• 关于

    显著图可以做什么

    的搜索结果

回答

不幸的是,上一张幻灯片介绍的情况也会在这里出现,比如这是所有车的集合,如果你只合成这些车中很小的子集,对于人眼来说也许这样合成图像没什么问题,但你的学习算法可能会对合成的这一个小子集过拟合。特别是很多人都独立提出了一个想法,一旦你找到一个电脑游戏,里面车辆渲染的画面很逼真,那么就可以截图,得到数量巨大的汽车图片数据集。事实证明,如果你仔细观察一个视频游戏,如果这个游戏只有20辆独立的车,那么这游戏看起来还行。因为你是在游戏里开车,你只看到这20辆车,这个模拟看起来相当逼真。但现实世界里车辆的设计可不只20种,如果你用着20量独特的车合成的照片去训练系统,那么你的神经网络很可能对这20辆车过拟合,但人类很难分辨出来。即使这些图像看起来很逼真,你可能真的只用了所有可能出现的车辆的很小的子集。 所以,总而言之,如果你认为存在数据不匹配问题,我建议你做错误分析,或者看看训练集,或者看看开发集,试图找出,试图了解这两个数据分布到底有什么不同,然后看看是否有办法收集更多看起来像开发集的数据作训练。 我们谈到其中一种办法是人工数据合成,人工数据合成确实有效。在语音识别中。我已经看到人工数据合成显著提升了已经非常好的语音识别系统的表现,所以这是可行的。但当你使用人工数据合成时,一定要谨慎,要记住你有可能从所有可能性的空间只选了很小一部分去模拟数据。

因为相信,所以看见。 2020-05-20 17:32:53 0 浏览量 回答数 0

问题

PHP开发中的外围资源性能分析(一)

sunny夏筱 2019-12-01 21:45:29 6222 浏览量 回答数 1

回答

青年人心动过速不必紧张 众所周知,心脏是人体的重要器官,它位于胸腔中间偏左的部位,前面是胸骨和肋骨,后面频临食管和脊柱,它的大小约和自己的拳头相等。 人的一生,心脏始终是不眠不休地工作着,除非生命结束,心脏才会停止跳动。由于心脏不断地收缩和舒张,血管中的血液才能循环不息地流动,人才得以生存。心脏跳动时,心尖撞击胸壁,在左侧乳头附近,形成心尖搏动,消瘦而胸壁较薄的人,可以清楚地看到或用手触摸到心脏在跳动。 在正常情况下,成年人心跳一分钟在60—80次之间,但在安静状态下如果心跳每分钟过100次,就是“心动过速”,亦称“心悸”。 “心动过速”不是病名,而是一个症状。引起心动过速的原因千差万别,最多见的是心脏本身有病,如各种类型的心脏病,心肌炎,心力衰竭等。患了全身性疾病如贫血、发热、急、慢性感染、休克、甲状腺机能亢进,煤气中毒,也会引致心动过速。正常人在运动或情绪激动时,服烈酒、浓茶、浓咖啡或多吸烟以及服用了某些药物等,都可使心动加速。 青年人心动过速为什么不必紧张呢? 因为导致青年人心动过速最主要、最多见的原因,是由于功能性植物神经紊乱所致,这一点已经被越来越多的临床病例和心脏病专家所证实。 多数患心悸的青年男女来见医生时心情都很紧张,但给他们做了听诊和有关项目的全身检查后,发现除心率过快外,其他检查该属正常。患者除感心慌外,多有头晕、乏力精神焕散以及失眠、多梦等神经衰弱症状。 心动过速在青年人中甚普遍,据临床资料统计,占所有青年人就诊率16.8%,临床上称为“青春期心动过速”。 那么,青春期植物神经为什么会紊乱呢? 因为青春期是身体由基本成熟到完全成熟的过渡阶段。在这个时期,青年的身体及其各种重要脏器如心、肺、脑、生殖器等都在迅速地改变,而所有这些变化,又都是由神经系统和内分泌系统所支配的。 在神经系统中,有一种植物神经,它的中枢不在大脑皮质,而是在皮质下的下视丘中枢,所以,它不受人的意志所支配。植物神经调节交感神经和迷走神经协调和平衡,以适应外界环境的变化,运筹帏幄全在不言中。 但是,青春期的植物神经功能一般都不稳定,很容易出现紊乱或功能失调。心动过速就是由于植物神经统帅下的交感神经(使心动加速)和迷走神经(抑制心跳)协作失调,交感神经占了主导地位。换言之,心动过速的发生,主要与迷走神经的张力降低及交感神经兴奋有关。不过,这只是暂时障碍,不须特殊治疗,过了青春期,心悸也就自愈了。 青春期心动过速虽不是器质性病变,但心跳加速时,特别是心率超过每分钟140次,也是很不舒服的,所以心动过速在每分钟120次以上时,就应该适当休息,服一些调节植物神经平衡的药。在120次以下的,一般不须休息,适当用些药就可以了。 综上所述,青年人应抱着“坦坦无忧愁”的乐观态度正确对待心动过速,不要为暂时的青春期障碍背上思想包袱,应该精神饱满地学习和工作,参加各项社会活动和体育锻炼。实践证明,适当的活动和锻炼,常可使症状减轻。吸烟,过量饮酒或饮浓茶、咖啡等,常使心跳更快,因此应该戒烟酒、精神愉快、生活规律,是根治心动过速的必由之路。 在正常情况下,成年人心跳一分钟在60—80次之间,亦称“心悸”。 “心动过速”不是病名,而是一个症状。 去做个心电图,有可能是心脏疾病,排除以后考虑是生理性的心动过速,可以不用治疗.正常成年人安静时的心率有显著的个体差异,平均在75次/分左右(60—100次/分之间).心率可因年龄,性别及其它生理情况而不同. 生理性心率过速是很常见的,许多因素都影响心率,如体位改变,体力活动,食物消化,情绪焦虑,妊娠,兴奋,恐惧,激动,饮酒,吸烟,饮茶等,都可使心率增快.此外,年龄也是一个因素,儿童心率往往较快.病理性心率过速可分为窦性心率过速和阵发性室上性心动过速两种.特点是心率加快和转慢都是逐渐进行,一般每分钟心率不会超过140次,多数无心脏器质性病变,患者一般无明显不适,有时有心慌,气短等症状.如果是持续性心动过速,则一定要查明原因,及早针对病因进行治疗. 一个人正常情况下的心跳应该是窦性心律(60-100/分).过慢称为“窦性心动过缓”,超过100/分为“窦性心动过速).出现这种过快心律引起的原因一般情况下是:1,运动;2,睡眠不足;3,感冒发热;4,炎性病变等 1,调整休息时间,注意保暖,预防感冒. 2,如3-5天还未恢复,就应作一个心电图检查,同时再作一次(血液)心肌酶谱检查,以明确是否已患上急性心肌炎或者心肌缺血

祁同伟 2019-12-02 01:27:28 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

最大限度利用 JavaScript 和 Ajax 性能:报错

kun坤 2020-06-05 22:56:50 0 浏览量 回答数 1

问题

VPC网络架构助力媒体数字化转型

福利达人 2019-12-01 21:09:15 3511 浏览量 回答数 0

回答

在批评Python的讨论中,常常说起Python多线程是多么的难用。还有人对 global interpreter lock(也被亲切的称为“GIL”)指指点点,说它阻碍了Python的多线程程序同时运行。因此,如果你是从其他语言(比如C++或Java)转过来的话,Python线程模块并不会像你想象的那样去运行。必须要说明的是,我们还是可以用Python写出能并发或并行的代码,并且能带来性能的显著提升,只要你能顾及到一些事情。如果你还没看过的话,我建议你看看Eqbal Quran的文章《Ruby中的并发和并行》。 在本文中,我们将会写一个小的Python脚本,用于下载Imgur上最热门的图片。我们将会从一个按顺序下载图片的版本开始做起,即一个一个地下载。在那之前,你得注册一个Imgur上的应用。如果你还没有Imgur账户,请先注册一个。 本文中的脚本在Python3.4.2中测试通过。稍微改一下,应该也能在Python2中运行——urllib是两个版本中区别最大的部分。 1、开始动手让我们从创建一个叫“download.py”的Python模块开始。这个文件包含了获取图片列表以及下载这些图片所需的所有函数。我们将这些功能分成三个单独的函数: get_links download_link setup_download_dir 第三个函数,“setup_download_dir”,用于创建下载的目标目录(如果不存在的话)。 Imgur的API要求HTTP请求能支持带有client ID的“Authorization”头部。你可以从你注册的Imgur应用的面板上找到这个client ID,而响应会以JSON进行编码。我们可以使用Python的标准JSON库去解码。下载图片更简单,你只需要根据它们的URL获取图片,然后写入到一个文件即可。 代码如下: import jsonimport loggingimport osfrom pathlib import Pathfrom urllib.request import urlopen, Request logger = logging.getLogger(__name__) def get_links(client_id): headers = {'Authorization': 'Client-ID {}'.format(client_id)} req = Request('https://api.imgur.com/3/gallery/', headers=headers, method='GET') with urlopen(req) as resp: data = json.loads(resp.readall().decode('utf-8')) return map(lambda item: item['link'], data['data']) def download_link(directory, link): logger.info('Downloading %s', link) download_path = directory / os.path.basename(link) with urlopen(link) as image, download_path.open('wb') as f: f.write(image.readall()) def setup_download_dir(): download_dir = Path('images') if not download_dir.exists(): download_dir.mkdir() return download_dir接下来,你需要写一个模块,利用这些函数去逐个下载图片。我们给它命名为“single.py”。它包含了我们最原始版本的Imgur图片下载器的主要函数。这个模块将会通过环境变量“IMGUR_CLIENT_ID”去获取Imgur的client ID。它将会调用“setup_download_dir”去创建下载目录。最后,使用get_links函数去获取图片的列表,过滤掉所有的GIF和专辑URL,然后用“download_link”去将图片下载并保存在磁盘中。下面是“single.py”的代码: import loggingimport osfrom time import time from download import setup_download_dir, get_links, download_link logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')logging.getLogger('requests').setLevel(logging.CRITICAL)logger = logging.getLogger(__name__) def main(): ts = time() client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] for link in links: download_link(download_dir, link) print('Took {}s'.format(time() - ts)) if name == '__main__': main()注:为了测试方便,上面两段代码可以用如下代码替代演示: coding=utf-8 测试utf-8编码 from time import sleep, timeimport sys, threading reload(sys)sys.setdefaultencoding('utf-8') def getNums(N): return xrange(N) def processNum(num): num_add = num + 1 sleep(1) print str(threading.current_thread()) + ": " + str(num) + " → " + str(num_add) if name == "__main__": t1 = time() for i in getNums(3): processNum(i) print "cost time is: {:.2f}s".format(time() - t1) 结果: <_MainThread(MainThread, started 4436)>: 0 → 1<_MainThread(MainThread, started 4436)>: 1 → 2<_MainThread(MainThread, started 4436)>: 2 → 3cost time is: 3.00s在我的笔记本上,这个脚本花了19.4秒去下载91张图片。请注意这些数字在不同的网络上也会有所不同。19.4秒并不是非常的长,但是如果我们要下载更多的图片怎么办呢?或许是900张而不是90张。平均下载一张图片要0.2秒,900张的话大概需要3分钟。那么9000张图片将会花掉30分钟。好消息是使用了并发或者并行后,我们可以将这个速度显著地提高。 接下来的代码示例将只会显示导入特有模块和新模块的import语句。所有相关的Python脚本都可以在这方便地找到this GitHub repository。 2、使用线程线程是最出名的实现并发和并行的方式之一。操作系统一般提供了线程的特性。线程比进程要小,而且共享同一块内存空间。 在这里,我们将写一个替代“single.py”的新模块。它将创建一个有八个线程的池,加上主线程的话总共就是九个线程。之所以是八个线程,是因为我的电脑有8个CPU内核,而一个工作线程对应一个内核看起来还不错。在实践中,线程的数量是仔细考究的,需要考虑到其他的因素,比如在同一台机器上跑的的其他应用和服务。 下面的脚本几乎跟之前的一样,除了我们现在有个新的类,DownloadWorker,一个Thread类的子类。运行无限循环的run方法已经被重写。在每次迭代时,它调用“self.queue.get()”试图从一个线程安全的队列里获取一个URL。它将会一直堵塞,直到队列中出现一个要处理元素。一旦工作线程从队列中得到一个元素,它将会调用之前脚本中用来下载图片到目录中所用到的“download_link”方法。下载完成之后,工作线程向队列发送任务完成的信号。这非常重要,因为队列一直在跟踪队列中的任务数。如果工作线程没有发出任务完成的信号,“queue.join()”的调用将会令整个主线程都在阻塞状态。 from queue import Queuefrom threading import Thread class DownloadWorker(Thread): def __init__(self, queue): Thread.__init__(self) self.queue = queue def run(self): while True: # Get the work from the queue and expand the tuple # 从队列中获取任务并扩展tuple directory, link = self.queue.get() download_link(directory, link) self.queue.task_done() def main(): ts = time() client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] # Create a queue to communicate with the worker threads queue = Queue() # Create 8 worker threads # 创建八个工作线程 for x in range(8): worker = DownloadWorker(queue) # Setting daemon to True will let the main thread exit even though the workers are blocking # 将daemon设置为True将会使主线程退出,即使worker都阻塞了 worker.daemon = True worker.start() # Put the tasks into the queue as a tuple # 将任务以tuple的形式放入队列中 for link in links: logger.info('Queueing {}'.format(link)) queue.put((download_dir, link)) # Causes the main thread to wait for the queue to finish processing all the tasks # 让主线程等待队列完成所有的任务 queue.join() print('Took {}'.format(time() - ts))注:为了测试方便,上面的代码可以用如下代码替代演示: coding=utf-8 测试utf-8编码 from Queue import Queuefrom threading import Threadfrom single import *import sys reload(sys)sys.setdefaultencoding('utf-8') class ProcessWorker(Thread): def __init__(self, queue): Thread.__init__(self) self.queue = queue def run(self): while True: # Get the work from the queue num = self.queue.get() processNum(num) self.queue.task_done() def main(): ts = time() nums = getNums(4) # Create a queue to communicate with the worker threads queue = Queue() # Create 4 worker threads # 创建四个工作线程 for x in range(4): worker = ProcessWorker(queue) # Setting daemon to True will let the main thread exit even though the workers are blocking # 将daemon设置为True将会使主线程退出,即使worker都阻塞了 worker.daemon = True worker.start() # Put the tasks into the queue for num in nums: queue.put(num) # Causes the main thread to wait for the queue to finish processing all the tasks # 让主线程等待队列完成所有的任务 queue.join() print("cost time is: {:.2f}s".format(time() - ts)) if name == "__main__": main() 结果: : 3 → 4: 2 → 3: 1 → 2 : 0 → 1cost time is: 1.01s在同一个机器上运行这个脚本,下载时间变成了4.1秒!即比之前的例子快4.7倍。虽然这快了很多,但还是要提一下,由于GIL的缘故,在这个进程中同一时间只有一个线程在运行。因此,这段代码是并发的但不是并行的。而它仍然变快的原因是这是一个IO密集型的任务。进程下载图片时根本毫不费力,而主要的时间都花在了等待网络上。这就是为什么线程可以提供很大的速度提升。每当线程中的一个准备工作时,进程可以不断转换线程。使用Python或其他有GIL的解释型语言中的线程模块实际上会降低性能。如果你的代码执行的是CPU密集型的任务,例如解压gzip文件,使用线程模块将会导致执行时间变长。对于CPU密集型任务和真正的并行执行,我们可以使用多进程(multiprocessing)模块。 官方的Python实现——CPython——带有GIL,但不是所有的Python实现都是这样的。比如,IronPython,使用.NET框架实现的Python就没有GIL,基于Java实现的Jython也同样没有。你可以点这查看现有的Python实现。 3、生成多进程多进程模块比线程模块更易使用,因为我们不需要像线程示例那样新增一个类。我们唯一需要做的改变在主函数中。 为了使用多进程,我们得建立一个多进程池。通过它提供的map方法,我们把URL列表传给池,然后8个新进程就会生成,它们将并行地去下载图片。这就是真正的并行,不过这是有代价的。整个脚本的内存将会被拷贝到各个子进程中。在我们的例子中这不算什么,但是在大型程序中它很容易导致严重的问题。 from functools import partialfrom multiprocessing.pool import Pool def main(): ts = time() client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] download = partial(download_link, download_dir) with Pool(8) as p: p.map(download, links) print('Took {}s'.format(time() - ts))注:为了测试方便,上面的代码可以用如下代码替代演示: coding=utf-8 测试utf-8编码 from functools import partialfrom multiprocessing.pool import Poolfrom single import *from time import time import sys reload(sys)sys.setdefaultencoding('utf-8') def main(): ts = time() nums = getNums(4) p = Pool(4) p.map(processNum, nums) print("cost time is: {:.2f}s".format(time() - ts)) if name == "__main__": main() 结果: <_MainThread(MainThread, started 6188)>: 0 → 1<_MainThread(MainThread, started 3584)>: 1 → 2<_MainThread(MainThread, started 2572)>: 3 → 4<_MainThread(MainThread, started 4692)>: 2 → 3 cost time is: 1.21s4、分布式任务你已经知道了线程和多进程模块可以给你自己的电脑跑脚本时提供很大的帮助,那么在你想要在不同的机器上执行任务,或者在你需要扩大规模而超过一台机器的的能力范围时,你该怎么办呢?一个很好的使用案例是网络应用的长时间后台任务。如果你有一些很耗时的任务,你不会希望在同一台机器上占用一些其他的应用代码所需要的子进程或线程。这将会使你的应用的性能下降,影响到你的用户们。如果能在另外一台甚至很多台其他的机器上跑这些任务就好了。 Python库RQ非常适用于这类任务。它是一个简单却很强大的库。首先将一个函数和它的参数放入队列中。它将函数调用的表示序列化(pickle),然后将这些表示添加到一个Redis列表中。任务进入队列只是第一步,什么都还没有做。我们至少还需要一个能去监听任务队列的worker(工作线程)。 第一步是在你的电脑上安装和使用Redis服务器,或是拥有一台能正常的使用的Redis服务器的使用权。接着,对于现有的代码只需要一些小小的改动。先创建一个RQ队列的实例并通过redis-py 库传给一台Redis服务器。然后,我们执行“q.enqueue(download_link, download_dir, link)”,而不只是调用“download_link” 。enqueue方法的第一个参数是一个函数,当任务真正执行时,其他的参数或关键字参数将会传给该函数。 最后一步是启动一些worker。RQ提供了方便的脚本,可以在默认队列上运行起worker。只要在终端窗口中执行“rqworker”,就可以开始监听默认队列了。请确认你当前的工作目录与脚本所在的是同一个。如果你想监听别的队列,你可以执行“rqworker queue_name”,然后将会开始执行名为queue_name的队列。RQ的一个很好的点就是,只要你可以连接到Redis,你就可以在任意数量上的机器上跑起任意数量的worker;因此,它可以让你的应用扩展性得到提升。下面是RQ版本的代码: from redis import Redisfrom rq import Queue def main(): client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] q = Queue(connection=Redis(host='localhost', port=6379)) for link in links: q.enqueue(download_link, download_dir, link) 然而RQ并不是Python任务队列的唯一解决方案。RQ确实易用并且能在简单的案例中起到很大的作用,但是如果有更高级的需求,我们可以使用其他的解决方案(例如 Celery)。 5、总结如果你的代码是IO密集型的,线程和多进程可以帮到你。多进程比线程更易用,但是消耗更多的内存。如果你的代码是CPU密集型的,多进程就明显是更好的选择——特别是所使用的机器是多核或多CPU的。对于网络应用,在你需要扩展到多台机器上执行任务,RQ是更好的选择。 6、注:关于并发、并行区别与联系并发是指,程序在运行的过程中存在多于一个的执行上下文。这些执行上下文一般对应着不同的调用栈。 在单处理器上,并发程序虽然有多个上下文运行环境,但某一个时刻只有一个任务在运行。 但在多处理器上,因为有了多个执行单元,就可以同时有数个任务在跑。 这种物理上同一时刻有多个任务同时运行的方式就是并行。 和并发相比,并行更加强调多个任务同时在运行。 而且并行还有一个层次问题,比如是指令间的并行还是任务间的并行。

xuning715 2019-12-02 01:10:11 0 浏览量 回答数 0

回答

在批评Python的讨论中,常常说起Python多线程是多么的难用。还有人对 global interpreter lock(也被亲切的称为“GIL”)指指点点,说它阻碍了Python的多线程程序同时运行。因此,如果你是从其他语言(比如C++或Java)转过来的话,Python线程模块并不会像你想象的那样去运行。必须要说明的是,我们还是可以用Python写出能并发或并行的代码,并且能带来性能的显著提升,只要你能顾及到一些事情。如果你还没看过的话,我建议你看看Eqbal Quran的文章《Ruby中的并发和并行》。 在本文中,我们将会写一个小的Python脚本,用于下载Imgur上最热门的图片。我们将会从一个按顺序下载图片的版本开始做起,即一个一个地下载。在那之前,你得注册一个Imgur上的应用。如果你还没有Imgur账户,请先注册一个。 本文中的脚本在Python3.4.2中测试通过。稍微改一下,应该也能在Python2中运行——urllib是两个版本中区别最大的部分。 1、开始动手让我们从创建一个叫“download.py”的Python模块开始。这个文件包含了获取图片列表以及下载这些图片所需的所有函数。我们将这些功能分成三个单独的函数: get_links download_link setup_download_dir 第三个函数,“setup_download_dir”,用于创建下载的目标目录(如果不存在的话)。 Imgur的API要求HTTP请求能支持带有client ID的“Authorization”头部。你可以从你注册的Imgur应用的面板上找到这个client ID,而响应会以JSON进行编码。我们可以使用Python的标准JSON库去解码。下载图片更简单,你只需要根据它们的URL获取图片,然后写入到一个文件即可。 代码如下: import jsonimport loggingimport osfrom pathlib import Pathfrom urllib.request import urlopen, Request logger = logging.getLogger(__name__) def get_links(client_id): headers = {'Authorization': 'Client-ID {}'.format(client_id)} req = Request('https://api.imgur.com/3/gallery/', headers=headers, method='GET') with urlopen(req) as resp: data = json.loads(resp.readall().decode('utf-8')) return map(lambda item: item['link'], data['data']) def download_link(directory, link): logger.info('Downloading %s', link) download_path = directory / os.path.basename(link) with urlopen(link) as image, download_path.open('wb') as f: f.write(image.readall()) def setup_download_dir(): download_dir = Path('images') if not download_dir.exists(): download_dir.mkdir() return download_dir接下来,你需要写一个模块,利用这些函数去逐个下载图片。我们给它命名为“single.py”。它包含了我们最原始版本的Imgur图片下载器的主要函数。这个模块将会通过环境变量“IMGUR_CLIENT_ID”去获取Imgur的client ID。它将会调用“setup_download_dir”去创建下载目录。最后,使用get_links函数去获取图片的列表,过滤掉所有的GIF和专辑URL,然后用“download_link”去将图片下载并保存在磁盘中。下面是“single.py”的代码: import loggingimport osfrom time import time from download import setup_download_dir, get_links, download_link logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')logging.getLogger('requests').setLevel(logging.CRITICAL)logger = logging.getLogger(__name__) def main(): ts = time() client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] for link in links: download_link(download_dir, link) print('Took {}s'.format(time() - ts)) if name == '__main__': main()注:为了测试方便,上面两段代码可以用如下代码替代演示: coding=utf-8 测试utf-8编码 from time import sleep, timeimport sys, threading reload(sys)sys.setdefaultencoding('utf-8') def getNums(N): return xrange(N) def processNum(num): num_add = num + 1 sleep(1) print str(threading.current_thread()) + ": " + str(num) + " → " + str(num_add) if name == "__main__": t1 = time() for i in getNums(3): processNum(i) print "cost time is: {:.2f}s".format(time() - t1) 结果: <_MainThread(MainThread, started 4436)>: 0 → 1<_MainThread(MainThread, started 4436)>: 1 → 2<_MainThread(MainThread, started 4436)>: 2 → 3cost time is: 3.00s在我的笔记本上,这个脚本花了19.4秒去下载91张图片。请注意这些数字在不同的网络上也会有所不同。19.4秒并不是非常的长,但是如果我们要下载更多的图片怎么办呢?或许是900张而不是90张。平均下载一张图片要0.2秒,900张的话大概需要3分钟。那么9000张图片将会花掉30分钟。好消息是使用了并发或者并行后,我们可以将这个速度显著地提高。 接下来的代码示例将只会显示导入特有模块和新模块的import语句。所有相关的Python脚本都可以在这方便地找到this GitHub repository。 2、使用线程线程是最出名的实现并发和并行的方式之一。操作系统一般提供了线程的特性。线程比进程要小,而且共享同一块内存空间。 在这里,我们将写一个替代“single.py”的新模块。它将创建一个有八个线程的池,加上主线程的话总共就是九个线程。之所以是八个线程,是因为我的电脑有8个CPU内核,而一个工作线程对应一个内核看起来还不错。在实践中,线程的数量是仔细考究的,需要考虑到其他的因素,比如在同一台机器上跑的的其他应用和服务。 下面的脚本几乎跟之前的一样,除了我们现在有个新的类,DownloadWorker,一个Thread类的子类。运行无限循环的run方法已经被重写。在每次迭代时,它调用“self.queue.get()”试图从一个线程安全的队列里获取一个URL。它将会一直堵塞,直到队列中出现一个要处理元素。一旦工作线程从队列中得到一个元素,它将会调用之前脚本中用来下载图片到目录中所用到的“download_link”方法。下载完成之后,工作线程向队列发送任务完成的信号。这非常重要,因为队列一直在跟踪队列中的任务数。如果工作线程没有发出任务完成的信号,“queue.join()”的调用将会令整个主线程都在阻塞状态。 from queue import Queuefrom threading import Thread class DownloadWorker(Thread): def __init__(self, queue): Thread.__init__(self) self.queue = queue def run(self): while True: # Get the work from the queue and expand the tuple # 从队列中获取任务并扩展tuple directory, link = self.queue.get() download_link(directory, link) self.queue.task_done() def main(): ts = time() client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] # Create a queue to communicate with the worker threads queue = Queue() # Create 8 worker threads # 创建八个工作线程 for x in range(8): worker = DownloadWorker(queue) # Setting daemon to True will let the main thread exit even though the workers are blocking # 将daemon设置为True将会使主线程退出,即使worker都阻塞了 worker.daemon = True worker.start() # Put the tasks into the queue as a tuple # 将任务以tuple的形式放入队列中 for link in links: logger.info('Queueing {}'.format(link)) queue.put((download_dir, link)) # Causes the main thread to wait for the queue to finish processing all the tasks # 让主线程等待队列完成所有的任务 queue.join() print('Took {}'.format(time() - ts))注:为了测试方便,上面的代码可以用如下代码替代演示: coding=utf-8 测试utf-8编码 from Queue import Queuefrom threading import Threadfrom single import *import sys reload(sys)sys.setdefaultencoding('utf-8') class ProcessWorker(Thread): def __init__(self, queue): Thread.__init__(self) self.queue = queue def run(self): while True: # Get the work from the queue num = self.queue.get() processNum(num) self.queue.task_done() def main(): ts = time() nums = getNums(4) # Create a queue to communicate with the worker threads queue = Queue() # Create 4 worker threads # 创建四个工作线程 for x in range(4): worker = ProcessWorker(queue) # Setting daemon to True will let the main thread exit even though the workers are blocking # 将daemon设置为True将会使主线程退出,即使worker都阻塞了 worker.daemon = True worker.start() # Put the tasks into the queue for num in nums: queue.put(num) # Causes the main thread to wait for the queue to finish processing all the tasks # 让主线程等待队列完成所有的任务 queue.join() print("cost time is: {:.2f}s".format(time() - ts)) if name == "__main__": main() 结果: : 3 → 4: 2 → 3: 1 → 2 : 0 → 1cost time is: 1.01s在同一个机器上运行这个脚本,下载时间变成了4.1秒!即比之前的例子快4.7倍。虽然这快了很多,但还是要提一下,由于GIL的缘故,在这个进程中同一时间只有一个线程在运行。因此,这段代码是并发的但不是并行的。而它仍然变快的原因是这是一个IO密集型的任务。进程下载图片时根本毫不费力,而主要的时间都花在了等待网络上。这就是为什么线程可以提供很大的速度提升。每当线程中的一个准备工作时,进程可以不断转换线程。使用Python或其他有GIL的解释型语言中的线程模块实际上会降低性能。如果你的代码执行的是CPU密集型的任务,例如解压gzip文件,使用线程模块将会导致执行时间变长。对于CPU密集型任务和真正的并行执行,我们可以使用多进程(multiprocessing)模块。 官方的Python实现——CPython——带有GIL,但不是所有的Python实现都是这样的。比如,IronPython,使用.NET框架实现的Python就没有GIL,基于Java实现的Jython也同样没有。你可以点这查看现有的Python实现。 3、生成多进程多进程模块比线程模块更易使用,因为我们不需要像线程示例那样新增一个类。我们唯一需要做的改变在主函数中。 为了使用多进程,我们得建立一个多进程池。通过它提供的map方法,我们把URL列表传给池,然后8个新进程就会生成,它们将并行地去下载图片。这就是真正的并行,不过这是有代价的。整个脚本的内存将会被拷贝到各个子进程中。在我们的例子中这不算什么,但是在大型程序中它很容易导致严重的问题。 from functools import partialfrom multiprocessing.pool import Pool def main(): ts = time() client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] download = partial(download_link, download_dir) with Pool(8) as p: p.map(download, links) print('Took {}s'.format(time() - ts))注:为了测试方便,上面的代码可以用如下代码替代演示: coding=utf-8 测试utf-8编码 from functools import partialfrom multiprocessing.pool import Poolfrom single import *from time import time import sys reload(sys)sys.setdefaultencoding('utf-8') def main(): ts = time() nums = getNums(4) p = Pool(4) p.map(processNum, nums) print("cost time is: {:.2f}s".format(time() - ts)) if name == "__main__": main() 结果: <_MainThread(MainThread, started 6188)>: 0 → 1<_MainThread(MainThread, started 3584)>: 1 → 2<_MainThread(MainThread, started 2572)>: 3 → 4<_MainThread(MainThread, started 4692)>: 2 → 3 cost time is: 1.21s4、分布式任务你已经知道了线程和多进程模块可以给你自己的电脑跑脚本时提供很大的帮助,那么在你想要在不同的机器上执行任务,或者在你需要扩大规模而超过一台机器的的能力范围时,你该怎么办呢?一个很好的使用案例是网络应用的长时间后台任务。如果你有一些很耗时的任务,你不会希望在同一台机器上占用一些其他的应用代码所需要的子进程或线程。这将会使你的应用的性能下降,影响到你的用户们。如果能在另外一台甚至很多台其他的机器上跑这些任务就好了。 Python库RQ非常适用于这类任务。它是一个简单却很强大的库。首先将一个函数和它的参数放入队列中。它将函数调用的表示序列化(pickle),然后将这些表示添加到一个Redis列表中。任务进入队列只是第一步,什么都还没有做。我们至少还需要一个能去监听任务队列的worker(工作线程)。 第一步是在你的电脑上安装和使用Redis服务器,或是拥有一台能正常的使用的Redis服务器的使用权。接着,对于现有的代码只需要一些小小的改动。先创建一个RQ队列的实例并通过redis-py 库传给一台Redis服务器。然后,我们执行“q.enqueue(download_link, download_dir, link)”,而不只是调用“download_link” 。enqueue方法的第一个参数是一个函数,当任务真正执行时,其他的参数或关键字参数将会传给该函数。 最后一步是启动一些worker。RQ提供了方便的脚本,可以在默认队列上运行起worker。只要在终端窗口中执行“rqworker”,就可以开始监听默认队列了。请确认你当前的工作目录与脚本所在的是同一个。如果你想监听别的队列,你可以执行“rqworker queue_name”,然后将会开始执行名为queue_name的队列。RQ的一个很好的点就是,只要你可以连接到Redis,你就可以在任意数量上的机器上跑起任意数量的worker;因此,它可以让你的应用扩展性得到提升。下面是RQ版本的代码: from redis import Redisfrom rq import Queue def main(): client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] q = Queue(connection=Redis(host='localhost', port=6379)) for link in links: q.enqueue(download_link, download_dir, link) 然而RQ并不是Python任务队列的唯一解决方案。RQ确实易用并且能在简单的案例中起到很大的作用,但是如果有更高级的需求,我们可以使用其他的解决方案(例如 Celery)。 5、总结如果你的代码是IO密集型的,线程和多进程可以帮到你。多进程比线程更易用,但是消耗更多的内存。如果你的代码是CPU密集型的,多进程就明显是更好的选择——特别是所使用的机器是多核或多CPU的。对于网络应用,在你需要扩展到多台机器上执行任务,RQ是更好的选择。 6、注:关于并发、并行区别与联系并发是指,程序在运行的过程中存在多于一个的执行上下文。这些执行上下文一般对应着不同的调用栈。 在单处理器上,并发程序虽然有多个上下文运行环境,但某一个时刻只有一个任务在运行。 但在多处理器上,因为有了多个执行单元,就可以同时有数个任务在跑。 这种物理上同一时刻有多个任务同时运行的方式就是并行。 和并发相比,并行更加强调多个任务同时在运行。 而且并行还有一个层次问题,比如是指令间的并行还是任务间的并行。

xuning715 2019-12-02 01:10:10 0 浏览量 回答数 0

问题

如何优化网站的访问速度

cnsjw 2019-12-01 21:00:50 29372 浏览量 回答数 35

问题

【阿里云产品公测】以开发者角度看ACE服务『ACE应用构建指南』

mr_wid 2019-12-01 21:10:06 20092 浏览量 回答数 6

问题

MaxCompute产品简介:通告

行者武松 2019-12-01 22:01:10 1613 浏览量 回答数 0

问题

10个迷惑新手的Cocoa,Objective-c开发难点和问题? 400 报错

爱吃鱼的程序员 2020-05-31 00:44:29 0 浏览量 回答数 1

回答

请参考个人博客:https://blog.csdn.net/u010870518/article/details/79450295 在进一步分析为什么MySQL数据库索引选择使用B+树之前,我相信很多小伙伴对数据结构中的树还是有些许模糊的,因此我们由浅入深一步步探讨树的演进过程,在一步步引出B树以及为什么MySQL数据库索引选择使用B+树! 学过数据结构的一般对最基础的树都有所认识,因此我们就从与我们主题更为相近的二叉查找树开始。 一、二叉查找树 (1)二叉树简介: 二叉查找树也称为有序二叉查找树,满足二叉查找树的一般性质,是指一棵空树具有如下性质: 1、任意节点左子树不为空,则左子树的值均小于根节点的值; 2、任意节点右子树不为空,则右子树的值均大于于根节点的值; 3、任意节点的左右子树也分别是二叉查找树; 4、没有键值相等的节点; 上图为一个普通的二叉查找树,按照中序遍历的方式可以从小到大的顺序排序输出:2、3、5、6、7、8。 对上述二叉树进行查找,如查键值为5的记录,先找到根,其键值是6,6大于5,因此查找6的左子树,找到3;而5大于3,再找其右子树;一共找了3次。如果按2、3、5、6、7、8的顺序来找同样需求3次。用同样的方法在查找键值为8的这个记录,这次用了3次查找,而顺序查找需要6次。计算平均查找次数得:顺序查找的平均查找次数为(1+2+3+4+5+6)/ 6 = 3.3次,二叉查找树的平均查找次数为(3+3+3+2+2+1)/6=2.3次。二叉查找树的平均查找速度比顺序查找来得更快。 (2)局限性及应用 一个二叉查找树是由n个节点随机构成,所以,对于某些情况,二叉查找树会退化成一个有n个节点的线性链。如下图: 大家看上图,如果我们的根节点选择是最小或者最大的数,那么二叉查找树就完全退化成了线性结构。上图中的平均查找次数为(1+2+3+4+5+5)/6=3.16次,和顺序查找差不多。显然这个二叉树的查询效率就很低,因此若想最大性能的构造一个二叉查找树,需要这个二叉树是平衡的(这里的平衡从一个显著的特点可以看出这一棵树的高度比上一个输的高度要大,在相同节点的情况下也就是不平衡),从而引出了一个新的定义-平衡二叉树AVL。 二、AVL树 (1)简介 AVL树是带有平衡条件的二叉查找树,一般是用平衡因子差值判断是否平衡并通过旋转来实现平衡,左右子树树高不超过1,和红黑树相比,它是严格的平衡二叉树,平衡条件必须满足(所有节点的左右子树高度差不超过1)。不管我们是执行插入还是删除操作,只要不满足上面的条件,就要通过旋转来保持平衡,而旋转是非常耗时的,由此我们可以知道AVL树适合用于插入删除次数比较少,但查找多的情况。 从上面是一个普通的平衡二叉树,这张图我们可以看出,任意节点的左右子树的平衡因子差值都不会大于1。 (2)局限性 由于维护这种高度平衡所付出的代价比从中获得的效率收益还大,故而实际的应用不多,更多的地方是用追求局部而不是非常严格整体平衡的红黑树。当然,如果应用场景中对插入删除不频繁,只是对查找要求较高,那么AVL还是较优于红黑树。 (3)应用 1、Windows NT内核中广泛存在; 三、红黑树 (1)简介 一种二叉查找树,但在每个节点增加一个存储位表示节点的颜色,可以是red或black。通过对任何一条从根到叶子的路径上各个节点着色的方式的限制,红黑树确保没有一条路径会比其它路径长出两倍。它是一种弱平衡二叉树(由于是若平衡,可以推出,相同的节点情况下,AVL树的高度低于红黑树),相对于要求严格的AVL树来说,它的旋转次数变少,所以对于搜索、插入、删除操作多的情况下,我们就用红黑树。 (2)性质 1、每个节点非红即黑; 2、根节点是黑的; 3、每个叶节点(叶节点即树尾端NULL指针或NULL节点)都是黑的; 4、如果一个节点是红的,那么它的两儿子都是黑的; 5、对于任意节点而言,其到叶子点树NULL指针的每条路径都包含相同数目的黑节点; 6、每条路径都包含相同的黑节点; (3)应用 1、广泛用于C++的STL中,Map和Set都是用红黑树实现的; 2、著名的Linux进程调度Completely Fair Scheduler,用红黑树管理进程控制块,进程的虚拟内存区域都存储在一颗红黑树上,每个虚拟地址区域都对应红黑树的一个节点,左指针指向相邻的地址虚拟存储区域,右指针指向相邻的高地址虚拟地址空间; 3、IO多路复用epoll的实现采用红黑树组织管理sockfd,以支持快速的增删改查; 4、Nginx中用红黑树管理timer,因为红黑树是有序的,可以很快的得到距离当前最小的定时器; 5、Java中TreeMap的实现; 四、B/B+树 说了上述的三种树:二叉查找树、AVL和红黑树,似乎我们还没有摸到MySQL为什么要使用B+树作为索引的实现,不要急,接下来我们就先探讨一下什么是B树。 (1)简介 我们在MySQL中的数据一般是放在磁盘中的,读取数据的时候肯定会有访问磁盘的操作,磁盘中有两个机械运动的部分,分别是盘片旋转和磁臂移动。盘片旋转就是我们市面上所提到的多少转每分钟,而磁盘移动则是在盘片旋转到指定位置以后,移动磁臂后开始进行数据的读写。那么这就存在一个定位到磁盘中的块的过程,而定位是磁盘的存取中花费时间比较大的一块,毕竟机械运动花费的时候要远远大于电子运动的时间。当大规模数据存储到磁盘中的时候,显然定位是一个非常花费时间的过程,但是我们可以通过B树进行优化,提高磁盘读取时定位的效率。 为什么B类树可以进行优化呢?我们可以根据B类树的特点,构造一个多阶的B类树,然后在尽量多的在结点上存储相关的信息,保证层数尽量的少,以便后面我们可以更快的找到信息,磁盘的I/O操作也少一些,而且B类树是平衡树,每个结点到叶子结点的高度都是相同,这也保证了每个查询是稳定的。 总的来说,B/B+树是为了磁盘或其它存储设备而设计的一种平衡多路查找树(相对于二叉,B树每个内节点有多个分支),与红黑树相比,在相同的的节点的情况下,一颗B/B+树的高度远远小于红黑树的高度(在下面B/B+树的性能分析中会提到)。B/B+树上操作的时间通常由存取磁盘的时间和CPU计算时间这两部分构成,而CPU的速度非常快,所以B树的操作效率取决于访问磁盘的次数,关键字总数相同的情况下B树的高度越小,磁盘I/O所花的时间越少。 注意B-树就是B树,-只是一个符号。 (2)B树的性质 1、定义任意非叶子结点最多只有M个儿子,且M>2; 2、根结点的儿子数为[2, M]; 3、除根结点以外的非叶子结点的儿子数为[M/2, M]; 4、每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字) 5、非叶子结点的关键字个数=指向儿子的指针个数-1; 6、非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1]; 7、非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树; 8、所有叶子结点位于同一层; 这里只是一个简单的B树,在实际中B树节点中关键字很多的,上面的图中比如35节点,35代表一个key(索引),而小黑块代表的是这个key所指向的内容在内存中实际的存储位置,是一个指针。 五、B+树 (1)简介 B+树是应文件系统所需而产生的一种B树的变形树(文件的目录一级一级索引,只有最底层的叶子节点(文件)保存数据)非叶子节点只保存索引,不保存实际的数据,数据都保存在叶子节点中,这不就是文件系统文件的查找吗? 我们就举个文件查找的例子:有3个文件夹a、b、c, a包含b,b包含c,一个文件yang.c,a、b、c就是索引(存储在非叶子节点), a、b、c只是要找到的yang.c的key,而实际的数据yang.c存储在叶子节点上。 所有的非叶子节点都可以看成索引部分! (2)B+树的性质(下面提到的都是和B树不相同的性质) 1、非叶子节点的子树指针与关键字个数相同; 2、非叶子节点的子树指针p[i],指向关键字值属于[k[i],k[i+1]]的子树.(B树是开区间,也就是说B树不允许关键字重复,B+树允许重复); 3、为所有叶子节点增加一个链指针; 4、所有关键字都在叶子节点出现(稠密索引). (且链表中的关键字恰好是有序的); 5、非叶子节点相当于是叶子节点的索引(稀疏索引),叶子节点相当于是存储(关键字)数据的数据层; 6、更适合于文件系统; 非叶子节点(比如5,28,65)只是一个key(索引),实际的数据存在叶子节点上(5,8,9)才是真正的数据或指向真实数据的指针。 (3)应用 1、B和B+树主要用在文件系统以及数据库做索引,比如MySQL; 六、B/B+树性能分析 n个节点的平衡二叉树的高度为H(即logn),而n个节点的B/B+树的高度为logt((n+1)/2)+1;   若要作为内存中的查找表,B树却不一定比平衡二叉树好,尤其当m较大时更是如此。因为查找操作CPU的时间在B-树上是O(mlogtn)=O(lgn(m/lgt)),而m/lgt>1;所以m较大时O(mlogtn)比平衡二叉树的操作时间大得多。因此在内存中使用B树必须取较小的m。(通常取最小值m=3,此时B-树中每个内部结点可以有2或3个孩子,这种3阶的B-树称为2-3树)。 七、为什么说B+树比B树更适合数据库索引? 1、 B+树的磁盘读写代价更低:B+树的内部节点并没有指向关键字具体信息的指针,因此其内部节点相对B树更小,如果把所有同一内部节点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多,一次性读入内存的需要查找的关键字也就越多,相对IO读写次数就降低了。 2、B+树的查询效率更加稳定:由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。 3、由于B+树的数据都存储在叶子结点中,分支结点均为索引,方便扫库,只需要扫一遍叶子结点即可,但是B树因为其分支结点同样存储着数据,我们要找到具体的数据,需要进行一次中序遍历按序来扫,所以B+树更加适合在区间查询的情况,所以通常B+树用于数据库索引。 PS:我在知乎上看到有人是这样说的,我感觉说的也挺有道理的: 他们认为数据库索引采用B+树的主要原因是:B树在提高了IO性能的同时并没有解决元素遍历的我效率低下的问题,正是为了解决这个问题,B+树应用而生。B+树只需要去遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作或者说效率太低。 ———————————————— 版权声明:本文为CSDN博主「徐刘根」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/u010870518/java/article/details/79450295

AA大大官 2020-03-31 14:54:01 0 浏览量 回答数 0

问题

盘点年度 Python 类库 Top 10

珍宝珠 2020-01-09 13:39:35 77 浏览量 回答数 1

问题

超越 MySQL 热:报错

kun坤 2020-06-05 22:43:07 0 浏览量 回答数 1

问题

超越 MySQL 热,数据库报错

python小菜菜 2020-06-01 19:55:39 0 浏览量 回答数 1

问题

老而不死的三种编程语言?

珍宝珠 2020-01-13 11:06:22 472 浏览量 回答数 1

回答

虽然跨平台的移动APP开发有利有弊。但从业务初创的角度来看,优点应该是大于缺点的。而且,随着对跨平台移动应用需求的不断增长,现在可用的工具和框架数量也已经很可观了。 但选择过多会令人头疼,这就是为什么我们只关注最突出的跨平台移动开发框架的原因:React Native, Flutter, NativeScript, 和Xamarin。 为了让你更深入地了解是什么使这些工具成为2020年软件开发的可选选项,我们将根据以下标准对它们进行打分:社区支持、基于的编程语言、代码可重用性、性能、界面以及使用它们构建的重要应用程序。 React Native Reaction Native是Facebook于2015年发布的开源、跨平台的应用开发框架。作为2013年举办的一场内部黑客马拉松的产物,它已经成为最受欢迎的原生App开发替代方案之一,拥有2043名GitHub贡献者,获得了超过82900 GitHub标星。不断增长的社区认知度使得找到一支可靠且经验丰富的开发团队来承接你的项目变得相对容易。 Learn Once and Write Anywhere 基于React.JS,React Native利用JavaScript(根据2019年Stack Overflow的调查,JavaScript成为了最受欢迎的编程语言),为Android和iOS用户提供真正原生的应用外观和体验。另外,使该框架脱颖而出的是,如果你需要,React Native允许你使用Java、Objective-C或SWIFT编写部分原生模块来顺利处理复杂的操作,如视频播放或图像编辑。 虽然这些组件不能在不同的平台之间共享,并且需要开发人员做更多的工作,但多达90%的React Native代码是可以重用的。很好地表明该框架的座右铭不是“Write Once, Use Anywhere”,而是“learn once, write anywhere”。 就GUI而言,React Native可以提供接近原生的用户体验,这要归功于它使用了Android和iOS的本地控制器。它还使用带有UI元素的ReactJS库,这有助于加快UI设计过程。在开发移动应用程序时,使此框架值得考虑的另一个原因是,它可用在不丢失应用程序状态的情况下对UI进行更改。 另一个使React Native成为2020年跨平台移动开发框架的首选之一,是因为持续的更新,例如近期的版本 0.60 和 0.61 : 多项辅助功能改进。 更清晰、更人性化的开始屏幕。 快速刷新,融合了实时和热重新加载,从而显著加快了开发进程。 如上的Release Note只是React Native适应不断变化的需求其中一个很小的样本。 2020年值得考虑的第二个框架是Flutter。它在Google I/O 2017上宣布,并于2018年发布,对于跨平台的世界来说,它现在仍然是一个“新人”。但尽管如此,它已经获得了超过80500 GitHub星标和绝大多数工程师将其称为2019年Stack Overflow调查中最受欢迎的三个框架之一,Flutter无疑是一股不可忽视的力量。 Dart是如何使Flutter变得独一无二的 Flutter 背后的编程语言是 Dart,谷歌称之为"客户端优化",适合在任何平台上"快速构建应用程序"。它于 2011 年推出,是一种响应式面向对象的语言,被开发者认为相对容易学习,其中原因有二:第一,语法上它借鉴了C/C++ 和 Java; 第二,在官方网站上,您可以找到内容广泛且相当简单的文档。值得一提的是,Dart 附带了大量Flutter 兼容软件包的软件包,允许您使应用程序更加复杂。 lutter的一个主要优势是,它的性能比本文提到的任何其他跨平台移动开发框架都要好。这归功于Dart的编译器和Flutter拥有自己的一套小部件。结果是它能更快、更直接地与平台直接通信,而不需要JavaScript桥(例如,Reaction Native就是这种情况)。说到小部件:通过Flutter的“UI-as-a-code”方法,它们只用DART编写,这就提高了代码的可重用性。 效率与用户体验和界面密不可分。如前所述,Flutter不依赖于一组原生组件,而是利用可视化、结构化、平台性和交互式小部件进行UI的设计,所有这些都由框架的图形引擎呈现。更重要的是,Flutter留下了很大的定制空间,如果你想要设计一个很完美的UI,它是个很好的选择。 说到Flutter的更新,最新的稳定版本是在12月12日发布的,根据官方发布说明,它合并了来自188个贡献者的近2000个pull。例如,版本1.12.13中包括的改进: 重大的API变动。 新功能,例如SliverOpacity小部件和SliverAnimatedList。 修复了崩溃和性能问题。 Beta版中的Web支持。 这不是一个完整的清单,因为Flutter的目标是让每年发布的四个版本中的每一个版本都能为框架的可用性提升一个台阶。 Flutter是一个年轻的跨平台移动应用程序开发框架,所以它没有像React Native受到众多的大公司青睐也是不足为奇的。然而,这并不意味着它不好,截至2019年12月,它也为阿里巴巴、谷歌广告、Groupon等众多公司和业务所采用。 NativeScript 如果你要开始开发你的产品,“React Native”和“Flutter”绝不是唯一的解决方案。在 2020 年初,适合您的企业的替代框架也可能是 NativeScript。 这个开源框架于2015年3月公开发布,并迅速成为广受欢迎的解决方案。例如,在发布后的短短两个月内,它就获得了3000颗GitHub星标,并在Twitter上吸引了1500多名粉丝的关注。到今天为止,市场上已有超过700个插件可供选择。 在使用NativeScript构建跨平台应用程序时,开发人员首先用JavaScript及其超集TypeScript编写代码。然后,将代码库编译成各自平台原生的编程语言。 另外值得一提的是,使用 NativeScript 的开发人员也可以使用第三方库(CocoaPods 和 Android SDK),而无需包装。 与React Native类似,NativeScript允许访问Android和iOS原生API,这对跨平台应用程序有明显的积极影响。然而,不同之处在于,前者需要构建桥接API,而后者(用Progress首席开发者倡导者TJ VanToll的话说是“将所有iOS和Android API注入JavaScript虚拟机”)。与Facebook框架的另一个相似之处在于代码重用,在这两种情况下都可以达到90%。 Xamarin Xamarin开源框架创建于2011年,这使它成为了这个列表中最“古老“的框架,但直到五年前它被微软收购时,它才获得了发展势头。截至今天,它号称拥有超过6万名贡献者的社区。 从技术上讲,要用Xamarin构建跨平台的移动应用,需要很好地掌握.NET和C#两种技术,前者是使用多种语言(包括C#编程语言)、编辑器和库的开发平台。Xamarin用一组工具补充了上述平台,这些工具有助于构建跨平台应用程序,例如库、编辑器扩展和XAML。第二种技术是C#,这是一种面向对象的编程语言,它被认为比JavaScript学习起来稍难。Xamarin利用这种编程语言编写整个应用程序,从后端到原生API,再到业务逻辑。 Xamarin.Native和Xamarin.Forms Xamarin与其他框架的不同之处在于,它提供了两种编译跨平台移动应用的方式:Xamarin Native(也称为Xamarin.Android/iOS)和Xamarin.Forms。前一种方法优先考虑共享业务逻辑,并通过使用本机接口控件实现近乎本机的性能。 后者侧重于共享代码,而不是业务原理,这一方面会导致代码重用比例增加(使用Xamarin,开发人员可以重用高达96%的C#代码),但另一方面这样会降低代码性能。 您可能已经注意到,跨平台移动应用程序的性能和GUI密切相关,所以如果我说Xamarin构建应用程序的两种方法对界面的最终外观有很大影响,我可能不会感到惊讶。 Xamarin.Android/iOS允许开发人员使用原生控件和布局,而Xamarin.Forms基于标准UI元素,允许从单个API设计应用程序,但如果你需要更完美的原生UI,则可能还不够。 2020年跨平台应用程序开发还值得考虑吗? 不论如何,跨平台确实是一个值得考虑和极具前景的方向,特别是我们上面提到的 “React Native”和“Flutter”。 前者是一个成熟而稳定的框架,利用了最流行的编程语言之一,并拥有成熟的大型开发人员社区。后者是一个快速发展的技术,尽管它比React Native年轻的多,它也已经赢得了世界各地许多开发人员的青睐。 但无论您选择的是“React Native”、“Flutter”还是任何其他框架,跨平台方法都一定会为您节省时间和金钱,同时能为你最大限度地扩大市场覆盖范围。 最后,值不值得考虑,最终还是取决于你的业务目标、预算和时限。 来源;:葡萄城官网

问问小秘 2020-04-15 13:30:17 0 浏览量 回答数 0

问题

HBase最佳实践-读性能优化策略

pandacats 2019-12-20 21:02:08 0 浏览量 回答数 0

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站