizeof(int**) [紫罗兰色变量p]字节。 444 + 44 + 4 = 84在本示例的情况下,这会使字节变多,使用时甚至会变得更糟std::vector<std::vector >。对于4 x 4 int ,它将需要N * M * sizeof(int)+ N * sizeof(vector )+ sizeof(vector<vector >)字节,即4 44 + 416 + 16 = 144总共字节,共64个字节。 另外-根据所使用的分配器-每个单独的分配可能(并且很可能会)还有16个字节的内存开销。(一些“信息字节”用于存储已分配的字节数,以进行适当的重新分配。) 这意味着最坏的情况是: N*(16+Msizeof(int)) + 16+Nsizeof(int*) + sizeof(int**) = 4*(16+44) + 16+44 + 4 = 164 bytes ! Overhead: 156% 开销的份额将随着矩阵大小的增加而减少,但仍然存在。 内存泄漏的风险 一堆分配需要适当的异常处理,以避免在其中一个分配失败的情况下发生内存泄漏!您需要跟踪分配的内存块,并且在释放内存时一定不要忘记它们。 如果new无法运行内存并且无法分配下一行(特别是在矩阵很大时),std::bad_alloc则抛出a new。 例: 在上面提到的new / delete示例中,如果要避免发生bad_alloc异常时的泄漏,我们将面临更多代码。 // allocate memory for 4x4 integers; quick & dirty size_t const N = 4; // we don't need try for this allocation // if it fails there is no leak int ** p = new int*[N]; size_t allocs(0U); try { // try block doing further allocations for (size_t i=0; i<N; ++i) { p[i] = new int[4]; // allocate ++allocs; // advance counter if no exception occured } } catch (std::bad_alloc & be) { // if an exception occurs we need to free out memory for (size_t i=0; i<allocs; ++i) delete[] p[i]; // free all alloced p[i]s delete[] p; // free p throw; // rethrow bad_alloc } /* do some stuff here, using p[x][y] */ // deallocate memory accoding to the number of allocations for (size_t i=0; i<allocs; ++i) delete[] p[i]; delete[] p; 摘要 在某些情况下,“真实的2d”内存布局适合并且有意义(即,如果每行的列数不是恒定的),但是在最简单和常见的2D数据存储情况下,它们只会使代码的复杂性膨胀,并降低性能和程序的内存效率。 另类 您应该使用连续的内存块,并将行映射到该内存块。 做到这一点的“ C ++方式”可能是编写一个类来管理您的内存,同时考虑诸如 什么是三法则? 资源获取是什么意思初始化(RAII)? C ++概念:容器(在cppreference.com上) 例 为了提供这样一个类的外观的想法,下面是一个具有一些基本功能的简单示例: 二维尺寸可构造 2d可调整大小 operator(size_t, size_t) 用于2行主要元素访问 at(size_t, size_t) 用于检查的第二行主要元素访问 满足容器的概念要求 资源: #include #include #include #include namespace matrices { template class simple { public: // misc types using data_type = std::vector ; using value_type = typename std::vector ::value_type; using size_type = typename std::vector ::size_type; // ref using reference = typename std::vector ::reference; using const_reference = typename std::vector ::const_reference; // iter using iterator = typename std::vector ::iterator; using const_iterator = typename std::vector ::const_iterator; // reverse iter using reverse_iterator = typename std::vector ::reverse_iterator; using const_reverse_iterator = typename std::vector ::const_reverse_iterator; // empty construction simple() = default; // default-insert rows*cols values simple(size_type rows, size_type cols) : m_rows(rows), m_cols(cols), m_data(rows*cols) {} // copy initialized matrix rows*cols simple(size_type rows, size_type cols, const_reference val) : m_rows(rows), m_cols(cols), m_data(rows*cols, val) {} // 1d-iterators iterator begin() { return m_data.begin(); } iterator end() { return m_data.end(); } const_iterator begin() const { return m_data.begin(); } const_iterator end() const { return m_data.end(); } const_iterator cbegin() const { return m_data.cbegin(); } const_iterator cend() const { return m_data.cend(); } reverse_iterator rbegin() { return m_data.rbegin(); } reverse_iterator rend() { return m_data.rend(); } const_reverse_iterator rbegin() const { return m_data.rbegin(); } const_reverse_iterator rend() const { return m_data.rend(); } const_reverse_iterator crbegin() const { return m_data.crbegin(); } const_reverse_iterator crend() const { return m_data.crend(); } // element access (row major indexation) reference operator() (size_type const row, size_type const column) { return m_data[m_cols*row + column]; } const_reference operator() (size_type const row, size_type const column) const { return m_data[m_cols*row + column]; } reference at() (size_type const row, size_type const column) { return m_data.at(m_cols*row + column); } const_reference at() (size_type const row, size_type const column) const { return m_data.at(m_cols*row + column); } // resizing void resize(size_type new_rows, size_type new_cols) { // new matrix new_rows times new_cols simple tmp(new_rows, new_cols); // select smaller row and col size auto mc = std::min(m_cols, new_cols); auto mr = std::min(m_rows, new_rows); for (size_type i(0U); i < mr; ++i) { // iterators to begin of rows auto row = begin() + i*m_cols; auto tmp_row = tmp.begin() + i*new_cols; // move mc elements to tmp std::move(row, row + mc, tmp_row); } // move assignment to this *this = std::move(tmp); } // size and capacity size_type size() const { return m_data.size(); } size_type max_size() const { return m_data.max_size(); } bool empty() const { return m_data.empty(); } // dimensionality size_type rows() const { return m_rows; } size_type cols() const { return m_cols; } // data swapping void swap(simple &rhs) { using std::swap; m_data.swap(rhs.m_data); swap(m_rows, rhs.m_rows); swap(m_cols, rhs.m_cols); } private: // content size_type m_rows{ 0u }; size_type m_cols{ 0u }; data_type m_data{}; }; template void swap(simple & lhs, simple & rhs) { lhs.swap(rhs); } template bool operator== (simple const &a, simple const &b) { if (a.rows() != b.rows() || a.cols() != b.cols()) { return false; } return std::equal(a.begin(), a.end(), b.begin(), b.end()); } template bool operator!= (simple const &a, simple const &b) { return !(a == b); } } 请注意以下几点: T需要满足使用的std::vector成员函数的要求 operator() 不执行任何“范围”检查 无需自己管理数据 不需要析构函数,复制构造函数或赋值运算符 因此,您不必费心为每个应用程序进行适当的内存处理,而只需为编写的类一次即可。 限制条件 在某些情况下,动态“真实”二维结构是有利的。例如,如果 矩阵非常大且稀疏(如果甚至不需要分配任何行,但可以使用nullptr对其进行处理),或者 这些行没有相同数量的列(也就是说,如果您根本没有矩阵,而只有另一个二维结构)。

保持可爱mmm 2020-02-09 13:47:55 0 浏览量 回答数 0

问题

【精品问答】python技术1000问(2)

问问小秘 2019-12-01 22:03:02 3129 浏览量 回答数 1

回答

Java集合容器主要有以下几类:1,内置容器:数组2,list容器:Vetor,Stack,ArrayList,LinkedList,CopyOnWriteArrayList(1.5),AttributeList(1.5),RoleList(1.5),RoleUnresolvedList(1.5),ConcurrentLinkedQueue(1.5),ArrayBlockingQueue(1.5),LinkedBlockingQueue(1.5),PriorityQueue(1.5),PriorityBlockingQueue(1.5),SynchronousQueue(1.5)3,set容器:HashSet(1.2),LinkedHashSet(1.4),TreeSet(1.2),CopyOnWriteArraySet(1.5),EnumSet(1.5),JobStateReasons。4,map容器:Hashtable,HashMap(1.2),TreeMap(1.2),LinkedHashMap(1.4),WeakHashMap(1.2),IdentityHashMap(1.4),ConcurrentMap(1.5),concurrentHashMap(1.5)。注意:Vector,Stack,Hashtable是Java1.2前的容器。虽然在Java2之前,Java是没有完整的集合框架的。它只有一些简单的可以自扩展的容器类。但是在Java2后他们还是被融入到了集合框架的,不过只是历史遗留而已。它们和1.2前应该还是有些变化的,虽然本质没什么变化。Set接口继承于Collection,但不允许重复,使用自己内部的一个排列机制。List接口继承Collection,允许重复,以元素安插的次序来放置元素,不会重新排列。Map接口是一组成对的键-值对象,即所持有的是key-value pairs。Map中不能有重复的key。拥有自己的内部排列机制。一、Java1.2之前的容器类库其实在Java2之前,Java是没有完整的集合框架的。它只有一些简单的可以自扩展的容器类,比如Vector,Stack,Hashtable等。Java1容器类库设计的一个重大失误是竟然没有对容器进行排序的工具。比如你想让Vector容器中的对象按字典顺序进行排序,你就要自己实现。1.1、Vectorjava.util.Vector中包含的元素可以通过一个整型的索引值取得,它的大小可以在添加或移除元素时自动增加或缩小。Vector的操作很简单,通过addElement()加入一个对象,用elementAt()取出它,还可以查询当前所保存的对象的个数size();另外还有一个Enumeration类提供了连续操作Vector中元素的方法,这可以通过Vector中的elements()方法来获取一个Enumeration类的对象,可以用一个While循环来遍历其中的元素。用hasMoreElements()检查其中是否还有更多的元素。用nextElement()获得下一个元素。Enumeration的用意在于使你能完全不用理会你要遍历的容器的基础结构,只关注你的遍历方法,这也就使得遍历方法的重用成为可能。由于这种思想的强大功能,所以在Java2中被保留下来,不过具体实现,方法名和内部算法都改变了,这就是Java2中的Iterator以及ListIterator类。然而Enumeration的功能却十分有限,比如只能朝一个方向进行,只能读取而不能更改等。更多内容请参考《Vector》1.2、Stackjava.util.Stack最常用的操作便是压入和弹出,最后压入的元素最先被弹出。它遵循后进先出(LIFO)原则。在Java中Stack的的用法也很简单,有push()压入一个元素,用pop()弹出一个元素。更多内容请参考《Stack容器》1.3、HashtableHashtable与Java2中的Map类似,可以看成一种关联或映射数组,可以将两个毫无关系的对象相关联。它的基本目标是实现两个对象之间进行关联。更多内容请参考《Hashtable》二、Java2中的容器类库自Java1.2之后Java版本统称为Java2,Java2中的容器类库才可以说是一种真正意义上的集合框架的实现。基本完全重新设计,但是又对Java1中的一些容器类库在新的设计上进行了保留,这主要是为了向下兼容的目的,当用 Java2开发程序时,应尽量避免使用它们,Java2的集合框架已经完全可以满足你的需求。在Java1中容器类库是同步化的,而 Java2中的容器类库都是非同步化,这可能是对执行效率进行考虑的结果。Java2中的集合框架提供了一套设计优良的接口和类,使程序员操作成批的数据或对象元素极为方便。这些接口和类有很多对抽象数据类型操作的API,而这是我们常用的且在数据结构中熟知的。例如Maps,Sets,Lists,Arrays等。并且Java用面向对象的设计对这些数据结构和算法进行了封装,这就极大的减化了程序员编程时的负担。程序员也可以以这个集合框架为基础,定义更高级别的数据抽象,比如栈、队列和线程安全的集合等,从而满足自己的需要。Java2的集合框架,抽其核心,主要有三类:List(包括List,Queue,BlockingQueue)、Set和Map。List和Set继承了Collection,而Map则独成一体。初看上去可能会对Map独成一体感到不解,它为什么不也继承Collection呢?但是这种设计是合理的。一个Map提供了通过Key对Map中存储的Value进行访问,也就是说它操作的都是成对的对象元素,比如put()和get()方法,而这是一个Set或List 所不就具备的。当然在需要时,你可以由keySet()方法或values()方法从一个Map中得到键的Set集或值的Collection集。集合框架中还有两个很实用的公用类:Collections和Arrays。Collections提供了对一个Collection容器进行诸如排序、复制、查找和填充等一些非常有用的方法, Arrays则是对一个数组进行类似的操作。2.1、CollectionCollection接口提供了一组操作成批对象的方法。(它只是个接口)它提供了基本操作如添加、删除。它也支持查询操作如是否为空isEmpty()方法等。为了支持对Collection进行独立操作,Java的集合框架给出了一个Iterator,它使得你可以泛型操作一个Collection,而不需知道这个 Collection的具体实现类型是什么。它的功能与Java1中的Enumeration类似,只是更易掌握和使用,功能也更强大。在建立集合框架时,Sun的开发团队考虑到需要提供一些灵活的接口,用来操作成批的元素,又为了设计的简便,就把那些对集合进行可选操作的方法与基本方法放到了一起。因为一个接口的实现者必须提供对接口中定义的所有方法的实现,这就需要一种途径让调用者知道它正在调用 的可选方法当前不支持。最后开发团队选择使用一种信号,也即抛出一种不支持操作例外(UnsupportedOperationException),如果你在使用一个Collection中遇到一个上述的例外,那就意味着你的操作失败,比如你对一个只读Collection添加一个元素时,你就会得到一个不支持操作例外。在你实现一个集合接口时,你可以很容易的在你不想让用户使用的方法中抛出UnsupportOperationException来告诉使用者这个方法当前没有实现,UnsupportOperationException是RuntimeException的一个扩展。另外Java2的容器类库还有一种Fail fast的机制。比如你正在用一个Iterator遍历一个容器中的对象,这时另外一个线程或进程对那个容器进行了修改,那么再用next()方法时可能会有灾难性的后果,而这是你不愿看到的,这时就会引发一个ConcurrentModificationException例外。这就是 fail-fast。

51干警网 2019-12-02 01:42:48 0 浏览量 回答数 0

问题

VPC网络架构助力媒体数字化转型

福利达人 2019-12-01 21:09:15 3511 浏览量 回答数 0

问题

如何用Python在笔记本电脑上分析100GB数据?

珍宝珠 2020-02-18 12:56:20 1 浏览量 回答数 0

回答

一、ping基本使用详解 在网络中ping是一个十分强大的TCP/IP工具。它的作用主要为: 1、用来检测网络的连通情况和分析网络速度 2、根据域名得到服务器IP 3、根据ping返回的TTL值来判断对方所使用的操作系统及数据包经过路由器数量。 我们通常会用它来直接ping ip地址,来测试网络的连通情况。 类如这种,直接ping ip地址或网关,ping通会显示出以上数据,有朋友可能会问,bytes=32;time<1ms;TTL=128 这些是什么意思。 bytes值:数据包大小,也就是字节。 time值:响应时间,这个时间越小,说明你连接这个地址速度越快。 TTL值:Time To Live,表示DNS记录在DNS服务器上存在的时间,它是IP协议包的一个值,告诉路由器该数据包何时需要被丢弃。可以通过Ping返回的TTL值大小,粗略地判断目标系统类型是Windows系列还是UNIX/Linux系列。 默认情况下,Linux系统的TTL值为64或255,WindowsNT/2000/XP系统的TTL值为128,Windows98系统的TTL值为32,UNIX主机的TTL值为255。 因此一般TTL值: 100~130ms之间,Windows系统 ; 240~255ms之间,UNIX/Linux系统。 当然,我们今天主要了解并不是这些,而是ping的其它参考。 ping命令除了直接ping网络的ip地址,验证网络畅通和速度之外,它还有这些用法。 二、ping -t的使用 不间断地Ping指定计算机,直到管理员中断。 这就说明电脑连接路由器是通的,网络效果很好。下面按按住键盘的Ctrl+c终止它继续ping下去,就会停止了,会总结出运行的数据包有多少,通断的有多少了。 三、ping -a的使用 ping-a解析计算机名与NetBios名。就是可以通过ping它的ip地址,可以解析出主机名。 四、ping -n的使用 在默认情况下,一般都只发送四个数据包,通过这个命令可以自己定义发送的个数,对衡量网络速度很有帮助,比如我想测试发送10个数据包的返回的平均时间为多少,最快时间为多少,最慢时间为多少就可以通过以下获知: 从以上我就可以知道在给47.93.187.142发送10个数据包的过程当中,返回了10个,没有丢失,这10个数据包当中返回速度最快为32ms,最慢为55ms,平均速度为37ms。说明我的网络良好。 如果对于一些不好的网络,比如监控系统中非常卡顿,这样测试,返回的结果可能会显示出丢失出一部分,如果丢失的比较多的话,那么就说明网络不好,可以很直观的判断出网络的情况。 五、ping -l size的使用 -l size:发送size指定大小的到目标主机的数据包。 在默认的情况下Windows的ping发送的数据包大小为32byt,最大能发送65500byt。当一次发送的数据包大于或等于65500byt时,将可能导致接收方计算机宕机。所以微软限制了这一数值;这个参数配合其它参数以后危害非常强大,比如攻击者可以结合-t参数实施DOS攻击。(所以它具有危险性,不要轻易向别人计算机使用)。 例如:ping -l 65500 -t 211.84.7.46 会连续对IP地址执行ping命令,直到被用户以Ctrl+C中断. 这样它就会不停的向211.84.7.46计算机发送大小为65500byt的数据包,如果你只有一台计算机也许没有什么效果,但如果有很多计算机那么就可以使对方完全瘫痪,网络严重堵塞,由此可见威力非同小可。 六、ping -r count 的使用 在“记录路由”字段中记录传出和返回数据包的路由,探测经过的 路由个数,但最多只能跟踪到9个路由。 ping -n 1 -r 9 202.102.224.25 (发送一个数据包,最多记录9个路由) 将经过 9个路由都显示出来了,可以看上图。 ping命令用的较多的就这6类的,大家有可能在项目中会用到的。 七、批量ping网段 对于一个网段ip地址众多,如果单个检测实在麻烦,那么我们可以直接批量ping网段检测,那个ip地址出了问题,一目了然。 先看代码,直接在命令行窗口输入: for /L %D in (1,1,255) do ping 10.168.1.%D IP地址段修改成你要检查的IP地址段。 当输入批量命令后,那么它就自动把网段内所有的ip地址都ping完为止。 那么这段“for /L %D in(1,1,255) do ping 10.168.1.%D” 代码是什么意思呢? 代码中的这个(1,1,255)就是网段起与始,就是检测网段192.168.1.1到192.168.1.255之间的所有的ip地址,每次逐增1,直接到1到255这255个ip检测完为止。

剑曼红尘 2020-03-23 15:44:54 0 浏览量 回答数 0

回答

逻辑回归 逻辑回归实际上是一种分类算法。我怀疑它这样命名是因为它与线性回归在学习方法上很相似,但是成本和梯度函数表述不同。特别是,逻辑回归使用了一个sigmoid或“logit”激活函数,而不是线性回归的连续输出。 首先导入和检查我们将要处理的数据集。 import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import os path = os.getcwd() + '\data\ex2data1.txt' data = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted']) data.head() 在数据中有两个连续的自变量——“Exam 1”和“Exam 2”。我们的预测目标是“Admitted”的标签。值1表示学生被录取,0表示学生没有被录取。我们看有两科成绩的散点图,并使用颜色编码来表达例子是positive或者negative。 positive = data[data['Admitted'].isin([1])] negative = data[data['Admitted'].isin([0])] fig, ax = plt.subplots(figsize=(12,8)) ax.scatter(positive['Exam 1'], positive['Exam 2'], s=50, c='b', marker='o', label='Admitted') ax.scatter(negative['Exam 1'], negative['Exam 2'], s=50, c='r', marker='x', label='Not Admitted') ax.legend() ax.set_xlabel('Exam 1 Score') ax.set_ylabel('Exam 2 Score') 从这个图中我们可以看到,有一个近似线性的决策边界。它有一点弯曲,所以我们不能使用直线将所有的例子正确地分类,但我们能够很接近。现在我们需要实施逻辑回归,这样我们就可以训练一个模型来找到最优决策边界,并做出分类预测。首先需要实现sigmoid函数。 def sigmoid(z): return 1 / (1 + np.exp(-z)) 这个函数是逻辑回归输出的“激活”函数。它将连续输入转换为0到1之间的值。这个值可以被解释为分类概率,或者输入的例子应该被积极分类的可能性。利用带有界限值的概率,我们可以得到一个离散标签预测。它有助于可视化函数的输出,以了解它真正在做什么。 nums = np.arange(-10, 10, step=1) fig, ax = plt.subplots(figsize=(12,8)) ax.plot(nums, sigmoid(nums), 'r') 我们的下一步是写成本函数。成本函数在给定一组模型参数的训练数据上评估模型的性能。这是逻辑回归的成本函数。 def cost(theta, X, y): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) first = np.multiply(-y, np.log(sigmoid(X * theta.T))) second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T))) return np.sum(first - second) / (len(X)) 注意,我们将输出减少到单个标量值,该值是“误差”之和,是模型分配的类概率与示例的真实标签之间差别的量化函数。该实现完全是向量化的——它在语句(sigmoid(X * theta.T))中计算模型对整个数据集的预测。 测试成本函数以确保它在运行,首先需要做一些设置。 # add a ones column - this makes the matrix multiplication work out easier data.insert(0, 'Ones', 1) # set X (training data) and y (target variable) cols = data.shape[1] X = data.iloc[:,0:cols-1] y = data.iloc[:,cols-1:cols] # convert to numpy arrays and initalize the parameter array theta X = np.array(X.values) y = np.array(y.values) theta = np.zeros(3) 检查数据结构的形状,以确保它们的值是合理的。这种技术在实现矩阵乘法时非常有用 X.shape, theta.shape, y.shape ((100L, 3L), (3L,), (100L, 1L)) 现在计算初始解的成本,将模型参数“theta”设置为零。 cost(theta, X, y) 0.69314718055994529 我们已经有了工作成本函数,下一步是编写一个函数,用来计算模型参数的梯度,以找出改变参数来提高训练数据模型的方法。在梯度下降的情况下,我们不只是在参数值周围随机地jigger,看看什么效果最好。并且在每次迭代训练中,我们通过保证将其移动到减少训练误差(即“成本”)的方向来更新参数。我们可以这样做是因为成本函数是可微分的。这是函数。 def gradient(theta, X, y): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) parameters = int(theta.ravel().shape[1]) grad = np.zeros(parameters) error = sigmoid(X * theta.T) - y for i in range(parameters): term = np.multiply(error, X[:,i]) grad[i] = np.sum(term) / len(X) return grad 我们并没有在这个函数中执行梯度下降——我们只计算一个梯度步骤。在练习中,使用“fminunc”的Octave函数优化给定函数的参数,以计算成本和梯度。因为我们使用的是Python,所以我们可以使用SciPy的优化API来做同样的事情。 import scipy.optimize as opt result = opt.fmin_tnc(func=cost, x0=theta, fprime=gradient, args=(X, y)) cost(result[0], X, y) 0.20357134412164668 现在我们的数据集里有了最优模型参数,接下来我们要写一个函数,它使用我们训练过的参数theta来输出数据集X的预测,然后使用这个函数为我们分类器的训练精度打分。 def predict(theta, X): probability = sigmoid(X * theta.T) return [1 if x >= 0.5 else 0 for x in probability] theta_min = np.matrix(result[0]) predictions = predict(theta_min, X) correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)] accuracy = (sum(map(int, correct)) % len(correct)) print 'accuracy = {0}%'.format(accuracy) accuracy = 89% 我们的逻辑回归分类器预测学生是否被录取的准确性可以达到89%,这是在训练集中的精度。我们没有保留一个hold-out set或使用交叉验证来获得准确的近似值,所以这个数字可能高于实际的值。 正则化逻辑回归 既然我们已经有了逻辑回归的工作实现,我们将通过添加正则化来改善算法。正则化是成本函数的一个条件,使算法倾向于更简单的模型(在这种情况下,模型会减小系数),原理就是帮助减少过度拟合和帮助模型提高通用化能力。我们使用逻辑回归的正则化版本去解决稍带挑战性的问题, 想象你是工厂的产品经理,你有一些芯片在两种不同测试上的测试结果。通过两种测试,你将会决定那种芯片被接受或者拒绝。为了帮助你做这个决定,你将会有以往芯片的测试结果数据集,并且通过它建立一个逻辑回归模型。 现在可视化数据。 path = os.getcwd() + '\data\ex2data2.txt' data2 = pd.read_csv(path, header=None, names=['Test 1', 'Test 2', 'Accepted']) positive = data2[data2['Accepted'].isin([1])] negative = data2[data2['Accepted'].isin([0])] fig, ax = plt.subplots(figsize=(12,8)) ax.scatter(positive['Test 1'], positive['Test 2'], s=50, c='b', marker='o', label='Accepted') ax.scatter(negative['Test 1'], negative['Test 2'], s=50, c='r', marker='x', label='Rejected') ax.legend() ax.set_xlabel('Test 1 Score') ax.set_ylabel('Test 2 Score') 这个数据看起来比以前的例子更复杂,你会注意到没有线性决策线,数据也执行的很好,处理这个问题的一种方法是使用像逻辑回归这样的线性技术,就是构造出由原始特征多项式派生出来的特征。我们可以尝试创建一堆多项式特性以提供给分类器。 degree = 5 x1 = data2['Test 1'] x2 = data2['Test 2'] data2.insert(3, 'Ones', 1) for i in range(1, degree): for j in range(0, i): data2['F' + str(i) + str(j)] = np.power(x1, i-j) * np.power(x2, j) data2.drop('Test 1', axis=1, inplace=True) data2.drop('Test 2', axis=1, inplace=True) data2.head() 现在我们需要去修改成本和梯度函数以包含正则项。在这种情况下,将正则化矩阵添加到之前的计算中。这是更新后的成本函数。 def costReg(theta, X, y, learningRate): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) first = np.multiply(-y, np.log(sigmoid(X * theta.T))) second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T))) reg = (learningRate / 2 * len(X)) * np.sum(np.power(theta[:,1:theta.shape[1]], 2)) return np.sum(first - second) / (len(X)) + reg 我们添加了一个名为“reg”的新变量,它是参数值的函数。随着参数越来越大,对成本函数的惩罚也越来越大。我们在函数中添加了一个新的“learning rate”参数。 这也是等式中正则项的一部分。 learning rate为我们提供了一个新的超参数,我们可以使用它来调整正则化在成本函数中的权重。 接下来,我们将在梯度函数中添加正则化。 def gradientReg(theta, X, y, learningRate): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) parameters = int(theta.ravel().shape[1]) grad = np.zeros(parameters) error = sigmoid(X * theta.T) - y for i in range(parameters): term = np.multiply(error, X[:,i]) if (i == 0): grad[i] = np.sum(term) / len(X) else: grad[i] = (np.sum(term) / len(X)) + ((learningRate / len(X)) * theta[:,i]) return grad 与成本函数一样,将正则项加到最初的计算中。与成本函数不同的是,我们包含了确保第一个参数不被正则化的逻辑。这个决定背后的直觉是,第一个参数被认为是模型的“bias”或“intercept”,不应该被惩罚。 我们像以前那样测试新函数 # set X and y (remember from above that we moved the label to column 0) cols = data2.shape[1] X2 = data2.iloc[:,1:cols] y2 = data2.iloc[:,0:1] # convert to numpy arrays and initalize the parameter array theta X2 = np.array(X2.values) y2 = np.array(y2.values) theta2 = np.zeros(11) learningRate = 1 costReg(theta2, X2, y2, learningRate) 0.6931471805599454 我们能使用先前的最优代码寻找最优模型参数。 result2 = opt.fmin_tnc(func=costReg, x0=theta2, fprime=gradientReg, args=(X2, y2, learningRate)) result2 (数组([ 0.35872309, -3.22200653, 18.97106363, -4.25297831, 18.23053189, 20.36386672, 8.94114455, -43.77439015, -17.93440473, -50.75071857, -2.84162964]), 110, 1) 最后,我们可以使用前面应用的相同方法,为训练数据创建标签预测,并评估模型的性能。 theta_min = np.matrix(result2[0]) predictions = predict(theta_min, X2) correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y2)] accuracy = (sum(map(int, correct)) % len(correct)) print 'accuracy = {0}%'.format(accuracy) 准确度 = 91%

珍宝珠 2019-12-02 03:22:33 0 浏览量 回答数 0

问题

【精品问答】Python二级考试题库

珍宝珠 2019-12-01 22:03:38 1146 浏览量 回答数 2

回答

HashMap HashMap 底层是基于 数组 + 链表 组成的,不过在 jdk1.7 和 1.8 中具体实现稍有 不同 其实1.7一个很明显需要优化的地方就是: 当 Hash 冲突严重时,在桶上形成的链表会变的越来越长,这样在查询时的效 率就会越来越低;时间复杂度为 O(N)。 因此 1.8 中重点优化了这个查询效率。 1.8 HashMap 结构图 JDK 1.8 对 HashMap 进行了修改: 最大的不同就是利用了红黑树,其由数组+链表+红黑树组成。 JDK 1.7 中,查找元素时,根据 hash 值能够快速定位到数组的具体下标, 但之后需要顺着链表依次比较才能查找到需要的元素,时间复杂度取决于链 表的长度,为 O(N)。 为了降低这部分的开销,在 JDK 1.8 中,当链表中的元素超过 8 个以后,会 将链表转换为红黑树,在这些位置进行查找的时候可以降低时间复杂度为 O(logN)。 JDK 1.8 使用 Node(1.7 为 Entry) 作为链表的数据结点,仍然包含 key, value,hash 和 next 四个属性。 红黑树的情况使用的是 TreeNode。 根据数组元素中,第一个结点数据类型是 Node 还是 TreeNode 可以判断该位 置下是链表还是红黑树。 核心成员变量于 1.7 类似,增加了核心变量,如下表。 属性说明TREEIFY_THRESHOLD用于判断是否需要将链表转换为红黑树的阈值,默认 为 8。 put步骤: 判断当前桶是否为空,空的就需要初始化(resize 中会判断是否进行初始 化)。 根据当前 key 的 hashcode 定位到具体的桶中并判断是否为空,为空表明没有 Hash 冲突就直接在当前位置创建一个新桶即可。 如果当前桶有值( Hash 冲突),那么就要比较当前桶中的 key、key 的 hashcode 与写入的 key 是否相等,相等就赋值给 e,在第 8 步的时候会统一进 行赋值及返回。 如果当前桶为红黑树,那就要按照红黑树的方式写入数据。 如果是个链表,就需要将当前的 key、value 封装成一个新节点写入到当前桶的 后面(形成链表)。 接着判断当前链表的大小是否大于预设的阈值,大于时就要转换为红黑树。 如果在遍历过程中找到 key 相同时直接退出遍历。 如果 e != null 就相当于存在相同的 key,那就需要将值覆盖。 后判断是否需要进行扩容. get 方法看起来就要简单许多了。 首先将 key hash 之后取得所定位的桶。 如果桶为空则直接返回 null 。 否则判断桶的第一个位置(有可能是链表、红黑树)的 key 是否为查询的 key,是 就直接返回 value。 如果第一个不匹配,则判断它的下一个是红黑树还是链表。 红黑树就按照树的查找方式返回值。 不然就按照链表的方式遍历匹配返回值。 从这两个核心方法(get/put)可以看出 1.8 中对大链表做了优化,修改为红黑树之 后查询效率直接提高到了 O(logn)。 但是 HashMap 原有的问题也都存在,比如在并发场景下使用时容易出现死循环。 但是为什么呢?简单分析下。 看过上文的还记得在 HashMap 扩容的时候会调用 resize() 方法,就是这里的并 发操作容易在一个桶上形成环形链表;这样当获取一个不存在的 key 时,计算出的 index 正好是环形链表的下标就会出现死循环。 如下图: HashTable HashTable 容器使用 synchronized来保证线程安全,但在线程竞争激烈的情况下 HashTable 的效 率非常低下。 当一个线程访问 HashTable 的同步方法时,其他线程访问 HashTable 的同步方 法可能会进入阻塞或轮询状态。 HashTable 容器在竞争激烈的并发环境下表现出效率低下的原因,是因为所有 访问它的线程都必须竞争同一把锁,假如容器里有多把锁,每一把锁用于锁容 器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就 不会存在锁竞争,从而可以有效的提高并发访问效率,这就是 ConcurrentHashMap(JDK 1.7) 使用的 锁分段技术。 ConcurrentHashMap 将数据分成一段一段的存储,然后给每一段数据配一把 锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他 线程访问。 有些方法需要跨段,比如 size() 和 containsValue(),它们可能需要锁定整个表 而不仅仅是某个段,这需要按顺序锁定所有段,操作完毕后,又按顺序释放所 有段的锁。 按顺序 很重要,否则极有可能出现死锁,在 ConcurrentHashMap 内部,段数 组是 final 的,并且其成员变量实际也是 final 的,但是,仅仅是将数组声明为 final 的并不保证数组成员也是 final 的,需要实现上的保证。这可以确保不会 出现死锁,因为获得锁的顺序是固定的。 HashTable 的迭代器是强一致性的,而 ConcurrentHashMap 是弱一致的。 ConcurrentHashMap 的 get,clear,iterator 方法都是弱一致性的。 初识ConcurrentHashMap Concurrent翻译过来是并发的意思,字面理解它的作用是处理并发情况的 HashMap。 通过前面的学习,我们知道多线程并发下 HashMap 是不安全的(如死循环),更普遍 的是多线程并发下,由于堆内存对于各个线程是共享的,而 HashMap 的 put 方法 不是原子操作,假设Thread1先 put 值,然后 sleep 2秒(也可以是系统时间片切换失 去执行权),在这2秒内值被Thread2改了,Thread1“醒来”再 get 的时候发现已经不 是原来的值了,这就容易出问题。 那么如何避免这种多线程出错的情况呢? 常规思路就是给 HashMap 的 put 方法加锁(synchronized),保证同一个时刻只允 许一个线程拥有对 hashmap 有写的操作权限即可。然而假如线程1中操作耗时,其 他需要操作该 hashmap 的线程就需要在门口排队半天,严重影响用户体验, HashTable 就是这样子做的。 举个生活中的例子,很多银行除了存取钱,还支持存取贵重物品,贵重物品都放在 保险箱里,把 HashMap 和 HashTable 比作银行,结构: 把线程比作人,对应的情况如下: 多线程下用 HashMap 不确定性太高,有破产的风险,不能选;用 HashTable 不会 破产,但是用户体验不太好,那么怎样才能做到多人存取既不影响他人存值,又不 用排队呢? 有人提议搞个「银行者联盟」,多开几个像HashTable 这种「带锁」的银行就好 了,有多少人办理业务,就开多少个银行,一对一服务,这个区都是大老板,开银 行的成本都是小钱,于是「银行者联盟」成立了。 接下来的情况是这样的:比如用户A和用户B一起去银行存各自的项链,这个「银行 者联盟」操作后,然后对用户A说,1号银行现在没人你可以去那存,不用排队,然 后用户A就去1号银行存项链,1号银行把用户A接进门,马上拉闸,然后把用户A的 项链放在第x行第x个保险箱,等用户A办妥离开后,再开闸;对于用户B同理。此时 不管用户A和用户B在各自银行里面待多久都不会影响到彼此,不用担心自己的项链 被人偷换了。这就是ConcurrentHashMap的设计思路,用一个图来理解 从上图可以看出,此时锁的是对应的单个银行,而不是整个「银行者联盟」。分析 下这种设计的特点: 多个银行组成的「银行者联盟」 当有人来办理业务时,「银行者联盟」需要确定这个人去哪个银行 当此人去到指定银行办理业务后,该银行上锁,其他人不能同时执行修改操作,直 到此人离开后解锁. ConcurrentHashMap源码解析 ConcurrentHashMap 同样也分为 1.7 、1.8 版,两者在实现上略有不同。 先来看看 1.7 的实现,下面是结构图: 如图所示,是由 Segment 数组、HashEntry 组成,和 HashMap 一样,仍然是数组 加链表。主要是通过分段锁实现的。 关于分段锁 段Segment继承了重入锁ReentrantLock,有了锁的功能,每个锁控制的是一段, 当每个Segment越来越大时,锁的粒度就变得有些大了。 分段锁的优势在于保证在操作不同段 map 的时候可以并发执行,操作同段 map 的时候,进行锁的竞争和等待。这相对于直接对整个map同步 synchronized是有优势的。 缺点在于分成很多段时会比较浪费内存空间(不连续,碎片化); 操作map时竞争 同一个分段锁的概率非常小时,分段锁反而会造成更新等操作的长时间等待; 当 某个段很大时,分段锁的性能会下降。 1.7 已经解决了并发问题,并且能支持 N 个 Segment 这么多次数的并发,但依然存 在 HashMap 在 1.7 版本中的问题。 那就是查询遍历链表效率太低。 因此 1.8 做了一些数据结构上的调整。 首先来看下底层的组成结构: 其实和 1.8 HashMap 结构类似,当链表节点数超过指定阈值的话,也是会转换成红 黑树的,大体结构也是一样的。 那么 JDK 1.8 ConcurrentHashMap 到底是如何实现线程安全的? 答案:其中抛弃了原有的Segment 分段锁,而采用了 CAS + synchronized 来保证 并发安全性。(cas:比较并替换) **① 基本组成 ** 抛弃了 JDK 1.7 中原有的 Segment 分段锁,而采用了 CAS + synchronized 来 保证并发安全性。 将JDK 1.7 中存放数据的 HashEntry 改为 Node,但作用是相同的。、 我们来看看 ConcurrentHashMap 的几个重要属性. 重要组成元素 Node:链表中的元素为 Node 对象。他是链表上的一个节点,内部存储了 key、 value 值,以及他的下一 个节点的引用。这样一系列的 Node 就串成一串,组成一 个链表。 ForwardingNode:当进行扩容时,要把链表迁移到新的哈希表,在做这个操作 时,会在把数组中的头节点替换为 ForwardingNode 对象。ForwardingNode 中不 保存 key 和 value,只保存了扩容后哈希表 (nextTable)的引用。此时查找相应 node 时,需要去 nextTable 中查找。 TreeBin:当链表转为红黑树后,数组中保存的引用为 TreeBin,TreeBin 内部不保 存 key/value,他保存了 TreeNode 的 list 以及红黑树 root。 TreeNode:红黑树的节点。 **② put 方法过程 ** 存储结构定义了容器的 “形状”,那容器内的东西按照什么规则来放呢?换句话讲, 某个 key 是按 照什么逻辑放入容器的对应位置呢? 我们假设要存入的 key 为对象 x,这个过程如下 : 1、通过对象 x 的 hashCode () 方法获取其 hashCode; 2、将 hashCode 映射到数组的某个位置上; 3、把该元素存储到该位置的链表中。 put 方法用来把一个键值对存储到 map 中。代码如下: 实际调用的是 putVal 方 法,第三个参数传入 false,控制 key 存在时覆盖原来的值。 请先看完代码注释,有个大致的了解,然后我们更加详细的学习一下: 判断存储的 key、value 是否为空,若为空,则抛出异常,否则,进入步骤 2。 计算 key 的 hash 值,随后进入自旋,该自旋可以确保成功插入数据,若 table 表为空或者长度为 0,则初始化 table 表,否则,进入步骤 3。 根据 key 的 hash 值取出 table 表中的结点元素,若取出的结点为空(该桶为 空),则使用 CAS 将 key、value、hash 值生成的结点放入桶中。否则,进入 步骤 4。 若该结点的的 hash 值为 MOVED(-1),则对该桶中的结点进行转移,否则, 进入步骤 5。 5 . 对桶中的第一个结点(即 table 表中的结点)进行加锁,对该桶进行遍历,桶中 的结点的 hash 值与 key 值与给定的 hash 值和 key 值相等,则根据标识选择是 否进行更新操作(用给定的 value 值替换该结点的 value 值),若遍历完桶仍 没有找到 hash 值与 key 值和指定的 hash 值与 key 值相等的结点,则直接新生 一个结点并赋值为之前后一个结点的下一个结点。进入步骤 6。 若 binCount 值达到红黑树转化的阈值,则将桶中的结构转化为红黑树存储, 后,增加 binCount 的值。 如果桶中的第一个元素的 hash 值大于 0,说明是链表结构,则对链表插入或者 更新。 如果桶中的第一个元素是 TreeBin,说明是红黑树结构,则按照红黑树的方式进 行插入或者更新。 在锁的保护下,插入或者更新完毕后,如果是链表结构,需要判断链表中元素 的数量是否超过 8(默认),一旦超过,就需要考虑进行数组扩容,或者是链表 转红黑树。 扩容 什么时候会扩容? 使用put()添加元素时会调用addCount(),内部检查sizeCtl看是否需要扩容。 tryPresize()被调用,此方法被调用有两个调用点: 链表转红黑树(put()时检查)时如果table容量小于64(MIN_TREEIFY_CAPACITY),则会 触发扩容。 调用putAll()之类一次性加入大量元素,会触发扩容。 addCount() addCount()与tryPresize()实现很相似,我们先以addCount()分析下扩容逻辑: **1.链表转红黑树 ** 首先我们要理解为什么 Map 需要扩容,这是因为我们采用哈希表存储数据,当固定 大小的哈希表存 储数据越来越多时,链表长度会越来越长,这会造成 put 和 get 的 性能下降。此时我们希望哈希表中多一些桶位,预防链表继续堆积的更长。 ConcurrentHashMap 有链表转红黑树的操作,以提高查找的速度,红黑树时间复 杂度为 O (logn),而链表是 O (n/2),因此只在 O (logn)<O (n/2) 时才会进行转换, 也就是以 8 作为分界点。 接下来我们分析 treeifyBin 方法代码,这个代码中会选择是把此时保存数据所在的 链表转为红黑树,还是对整个哈希表扩容。 treeifyBin 不一定就会进行红黑树转换,也可能是仅仅做数组扩容。 构造完TreeBin这个空节点之后,就开始构造红黑树,首先是第一个节点,左右 子节点设置为空,作为红黑树的root节点,设置为黑色,父节点为空。 然后在每次添加完一个节点之后,都会调用balanceInsertion方法来维持这是一 个红黑树的属性和平衡性。红黑树所有操作的复杂度都是O(logn),所以当元素量比 较大的时候,效率也很高。 **数组扩容 ** 我们大致了解了 ConcurrentHashMap 的存储结构,那么我们思考一个问题,当数 组中保存的链表越来越多,那么再存储进来的元素大概率会插入到现有的链表中, 而不是使用数组中剩下的空位。 这样会造成数组中保存的链表越来越长,由此导致 哈希表查找速度下降,从 O (1) 慢慢趋近于链表 的时间复杂度 O (n/2),这显然违背 了哈希表的初衷。 所以 ConcurrentHashMap 会做一个操作, 称为扩容。也就是把数组长度变大,增 加更多的空位出来,终目的就是预防链表过长,这样查找的时间复杂度才会趋向于 O (1)。扩容的操作并不会在数组没有空位时才进行,因为在桶位快满时, 新保存元 素更大的概率会命中已经使用的位置,那么可能后几个桶位很难被使用,而链表却 越来 越长了。ConcurrentHashMap 会在更合适的时机进行扩容,通常是在数组中 75% 的位置被使用 时。 其实以上内容和 HashMap 类似,ConcurrentHashMap 此外提供了线程安全的保 证,它主要是通 过 CAS 和 Synchronized 关键字来实现,我们在源码分析中再详细 来看。 我们做一下总结: 1、ConcurrentHashMap 采用数组 + 链表 + 红黑树的存储结构; 2、存入的 Key 值通过自己的 hashCode 映射到数组的相应位置; 3、ConcurrentHashMap 为保障查询效率,在特定的时候会对数据增加长度,这个 操作叫做扩容; 4、当链表长度增加到 8 时,可能会触发链表转为红黑树(数组长度如果小于 64, 优先扩容,具体 看后面源码分析)。 接下来,我们的源码分析就从 ConcurrentHashMap 的构成、保存元素、哈希算 法、扩容、查找数 据这几个方面来进行 扩容后数组容量为原来的 2 倍。 **数据迁移( 扩容时的线程安全) ** ConcurrentHashMap 的扩容时机和 HashMap 相同,都是在 put 方法的后一步 检查是否需要扩容,如果需要则进行扩容,但两者扩容的过程完全不同, ConcurrentHashMap 扩容的方法叫做 transfer,从 put 方法的 addCount 方法进 去,就能找到 transfer 方法,transfer 方法的主要思路是: 首先需要把老数组的值全部拷贝到扩容之后的新数组上,先从数组的队尾开始 拷贝; 拷贝数组的槽点时,先把原数组槽点锁住,保证原数组槽点不能操作,成功拷 贝到新数组时,把 原数组槽点赋值为转移节点; 这时如果有新数据正好需要 put 到此槽点时,发现槽点为转移节点,就会一直 等待,所以在扩容完成之前,该槽点对应的数据是不会发生变化的; 从数组的尾部拷贝到头部,每拷贝成功一次,就把原数组中的节点设置成转移 节点; 直到所有数组数据都拷贝到新数组时,直接把新数组整个赋值给数组容器,拷 贝完成 putTreeVal()与此方法遍历方式类似不再介绍。  ④ get 方法过程 ConcurrentHashMap 读的话,就比较简单,先获取数组的下标,然后通过判断数 组下标的 key 是 否和我们的 key 相等,相等的话直接返回,如果下标的槽点是链表 或红黑树的话,分别调用相应的 查找数据的方法,整体思路和 HashMap 很像,源 码如下: 计算 hash 值。 根据 hash 值找到数组对应位置: (n – 1) & h。 根据该位置处结点性质进行相应查找。 如果该位置为 null,那么直接返回 null。 如果该位置处的结点刚好就是需要的,返回该结点的值即可。 如果该位置结点的 hash 值小于 0,说明正在扩容,或者是红黑树。 如果以上 3 条都不满足,那就是链表,进行遍历比对即可。 ** 初始化数组 ** 数组初始化时,首先通过自旋来保证一定可以初始化成功,然后通过 CAS 设置 SIZECTL 变量的值,来保证同一时刻只能有一个线程对数组进行初始化,CAS 成功 之后,还会再次判断当前数组是否已经初始化完成,如果已经初始化完成,就不会 再次初始化,通过自旋 + CAS + 双重 check 等 手段保证了数组初始化时的线程安 全,源码如下: 里面有个关键的值 sizeCtl,这个值有多个含义。 1、-1 代表有线程正在创建 table; 2、-N 代表有 N-1 个线程正在复制 table; 3、在 table 被初始化前,代表 根据构造函数传入的值计算出的应被初始化的大小; 4、在 table 被初始化后,则被 设置为 table 大小 的 75%,代表 table 的容量(数组容量)。 initTable 中使用到 1 和 4,2 和 3 在其它方法中会有使用。下面我们可以先看下 ConcurrentHashMap 的构造方法,里面会使用上面的 3 最后来回顾总结下HashMap和ConcurrentHashMap对比 ConcurrentHashMap 和 HashMap 两者的相同之处: 1.数组、链表结构几乎相同,所以底层对数据结构的操作思路是相同的(只是思路 相同,底层实现 不同); 2.都实现了 Map 接口,继承了 AbstractMap 抽象类,所以大多数的方法也都是相 同的, HashMap 有的方法,ConcurrentHashMap 几乎都有,所以当我们需要从 HashMap 切换到 ConcurrentHashMap 时,无需关心两者之间的兼容问题 不同点: 1.红黑树结构略有不同,HashMap 的红黑树中的节点叫做 TreeNode,TreeNode 不仅仅有属 性,还维护着红黑树的结构,比如说查找,新增等等; ConcurrentHashMap 中红黑树被拆分成 两块,TreeNode 仅仅维护的属性和查找 功能,新增了 TreeBin,来维护红黑树结构,并负责根 节点的加锁和解锁; 2.新增 ForwardingNode (转移)节点,扩容的时候会使用到,通过使用该节点, 来保证扩容时的线程安全。

剑曼红尘 2020-03-25 11:21:44 0 浏览量 回答数 0

回答

你这个问题可以抽象一下。令每个用户和每个IP存在一个以时间轴为基础的登陆数组(一维,下标是历史时间到现在的时间差,值是对应时间片比如分钟内的总登陆次数)。需要有以下基准动作。 每个时间,比如分钟,对整个数组进行移动。 当有新登陆上来,检测整个时间窗内的登陆总次数,比如你的时间窗是30分钟。如果总次数超过你设定的K(30),则对其禁止T(30)。如果没有超过K(30),你对时间窗最后的数据,进行较窄窗口(例如10分钟)再判断。如果总次数超过 K(10) 则对其禁止T(10)。如果小于 K(10),则对最小窗口进行判断,例如10分钟,如果总次数超过K(1),则对其禁止 T(10)。 禁止过程中,该IP,该用户被直接否定,但是上述对应数组的内容,仍然根据时间进行移动修正。将较老的数据刷掉。 当然这个是原理算法。如果这个算法思路符合你的目标。则后续会需要有优化的简化算法。基本思路是压缩上述所谓“数组”的存储空间,以及压缩上述刷新和移动,判断的计算步骤。 上述具备IP和用户对应的数组是动态的。每分钟,刷新时,需要将即便下一分钟产生一次登陆但不存在禁止的数组给删除掉。 而所谓数组,是通过bit来描述,比如每4个bit表示当前的分钟内的登录次数,如果是15次以上,假设你一定会禁止他,则仍然等于15次。类似这样。 而在刷新左移时,对每个分钟的登陆次数,修正加权值,并反馈到最新存储空间内,此时所有的判断都集中在最新存储空间判断,而不用任意判断都要累加操作。这种近似的优化算法,只要能达到目的就可以了。没有必要考虑因为精度问题导致结果的不完全一致性。######回复 @waney : 其实很简单。但是我难得搞公式编辑器了。######好复杂 听不懂,谢谢你。###### 登陆验证码, 登陆验证问题, 同用户名访问失败多次直接封用户一段时间, 如果还是继续尝试失败,直接封IP。 以上为个人意见。######回复 @JustForFly : 因为discuz有这些,根本起不到作用。######那我就不知道你还想要什么了######discuz 这些都有的###### 增加验证码,可避免一些简单的模拟登录; 增加登录失败次数检查,超过N次后禁用用户或IP若干时间; ######discuz 都有的######直接把用户隐射到MAP,不用查数据库,直接查询MAP ######先把数据库的用户查出来,引射到一个map对象,然后用户登录就直接去map对象里面匹配,比如5分钟或者10分钟把在把map里面的用户和数据库同步一次,呵呵,这个办法有点傻。######这个怎讲?听不懂。######这个事情很麻烦,一楼的方法是有效的。但是是针对用户存在IP绑定信息的情况下。当然大多数时刻也是如此。如果抽象来看,楼主也说了,模拟提交,或者从不同IP上大量测试用户名的方式,回避一楼的方案。这个问题但抽象的来看,几乎无解,因为问题和设计目标是矛盾的。还要看楼主其他方面的需求。最终想防止什么。 ######回复 @waney : 延迟,如果发现不匹配,SERVER等待2到3秒后在告知客户端。但客户端会采用无论是否回复,仍然发送新用户方式。######回复 @中山野鬼 : ip是变化的,验证那些都没有用,如果拒绝这类特定请求的频率过高的。######回复 @waney : 两个方案。延迟,绑定IP的锁定。前者方法很多,那些图片内部字符识别本身就是个延迟目的。不是考智商用的。######有人模拟大量提交,匹配然后获得匹配正确的用户名和密码。###### 既然是字典匹配 那肯定会出现大量 同一账号使用不同的错误密码登陆的记录了.. 可以从这方面下手...我的方案是:当检测到某一账号在一段时间内连续输错密码达到一定次数 则帐号进入内部锁定状态.当该帐号成功登陆之后,将无法进行任何操作.而是会进入一个锁定页面. 系统会要求该帐号进行解锁操作.解锁成功后,才能继续操作. 至于解锁操作的话最简单就是发一封邮件给用户注册邮箱,用户根据邮件提示解锁. 这样即使别人凭字典匹配到了密码也没用.而且一旦用户登陆之后发现自己的帐号被锁定就知道肯定有人尝试破解自己帐号的密码.那么此时也可以提示用户修改密码.这样最大限度的可以保证帐号安全了。######而且我没说要禁止...只是帐号置为 内部锁定状态. 你只需要检测用户是否登陆的时候检测是否处于锁定状态就可以了. 基本上只需要加一个字段和一小段代码的######呵呵 如果别人第一次就匹配到了密码 你怎么能知道这个人是不是帐号的拥有者呢. 不可能有100% 完美解决的方案的.######你不能保证别人不会第一次就匹配到正确的啊。而且全都加入禁止,那量不是一般的大啊,所以 我想寻求一个彻底的办法就是如何设置条件抛弃这个请求。###### 当然 上述方法也有缺陷.如果有人恶意用错误的密码尝试登陆某一账号将导致该帐号的用户每次登陆都要进行解锁操作. 那么就还需要一些其他的补充措施来进行完善了.例如:可设置一段时间内 帐号禁止进入锁定状态。###### 楼主,你这个是个博弈的过程。主要策略是延缓对方或者将对方行为区别于正常用户。如果是绑定IP比如3,4次登陆就锁定1分钟,对方可以替换IP,只要IP数量N足够多。上限仍然由他的IP数量决定。 如果你认为1分钟内如果登陆4次以上,就锁定这个IP30分钟。他完全可以每个IP每分钟就登陆4次,则没分钟也达到了4万次的用户访问检测。 但攻击者的IP数量如果不是非常多时,你可以尝试累计对IP进行长时间累计滤波观测。如果一个IP在1分钟内登录4次,在5分钟内登陆 10次,在30分钟内登陆 20次,则均对其锁定。 这样的目的是降低攻击者独立IP的使用价值。以和传统用户行为区别开来。 我先吃饭。回头给你个算法描述,解决这种问题。动态时间窗内的信号检测。######谢谢。

kun坤 2020-06-08 11:25:44 0 浏览量 回答数 0

问题

钉钉开放平台“常见问题常见问题常见问题“重要请关注

竹梅 2019-12-01 21:57:52 74299 浏览量 回答数 28

回答

Re我和iDBCloud登录数据库的故事 11到13年做DBA的时候,最早接触的是iDB,我的理解之所以叫iDB应该是表达我的数据库的含义吧,估计我还是上学的时候就已经有了,目前iDB已经迭代到3.0,明年初会发布4.0,从DBA视角上看iDB就是可以review业务SQL,自动执行线上DDL,业务数据提取的申请和审批,WEB上的数据查询,最近做产品经理后才有机会系统的审视iDB(一个包含研发支撑、安全管控的企业级数据库管理产品),支撑了淘宝、天猫、支付宝(现在叫蚂蚁金服)的研发流程,保障了每年的双十一,但iDB Cloud与iDB不是一个产品,iDB是企业版的数据库管理产品,iDB Cloud则定位于个人版数据管理,相比企业中的流程约束,iDB Cloud更期望给大家提供在约束下的易用性最大化的灵活数据管理服务! ------------------------- Re我和iDBCloud登录数据库的故事 这个月实例信息-实时性能UI改版发布,新版看起来还是比较舒服的!这个我在5元RDS大促时买的,没有跑业务,所以指标都是0,哈哈 实时性能的原型取自阿里DBA团队的传奇(朱旭)之手:orzdba,貌似很久之前已经开源,谷歌下便知! 翻出之前做DBA使用orzdba观察测试机器压测的截图,orzdba是用perl写的,检查项还是蛮多的,比如io吞吐量、rt、主机的load、swap、innodb row、innodb状态,这些是iDB Cloud没有的功能,iDB Cloud通过用户登录账号访问数据库,只能拿到MySQL进程内存中的状态信息,没有权限拿到主机指标,不过innodb相关信息是可以拿到的,但是考虑一般只有DBA才会关注这些细节,所以没开放,不知道大家还会关注什么指标?有没有办法拿到主机的指标? ------------------------- 回5楼ringtail的帖子 刷新页面,类似关闭并重新打开,啥都没了,这个应该是正常的行为,话说为什么要刷新呢,我记得首页性能指标每5分钟自动刷新,即使点击页面上提供的刷新是没啥事的,而实时性能是每4秒更新一行的,还有什么场景要刷洗整个页面是我没想到的吗? ------------------------- 回7楼ringtail的帖子 目前据我所知,真心还做不到刷新不丢iDB Cloud已经打开的选项卡、sql语句和执行结果什么的,现在只能在刷新时加一个“导航确认”,减少手痒式误刷新,哈哈 ------------------------- Re我和iDBCloud登录数据库的故事 翻工单时,发现有人关心使用iDB Cloud是否会收取流量费,我也没搞清楚,于是问了几个同事,终于把场景基本覆盖了,最终结论: 只要你不把你的RDS实例切换成外网(公网)模式的同时再导出或查询数据就不会收取流量费! 由于那几个工单已经关闭,我就在这里回复下大家,希望那几个朋友能看到 ------------------------- 回9楼yzsind的帖子 一定不会辜负领导的期望,努力工作,争取升职加薪,当上总经理,出任ceo,迎娶白富美,想想还有点小激动 ------------------------- 回10楼佩恩六道的帖子 可能文字不好理解整体的流量计费情况,中午用我那小学的美术细胞,完成了一副“巨作”! ------------------------- Re我和iDBCloud登录数据库的故事 刚才看到一个工单(iDB Cloud点击登录无效),这个工单已经处理完毕,但我觉得可以把售后同学的方法和大家分享下! 以后遇到点击登录无效、登录后菜单栏点击无效、页面展示不全,很可能是浏览器兼容设置的问题! 浏览器兼容设置的问题: 1.检查浏览器是否安装了AdBlockPlus(火狐浏览器的一个扩展),用火狐浏览器的用户遇到类似问题要注意这一点 2.IE浏览器的话就调整下兼容性模式(http://jingyan.baidu.com/article/fcb5aff791bb47edaa4a7115.html ),并进入开发者模式再测试下IDB Cloud 如果上述2招还是解决不了,记得留言给我! ------------------------- Re我和iDBCloud登录数据库的故事 今天看工单时发现有个朋友反馈,包含mediumblob类型字段的表在做导出后,导出文件中没有mediumblob类型字段! 其实导出时默认是不会导出BLOB类型字段,但是在导出-高级选项中是可以选择导出BLOB,但是BLOB字段只能以16进制格式导出,试想一个WORD文档或者一首歌曲,16进制导出后,没啥意义! BOLB字段支持WEB界面上传和下载,是原文件呀,哈哈! ------------------------- Re我和iDBCloud登录数据库的故事 未来几天休假,去考驾照 ------------------------- Re我和iDBCloud登录数据库的故事 看工单和论坛中,有用户会抱怨产品不好用,然后就消失了,真的好可惜! 作为产品经理是很想倾听这些抱怨背后的真实想法,期待可以直接对话,无论是功能缺失,还是操作不便,哪怕是使用上的一种感觉或产品散发的味道不对都可以,不求需求,只求对话! ------------------------- Re我和iDBCloud登录数据库的故事 感谢你的关注和支持! 产品说到底不是产品经理个人的,也不是哪个企业的,而是用户的产品,水能载舟亦能覆舟,产品经理和企业只不过在帮用户把需求实现而已,所以我们会一直坚持下去,坚持和用户一起把iDB Cloud做得更好 ------------------------- Re我和iDBCloud登录数据库的故事 最近几天公司感冒发烧的同学很多,我也是坚持了好几天才沦陷的,这是在我记忆中来杭州4年第一次发烧,看来20多年在东北积累的体质终于被消耗殆尽,不过意外收获是在高烧间隔清醒之际对最近自己的所作所为反倒有了一些悔悟,有些是工作上,有些是做人上 ------------------------- 回24楼zhouzhenxing的帖子 可以的,iDB Cloud对RDS公网和私网模式都是支持的! 你可以在RDS控制台-账号管理中 新建你的数据库账号,然后还是在RDS控制台的右上角,点击“登录数据库”就可以进入iDB Cloud了,建议你先自己试着玩玩,有困惑的话我们一同讨论 ------------------------- 回24楼zhouzhenxing的帖子 iDB Cloud在官网上有2个手册,写的比较官方,可能对你用处不大,我其实不太喜欢写什么手册,如果一个产品做的体验不好,只能靠手册来弥补还是有点low,不过我已经在想如何不low了,还是那句话 有困惑的话我们一同讨论 http://help.aliyun.com/doc/view/13526530.html?spm=0.0.0.0.6W7Qx1 http://help.aliyun.com/view/11108238_13861850.html?spm=5176.7224961.1997285473.4.Irtizv ------------------------- Re我和iDBCloud登录数据库的故事 都说在产品上做加法容易,做减法难,我理解无论产品功能还是工作上,给予总会得到别人的喜欢,而要求或收回时会得到对方的负面情绪,因此趋利避害,尽量不做减法,但有时候很难避免,这就要想想为什么要做减法? 多数都是之前错误选择,做了过多的加法,因为普通的加法很好做,人们往往会趋之如骛,但是真正、正确的加法是要在拒绝几十到上百种选择基础上的最终选择,将复杂解决方案以极简形式展现出来,而不是解决方案和功能的堆积,所以未经严格挑选的加法对产品是有害的,工作也一样,不要贸然接受新工作,保证核心精力投入到核心工作上,摊子铺得太大,一定会遇到心力瓶颈,而心力一旦枯竭,再强的脑力也无法施展,任何一项工作都是以大量心力付出为前提,脑力提升我找到了一些办法,心力提升却一筹莫展,所以只好专注,要不全心投入,要不置身事外,今后功能和工作都要适时做做减法了! ------------------------- Re我和iDBCloud登录数据库的故事 今天有个同事转给我一个工单,说从深圳云管理系统界面的iDB Cloud上看到库是utf8,而后端开发人员说库是gbk的,我查看了工单中截图附件(RDS控制台-参数设置),虽然从工单中无法完全断定用户遇到的问题,我还是大胆猜测下: 我看到截图上的character_set_server参数,首先character_set_server是RDS唯一开放的关于字符集的参数,但其实这个参数与用户在iDB Cloud上看到数据是否乱码没有关系,character_set_server其实就是默认的内部操作字符集,只有当字段->表->库都没有设置CHARACTER SET,才会使用character_set_server作为对应字段-表-库的默认字符集! 透露一个秘诀(传男也传女): (1)让你的字段-表-库的字符集都是utf8; (2)在iDB Cloud-命令窗口执行set names utf8;#会将character_set_client、character_set_connection和character_set_results都设置成utf8 只要让(1)和(2)字符集保持一致(utf8、gbk、latin1等),乱码就搞定了! 不清楚为什么截图会变成上面这样!把在iDB Cloud-命令窗口上执行的命令和结果也粘下 mysql>set names gbk; 执行成功,花费 7.59 ms. mysql>show  variables like '%char%'; +--------------------------+----------------------------------+ | Variable_name            | Value                            | +--------------------------+----------------------------------+ | character_set_client     | gbk                              | | character_set_connection | gbk                              | | character_set_database   | gbk                              | | character_set_filesystem | binary                           | | character_set_results    | gbk                              | | character_set_server     | gbk                              | | character_set_system     | utf8                             | | character_sets_dir       | /u01/mysql/share/mysql/charsets/ | +--------------------------+----------------------------------+ 共返回 8 行记录,花费 10.51 ms. mysql>set names utf8; 执行成功,花费 7.32 ms. mysql>show  variables like '%char%'; +--------------------------+----------------------------------+ | Variable_name            | Value                            | +--------------------------+----------------------------------+ | character_set_client     | utf8                             | | character_set_connection | utf8                             | | character_set_database   | gbk                              | | character_set_filesystem | binary                           | | character_set_results    | utf8                             | | character_set_server     | gbk                              | | character_set_system     | utf8                             | | character_sets_dir       | /u01/mysql/share/mysql/charsets/ | +--------------------------+----------------------------------+ 共返回 8 行记录,花费 10.32 ms. ------------------------- Re我和iDBCloud登录数据库的故事 你的专属BUG: 发现时间 资深用户 专属BUG 2015-02-03 23:06 啊啊啊啊8  实例信息-实时性能-参数说明-【delete】 表示InnoDB存储引擎表的写入(删除)记录行数 ------------------------- Re我和iDBCloud登录数据库的故事 用户“夫子然”反馈说iDB Cloud感觉没phpMyAdmin方便! 非常感谢这个用户的反馈,我先谈下我的理解,每个人使用产品都有一些固定的用例(use case),我无法承诺针对任何人的任何用例,都做到最短操作路径(方便),这个用户抛出的问题也是我一直在思考的,虽然无法100%,但是我们可以覆盖主流用例,只要绝大多数的常规操作室是方便的,少数非经常用的操作路径长点,应该能接受吧,我们已经在行动! 今天iDB Cloud发布了2.0.2,一个主要变化就是在左侧对象列表上增加了“列”和“索引”,正是我们分析数据看到在众多数据库对象中表的操作是最频繁的,而在表的操作中“列“和”索引“是最频繁的,这个版本将对“列”和“索引”的操作前置,缩短了主流用例路径,与用户“夫子然”的建议不谋而合,这只是开始,只要我们深挖,与功能和体验死磕,终有一天会让大家说iDB Cloud比phpMyAdmin方便! ------------------------- 回31楼sqlserverdba的帖子 非常感谢! 有你们作为后盾,有用户支持,才有iDB Cloud的现在和未来! ------------------------- 消失了几天,终于把科目三和科目四搞定了,昨天终于拿到驾照了之前在【17楼】总结了科目二的一些体会,今天也分享下科目三的一点点感受! 考试前几天,教练说是智能考(据说智能考比较简单,通过率很高),结果就留出考前2天练车时间,结果阴差阳错的换成了人工考(貌似是我们车是4个大老爷们,听教练说他一年最多抽到2次人工考就算多的啦,对此我只能呵呵),现在的问题就来了,4个人2天练车时间,一个人半天,那就从早到晚的练呗,我先简单描述下整个过程! 1.心态(1)从开始练车到考试通过,心情没有特别大的起伏,不过考前失眠还是有的,哈哈(2)另外三个人,有的信心满满,有的吊儿郎当,有的不言不语,我应该也属于不言不语那种 2.练习(1)4个人轮流练,虽然一天下来很累,但还能挺住,开的时好时坏,不过总体上在变好(2)开车的时候几乎意识不到什么的,关键是在后座自己去琢磨,回忆自己错在哪里,为什么会错 3.考试(1)考试单上说7:00考试,结果在寒风中等了1个小时,终于盼来了考官,一共5辆车考试,我们是第二辆车(2)第一辆车是2男2女,2女都挂,当时我们第二辆车是被要求跟在第一辆车后面的,所以看的一清二楚,比如连续3次手刹未放下导致起步失败、4档走转弯到对向车道等(3)接下来到我们了,4男0女,结果挂了2男(信心满满和吊儿郎当) 上面只是简单介绍了科目三过程,下面才是干货! 每年都有成千上万的人拿到驾照,我不认为自己牛,只是把我个人的应对方法和背后的原因拿出来分享下!练车其实就是教练的心智模型-翻译-语言-反译-我们的心智模型,让我们知道在什么情况做什么动作,预测路况,只要我们关于开车拥有了自己的心智模,开车就变成了一种本能,就像一旦学会了骑自行车,很难失去这种技能,在练车之前,我们是有自己关于开车的心智模型的,正所谓没吃过猪肉也见过猪跑,但是我们想想自己关于开车的心智模型是正确的吗?显然不是,不信你就试试去开车吧,抛开被交警抓之外,我想应该也能开起来,至于开的好不好,会不会一直开得好,我说不准,但是绝大多数人一定是开不好的,所以我们报驾校,除了硬性法律规定,驾校教练的确交会了很多东西,虽然很多是应试的技巧,这里就顺便说下这些技巧,技巧具体内容每家教练都会教的,而我想说的技巧其实就是“语言”,通过教练的“心智模型”-翻译出来的“语言”,接下来我们要做什么,“反译”将教练开车技巧的“语言”理解,首先你要虚心去接受,然后再去观察或运用,根据反馈把坏的放弃,把好的保留以便修正自己关于开车的“心智模型”,而“心智模型”最快速的形成方式就是亲身体验,所以一定要实战、要开车,还要经常开车,不断改进关于开车的“心智模型”,拿3个案例具体说下吧!【吊儿郎当】这两天都是下午才过来练车,开车时教练说一句话,他有十句等着,其中五句是解释自己为什么要这么做,另外五句是在问如果这种情况应该怎么做,如果那种情况怎么做,总是在关注自己想象中的场景,而不关注自己正在体验的场景,所以学来学去还是最初始的关于开车的“心智模型”,失败在“反译”这一步,认为只要听过就会了,结果被考官判直接挂掉并不予补考机会 【信心满满】与我们一直练车,对教练的话言听计从,而且也理解了,如果是上学时的考试或科目三智能考试一定没问题,但是面对人工考,评判是由交警而不是电脑,结果转向时没有观察后视镜,被考官迫停在路中间后开始补考,然后还是转向时没有观察后视镜,在路中间起步,之前学的技巧中没有应对的方法,结果还是挂了,教练也很惋惜,如果说他的失败,败于没有改进自己关于开车的“心智模型”,其实“反译”他做的很好,但是在运用、观察和反馈分析上做的不好,“心智模型”不是统一的标准,一定是个性化的,一定是自己认为是好的反馈、行为积累起来的,也只有“心智模型”才能在任何情况下帮助你做出判断,判断效果就取决于“心智模型”是否成熟,成熟的“心智模型”可以让在紧张、突发等情况下依然做出正确的判断,因为那是一种本能 【我】总说别人不好之处,也谈谈我自己,自然这些都是我事后分析总结的,练车过程中可没有感受到,我做的事情也很简单,就是“反译”和改进我的“心智模型”,“反译”,教练说什么,我就听什么,开车时来不及想,就在后座时在脑中模拟上演之前的场景并不断上演我不断修正的剧本,比如我的离合器总是抬的很快,经常熄火,特别是在路况复杂、指令突然时根本来不及思考如何应对,只能靠本能的时候,往往还是会快速抬离合器,因为我的“心智模型”中就是这么认为的,你可以说是离合器太低、座位太靠后,这些都是理由,如果是理由,那就去解决吧!我是这样做的,强制自己将抬离合器的动作拆成3步,即使不开车时也经常练习,慢慢的就变成了“心智模型”的一部分,自然在任何场景下都不会再出现离合器抬快熄火的情况了,这只是一个细节,其他细节也是类似,慢慢我的“心智模型”就建立起来了,开车技巧是很有用的,关键是你要理解这些技巧是要解决什么问题,你要解决相同问题时的做法是否相同,如果有不同之处是否正确,要去不断验证,如果是正确的,就改进到你的“心智模型”吧! PD不光光是要把产品做好,我认为一个好PD应该能让整个世界变得更好! ------------------------- Re我和iDBCloud登录数据库的故事 近期iDB Cloud将更名:DMS DMS (data management service) 数据管理服务 iDB Cloud从RDS起步,目前已经覆盖包括RDS、ADS、TAE,未来2个月还会覆盖万网和DRDS,同时ECS也开始兼容,“DMS”请各位新老用户,继续支持! ------------------------- Re我和iDBCloud登录数据库的故事 1.使用HTTPS iDB Cloud这个4月份中旬版本就会支持HTTPS,敬请期待! 2.设置账号是否允许登录iDB 3.31 会发布一个版本,这版本其中一个功能就是授权登录,允许实例owner设置该实例是否允许别人访问,允许谁可以访问 有如此心犀相通的用户,夫复何求!!! 还有什么建议? ------------------------- 回38楼pillowsky的帖子 好的,我先逐条对照分析下 ------------------------- Re我和iDBCloud登录数据库的故事 RDS数据库?RDS控制台-账号管理,检查下账号对不对,不行就重置密码 ------------------------- Re我和iDBCloud登录数据库的故事 3.31 DMS(原iDB Cloud) 在RDS上新版本发布! 【实例授权】 DMS for MySQL 2.1发布! 【会话统计】 DMS for SQL Server 2.0发布! 【E-R图】 【对象列表】 ------------------------- Re我和iDBCloud登录数据库的故事 你是想听客服回复?算了,我还是从DMS PD 看RDS的视角来分享下吧! RDS是一个数据库,在数据库之外包装了一些东西,帮用户做了备份恢复、HA、监控等,回到你提到的账号,root账号在MySQL里是权限最大的,也是风险最大的,为了保证RDS这些备份恢复、HA能7*24小时为你服务,所以就不能让你的账号去影响到这些组件,不然你一个误操作把实例关闭了怎么办,但是我承认目前RDS在控制台上提供的账号的确限制比较死,所以在RDS上你是无法获取root账号的,话说你要root权限做什么,你说的数据库创建在RDS控制台上提供功能了 ------------------------- 回46楼苗教授的帖子 客气了,也不知道能不能帮上你! 如果从外看RDS的使用的话,可以在RDS控制台上去管理RDS实例(用用就熟悉了),或者直接调用OPEN API来完成实例管理操作,然后针对RDS实例中数据管理,就可以登录DMS,有几个常用链接发你看看,有问题可以在这里继续探讨! DMS: http://idb.rds.aliyun.com/ DMS 功能介绍: http://docs.aliyun.com/#/rds/getting-started/database-manage&login-database OPEN API: http://docs.aliyun.com/?spm=5176.383715.9.5.1LioEO#/rds/open-api/abstract RDS控制台: https://rds.console.aliyun.com/console/index#/

佩恩六道 2019-12-02 01:21:37 0 浏览量 回答数 0

问题

安全技术百问,老板再也不用担心病毒勒索了!

yq传送门 2019-12-01 20:11:52 24648 浏览量 回答数 15

问题

动态规划的实际应用:图片压缩算法 6月15日 【今日算法】

游客ih62co2qqq5ww 2020-06-17 02:16:53 12 浏览量 回答数 1

问题

【今日算法】备战大厂必备题目,持续更新

游客ih62co2qqq5ww 2020-04-08 09:21:40 3542 浏览量 回答数 4

回答

一、软件篇 1、设定虚拟内存 硬盘中有一个很宠大的数据交换文件,它是系统预留给虚拟内存作暂存的地方,很多应用程序都经常会使用到,所以系统需要经常对主存储器作大量的数据存取,因此存取这个档案的速度便构成影响计算机快慢的非常重要因素!一般Windows预设的是由系统自行管理虚拟内存,它会因应不同程序所需而自动调校交换档的大小,但这样的变大缩小会给系统带来额外的负担,令系统运作变慢!有见及此,用户最好自定虚拟内存的最小值和最大值,避免经常变换大小。要设定虚拟内存,在“我的电脑”上按右键选择“属性”,在“高级”选项里的“效能”的对话框中,对“虚拟内存”进行设置。 3、检查应用软件或者驱动程序 有些程序在电脑系统启动会时使系统变慢。如果要是否是这方面的原因,我们可以从“安全模式”启动。因为这是原始启动,“安全模式”运行的要比正常运行时要慢。但是,如果你用“安全模式”启动发现电脑启动速度比正常启动时速度要快,那可能某个程序是导致系统启动速度变慢的原因。 4、桌面图标太多会惹祸 桌面上有太多图标也会降低系统启动速度。Windows每次启动并显示桌面时,都需要逐个查找桌面快捷方式的图标并加载它们,图标越多,所花费的时间当然就越多。同时有些杀毒软件提供了系统启动扫描功能,这将会耗费非常多的时间,其实如果你已经打开了杀毒软件的实时监视功能,那么启动时扫描系统就显得有些多余,还是将这项功能禁止吧! 建议大家将不常用的桌面图标放到一个专门的文件夹中或者干脆删除! 5、ADSL导致的系统启动变慢 默认情况下Windows XP在启动时会对网卡等网络设备进行自检,如果发现网卡的IP地址等未配置好就会对其进行设置,这可能是导致系统启动变慢的真正原因。这时我们可以打开“本地连接”属性菜单,双击“常规”项中的“Internet协议”打开“TCP/IP属性”菜单。将网卡的IP地址配置为一个在公网(默认的网关是192.168.1.1)中尚未使用的数值如192.168.1.X,X取介于2~255之间的值,子网掩码设置为255.255.255.0,默认网关和DNS可取默认设置。 6、字体对速度的影响 虽然 微软 声称Windows操作系统可以安装1000~1500种字体,但实际上当你安装的字体超过500 种时,就会出现问题,比如:字体从应用程序的字体列表中消失以及Windows的启动速度大幅下降。在此建议最好将用不到或者不常用的字体删除,为避免删除后发生意外,可先进行必要的备份。 7、删除随机启动程序 何谓随机启动程序呢?随机启动程序就是在开机时加载的程序。随机启动程序不但拖慢开机时的速度,而且更快地消耗计算机资源以及内存,一般来说,如果想删除随机启动程序,可去“启动”清单中删除,但如果想详细些,例如是QQ、popkiller 之类的软件,是不能在“启动”清单中删除的,要去“附属应用程序”,然后去“系统工具”,再去“系统信息”,进去后,按上方工具列的“工具”,再按“系统组态编辑程序”,进去后,在“启动”的对话框中,就会详细列出在启动电脑时加载的随机启动程序了!XP系统你也可以在“运行”是输入Msconfig调用“系统配置实用程序”才终止系统随机启动程序,2000系统需要从XP中复制msconfig程序。 8、取消背景和关闭activedesktop 不知大家有否留意到,我们平时一直摆放在桌面上漂亮的背景,其实是很浪费计算机资源的!不但如此,而且还拖慢计算机在执行应用程序时的速度!本想美化桌面,但又拖慢计算机的速度,这样我们就需要不在使用背景了,方法是:在桌面上按鼠标右键,再按内容,然后在“背景”的对话框中,选“无”,在“外观”的对话框中,在桌面预设的青绿色,改为黑色......至于关闭activedesktop,即是叫你关闭从桌面上的web画面,例如在桌面上按鼠标右键,再按内容,然后在“背景”的对话框中,有一幅背景,名为Windows XX,那副就是web画面了!所以如何系统配置不高就不要开启。 10、把Windows变得更苗条 与DOS系统相比,Windows过于庞大,而且随着你每天的操作,安装新软件、加载运行库、添加新游戏等等使得它变得更加庞大,而更为重要的是变大的不仅仅是它的目录,还有它的 注册表 和运行库。因为即使删除了某个程序,可是它使用的DLL文件仍然会存在,因而随着使用日久,Windows的启动和退出时需要加载的DLL动态链接库文件越来越大,自然系统运行速度也就越来越慢了。这时我们就需要使用一些彻底删除DLL的程序,它们可以使Windows恢复苗条的身材。建议极品玩家们最好每隔两个月就重新安装一遍Windows,这很有效。 11、更改系统开机时间 虽然你已知道了如何新增和删除一些随机启动程序,但你又知不知道,在开机至到进入Windows的那段时间,计算机在做着什么呢?又或者是,执行着什么程序呢?那些程序,必定要全部载完才开始进入Windows,你有否想过,如果可删除一些不必要的开机时的程序,开机时的速度会否加快呢?答案是会的!想要修改,可按"开始",选"执行",然后键入win.ini,开启后,可以把以下各段落的内容删除,是删内容,千万不要连标题也删除!它们包括:[compatibility]、[compatibility32]、[imecompatibility]、[compatibility95]、[modulecompatibility]和[embedding]。 二、硬件篇 1、Windows系统自行关闭硬盘DMA模式 硬盘的DMA模式大家应该都知道吧,硬盘的PATA模式有DMA33、DMA66、DMA100和DMA133,最新的SATA-150都出来了!一般来说现在大多数人用的还是PATA模式的硬盘,硬盘使用DMA模式相比以前的PIO模式传输的速度要快2~8倍。DMA模式的起用对系统的性能起到了实质的作用。但是你知道吗?Windows 2000、XP、2003系统有时会自行关闭硬盘的DMA模式,自动改用PIO模式运行!这就造成在使用以上系统中硬盘性能突然下降,其中最明显的现象有:系统起动速度明显变慢,一般来说正常Windows XP系统启动时那个由左向右运动的滑条最多走2~4次系统就能启动,但这一问题发生时可能会走5~8次或更多!而且在运行系统时进行硬盘操作时明显感觉变慢,在运行一些大的软件时CPU占用率时常达到100%而产生停顿,玩一些大型3D游戏时画面时有明显停顿,出现以上问题时大家最好看看自己硬盘的DMA模式是不是被Windows 系统自行关闭了。查看自己的系统是否打开DMA模式: a. 双击“管理工具”,然后双击“计算机管理”; b. 单击“系统工具”,然后单击“设备管理器”; c. 展开“IDE ATA/ATAPI 控制器”节点; d. 双击您的“主要IDE控制器”; 2、CPU 和风扇是否正常运转并足够制冷 当CPU风扇转速变慢时,CPU本身的温度就会升高,为了保护CPU的安全,CPU就会自动降低运行频率,从而导致计算机运行速度变慢。有两个方法检测CPU的温度。你可以用“手指测法”用手指试一下处理器的温度是否烫手,但是要注意的是采用这种方法必须先拔掉电源插头,然后接一根接地线来防止身上带的静电击穿CPU以至损坏。另一个比较科学的方法是用带感温器的万用表来检测处理器的温度。 因为处理器的种类和型号不同,合理温度也各不相同。但是总的来说,温度应该低于 110 度。如果你发现处理器的测试高于这处温度,检查一下机箱内的风扇是否正常运转。 3、USB和扫描仪造成的影响 由于Windows 启动时会对各个驱动器(包括光驱)进行检测,因此如果光驱中放置了光盘,也会延长电脑的启动时间。所以如果电脑安装了扫描仪等设备,或在启动时已经连接了USB硬盘,那么不妨试试先将它们断开,看看启动速度是不是有变化。一般来说,由于USB接口速度较慢,因此相应设备会对电脑启动速度有较明显的影响,应该尽量在启动后再连接USB设备。如果没有USB设备,那么建议直接在BIOS设置中将USB功能关闭。 4、是否使用了磁盘压缩 因为“磁盘压缩”可能会使电脑性能急剧下降,造成系统速度的变慢。所以这时你应该检测一下是否使用了“磁盘压缩”,具体操作是在“我的电脑”上点击鼠标右键,从弹出的菜单选择“属性”选项,来检查驱动器的属性。 5、网卡造成的影响 只要设置不当,网卡也会明显影响系统启动速度,你的电脑如果连接在局域网内,安装好网卡驱动程序后,默认情况下系统会自动通过DHCP来获得IP地址,但大多数公司的局域网并没有DHCP服务器,因此如果用户设置成“自动获得IP地址”,系统在启动时就会不断在网络中搜索DHCP 服务器,直到获得IP 地址或超时,自然就影响了启动时间,因此局域网用户最好为自己的电脑指定固定IP地址。 6、文件夹和打印机共享 安装了Windows XP专业版的电脑也会出现启动非常慢的时候,有些时候系统似乎给人死机的感觉,登录系统后,桌面也不出现,电脑就像停止反应,1分钟后才能正常使用。这是由于使用了Bootvis.exe 程序后,其中的Mrxsmb.dll文件为电脑启动添加了67秒的时间! 要解决这个问题,只要停止共享文件夹和打印机即可:选择“开始→设置→网络和拨号连接”,右击“本地连接”,选择“属性”,在打开的窗口中取消“此连接使用下列选定的组件”下的“ Microsoft 网络的文件和打印机共享”前的复选框,重启电脑即可。 7、系统配件配置不当 一些用户在组装机器时往往忽略一些小东西,从而造成计算机整体配件搭配不当,存在着速度上的瓶颈。比如有些朋友选的CPU档次很高,可声卡等却买了普通的便宜货,其实这样做往往是得不偿失。因为这样一来计算机在运行游戏、播放影碟时由于声卡占用CPU资源较高且其数据传输速度较慢,或者其根本无硬件解码而需要采用软件解码方式,常常会引起声音的停顿,甚至导致程序的运行断断续续。又如有些朋友的机器是升了级的,过去老机器上的一些部件如内存条舍不得抛弃,装在新机器上照用,可是由于老内存的速度限制,往往使新机器必须降低速度来迁就它,从而降低了整机的性能,极大地影响了整体的运行速度。 9、断开不用的网络驱动器 为了消除或减少 Windows 必须重新建立的网络连接数目,建议将一些不需要使用的网络驱动器断开,也就是进入“我的电脑”,右击已经建立映射的网络驱动器,选择“断开”即可。 10、缺少足够的内存 Windows操作系统所带来的优点之一就是多线性、多任务,系统可以利用CPU来进行分时操作,以便你同时做许多事情。但事情有利自然有弊,多任务操作也会对你的机器提出更高的要求。朋友们都知道即使是一个最常用的WORD软件也要求最好有16MB左右的内存,而运行如3D MAX等大型软件时,64MB的内存也不够用。所以此时系统就会自动采用硬盘空间来虚拟主内存,用于运行程序和储存交换文件以及各种临时文件。由于硬盘是机械结构,而内存是电子结构,它们两者之间的速度相差好几个数量级,因而使用硬盘来虚拟主内存将导致程序运行的速度大幅度降低。 11、硬盘空间不足 使用Windows系统平台的缺点之一就是对文件的管理不清楚,你有时根本就不知道这个文件对系统是否有用,因而Windows目录下的文件数目越来越多,容量也越来越庞大,加之现在的软件都喜欢越做越大,再加上一些系统产生的临时文件、交换文件,所有这些都会使得硬盘可用空间变小。当硬盘的可用空间小到一定程度时,就会造成系统的交换文件、临时文件缺乏可用空间,降低了系统的运行效率。更为重要的是由于我们平时频繁在硬盘上储存、删除各种软件,使得硬盘的可用空间变得支离破碎,因此系统在存储文件时常常没有按连续的顺序存放,这将导致系统存储和读取文件时频繁移动磁头,极大地降低了系统的运行速度。 12、硬盘分区太多也有错 如果你的Windows 2000没有升级到SP3或SP4,并且定义了太多的分区,那么也会使启动变得很漫长,甚至挂起。所以建议升级最新的SP4,同时最好不要为硬盘分太多的区。因为Windows 在启动时必须装载每个分区,随着分区数量的增多,完成此操作的时间总量也会不断增长。 三、病毒篇 如果你的计算机感染了病毒,那么系统的运行速度会大幅度变慢。病毒入侵后,首先占领内存这个据点,然后便以此为根据地在内存中开始漫无休止地复制自己,随着它越来越庞大,很快就占用了系统大量的内存,导致正常程序运行时因缺少主内存而变慢,甚至不能启动;同时病毒程序会迫使CPU转而执行无用的垃圾程序,使得系统始终处于忙碌状态,从而影响了正常程序的运行,导致计算机速度变慢。下面我们就介绍几种能使系统变慢的病毒。 1、使系统变慢的bride病毒 病毒类型:黑客程序 发作时间:随机 传播方式:网络 感染对象:网络 警惕程度:★★★★ 病毒介绍: 此病毒可以在Windows 2000、Windows XP等操作系统环境下正常运行。运行时会自动连接 www.hotmail.com网站,如果无法连接到此网站,则病毒会休眠几分钟,然后修改注册表将自己加入注册表自启动项,病毒会释放出四个病毒体和一个有漏洞的病毒邮件并通过邮件系统向外乱发邮件,病毒还会释放出FUNLOVE病毒感染局域网计算机,最后病毒还会杀掉已知的几十家反病毒软件,使这些反病毒软件失效。 病毒特征 如果用户发现计算机中有这些特征,则很有可能中了此病毒。 ·病毒运行后会自动连接 www.hotmail.com网站。 ·病毒会释放出Bride.exe,Msconfig.exe,Regedit.exe三个文件到系统目录;释放出:Help.eml, Explorer.exe文件到桌面。 ·病毒会在注册表的HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionRun项中加入病毒Regedit.exe的路径。 ·病毒运行时会释放出一个FUNLOVE病毒并将之执行,而FUNLOVE病毒会在计算机中大量繁殖,造成系统变慢,网络阻塞。 ·病毒会寻找计算机中的邮件地址,然后按照地址向外大量发送标题为:<被感染的计算机机名>(例:如果用户的计算机名为:张冬, 则病毒邮件的标题为:张冬)的病毒邮件。 ·病毒还会杀掉几十家国外著名的反病毒软件。 用户如果在自己的计算机中发现以上全部或部分现象,则很有可能中了Bride(Worm.bride)病毒,请用户立刻用手中的杀毒软件进行清除。 2、使系统变慢的阿芙伦病毒 病毒类型:蠕虫病毒 发作时间:随机 传播方式:网络/文件 感染对象:网络 警惕程度:★★★★ 病毒介绍: 此病毒可以在Windows 9X、Windows NT、Windows 2000、Windows XP等操作系统环境下正常运行。病毒运行时将自己复到到TEMP、SYSTEM、RECYCLED目录下,并随机生成文件名。该病毒运行后,会使消耗大量的系统资源,使系统明显变慢,并且杀掉一些正在运行的反病毒软件,建立四个线程在局域网中疯狂传播。 病毒特征 如果用户发现计算机中有这些特征,则很有可能中了此病毒: ·病毒运行时会将自己复到到TEMP、SYSTEM、RECYCLED目录下,文件名随机 ·病毒运行时会使系统明显变慢 ·病毒会杀掉一些正在运行的反病毒软件 ·病毒会修改注册表的自启动项进行自启动 ·病毒会建立四个线程在局域网中传播 用户如果在自己的计算机中发现以上全部或部分现象,则很有可能中了“阿芙伦(Worm.Avron)”病毒,由于此病毒没有固定的病毒文件名,所以,最好还是选用杀毒软件进行清除。 3、恶性蠕虫 震荡波 病毒名称: Worm.Sasser 中文名称: 震荡波 病毒别名: W32/Sasser.worm [Mcafee] 病毒类型: 蠕虫 受影响系统:WinNT/Win2000/WinXP/Win2003 病毒感染症状: ·莫名其妙地死机或重新启动计算机; ·系统速度极慢,cpu占用100%; ·网络变慢; ·最重要的是,任务管理器里有一个叫"avserve.exe"的进程在运行! 破坏方式: ·利用WINDOWS平台的 Lsass 漏洞进行广泛传播,开启上百个线程不停攻击其它网上其它系统,堵塞网络。病毒的攻击行为可让系统不停的倒计时重启。 ·和最近出现的大部分蠕虫病毒不同,该病毒并不通过邮件传播,而是通过命令易受感染的机器 下载特定文件并运行,来达到感染的目的。 ·文件名为:avserve.exe 解决方案: ·请升级您的操作系统,免受攻击 ·请打开个人防火墙屏蔽端口:445、5554和9996,防止名为avserve.exe的程序访问网络 ·手工解决方案: 首先,若系统为WinMe/WinXP,则请先关闭系统还原功能; 步骤一,使用进程程序管理器结束病毒进程 右键单击任务栏,弹出菜单,选择“任务管理器”,调出“Windows任务管理器”窗口。在任务管理器中,单击“进程”标签,在例表栏内找到病毒进程“avserve.exe”,单击“结束进程按钮”,点击“是”,结束病毒进程,然后关闭“Windows任务管理器”; 步骤二,查找并删除病毒程序 通过“我的电脑”或“资源管理器”进入 系统安装目录(Winnt或windows),找到文件“avser ve.exe”,将它删除;然后进入系统目录(Winntsystem32或windowssystem32),找 到文件"*_up.exe", 将它们删除; 步骤三,清除病毒在注册表里添加的项 打开注册表编辑器: 点击开始——>运行, 输入REGEDIT, 按Enter; 在左边的面板中, 双击(按箭头顺序查找,找到后双击): HKEY_CURRENT_USERSOFTWAREMicrosoftWindowsCurrentVersionRun 在右边的面板中, 找到并删除如下项目:"avserve.exe" = %SystemRoot%avserve.exe 关闭注册表编辑器。 第二部份 系统加速 一、Windows 98 1、不要加载太多随机启动程序 不要在开机时载入太多不必要的随机启动程序。选择“开始→程序→附件→系统工具→系统信息→系统信息对话框”,然后,选择“工具→系统配置实用程序→启动”,只需要internat.exe前打上钩,其他项都可以不需要,选中后确定重起即可。 2、转换系统文件格式 将硬盘由FAT16转为FAT32。 3、不要轻易使用背景 不要使用ActiveDesktop,否则系统运行速度会因此减慢(右击屏幕→寻显示器属性→Web标签→将其中关于“活动桌面”和“频道”的选项全部取消)。 4、设置虚拟内存 自己设定虚拟内存为机器内存的3倍,例如:有32M的内存就设虚拟内存为96M,且最大值和最小值都一样(此设定可通过“控制面板→系统→性能→虚拟内存”来设置)。 5、一些优化设置 a、到控制面板中,选择“系统→性能→ 文件系统”。将硬盘标签的“计算机主要用途”改为网络服务器,“预读式优化"调到全速。 b、将“软盘”标签中“每次启动就搜寻新的软驱”取消。 c、CD-ROM中的“追加高速缓存”调至最大,访问方式选四倍速或更快的CD-ROM。 6、定期对系统进行整理 定期使用下列工具:磁盘扫描、磁盘清理、碎片整理、系统文件检查器(ASD)、Dr?Watson等。 二、Windows 2000 1、升级文件系统 a、如果你所用的操作系统是win 9x与win 2000双重启动的话,建议文件系统格式都用FAT32格式,这样一来可以节省硬盘空间,二来也可以9x与2000之间能实行资源共享。 提醒:要实现这样的双重启动,最好是先在纯DOS环境下安装完9x在C区,再在9x中或者用win 2000启动盘启动在DOS环境下安装2000在另一个区内,并且此区起码要有800M的空间以上 b、如果阁下只使用win 2000的话,建议将文件系统格式转化为NTFS格式,这样一来可节省硬盘空间,二来稳定性和运转速度更高,并且此文件系统格式有很好的纠错性;但这样一来,DOS和win 9x系统就不能在这文件系统格式中运行,这也是上面所说做双启动最好要用FAT32格式才能保证资源共享的原因。而且,某些应用程序也不能在此文件系统格式中运行,大多是DOS下的游戏类。 提醒:在win 2000下将文件系统升级为NTFS格式的方法是,点击“开始-程序-附件”选中“命令提示符”,然后在打开的提示符窗口输入"convert drive_letter:/fs:ntfs",其中的"drive"是你所要升级的硬盘分区符号,如C区;还需要说明的是,升级文件系统,不会破坏所升级硬盘分区里的文件,无需要备份。 · 再运行“添加-删除程序”,就会看见多出了个“添加/删除 Windows 组件”的选项; b、打开“文件夹选项”,在“查看”标签里选中“显示所有文件和文件夹”,此时在你安装win 2000下的区盘根目录下会出现Autoexec.bat和Config.sys两个文件,事实上这两个文件里面根本没有任何内容,可以将它们安全删除。 c、右击“我的电脑”,选中“管理”,在点“服务和应用程序”下的“服务”选项,会看见win 2000上加载的各个程序组见,其中有许多是关于局域网设置或其它一些功能的,你完全可以将你不使用的程序禁用; 如:Alertr,如果你不是处于局域网中,完全可以它设置为禁用;还有Fax Service,不发传真的设置成禁用;Print Spooler,没有打印机的设置成制用;Uninterruptible power Supply,没有UPS的也设置成禁用,这些加载程序你自己可以根据自己实际情况进行设置。 各个加载程序后面都有说明,以及运行状态;选中了要禁用的程序,右击它,选“属性”,然后单击停止,并将“启动类型”设置为“手动”或者“已禁用”就行了 d、关掉调试器Dr. Watson; 运行drwtsn32,把除了“转储全部线程上下文”之外的全都去掉。否则一旦有程序出错,硬盘会响很久,而且会占用很多空间。如果你以前遇到过这种情况,请查找user.dmp文件并删掉,可能会省掉几十兆的空间。这是出错程序的现场,对我们没用。另外蓝屏时出现的memory.dmp也可删掉。可在我的电脑/属性中关掉 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:15:52 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 阿里云双十一主会场 阿里云双十一新人会场 1024程序员加油包 阿里云双十一拼团会场 场景化解决方案 阿里云双十一直播大厅