• 关于

    UNIX文件系统有什么用

    的搜索结果

回答

什么是MD5???---MD5的全称是Message-Digest Algorithm 5 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。如果在以后传播这个文件的过程中,无论文件的内容发生了任何形式的改变(包括人为修改或者下载过程中线路不稳定引起的传输错误等),只要你对这个文件重新计算MD5时就会发现信息摘要不相同,由此可以确定你得到的只是一个不正确的文件。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的 "抵赖",这就是所谓的数字签名应用。 MD5还广泛用于加密和解密技术上。比如在UNIX系统中用户的密码就是以MD5(或其它类似的算法)经加密后存储在文件系统中。当用户登录的时候,系统把用户输入的密码计算成MD5值,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这不但可以避免用户的密码被具有系统管理员权限的用e799bee5baa6e997aee7ad94e58685e5aeb931333332643862户知道,而且还在一定程度上增加了密码被破解的难度。 正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5 值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P (62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。

剑曼红尘 2020-05-03 16:00:27 0 浏览量 回答数 0

回答

http://packetstormsecurity.com/UNIX/utilities/unrm-0.92.tar.gz一个小工具,实际上使用了linux下的debugfs命令,简化了手工使用debugfs的步骤,没有什么交互的界面,恢复的文件直接放倒一个固定目录下面根据这一次的情况,那些体积庞大,需要安装的工具不在选择范围。我使用了unrm,为了不破坏数据盘内容,我把这个小工具放倒/boot区展开.假设我们需要恢复的是aaa这个用户的邮件修改一下这个脚本中mount的路径(原来是/usr/sbin/mount ,这个系统是/usr/bin)看看/所在地分区设备为 /dev/sda2./unrm /dev/sda2 -u qmail -s aaa恢复用户qmail被删除的文件,文件中有aaa这个字符串。实际发现这个-s参数没有作用使用./unrm /dev/sda2 -u qmail 后,自动在当前目录下生了一个unrm.recover的目录各个被恢复的文件以unrm.xxxxxx 方式存放在里面经过过滤grep aaa * | cut -d : -f 1 | uniq找到这些文件名,然后cp到原来的qmail邮件用目录中(Maildir/new)这次的结果是恢复了35个文件,但是有4个已经基本被破坏了,完整恢复的只有31个试着收取邮件,一切正常。从这次恢复工作来看,在linux的ex2文件系统下恢复,比以前在solairs下恢复ufs系统要方便很多,主要ufs在删除以后,各个文件区块都没有链接关系,而ex2有点类似与fat系统,小文件只是丢失了第一个区块的inode号,后面的区块还是有链接关系的,大的文件好像在一定数目的区块后,才没有链接关系。在ufs下恢复文件,可能还是tct相对效果要好一些。

云栖技术 2019-12-02 02:35:31 0 浏览量 回答数 0

回答

1.如果是一般的话只有32&162.本来在理论上不可破解,但好像被人破解了,你可以看下参考 目前网上的dm5破解都是通过建立数据库进行查询的方法进行破解的 好像还没有直接破解的工具,网上的都属于类似穷举的方法MD5简介MD5的全称是Message-digest Algorithm 5(信息-摘要算法),用于确保信息传输完整一致。在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc,的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密钥前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和c语言源代码在Internet RFC 1321中有详细的描述( ,这是一份最权威的文档,由Ronald L. Rivest在1992年8月向IETF提交。 Rivest在1989年开发出MD2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,Rogier和Chauvaud发现如果忽略了检验和将产生MD2冲突。MD2算法的加密后结果是唯一的--即没有重复。 为了加强算法的安全性,Rivest在1990年又开发出MD4算法。MD4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。Den boer和Bosselaers以及其他人很快的发现了攻击MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到MD4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,MD4就此被淘汰掉了。 尽管MD4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了MD5以外,其中比较有名的还有sha-1、RIPEMD以及Haval等。 一年以后,即1991年,Rivest开发出技术上更为趋近成熟的md5算法。它在MD4的基础上增加了"安全-带子"(safety-belts)的概念。虽然MD5比MD4稍微慢一些,但却更为安全。这个算法很明显的由四个和MD4设计有少许不同的步骤组成。在MD5算法中,信息-摘要的大小和填充的必要条件与MD5完全相同。Den boer和Bosselaers曾发现MD5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。 Van oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。 2004年8月17日的美国加州圣巴巴拉的国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做了破译MD5、HAVAL-128、 MD4和RIPEMD算法的报告,公布了MD系列算法的破解结果。宣告了固若金汤的世界通行密码标准MD5的堡垒轰然倒塌,引发了密码学界的轩然大波。 令世界顶尖密码学家想象不到的是,破解MD5之后,2005年2月,王小云教授又破解了另一国际密码SHA-1。因为SHA-1在美国等国际社会有更加广泛的应用,密码被破的消息一出,在国际社会的反响可谓石破天惊。换句话说,王小云的研究成果表明了从理论上讲电子签名可以伪造,必须及时添加限制条件,或者重新选用更为安全的密码标准,以保证电子商务的安全。MD5破解工程权威网站 是为了公开征集专门针对MD5的攻击而设立的,网站于2004年8月17日宣布:“中国研究人员发现了完整MD5算法的碰撞;Wang, Feng, Lai与Yu公布了MD5、MD4、HAVAL-128、RIPEMD-128几个 Hash函数的碰撞。这是近年来密码学领域最具实质性的研究进展。使用他们的技术,在数个小时内就可以找到MD5碰撞。……由于这个里程碑式的发现,MD5CRK项目将在随后48小时内结束”。 MD5用的是哈希函数,在计算机网络中应用较多的不可逆加密算法有RSA公司发明的MD5算法和由美国国家技术标准研究所建议的安全散列算法SHA.[编辑本段]算法的应用 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。为了让读者朋友对MD5的应用有个直观的认识,笔者以一个比方和一个实例来简要描述一下其工作过程: 大家都知道,地球上任何人都有自己独一无二的指纹,这常常成为公安机关鉴别罪犯身份最值得信赖的方法;与之类似,MD5就可以为任何文件(不管其大小、格式、数量)产生一个同样独一无二的“数字指纹”,如果任何人对文件做了任何改动,其MD5值也就是对应的“数字指纹”都会发生变化。 我们常常在某些软件下载站点的某软件信息中看到其MD5值,它的作用就在于我们可以在下载该软件后,对下载回来的文件用专门的软件(如Windows MD5 Check等)做一次MD5校验,以确保我们获得的文件与该站点提供的文件为同一文件。利用MD5算法来进行文件校验的方案被大量应用到软件下载站、论坛数据库、系统文件安全等方面。 MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫 readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现(两个MD5值不相同)。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。 所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码覆盖原来的就行了。 MD5还广泛用于操作系统的登陆认证上,如Unix、各类BSD系统登录密码、数字签名等诸多方。如在UNIX系统中用户的密码是以MD5(或其它类似的算法)经Hash运算后存储在文件系统中。当用户登录的时候,系统把用户输入的密码进行MD5 Hash运算,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这可以避免用户的密码被具有系统管理员权限的用户知道。MD5将任意长度的“字节串”映射为一个128bit的大整数,并且是通过该128bit反推原始字符串是困难的,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码的Hash值覆盖原来的Hash值就行了。 正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。

祁同伟 2019-12-02 01:27:09 0 浏览量 回答数 0

阿里云爆款特惠专场,精选爆款产品低至0.95折!

爆款ECS云服务器8.1元/月起,云数据库低至1.5折,限时抢购!

回答

1.如果是一般的话只有32&162.本来在理论上不可破解,但好像被人破解了,你可以看下参考 目前网上的dm5破解都是通过建立数据库进行查询的方法进行破解的 好像还没有直接破解的工具,网上的都属于类似穷举的方法MD5简介MD5的全称是Message-digest Algorithm 5(信息-摘要算法),用于确保信息传输完整一致。在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc,的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密钥前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和c语言源代码在Internet RFC 1321中有详细的描述( ,这是一份最权威的文档,由Ronald L. Rivest在1992年8月向IETF提交。 Rivest在1989年开发出MD2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,Rogier和Chauvaud发现如果忽略了检验和将产生MD2冲突。MD2算法的加密后结果是唯一的--即没有重复。 为了加强算法的安全性,Rivest在1990年又开发出MD4算法。MD4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。Den boer和Bosselaers以及其他人很快的发现了攻击MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到MD4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,MD4就此被淘汰掉了。 尽管MD4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了MD5以外,其中比较有名的还有sha-1、RIPEMD以及Haval等。 一年以后,即1991年,Rivest开发出技术上更为趋近成熟的md5算法。它在MD4的基础上增加了"安全-带子"(safety-belts)的概念。虽然MD5比MD4稍微慢一些,但却更为安全。这个算法很明显的由四个和MD4设计有少许不同的步骤组成。在MD5算法中,信息-摘要的大小和填充的必要条件与MD5完全相同。Den boer和Bosselaers曾发现MD5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。 Van oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。 2004年8月17日的美国加州圣巴巴拉的国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做了破译MD5、HAVAL-128、 MD4和RIPEMD算法的报告,公布了MD系列算法的破解结果。宣告了固若金汤的世界通行密码标准MD5的堡垒轰然倒塌,引发了密码学界的轩然大波。 令世界顶尖密码学家想象不到的是,破解MD5之后,2005年2月,王小云教授又破解了另一国际密码SHA-1。因为SHA-1在美国等国际社会有更加广泛的应用,密码被破的消息一出,在国际社会的反响可谓石破天惊。换句话说,王小云的研究成果表明了从理论上讲电子签名可以伪造,必须及时添加限制条件,或者重新选用更为安全的密码标准,以保证电子商务的安全。MD5破解工程权威网站 是为了公开征集专门针对MD5的攻击而设立的,网站于2004年8月17日宣布:“中国研究人员发现了完整MD5算法的碰撞;Wang, Feng, Lai与Yu公布了MD5、MD4、HAVAL-128、RIPEMD-128几个 Hash函数的碰撞。这是近年来密码学领域最具实质性的研究进展。使用他们的技术,在数个小时内就可以找到MD5碰撞。……由于这个里程碑式的发现,MD5CRK项目将在随后48小时内结束”。 MD5用的是哈希函数,在计算机网络中应用较多的不可逆加密算法有RSA公司发明的MD5算法和由美国国家技术标准研究所建议的安全散列算法SHA.[编辑本段]算法的应用 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。为了让读者朋友对MD5的应用有个直观的认识,笔者以一个比方和一个实例来简要描述一下其工作过程: 大家都知道,地球上任何人都有自己独一无二的指纹,这常常成为公安机关鉴别罪犯身份最值得信赖的方法;与之类似,MD5就可以为任何文件(不管其大小、格式、数量)产生一个同样独一无二的“数字指纹”,如果任何人对文件做了任何改动,其MD5值也就是对应的“数字指纹”都会发生变化。 我们常常在某些软件下载站点的某软件信息中看到其MD5值,它的作用就在于我们可以在下载该软件后,对下载回来的文件用专门的软件(如Windows MD5 Check等)做一次MD5校验,以确保我们获得的文件与该站点提供的文件为同一文件。利用MD5算法来进行文件校验的方案被大量应用到软件下载站、论坛数据库、系统文件安全等方面。 MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫 readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现(两个MD5值不相同)。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。 所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码覆盖原来的就行了。 MD5还广泛用于操作系统的登陆认证上,如Unix、各类BSD系统登录密码、数字签名等诸多方。如在UNIX系统中用户的密码是以MD5(或其它类似的算法)经Hash运算后存储在文件系统中。当用户登录的时候,系统把用户输入的密码进行MD5 Hash运算,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这可以避免用户的密码被具有系统管理员权限的用户知道。MD5将任意长度的“字节串”映射为一个128bit的大整数,并且是通过该128bit反推原始字符串是困难的,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码的Hash值覆盖原来的Hash值就行了。 正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。

青衫无名 2019-12-02 01:27:08 0 浏览量 回答数 0

回答

1.如果是一般的话只有32&162.本来在理论上不可破解,但好像被人破解了,你可以看下参考 目前网上的dm5破解都是通过建立数据库进行查询的方法进行破解的 好像还没有直接破解的工具,网上的都属于类似穷举的方法MD5简介MD5的全称是Message-digest Algorithm 5(信息-摘要算法),用于确保信息传输完整一致。在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc,的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密钥前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和c语言源代码在Internet RFC 1321中有详细的描述( ,这是一份最权威的文档,由Ronald L. Rivest在1992年8月向IETF提交。 Rivest在1989年开发出MD2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,Rogier和Chauvaud发现如果忽略了检验和将产生MD2冲突。MD2算法的加密后结果是唯一的--即没有重复。 为了加强算法的安全性,Rivest在1990年又开发出MD4算法。MD4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。Den boer和Bosselaers以及其他人很快的发现了攻击MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到MD4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,MD4就此被淘汰掉了。 尽管MD4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了MD5以外,其中比较有名的还有sha-1、RIPEMD以及Haval等。 一年以后,即1991年,Rivest开发出技术上更为趋近成熟的md5算法。它在MD4的基础上增加了"安全-带子"(safety-belts)的概念。虽然MD5比MD4稍微慢一些,但却更为安全。这个算法很明显的由四个和MD4设计有少许不同的步骤组成。在MD5算法中,信息-摘要的大小和填充的必要条件与MD5完全相同。Den boer和Bosselaers曾发现MD5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。 Van oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。 2004年8月17日的美国加州圣巴巴拉的国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做了破译MD5、HAVAL-128、 MD4和RIPEMD算法的报告,公布了MD系列算法的破解结果。宣告了固若金汤的世界通行密码标准MD5的堡垒轰然倒塌,引发了密码学界的轩然大波。 令世界顶尖密码学家想象不到的是,破解MD5之后,2005年2月,王小云教授又破解了另一国际密码SHA-1。因为SHA-1在美国等国际社会有更加广泛的应用,密码被破的消息一出,在国际社会的反响可谓石破天惊。换句话说,王小云的研究成果表明了从理论上讲电子签名可以伪造,必须及时添加限制条件,或者重新选用更为安全的密码标准,以保证电子商务的安全。MD5破解工程权威网站 是为了公开征集专门针对MD5的攻击而设立的,网站于2004年8月17日宣布:“中国研究人员发现了完整MD5算法的碰撞;Wang, Feng, Lai与Yu公布了MD5、MD4、HAVAL-128、RIPEMD-128几个 Hash函数的碰撞。这是近年来密码学领域最具实质性的研究进展。使用他们的技术,在数个小时内就可以找到MD5碰撞。……由于这个里程碑式的发现,MD5CRK项目将在随后48小时内结束”。 MD5用的是哈希函数,在计算机网络中应用较多的不可逆加密算法有RSA公司发明的MD5算法和由美国国家技术标准研究所建议的安全散列算法SHA.[编辑本段]算法的应用 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。为了让读者朋友对MD5的应用有个直观的认识,笔者以一个比方和一个实例来简要描述一下其工作过程: 大家都知道,地球上任何人都有自己独一无二的指纹,这常常成为公安机关鉴别罪犯身份最值得信赖的方法;与之类似,MD5就可以为任何文件(不管其大小、格式、数量)产生一个同样独一无二的“数字指纹”,如果任何人对文件做了任何改动,其MD5值也就是对应的“数字指纹”都会发生变化。 我们常常在某些软件下载站点的某软件信息中看到其MD5值,它的作用就在于我们可以在下载该软件后,对下载回来的文件用专门的软件(如Windows MD5 Check等)做一次MD5校验,以确保我们获得的文件与该站点提供的文件为同一文件。利用MD5算法来进行文件校验的方案被大量应用到软件下载站、论坛数据库、系统文件安全等方面。 MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫 readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现(两个MD5值不相同)。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。 所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码覆盖原来的就行了。 MD5还广泛用于操作系统的登陆认证上,如Unix、各类BSD系统登录密码、数字签名等诸多方。如在UNIX系统中用户的密码是以MD5(或其它类似的算法)经Hash运算后存储在文件系统中。当用户登录的时候,系统把用户输入的密码进行MD5 Hash运算,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这可以避免用户的密码被具有系统管理员权限的用户知道。MD5将任意长度的“字节串”映射为一个128bit的大整数,并且是通过该128bit反推原始字符串是困难的,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码的Hash值覆盖原来的Hash值就行了。 正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。-------------------------就低频来说我认为是EX71好,如果你没有太高的要求EX71 吧 EX71是目前最好的 价钱也便宜 。最重要的是性价比超高。。。我就买了部

行者武松 2019-12-02 01:27:09 0 浏览量 回答数 0

回答

首先,需要明确一点,如果操作系统被安装在D盘,就会发现少有软件会自动识别系统路径并出现D盘的默认安装位置,然而还是有些软件会显示C盘,这和软件安装包有关。所以,C盘并不是绝对的,但一定是很多软件开发商的默契所在,那些可以自动识别系统分区并默认了安装位置为系统盘所在的软件便是在尊重Windows系统的设计。也有像腾讯产品这样自动检测安装目录并创建次目录的软件,但这样人性化设计的安装步骤只存在一小部分。Windows系统中: Program Files和Program Files(x86)是用来存放程序本体的, ProgramData和%user%/appdata是用来存放程序数据的。当你的程序本体出现问题,你只需要重新安装程序,你的用户数据依然会保存。当你要还原程序设置,你只需要从ProgramData或者%user%/appdata中删掉程序的配置文件,就能够把程序还原到初始设置。程序在安装过程中向对应的注册表位置写入软件信息和卸载程序的路径,这样就可以通过控制面板统一的管理程序。所以,绿色软件还是要慎用, 这种脱离了系统管控的东西还是少用为妙。那软件装在C盘好吗?先说说为什么很多用户会在软件安装在C盘和D盘之间选择后者。原因之一:在N年前,硬盘容量还不像现在这样海量,20G就可被称为大容量硬盘的年代,计算机的C盘作为系统盘,在安装完操作系统后基本就没多大空间了,所以当时人们的习惯是将软件安装在非系统盘,以免因为系统盘剩下的空间过小导致虚拟内存不足(那年代物理内存容量也不像现在这么恐怖的,256M跑xp的也有,运行大型软件,例如游戏啥的,虚拟内存还是很必要的。)原因之二:有人说过了,操作系统并非不坏金身,总有挂了的时候,而windows不像类unix环境那样,挂了你自己还可以鼓捣鼓捣,说不定就起来了,windows挂了之后当时大多数人,包括所谓的“高手”们,采用的均是简单粗暴但最有效的方式,格了系统盘重装。 这时备份你的个人文件就是个问题,当时并没有太多的简单易用的系统维护环境可选。(基本都是DOS,一则这东西界面不是那么友好,二则系统被你用崩溃了肯定不是一两天的事儿,在没有文件管理器的情况下把少则数百多则上千的文件从系统盘复制到别的盘符并非易事)。如今呢,咱赶上好时候了,硬件配置大幅提升,使得系统盘空间不够用的情况越来越少了,可以为C盘分担更多的空间,以便在C盘安装软件。并且有了很多较为易用的系统维护环境,基本都是基于PE,用光盘或U盘或网络启动,而不少主板厂商由于BIOS容量激增也开发出了一些基于BIOS的系统维护环境,功能也相当强大。所以,这件事可以遗忘了,不用再强逼自己把软件安装在其他分区中。

独步清客 2019-12-02 00:44:06 0 浏览量 回答数 0

回答

要说Mac的界面设计,10分的话,我最多打7分。 在色调方面是不错的,但在设计上面,有待改善。######木钱买MAC.只能苦B的用windwos######回复 @zlsky : 哥你回复错人了把######回复 @pckingchrrity : 那是你的个人看法,强加到别人身上?搞笑... 我喜欢是我的事,是我的看法,凭什么因为你而改变.######回复 @xmut : ....你知识太匮乏了,乔布斯传 中 乔老爷很多次表达了windows是渣的论点。还有视频采访。他说,要让更多的人使用mac,从windows这种低端系统中解脱出来。至少我windows mac都用过。我讨厌mac都没用过,那种什么不知道,就妄下论断得人。######回复 @xmut : 我可没说过linux的界面好,我就是因为linux的界面垃圾,所以才想要mac的界面,在加上unix的基础.不然我早就上linux了,谁用windows那破系统.######回复 @pckingchrrity : 请问linux和Unix让你和你们亲朋好友上班和工作感到舒服吗?我不想说Window很好,但我也从来没听过乔布斯骂window很垃圾!我很讨厌那些立场激进,但又没有在某一方面有所成就的人。###### 引用来自“zlsky”的答案 木钱买MAC.只能苦B的用windwos 嗯,而且我还是用的D版的... ######计划买MAC 谁借我点钱 ######喜欢什么就用什么,天天互喷有意思吗?###### 引用来自“JeffYu”的答案 计划买MAC 谁借我点钱 列位现在还认为Mac是高富帅的玩物? ######爱用什么就用什么呗,没必要过几天就来一“谈谈”###### 引用来自“shol”的答案 引用来自“JeffYu”的答案 计划买MAC 谁借我点钱 列位现在还认为Mac是高富帅的玩物? 教育商店 ######Mac的界面有啥好夸的。要看一个压缩文件内的内容非得解压缩了才行就够脑残的了。###### 引用来自“MUTEX”的答案 Mac的界面有啥好夸的。要看一个压缩文件内的内容非得解压缩了才行就够脑残的了。 您真以为Mac啥都带了,不用您自己安装软件了?

kun坤 2020-06-03 14:09:29 0 浏览量 回答数 0

问题

在我的例子里,Linux的kernel与user space如何进行通信才好?

杨冬芳 2019-12-01 20:21:09 1022 浏览量 回答数 2

回答

1. 有可能。阿里云的运动安全检测中的比如登录检测,需要分析本机的日志才可以。估计是这些产生的流量。安装一个jnettop进行详细分析(手头没有空白机器)。 2.执行第一个命令后提示找不到文件或文件夹。手动在/var/log/下创建sa后可以看到文件。 然后重新执行第二个命令即可看到相应的输出结果 3.mail提示找不到ipv6下的本机环路接口,应该是系统没有开启ipv6所致。建议配置文件中添加 inet_protocols = ipv4指定使用ipv4协议来避免在看见类似找不到ipv6环路地址的信息 PS:看了你的头像我觉得我也弄个系统图标当头像算了…… ------------------------- 回 5楼(t5500) 的帖子 应该是最开始Postfix没打开报错。正常的话mail应该会记录crontab执行出错的信息的。 启动postfix后报错的是crontab执行出错的信息,如果你手动执行第一条命令也会看见同样的命令。 还有你真的是Linux初学者么 0 0 怎么会用FreeBSD做头像,刚接触Linux的人很少会去关注UNIX的说 ------------------------- 回 7楼(t5500) 的帖子 额… FreeBSD的确很稳定。我个人见过一台Debian做ftp服务器跑了5年没重启过,最后一次重启还是因为接的存储挂了… Unix跟Linux的稳定性的确惊人额… Linux使用很简单的,我在写相关教程,以后会慢慢放出的。 ------------------------- 回 9楼(t5500) 的帖子 建议你自己用jnettop看一下是什么导致的流量,手头没有空白的Centos 6.3所以没法帮你看 貌似阿里云的IP都会默认走内网,无论内外网IP。以前需要做特殊设置,但是现在貌似不用了。 还有他那个交换分区,貌似6.2也没有了吧,他的映像文件都更新了好想,原来的是有的,新的貌似都无,估计是后台的映像部署方式变化了。

twl007 2019-12-02 00:56:01 0 浏览量 回答数 0

问题

自力更生不求人,电脑系统奔溃不用愁

yq传送门 2019-12-01 19:40:15 964 浏览量 回答数 1

回答

由于只是个人文件,您可以将它们存储在S3中。 为了确保文件上传安全,只需在上传之前检查文件的mime类型,即可选择所需的存储空间。 http://php.net/manual/zh/function.mime-content-type.php 只需对上传的文件进行快速检查: $mime = mime_content_type($file_path); if($mime == 'image/jpeg') return true; 没什么大不了的! 将文件保留在数据库中是不好的做法,这应该是您的最后资源。S3非常适合许多用例,但对于高使用率而言则很昂贵,并且本地文件应仅用于Intranet和非公共可用的应用程序。 我认为,请转到S3。 亚马逊的sdk易于使用,您可以免费使用1GB的存储空间进行测试。您也可以使用自己的服务器,只是将其保留在数据库之外。 在文件系统上存储图像的解决方案 假设您有100.000个用户,每个用户都有10张图片。您如何处理本地存储? 问题:成千上万个映像后,Linux文件系统中断,因此您应该使文件结构避免这种情况 解决方案: 将文件夹名称设置为“ abs(userID / 1000)* 1000” / userID 这样,当您的用户ID为989787时,其图像将存储在文件夹989000/989787 / img1.jpeg 989000/989787 / img2.jpeg 989000/989787 / img3.jpeg上 这样就可以为一百万个用户存储图像而不会破坏UNIX文件系统。 存储大小如何? 上个月,我不得不为自己从事的电子商务压缩130万jpeg。上传图像时,请使用具有无损标记和80%质量的imagick进行压缩。这将消除不可见的像素并优化存储。由于我们的图片从40x40(缩略图)到1500x1500(缩放图片)不等,因此我们平均获得700x700的图片,是130万张图片的总和,约占120GB的存储空间。 是的,可以将它们全部存储在文件系统中。 当事情开始变慢时,您可以租用CDN。 那将如何工作? CDN位于映像服务器的前面,每当CDN被要求提供文件时,如果在其存储中找不到文件(缓存未命中),它将从映像服务器复制它。稍后,当再次请求CDN get时,它将从其自己的缓存中传递图像。 这样,无需任何代码即可迁移到CDN映像交付,您所需要做的就是更改站点中的URL并租用CDN,这与S3存储桶的工作原理相同。 它不是一项便宜的服务,但是比cloudfront便宜,而且当您需要它时,您可能可以负担得起。来源:stack overflow

保持可爱mmm 2020-05-11 12:00:44 0 浏览量 回答数 0

问题

ZooKeeper介绍、分析、理解

小柒2012 2019-12-01 21:21:22 11496 浏览量 回答数 2

问题

【云端监控】

few 2019-12-01 21:40:31 6309 浏览量 回答数 0

回答

众所周知,Java是平台无关的语言,那么Java为什么要支持平台无关性,总结一下,有如下几点支持多变的网络环境。如今是一个互联网的时代,网络将各种各样的计算机和设备连接起来,比如网络连接了windows的PC机,UNIX工作站等等。为了保证程序能够不加任何修改运行于网络上的任何计算机,而不管计算机是什么种类,什么平台,这样就极大减轻了系统管理员的工作。尤其是程序是通过网络环境进行部署的。支持网络化嵌入式设备。目前工作场所中存在各种各样的嵌入式设备,比如打印机,扫描仪,传真机等。他们往往通过网络连接起来,甚至在家庭网络和汽车内部也存在这样那样的嵌入式设备 。Java的平台无关性可以简化这样的系统管理任务。无论是哪个网络的管理员,它只需关注程序本身即可。此外添加一台新设备,可以立即被其他设备访问到,也可以访问其他设备。这都是平台无关性带来的好处。减少开发者部署程序的成本和时间。对于开发者而言, Java平台无关的能力给予网络一个同构的运行环境,使得分布式系统可以围绕着“网络移动对象”开构建。比如对象序列化,RMI, Jini就是利用平台无关性。把面向对象编程从虚拟机带到了网络上。影响Java平台无关性的因素Java平台的部署。运行Java程序之前,必须要部署好Java平台。Java平台的版本。Sun公司提供了不同的API集合,有标准版,扩展版等等。此外API本身也面临着改动,一些API被认为是过期的,一些API甚至不向下兼容,因此我们需要选择合适的Java平台版本支持程序开发。本地方法。当编写一个平台独立的Java程序时候,最重要的原则是:不要直接或间接调用不属于Java API的本地方法。调用Java API以外的本地方法使得程序平台相关。一般而言,本地方法在三种情况适用:使用底层主机平台的特性,而Java API无法访问;为了访问老系统或者使用现有的库,但是这个系统或库不是Java编写的;为了加快程序性能,将时间敏感代码用本地方法实现。因此当必须使用本地方法,而且支持多种平台运行,必须将本地方法移植到所有需要的平台上。因此编写平台独立的Java程序做主要的目的就是完全禁止本地方法,通过Java API和主机交互。非标准运行时库。所谓平台无关性,一种解释是你调用的方法是否在任何地方都已经实现。本地方法顾名思义,就是只是在本地实现了,所以无法保证平台无关。而Java API在如windows, Solaris等操作系统上的实现上使用了本地方法访问主机,即保证了平台无关。对虚拟机的依赖。虚拟机可以由不同开发商开发,但是必须满足如下两条原则:不要依赖及时终结(finalization)保证程序的正确性,因为特定程序中对象可能在不同的时间被垃圾收集;不要依赖线程的优先级来保证程序的正确性。因为一些虚拟机可以实现优先级高线程优先运行,一些虚拟机不能保证这一点。对用户界面依赖,AWT库提供基本的用户界面,这些组件被映射成每个平台上的本地组件,而Swing库为用户提供更高级的组件,但并没有被映射为本地组件。实现平台无关的7大步骤选择程序运行的主机和设备集合(目标宿主机)在目标宿主机中选择Java平台版本。对于每个目标宿主机,选择程序将要运行的Java平台实现(目标运行时环境) 。编写程序,调用Java API标准运行库(不调用本地方法,或者专门开发商专门调用本地方法的库)编写程序,不依赖于垃圾收集器收集垃圾时间,不依赖线程的优先级努力设计用户界面,在所有的目标宿主机都能正常工作在所有目标运行时环境和所有目标宿主机进行测试 Java从四个方面支持了平台无关性最主要的是Java平台本身。Java平台扮演Java程序和所在的硬件与操作系统之间的缓冲角色。这样Java程序只需要与Java平台打交道,而不用管具体的操作系统。Java语言保证了基本数据类型的值域和行为都是由语言自己定义的。而C/C++中,基本数据类是由它的占位宽度决定的,占位宽度由所在平台决定的。不同平台编译同一个C++程序会出现不同的行为。通过保证基本数据类型在所有平台的一致性,Java语言为平台无关性提供强有力的支持。Java class文件。Java程序最终会被编译成二进制class文件。class文件可以在任何平台创建,也可以被任何平台的Java虚拟机装载运行。它的格式有着严格的定义,是平台无关的。可伸缩性。Sun通过改变API的方式得到三个基础API集合,表现为Java平台不同的伸缩性:J2EE,J2SE,J2ME。

缘灭山上 2019-12-02 01:39:36 0 浏览量 回答数 0

问题

【python学习全家桶】263道python热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:21 7217 浏览量 回答数 2

问题

巧用linux云服务器下的的/dev/shm/,避开磁盘IO不给力!

qilu 2019-12-01 21:17:10 58773 浏览量 回答数 53

问题

【阿里云运维部署工具AppDeploy详细教程】之3:高效技巧

阚俊宝 2019-12-01 20:58:56 8423 浏览量 回答数 1

回答

你好,这里有208份资料,详情请参考:https://github.com/ty4z2008/Qix/blob/master/ds.md 《Reconfigurable Distributed Storage for Dynamic Networks》介绍:这是一篇介绍在动态网络里面实现分布式系统重构的paper.论文的作者(导师)是MIT读博的时候是做分布式系统的研究的,现在在NUS带学生,不仅仅是分布式系统,还有无线网络.如果感兴趣可以去他的主页了解. 《Distributed porgramming liboratory》介绍:分布式编程实验室,他们发表的很多的paper,其中不仅仅是学术研究,还有一些工业界应用的论文. 《MIT Theory of Distributed Systems》介绍:麻省理工的分布式系统理论主页,作者南希·林奇在2002年证明了CAP理论,并且著《分布式算法》一书. 《Notes on Distributed Systems for Young Bloods》介绍:分布式系统搭建初期的一些建议 《Principles of Distributed Computing》介绍:分布式计算原理课程 《Google's Globally-Distributed Database》介绍:Google全球分布式数据介绍,中文版 《The Architecture Of Algolia’s Distributed Search Network》介绍:Algolia的分布式搜索网络的体系架构介绍 《Build up a High Availability Distributed Key-Value Store》介绍:构建高可用分布式Key-Value存储系统 《Distributed Search Engine with Nanomsg and Bond》介绍:Nanomsg和Bond的分布式搜索引擎 《Distributed Processing With MongoDB And Mongothon》介绍:使用MongoDB和Mongothon进行分布式处理 《Salt: Combining ACID and BASE in a Distributed Database》介绍:分布式数据库中把ACID与BASE结合使用. 《Makes it easy to understand Paxos for Distributed Systems》介绍:理解的Paxos的分布式系统,参考阅读:关于Paxos的历史 《There is No Now Problems with simultaneity in distributed systems》介绍:There is No Now Problems with simultaneity in distributed systems 《Distributed Systems》介绍:伦敦大学学院分布式系统课程课件. 《Distributed systems for fun and profit》介绍:分布式系统电子书籍. 《Distributed Systems Spring 2015》介绍:卡内基梅隆大学春季分布式课程主页 《Distributed Systems: Concepts and Design (5th Edition)》介绍: 电子书,分布式系统概念与设计(第五版) 《走向分布式》介绍:这是一位台湾网友 ccshih 的文字,短短的篇幅介绍了分布式系统的若干要点。pdf 《Introduction to Distributed Systems Spring 2013》介绍:清华大学分布式系统课程主页,里面的schedule栏目有很多宝贵的资源 《Distributed systems》介绍:免费的在线分布式系统书籍 《Some good resources for learning about distributed computing》介绍:Quora上面的一篇关于学习分布式计算的资源. 《Spanner: Google’s Globally-Distributed Database》介绍:这个是第一个全球意义上的分布式数据库,也是Google的作品。其中介绍了很多一致性方面的设计考虑,为了简单的逻辑设计,还采用了原子钟,同样在分布式系统方面具有很强的借鉴意义. 《The Chubby lock service for loosely-coupled distributed systems》介绍:Google的统面向松散耦合的分布式系统的锁服务,这篇论文详细介绍了Google的分布式锁实现机制Chubby。Chubby是一个基于文件实现的分布式锁,Google的Bigtable、Mapreduce和Spanner服务都是在这个基础上构建的,所以Chubby实际上是Google分布式事务的基础,具有非常高的参考价值。另外,著名的zookeeper就是基于Chubby的开源实现.推荐The google stack,Youtube:The Chubby lock service for loosely-coupled distributed systems 《Sinfonia: a new paradigm for building scalable distributed systems》介绍:这篇论文是SOSP2007的Best Paper,阐述了一种构建分布式文件系统的范式方法,个人感觉非常有用。淘宝在构建TFS、OceanBase和Tair这些系统时都充分参考了这篇论文. 《Data-Intensive Text Processing with MapReduce》介绍:Ebook:Data-Intensive Text Processing with MapReduce. 《Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System》介绍:Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System. 《Distributed Query Processing》介绍:分布式查询入门. 《Distributed Systems and the End of the API》介绍:分布式系统和api总结. 《Distributed Query Reading》介绍:分布式系统阅读论文,此外还推荐github上面的一个论文列表The Distributed Reader。 《Replication, atomicity and order in distributed systems》介绍:Replication, atomicity and order in distributed systems 《MIT course:Distributed Systems》介绍:2015年MIT分布式系统课程主页,这次用Golang作为授课语言。6.824 Distributed Systems课程主页 《Distributed systems for fun and profit》介绍:免费分布式系统电子书。 《Ori:A Secure Distributed File System》介绍:斯坦福开源的分布式文件系统。 《Availability in Globally Distributed Storage Systems》介绍:Google论文:设计一个高可用的全球分布式存储系统。 《Calvin: Fast Distributed Transactions For Partitioned Database Systems》介绍:对于分区数据库的分布式事务处理。 《Distributed Systems Building Block: Flake Ids》介绍:Distributed Systems Building Block: Flake Ids. 《Introduction to Distributed System Design》介绍:Google Code University课程,如何设计一个分布式系统。 《Sheepdog: Distributed Storage System for KVM》介绍:KVM的分布式存储系统. 《Readings in Distributed Systems Systems》介绍:分布式系统课程列表,包括数据库、算法等. 《Tera》介绍:来自百度的分布式表格系统. 《Distributed systems: for fun and profit》介绍:分布式系统的在线电子书. 《Distributed Systems Reading List》介绍:分布式系统资料,此外还推荐Various articles about distributed systems. 《Designs, Lessons and Advice from Building Large Distributed Systems》介绍:Designs, Lessons and Advice from Building Large Distributed Systems. 《Testing a Distributed System》介绍:Testing a distributed system can be trying even under the best of circumstances. 《The Google File System》介绍: 基于普通服务器构建超大规模文件系统的典型案例,主要面向大文件和批处理系统, 设计简单而实用。 GFS是google的重要基础设施, 大数据的基石, 也是Hadoop HDFS的参考对象。 主要技术特点包括: 假设硬件故障是常态(容错能力强), 64MB大块, 单Master设计,Lease/链式复制, 支持追加写不支持随机写. 《Bigtable: A Distributed Storage System for Structured Data》介绍:支持PB数据量级的多维非关系型大表, 在google内部应用广泛,大数据的奠基作品之一 , Hbase就是参考BigTable设计。 Bigtable的主要技术特点包括: 基于GFS实现数据高可靠, 使用非原地更新技术(LSM树)实现数据修改, 通过range分区并实现自动伸缩等.中文版 《PacificA: Replication in Log-Based Distributed Storage Systems》介绍:面向log-based存储的强一致的主从复制协议, 具有较强实用性。 这篇文章系统地讲述了主从复制系统应该考虑的问题, 能加深对主从强一致复制的理解程度。 技术特点: 支持强一致主从复制协议, 允许多种存储实现, 分布式的故障检测/Lease/集群成员管理方法. 《Object Storage on CRAQ, High-throughput chain replication for read-mostly workloads》介绍:分布式存储论文:支持强一直的链式复制方法, 支持从多个副本读取数据,实现code. 《Finding a needle in Haystack: Facebook’s photo storage》介绍:Facebook分布式Blob存储,主要用于存储图片. 主要技术特色:小文件合并成大文件,小文件元数据放在内存因此读写只需一次IO. 《Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency》介绍: 微软的分布式存储平台, 除了支持类S3对象存储,还支持表格、队列等数据模型. 主要技术特点:采用Stream/Partition两层设计(类似BigTable);写错(写满)就封存Extent,使得副本字节一致, 简化了选主和恢复操作; 将S3对象存储、表格、队列、块设备等融入到统一的底层存储架构中. 《Paxos Made Live – An Engineering Perspective》介绍:从工程实现角度说明了Paxo在chubby系统的应用, 是理解Paxo协议及其应用场景的必备论文。 主要技术特点: paxo协议, replicated log, multi-paxo.参考阅读:关于Paxos的历史 《Dynamo: Amazon’s Highly Available Key-Value Store》介绍:Amazon设计的高可用的kv系统,主要技术特点:综和运用一致性哈希,vector clock,最终一致性构建一个高可用的kv系统, 可应用于amazon购物车场景.新内容来自分布式存储必读论文 《Efficient Replica Maintenance for Distributed Storage Systems》介绍:分布式存储系统中的副本存储问题. 《PADS: A Policy Architecture for Distributed Storage Systems》介绍:分布式存储系统架构. 《The Chirp Distributed Filesystem》介绍:开源分布式文件系统Chirp,对于想深入研究的开发者可以阅读文章的相关Papers. 《Time, Clocks, and the Ordering of Events in a Distributed System》介绍:经典论文分布式时钟顺序的实现原理. 《Making reliable distributed systems in the presence of sodware errors》介绍:面向软件错误构建可靠的分布式系统,中文笔记. 《MapReduce: Simplified Data Processing on Large Clusters》介绍:MapReduce:超大集群的简单数据处理. 《Distributed Computer Systems Engineering》介绍:麻省理工的分布式计算课程主页,里面的ppt和阅读列表很多干货. 《The Styx Architecture for Distributed Systems》介绍:分布式系统Styx的架构剖析. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上面的一个问答:有哪些关于分布式计算学习的好资源. 《RebornDB: The Next Generation Distributed Key-Value Store》介绍:下一代分布式k-v存储数据库. 《Operating System Concepts Ninth Edition》介绍:分布式系统归根结底还是需要操作系统的知识,这是耶鲁大学的操作系统概念书籍首页,里面有提供了第8版的在线电子版和最新的学习操作系统指南,学习分布式最好先学习操作系统. 《The Log: What every software engineer should know about real-time data's unifying abstraction》介绍:分布式系统Log剖析,非常的详细与精彩. 中文翻译 | 中文版笔记. 《Operating Systems Study Guide》介绍:分布式系统基础之操作系统学习指南. 《分布式系统领域经典论文翻译集》介绍:分布式系统领域经典论文翻译集. 《Maintaining performance in distributed systems》介绍:分布式系统性能维护. 《Computer Science from the Bottom Up》介绍:计算机科学,自底向上,小到机器码,大到操作系统内部体系架构,学习操作系统的另一个在线好材料. 《Operating Systems: Three Easy Pieces》介绍:<操作系统:三部曲>在线电子书,虚拟、并发、持续. 《Database Systems: reading list》介绍:数据库系统经典论文阅读列,此外推送github上面的db reading. 《Unix System Administration》介绍:Unix System Administration ebook. 《The Amoeba Distributed Operating System》介绍:分布式系统经典论文. 《Principles of Computer Systems》介绍:计算机系统概念,以分布式为主.此外推荐Introduction to Operating Systems笔记 《Person page of EMİN GÜN SİRER》介绍:推荐康奈尔大学的教授EMİN GÜN SİRER的主页,他的研究项目有分布式,数据存储。例如HyperDex数据库就是他的其中一个项目之一. 《Scalable, Secure, and Highly Available Distributed File Access》介绍:来自卡内基梅隆如何构建可扩展的、安全、高可用性的分布式文件系统,其他papers. 《Distributed (Deep) Machine Learning Common》介绍:分布式机器学习常用库. 《The Datacenter as a Computer》介绍:介绍了如何构建仓储式数据中心,尤其是对于现在的云计算,分布式学习来说很有帮助.本书是Synthesis Lectures on Computer Architecture系列的书籍之一,这套丛书还有 《The Memory System》,《Automatic Parallelization》,《Computer Architecture Techniques for Power Efficiency》,《Performance Analysis and Tuning for General Purpose Graphics Processing Units》,《Introduction to Reconfigurable Supercomputing》,Memory Systems Cache, DRAM, Disk 等 《helsinki:Distributed Systems Course slider》介绍:来自芬兰赫尔辛基的分布式系统课程课件:什么是分布式,复制,一致性,容错,同步,通信. 《TiDB is a distributed SQL database》介绍:分布式数据库TiDB,Golang开发. 《S897: Large-Scale Systems》介绍:课程资料:大规模系统. 《Large-scale L-BFGS using MapReduce》介绍:使用MapReduce进行大规模分布式集群环境下并行L-BFGS. 《Twitter是如何构建高性能分布式日志的》介绍:Twitter是如何构建高性能分布式日志的. 《Distributed Systems: When Limping Hardware Is Worse Than Dead Hardware》介绍:在分布式系统中某个组件彻底死了影响很小,但半死不活(网络/磁盘),对整个系统却是毁灭性的. 《Tera - 高性能、可伸缩的结构化数据库》介绍:来自百度的分布式数据库. 《SequoiaDB is a distributed document-oriented NoSQL Database》介绍:SequoiaDB分布式文档数据库开源. 《Readings in distributed systems》介绍:这个网址里收集了一堆各TOP大学分布式相关的课程. 《Paxos vs Raft》介绍:这个网站是Raft算法的作者为教授Paxos和Raft算法做的,其中有两个视频链接,分别讲上述两个算法.参考阅读:关于Paxos的历史 《A Scalable Content-Addressable Network》介绍:A Scalable Content-Addressable Network. 《500 Lines or Less》介绍:这个项目其实是一本书( The Architecture of Open Source Applications)的源代码附录,是一堆大牛合写的. 《MIT 6.824 Distributed System》介绍:这只是一个课程主页,没有上课的视频,但是并不影响你跟着它上课:每一周读两篇课程指定的论文,读完之后看lecture-notes里对该论文内容的讨论,回答里面的问题来加深理解,最后在课程lab里把所看的论文实现。当你把这门课的作业刷完后,你会发现自己实现了一个分布式数据库. 《HDFS-alike in Go》介绍:使用go开发的分布式文件系统. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上关于学习分布式的资源问答. 《SeaweedFS is a simple and highly scalable distributed file system》介绍:SeaweedFS是使用go开发的分布式文件系统项目,代码简单,逻辑清晰. 《Codis - yet another fast distributed solution for Redis》介绍:Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没有明显的区别 《Paper: Coordination Avoidance In Distributed Databases By Peter Bailis》介绍:Coordination Avoidance In Distributed Databases. 《从零开始写分布式数据库》介绍:本文以TiDB 源码为例. 《what we talk about when we talk about distributed systems》介绍:分布式系统概念梳理,为分布式系统涉及的主要概念进行了梳理. 《Distributed locks with Redis》介绍:使用Redis实现分布式锁. 《CS244b: Distributed Systems》介绍: 斯坦福2014年秋季分布式课程. 《RAMP Made Easy》介绍: 分布式的“读原子性”. 《Strategies and Principles of Distributed Machine Learning on Big Data》介绍: 大数据分布式机器学习的策略与原理. 《Distributed Systems: What is the CAP theorem?》介绍: 分布式CAP法则. 《How should I start to learn distributed storage system as a beginner?》介绍: 新手如何步入分布式存储系统. 《Cassandra - A Decentralized Structured Storage System》介绍: 分布式存储系统Cassandra剖析,推荐白皮书Introduction to Apache Cassandra. 《What is the best resource to learn about distributed systems?》介绍: 分布式系统学习资源. 《What are some high performance TCP hacks?》介绍: 一些高性能TCP黑客技巧. 《Maintaining performance in distributed systems》介绍:分布式系统性能提升. 《A simple totally ordered broadcast protocol》介绍:Benjamin Reed 和 Flavio P.Junqueira 所著论文,对Zab算法进行了介绍,zab算法是Zookeeper保持数据一致性的核心,在国内有很多公司都使用zookeeper做为分布式的解决方案.推荐与此相关的一篇文章ZooKeeper’s atomic broadcast protocol: Theory and practice. 《zFS - A Scalable Distributed File System Using Object Disk》介绍:可扩展的分布式文件系统ZFS,The Zettabyte File System,End-to-end Data Integrity for File Systems: A ZFS Case Study. 《A Distributed Haskell for the Modern Web》介绍:分布式Haskell在当前web中的应用. 《Reasoning about Consistency Choices in Distributed Systems》介绍:POPL2016的论文,关于分布式系统一致性选择的论述,POPL所接受的论文,github上已经有人整理. 《Paxos Made Simple》介绍:Paxos让分布式更简单.译文.参考阅读:关于Paxos的历史,understanding Paxos part1,Understanding Paxos – Part 2.Quora: What is a simple explanation of the Paxos algorithm?,Tutorial Summary: Paxos Explained from Scratch,Paxos algorithm explained, part 1: The essentials,Paxos algorithm explained, part 2: Insights 《Consensus Protocols: Paxos》介绍:分布式系统一致性协议:Paxos.参考阅读:关于Paxos的历史 《Consensus on Transaction Commit》介绍:事务提交的一致性探讨. 《The Part-Time Parliaments》介绍:在《The Part-Time Parliament》中描述了基本协议的交互过程。在基本协议的基础上完善各种问题得到了最终的议会协议。 为了让人更容易理解《The Part-Time Parliament》中描述的Paxos算法,Lamport在2001发表了《Paxos Made Simple》,以更平直的口头语言描述了Paxos,而没有包含正式的证明和数学术语。《Paxos Made Simple》中,将算法的参与者更细致的划分成了几个角色:Proposer、Acceptor、Learner。另外还有Leader和Client.参考阅读:关于Paxos的历史 《Paxos Made Practical》介绍:看这篇论文时可以先看看理解Paxos Made Practical. 《PaxosLease: Diskless Paxos for Leases》介绍:PaxosLease:实现租约的无盘Paxos算法,译文. 《Paxos Made Moderately Complex》介绍:Paxos算法实现,译文,同时推荐42 Paxos Made Moderately Complex. 《Hadoop Reading List》介绍:Hadoop学习清单. 《Hadoop Reading List》介绍:Hadoop学习清单. 《2010 NoSQL Summer Reading List》介绍:NoSQL知识清单,里面不仅仅包含了数据库阅读清单还包含了分布式系统资料. 《Raft: Understandable Distributed Consensus》介绍:Raft可视化图帮助理解分布式一致性 《Etcd:Distributed reliable key-value store for the most critical data of a distributed system》介绍:Etcd分布式Key-Value存储引擎 《Understanding Availability》介绍:理解peer-to-peer系统中的可用性究竟是指什么.同时推荐基于 Peer-to-Peer 的分布式存储系统的设计 《Process structuring, synchronization, and recovery using atomic actions》介绍:经典论文 《Programming Languages for Parallel Processing》介绍:并行处理的编程语音 《Analysis of Six Distributed File Systems》介绍:此篇论文对HDFS,MooseFS,iRODS,Ceph,GlusterFS,Lustre六个存储系统做了详细分析.如果是自己研发对应的存储系统推荐先阅读此篇论文 《A Survey of Distributed File Systems》介绍:分布式文件系统综述 《Concepts of Concurrent Programming》介绍:并行编程的概念,同时推荐卡内基梅隆FTP 《Concurrency Control Performance Modeling:Alternatives and Implications》介绍:并发控制性能建模:选择与意义 《Distributed Systems - Concepts and Design 5th Edition》介绍:ebook分布式系统概念与设计 《分布式系统设计的形式方法》介绍:分布式系统设计的形式方法 《互斥和选举算法》介绍:互斥和选举算法 《Actors:A model Of Concurrent Cornputation In Distributed Systems》介绍:经典论文 《Security Engineering: A Guide to Building Dependable Distributed Systems》介绍:如何构建一个安全可靠的分布式系统,About the Author,Bibliography:文献资料,章节访问把链接最后的01换成01-27即可 《15-712 Advanced and Distributed Operating Systems》介绍:卡内基梅隆大学的分布式系统博士生课程主页,有很丰富的资料 《Dapper, Google's Large-Scale Distributed Systems Tracing Infrastructure》介绍:Dapper,大规模分布式系统的跟踪系统,译文,译文对照 《CS262a: Advanced Topics in Computer Systems》介绍:伯克利大学计算机系统进阶课程,内容有深度,涵盖分布式,数据库等内容 《Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System》介绍:PB级分布式系统构建/扩展经验 《CS162: Operating Systems and Systems Programming》介绍:伯克利大学计算机系统课程:操作系统与系统编程 《MDCC: Multi-Data Center Consistency》介绍:MDCC主要解决跨数据中心的一致性问题中间件,一种新的协议 《Research at Google:Distributed Systems and Parallel Computing》介绍:google公开对外发表的分布式系统与并行计算论文 《HDFS Architecture Guide》介绍:分布式文件系统HDFS架构 《ActorDB distributed SQL database》介绍:分布式 Key/Value数据库 《An efficient data location protocol for self-organizing storage clusters》介绍:是著名的Ceph的负载平衡策略,文中提出的几种策略都值得尝试,比较赞的一点是可以对照代码体会和实践,如果你还需要了解可以看看Ceph:一个 Linux PB 级分布式文件系统,除此以外,论文的引用部分也挺值得阅读的,同时推荐Ceph: A Scalable, High-Performance Distributed File System 《A Self-Organizing Storage Cluster for Parallel Data-Intensive Applications》介绍:Surrento的冷热平衡策略就采用了延迟写技术 《HBA: Distributed Metadata Management for Large Cluster-Based Storage Systems》介绍:对于分布式存储系统的元数据管理. 《Server-Side I/O Coordination for Parallel File Systems》介绍:服务器端的I/O协调并行文件系统处理,网络,文件存储等都会涉及到IO操作.不过里面涉及到很多技巧性的思路在实践时需要斟酌 《Distributed File Systems: Concepts and Examples》介绍:分布式文件系统概念与应用 《CSE 221: Graduate Operating Systems》介绍:加利福尼亚大学的研究生操作系统课程主页,论文很值得阅读 《S4: Distributed Stream Computing Platform》介绍:Yahoo出品的流式计算系统,目前最流行的两大流式计算系统之一(另一个是storm),Yahoo的主要广告计算平台 《Pregel: a system for large-scale graph processing》介绍:Google的大规模图计算系统,相当长一段时间是Google PageRank的主要计算系统,对开源的影响也很大(包括GraphLab和GraphChi) 《GraphLab: A New Framework for Parallel Machine Learning》介绍:CMU基于图计算的分布式机器学习框架,目前已经成立了专门的商业公司,在分布式机器学习上很有两把刷子,其单机版的GraphChi在百万维度的矩阵分解都只需要2~3分钟; 《F1: A Distributed SQL Database That Scales》介绍:这篇论文是Google 2013年发表的,介绍了F1的架构思路,13年时就开始支撑Google的AdWords业务,另外两篇介绍文章F1 - The Fault-Tolerant Distributed RDBMS Supporting Google's Ad Business .Google NewSQL之F1 《Cockroach DB:A Scalable, Survivable, Strongly-Consistent SQL Database》介绍:CockroachDB :一个可伸缩的、跨地域复制的,且支持事务的数据存储,InfoQ介绍,Design and Architecture of CockroachDb 《Multi-Paxos: An Implementation and Evaluation》介绍:Multi-Paxos实现与总结,此外推荐Paxos/Multi-paxos Algorithm,Multi-Paxos Example,地址:ftp://ftp.cs.washington.edu/tr/2009/09/UW-CSE-09-09-02.PDF 《Zab: High-performance broadcast for primary-backup systems》介绍:一致性协议zab分析 《A Distributed Hash Table》介绍:分布式哈希算法论文,扩展阅读Introduction to Distributed Hash Tables,Distributed Hash Tables 《Comparing the performance of distributed hash tables under churn》介绍:分布式hash表性能的Churn问题 《Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web》介绍:分布式系统的CAP问题,推荐Perspectives on the CAP Theorem.对CAP理论的解析文章,PODC ppt,A plain english introduction to CAP Theorem,IEEE Computer issue on the CAP Theorem 《F2FS: A New File System for Flash Storage》介绍:闪存存储文件系统F2FS 《Better I/O Through Byte-Addressable, Persistent Memory》介绍:微软发表的关于i/o访问优化论文 《tmpfs: A Virtual Memory File System》介绍:虚拟内存文件系统tmpfs 《BTRFS: The Linux B-tree Filesystem》介绍:Linux B-tree文件系统. 《Akamai technical publication》介绍:Akamai是全球最大的云计算机平台之一,承载了全球15-30%网络流量,如果你是做CDN或者是云服务,这个里面的论文会给你很有帮助.例如这几天看facebook开源的osquery。找到通过db的方式运维,找到Keeping Track of 70,000+ Servers: The Akamai Query System这篇论文,先看论文领会思想,然后再使用工具osquery实践 《BASE: An Acid Alternative》介绍:来自eBay 的解决方案,译文Base: 一种Acid的替代方案,应用案例参考保证分布式系统数据一致性的6种方案 《A Note on Distributed Computing》介绍:Jim Waldo和Sam Kendall等人共同撰写了一篇非常有名的论文“分布式计算备忘录”,这篇论文在Reddit上被人推荐为“每个程序员都应当至少读上两篇”的论文。在这篇论文中,作者表示“忽略本地计算与分布式计算之间的区别是一种危险的思想”,特别指出了Emerald、Argus、DCOM以及CORBA的设计问题。作者将这些设计问题归纳为“三个错误的原则”: “对于某个应用来说,无论它的部署环境如何,总有一种单一的、自然的面向对象设计可以符合其需求。” “故障与性能问题与某个应用的组件实现直接相关,在最初的设计中无需考虑这些问题。” “对象的接口与使用对象的上下文无关”. 《Distributed Systems Papers》介绍:分布式系统领域经典论文列表. 《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》介绍:Consistent Hashing算法描述. 《SIGMOD 2016: Accepted Research Papers》介绍:SIGMOD是世界上最有名的数据库会议之一,最具有权威性,收录论文审核非常严格.2016年的SIGMOD 会议照常进行,上面收录了今年SIGMOD收录的论文,把题目输入google中加上pdf就能找到,很多论文值得阅读,SIGMOD 2015 《Notes on CPSC 465/565: Theory of Distributed Systems》介绍:耶鲁大学的分布式系统理论课程笔记 《Distributed Operating System Doc PDF》介绍:分布式系统文档资源(可下载) 《Anatomy of a database system》介绍:数据库系统剖析,这本书是由伯克利大学的Joseph M. Hellerstein和M. Stonebraker合著的一篇论文.对数据库剖析很有深度.除此以外还有一篇文章Architecture of a Database System。数据库系统架构,厦门大学的数据库实验室教授林子雨组织过翻译 《A Relational Model of Data for Large Shared Data Banks》介绍:数据库关系模型论文 《RUC Innovative data systems reaserch lab recommand papers》介绍:中国人民大学数据研究实验室推荐的数据库领域论文 《A Scalable Distributed Information Management System》介绍:构建可扩展的分布式信息管理系统 《Distributed Systems in Haskell》介绍:Haskell中的分布式系统开发 《Large-scale cluster management at Google with Borg》介绍:Google使用Borg进行大规模集群的管理,伯克利大学ppt介绍,中文版 《Lock Free Programming Practice》介绍:并发编程(Concurrency Programming)资料,主要涵盖lock free数据结构实现、内存回收方法、memory model等备份链接 密码: xc5j 《Distributed Algorithms Lecture Notes for 6.852》介绍:Nancy Lynch's的分布式算法研究生课程讲义 《Distributed Algorithms for Topic Models》介绍:分布式算法主题模型. 《RecSys - ACM Recommender Systems》介绍:世界上非常有名的推荐系统会议,我比较推荐接收的PAPER 《All Things Distributed》介绍:推荐一个博客,博主是Amazon CTO Werner Vogels,这是一个关注分布式领域的博客.大部分博文是关于在工业界应用. 《programming, database, distributed system resource list》介绍:这个Git是由阿里(alibaba)的技术专家何登成维护,主要是分布式数据库. 《Making reliable distributed systems in the presence of sodware errors》介绍:Erlang的作者Joe Armstrong撰写的论文,面对软件错误构建可靠的分布式系统.中文译版 《CS 525: Advanced Distributed Systems[Spring 2016]》介绍:伊利诺伊大学的Advanced Distributed Systems 里把各个方向重要papers(updated Spring 2015)列举出来,可以参考一下 《Distributed Algorithms》介绍:这是一本分布式算法电子书,作者是Jukka Suomela.讲述了多个计算模型,一致性,唯一标示,并发等. 《TinyLFU: A Highly Efficient Cache Admission Policy》介绍:当时是在阅读如何设计一个缓存系统时看到的,然后通过Google找到了这一篇关于缓存策略的论文,它是LFU的改良版,中文介绍.如果有兴趣可以看看Golang实现版。结合起来可能会帮助你理解 《6.S897: Large-Scale Systems》介绍:斯坦福大学给研究生开的分布式系统课程。教师是 spark 作者 matei. 能把这些内容真正理解透,分布式系统的功力就很强了。 《学习分布式系统需要怎样的知识?》介绍:[怎么学系列]学习分布式系统需要怎样的知识? 《Distributed systems theory for the distributed systems engineer》介绍:分布式系统工程师的分布式系统理论 《A Distributed Systems Reading List》介绍:分布式系统论文阅读列表 《Distributed Systems Reading Group》介绍:麻省理工大学分布式系统小组,他们会把平时阅读到的优秀论文分享出来。虽然有些论文本页已经收录,但是里面的安排表schedule还是挺赞的 《Scalable Software Architecture》介绍:分布式系统、可扩展性与系统设计相关报告、论文与网络资源汇总. 《MapReduce&Hadoop resource》介绍:MapReduce&Hadoop相关论文,涉及分布式系统设计,性能分析,实践,优化等多个方面 《Distributed Systems: Principles and Paradigms(second edtion)》介绍:分布式系统原理与范型第二版,课后解答 《Distributed Systems Seminar's reading list for Spring 2017》介绍:分布式系统研讨会论文阅读列表 《A Critique of the CAP Theorem》介绍:这是一篇评论CAP定理的论文,学习CAP很有帮助,推荐阅读评论文章"A Critique of the CAP Theorem" 《Evolving Distributed Systems》介绍:推荐文章不断进化的分布式系统.

suonayi 2019-12-02 03:17:27 0 浏览量 回答数 0

回答

前辈,你们在吗? @中山野鬼 @stxy0509  能帮我看看这个问题吗? ###### @stxy0509###### 老实说,你@我之前,我就看过你这个问题,但是我觉得挺棘手的,因为我自己觉得我也搞不定,所以没敢开腔,但是,被你@了,不站出来似乎有点乌龟了…… 1 “在mes1和mes2的信息被输出到stdout时都在其尾部被加上了一个换行符”,这个确实是不应该的,我在Windows下用vs2010试验过,并没有这样。至于linux为什么这样,我也不知道。 2 “stdout是行缓存的(在本机试验过也确实如此)”,那你是如何证明这一点的呢?h或许你真的证明了,那我只能说linux的行为对我来说有点费解。 你觉得fclose()另外一个文件,会强迫stdout输出吗?可是为了实际证明这一点,你把fclose()注释掉,试一下。或许我说的是错的。 3 “input file 的buffer 好像与stdout终端的buffer没有什么直接的联系”,肯定是这样的,要联系也是程序让他们有联系,否则不乱套了? 4 文件以"r"模式打开,而且文件是全缓冲,我的理解是缓冲区中的内容不是自动就填充的,而是你使用fread()或其他读的函数,系统会将读取的内容自动放到这个缓冲区,并返回你的读取函数。如果下次读的数据还是这个缓冲去范围内的数据,就直接从这个缓冲去复制,不直接读文件了。但是如果不在范围,还是要实际读取文件的,从而再次更新缓冲区。 5 根据我知道的资料,fflush()是把缓冲区中的数据刷新到磁盘(真正的写入)。对于以读模式打开的文件,应该不需要同步,因为根本没有也不能修改文件; 6 文件可以被同时打开为读和写。很多时候都是一个线程写文件,而另一个线程从这个文件读取,这算是线程通讯的一种办法。只要文件指针(读写位置)保持正确就可以了。实际上,在windows下面文件要想这样,必须打开时共享读写,不能独占式访问。但是简单的c库函数做不到这一点,能不能,听天由命了(要看读写这个文件的其他进程是否设置共享)。 7 “如果可以,那么它们申请的应该是两个不同的缓存空间吗?",我要说的是一个FILE *指针对应一个缓冲区,如果只用一个,那不乱套,你写乱我的,我搞乱你的。多从常识,原理角度考虑问题,常识,原理应该这样,那么程序也应该这样。否则,程序也会出现问题的。 希望对你有帮助! ###### FILE结构体只维护了一个缓冲区。如果你先对一个文件调用fgets函数来到一个特定的位置,这时你想要写文件的话,你需要先fseek(fp,0,SEEK_CUR)来清空缓冲,然后才能调用写函数。 可以去看unix环境高级编程,前几章写得非常明确。 ###### 关于第一个问题,我用vim去创建mest1跟mest2的话就会出现跟楼主一样的换行,但如果 printf hello > mest1 printf marry! > mest2 这样创建的话是不会出现换行的。 当我用hexdump去看用vim创建的mest1的时候发现文件末尾出现了奇怪的东西,所以应该是文件编辑器问题,不关代码的事吧 ###### 问题解决了,总结一下: 1. 问题的根本原来出现在vim这个文本编辑器身上,就像@杨同学 所说的那样。我百度了一下,原来vim会自动在其创建的文本中的每一行末尾自动添加一个换行符(如果该行末尾本身没有换行符的话)。如果想去掉这个自动换行,可以在vim的命令mode中依次敲入“set noeol”和"set binary"(后面这个"set binary" 默认是off的,打开它好像可能会引起一些其他的问题。。这个有待研究)。敲完命令后":w"保存可以看到提示的文本字符数正好是自己输入的个数(而没有额外得被加上了1个换行符)。 2. stdout 和 stdin 默认是行缓存的。可以通过下面的代码证明stdout是行缓存的: printf("hello"); while(1); 编译此文件,运行,可以看到并没有输出,而是一直停在了某个地方 (while(1)的作用),因为此时的数据还在stdout的buffer中,而且程序并没有退出main(),所以不能flush buffer中的内容到stdout终端。但若为printf("hello\n"),则会因stdout的buffer遭遇到了一个换行符而将buffer的内容flush到stdout终端,故在运行程序时会看到相应的“hello”输出。 3. input file 的buffer(通过“r”模式用fopen打开文件所生成的buffer),和 output file 的buffer(通过“w”模式用fopen打开文件所生成的buffer)不是同一个东西, 他们是独立的。当调用fclose()函数时(如fflush(fp),fp为指向某个文件的文件指针,类型为FILE *),其会调用fflush函数来“刷新”fp所指向文件的缓存区。而这个“刷新”是有两层含义的。对于input file 的buffer 来说,这会丢弃缓存区中尚未被读取的内容,而对于output file 来说,这会使得buffer中的内容写入到相应的输出文件中(写入disk或相应的设备文件,通过调用相应的system call)。 http://man7.org/linux/man-pages/man3/fflush.3.html 的description有说到这个问题。所以源码中的“fclose(fp)”并不会强迫stdout输出,他只是flush了input file 的buffer,并释放了fp这个文件指针以供下个input file使用。 4. 驻留在disk上面的文件一般为全缓存的。当以“r”模式用fopen打开此类文件时,system会为这个文件建立一个input buffer,而此时应该还不会立马将文件的内容读至buffer,而是等到真正要由该文件读取数据时才会通过system call将文件的数据填满这个buffer,然后再由这个buffer读取数据。 5. 文件可以同时被读和写("rw")。但这个要注意的东西很多,还没学到。。        最后,非常感谢 @stxy0509 @优游幻世 和 @杨同学 。能抽时间看完我这累赘的叙述并且还给出了自己的看法,让我解决了一个大疑惑。一个人的能力和经验是有限的,大家不同的看法才能引起brain storm,更快地解决问题。有你们的支持,我才能走得更远。Thanks a lot~######和库有关。查一下相关库的说明。包括stdout。c标准里,对这些具体的操作方式,没有规定的。各家按照自己喜好来。本身c语言跨平台时,要注意的,就是这些。###### 引用来自“中山野鬼”的答案 和库有关。查一下相关库的说明。包括stdout。c标准里,对这些具体的操作方式,没有规定的。各家按照自己喜好来。本身c语言跨平台时,要注意的,就是这些。 感谢野鬼前辈~我会注意的。

kun坤 2020-06-07 20:08:36 0 浏览量 回答数 0

回答

散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。 [编辑本段]基本概念 * 若结构中存在关键字和K相等的记录,则必定在f(K)的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系f为散列函数(Hash function),按这个思想建立的表为散列表。 * 对不同的关键字可能得到同一散列地址,即key1≠key2,而f(key1)=f(key2),这种现象称冲突。具有相同函数值的关键字对该散列函数来说称做同义词。综上所述,根据散列函数H(key)和处理冲突的方法将一组关键字映象到一个有限的连续的地址集(区间)上,并以关键字在地址集中的“象” 作为记录在表中的存储位置,这种表便称为散列表,这一映象过程称为散列造表或散列,所得的存储位置称散列地址。 * 若对于关键字集合中的任一个关键字,经散列函数映象到地址集合中任何一个地址的概率是相等的,则称此类散列函数为均匀散列函数(Uniform Hash function),这就是使关键字经过散列函数得到一个“随机的地址”,从而减少冲突。 [编辑本段]常用的构造散列函数的方法 散列函数能使对一个数据序列的访问过程更加迅速有效,通过散列函数,数据元素将被更快地定位ǐ 1. 直接寻址法:取关键字或关键字的某个线性函数值为散列地址。即H(key)=key或H(key) = a•key + b,其中a和b为常数(这种散列函数叫做自身函数) 2. 数字分析法 3. 平方取中法 4. 折叠法 5. 随机数法 6. 除留余数法:取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即 H(key) = key MOD p, p<=m。不仅可以对关键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选的不好,容易产生同义词。 [编辑本段]处理冲突的方法 1. 开放寻址法:Hi=(H(key) + di) MOD m, i=1,2,…, k(k<=m-1),其中H(key)为散列函数,m为散列表长,di为增量序列,可有下列三种取法: 1. di=1,2,3,…, m-1,称线性探测再散列; 2. di=1^2, (-1)^2, 2^2,(-2)^2, (3)^2, …, ±(k)^2,(k<=m/2)称二次探测再散列; 3. di=伪随机数序列,称伪随机探测再散列。 == 2. 再散列法:Hi=RHi(key), i=1,2,…,k RHi均是不同的散列函数,即在同义词产生地址冲突时计算另一个散列函数地址,直到冲突不再发生,这种方法不易产生“聚集”,但增加了计算时间。 3. 链地址法(拉链法) 4. 建立一个公共溢出区 [编辑本段]查找的性能分析 散列表的查找过程基本上和造表过程相同。一些关键码可通过散列函数转换的地址直接找到,另一些关键码在散列函数得到的地址上产生了冲突,需要按处理冲突的方法进行查找。在介绍的三种处理冲突的方法中,产生冲突后的查找仍然是给定值与关键码进行比较的过程。所以,对散列表查找效率的量度,依然用平均查找长度来衡量。 查找过程中,关键码的比较次数,取决于产生冲突的多少,产生的冲突少,查找效率就高,产生的冲突多,查找效率就低。因此,影响产生冲突多少的因素,也就是影响查找效率的因素。影响产生冲突多少有以下三个因素: 1. 散列函数是否均匀; 2. 处理冲突的方法; 3. 散列表的装填因子。 散列表的装填因子定义为:α= 填入表中的元素个数 / 散列表的长度 α是散列表装满程度的标志因子。由于表长是定值,α与“填入表中的元素个数”成正比,所以,α越大,填入表中的元素较多,产生冲突的可能性就越大;α越小,填入表中的元素较少,产生冲突的可能性就越小。 实际上,散列表的平均查找长度是装填因子α的函数,只是不同处理冲突的方法有不同的函数。 了解了hash基本定义,就不能不提到一些著名的hash算法,MD5 和 SHA-1 可以说是目前应用最广泛的Hash算法,而它们都是以 MD4 为基础设计的。那么他们都是什么意思呢? 这里简单说一下: (1) MD4 MD4(RFC 1320)是 MIT 的 Ronald L. Rivest 在 1990 年设计的,MD 是 Message Digest 的缩写。它适用在32位字长的处理器上用高速软件实现--它是基于 32 位操作数的位操作来实现的。 (2) MD5 MD5(RFC 1321)是 Rivest 于1991年对MD4的改进版本。它对输入仍以512位分组,其输出是4个32位字的级联,与 MD4 相同。MD5比MD4来得复杂,并且速度较之要慢一点,但更安全,在抗分析和抗差分方面表现更好 (3) SHA-1 及其他 SHA1是由NIST NSA设计为同DSA一起使用的,它对长度小于264的输入,产生长度为160bit的散列值,因此抗穷举(brute-force)性更好。SHA-1 设计时基于和MD4相同原理,并且模仿了该算法。 那么这些Hash算法到底有什么用呢? Hash算法在信息安全方面的应用主要体现在以下的3个方面: (1) 文件校验 我们比较熟悉的校验算法有奇偶校验和CRC校验,这2种校验并没有抗数据篡改的能力,它们一定程度上能检测并纠正数据传输中的信道误码,但却不能防止对数据的恶意破坏。 MD5 Hash算法的"数字指纹"特性,使它成为目前应用最广泛的一种文件完整性校验和(Checksum)算法,不少Unix系统有提供计算md5 checksum的命令。 (2) 数字签名 Hash 算法也是现代密码体系中的一个重要组成部分。由于非对称算法的运算速度较慢,所以在数字签名协议中,单向散列函数扮演了一个重要的角色。 对 Hash 值,又称"数字摘要"进行数字签名,在统计上可以认为与对文件本身进行数字签名是等效的。而且这样的协议还有其他的优点。 (3) 鉴权协议 如下的鉴权协议又被称作挑战--认证模式:在传输信道是可被侦听,但不可被篡改的情况下,这是一种简单而安全的方法。 MD5、SHA1的破解 2004年8月17日,在美国加州圣芭芭拉召开的国际密码大会上,山东大学王小云教授在国际会议上首次宣布了她及她的研究小组近年来的研究成果——对MD5、HAVAL-128、MD4和RIPEMD等四个著名密码算法的破译结果。 次年二月宣布破解SHA-1密码。 [编辑本段]实际应用 以上就是一些关于hash以及其相关的一些基本预备知识。那么在emule里面他具体起到什么作用呢? 大家都知道emule是基于P2P (Peer-to-peer的缩写,指的是点对点的意思的软件), 它采用了"多源文件传输协议”(MFTP,the Multisource FileTransfer Protocol)。在协议中,定义了一系列传输、压缩和打包还有积分的标准,emule 对于每个文件都有md5-hash的算法设置,这使得该文件独一无二,并且在整个网络上都可以追踪得到。 什么是文件的hash值呢? MD5-Hash-文件的数字文摘通过Hash函数计算得到。不管文件长度如何,它的Hash函数计算结果是一个固定长度的数字。与加密算法不同,这一个Hash算法是一个不可逆的单向函数。采用安全性高的Hash算法,如MD5、SHA时,两个不同的文件几乎不可能得到相同的Hash结果。因此,一旦文件被修改,就可检测出来。 当我们的文件放到emule里面进行共享发布的时候,emule会根据hash算法自动生成这个文件的hash值,他就是这个文件唯一的身份标志,它包含了这个文件的基本信息,然后把它提交到所连接的服务器。当有他人想对这个文件提出下载请求的时候, 这个hash值可以让他人知道他正在下载的文件是不是就是他所想要的。尤其是在文件的其他属性被更改之后(如名称等)这个值就更显得重要。而且服务器还提供了,这个文件当前所在的用户的地址,端口等信息,这样emule就知道到哪里去下载了。 一般来讲我们要搜索一个文件,emule在得到了这个信息后,会向被添加的服务器发出请求,要求得到有相同hash值的文件。而服务器则返回持有这个文件的用户信息。这样我们的客户端就可以直接的和拥有那个文件的用户沟通,看看是不是可以从他那里下载所需的文件。 对于emule中文件的hash值是固定的,也是唯一的,它就相当于这个文件的信息摘要,无论这个文件在谁的机器上,他的hash值都是不变的,无论过了多长时间,这个值始终如一,当我们在进行文件的下载上传过程中,emule都是通过这个值来确定文件。 那么什么是userhash呢? 道理同上,当我们在第一次使用emule的时候,emule会自动生成一个值,这个值也是唯一的,它是我们在emule世界里面的标志,只要你不卸载,不删除config,你的userhash值也就永远不变,积分制度就是通过这个值在起作用,emule里面的积分保存,身份识别,都是使用这个值,而和你的id和你的用户名无关,你随便怎么改这些东西,你的userhash值都是不变的,这也充分保证了公平性。其实他也是一个信息摘要,只不过保存的不是文件信息,而是我们每个人的信息。 那么什么是hash文件呢? 我们经常在emule日志里面看到,emule正在hash文件,这里就是利用了hash算法的文件校验性这个功能了,文章前面已经说了一些这些功能,其实这部分是一个非常复杂的过程,目前在ftp,bt等软件里面都是用的这个基本原理,emule里面是采用文件分块传输,这样传输的每一块都要进行对比校验,如果错误则要进行重新下载,这期间这些相关信息写入met文件,直到整个任务完成,这个时候part文件进行重新命名,然后使用move命令,把它传送到incoming文件里面,然后met文件自动删除,所以我们有的时候会遇到hash文件失败,就是指的是met里面的信息出了错误不能够和part文件匹配,另外有的时候开机也要疯狂hash,有两种情况一种是你在第一次使用,这个时候要hash提取所有文件信息,还有一种情况就是上一次你非法关机,那么这个时候就是要进行排错校验了。 关于hash的算法研究,一直是信息科学里面的一个前沿,尤其在网络技术普及的今天,他的重要性越来越突出,其实我们每天在网上进行的信息交流安全验证,我们在使用的操作系统密钥原理,里面都有它的身影,特别对于那些研究信息安全有兴趣的朋友,这更是一个打开信息世界的钥匙,他在hack世界里面也是一个研究的焦点。 一般的线性表、树中,记录在结构中的相对位置是随机的即和记录的关键字之间不存在确定的关系,在结构中查找记录时需进行一系列和关键字的比较。这一类查找方法建立在“比较”的基础上,查找的效率与比较次数密切相关。理想的情况是能直接找到需要的记录,因此必须在记录的存储位置和它的关键字之间建立一确定的对应关系f,使每个关键字和结构中一个唯一的存储位置相对应。因而查找时,只需根据这个对应关系f找到给定值K的像f(K)。若结构中存在关键字和K相等的记录,则必定在f(K)的存储位置上,由此不需要进行比较便可直接取得所查记录。在此,称这个对应关系f为哈希函数,按这个思想建立的表为哈希表(又称为杂凑法或散列表)。 哈希表不可避免冲突(collision)现象:对不同的关键字可能得到同一哈希地址 即key1≠key2,而hash(key1)=hash(key2)。具有相同函数值的关键字对该哈希函数来说称为同义词(synonym)。 因此,在建造哈希表时不仅要设定一个好的哈希函数,而且要设定一种处理冲突的方法。可如下描述哈希表:根据设定的哈希函数H(key)和所选中的处理冲突的方法,将一组关键字映象到一个有限的、地址连续的地址集(区间)上并以关键字在地址集中的“象”作为相应记录在表中的存储位置,这种表被称为哈希表。 对于动态查找表而言,1) 表长不确定;2)在设计查找表时,只知道关键字所属范围,而不知道确切的关键字。因此,一般情况需建立一个函数关系,以f(key)作为关键字为key的录在表中的位置,通常称这个函数f(key)为哈希函数。(注意:这个函数并不一定是数学函数) 哈希函数是一个映象,即:将关键字的集合映射到某个地址集合上,它的设置很灵活,只要这个地址集合的大小不超出允许范围即可。 现实中哈希函数是需要构造的,并且构造的好才能使用的好。 用途:加密,解决冲突问题。。。。 用途很广,比特精灵中就使用了哈希函数,你可 以自己看看。 具体可以学习一下数据结构和算法的书。 [编辑本段]字符串哈希函数 (著名的ELFhash算法) int ELFhash(char *key) return h%MOD; }

晚来风急 2019-12-02 01:22:24 0 浏览量 回答数 0

问题

PcDuino安装JDK+配置Tomcat服务:报错

kun坤 2020-06-05 22:33:03 0 浏览量 回答数 1

回答

你用的什么操作系统,这个脚本是不是在其他地方修改过linux默认shell都是bash,一般不存在没有安装bash的问题。其他配置是否都配置好了?用的ubuntu没修改过脚本啊 是从windows拷贝过去的吗?把要执行的文件用dos2unix转换一下。 怀疑你把PATH改坏了,看看echo$PATH的结果回复<aclass="referer"target="_blank">@鱼鱼鸟::/usr/local/games:/usr/jdk/bin://home/chen/chen/Software/hadoop-2.7.0/bin:/snap/bin:/usr/jdk/bin:/home/chen/chen/Software/hadoop-2.7.0/bin结果如上回复只能200字$echo$PATH/usr/gradle/gradle-3.3/bin:/usr/gradle/gradle-3.3/bin:/usr/jdk/bin:/usr/jdk/jre/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games chen<aclass="referer"target="_blank">@127:~/桌面/启动脚本$echo$PATH/usr/gradle/gradle-3.3/bin:/usr/gradle/gradle-3.3/bin:/usr/jdk/bin:/usr/jdk/jre/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/usr/jdk/bin://home/chen/chen/Software/hadoop-2.7.0/bin:/snap/bin:/usr/jdk/bin:/home/chen/chen/Software/hadoop-2.7.0/binchen<aclass="referer"target="_blank">@127:~/桌面/启动脚本$是PATH的问题吗?回复<aclass="referer"target="_blank">@GestureWei:找到答案了是文件权限原因回复<aclass="referer"target="_blank">@GestureWei:没修改过脚本配置参考的https://my.oschina.net/laigous/blog/478438到第7步就有问题了jdk用的1.8多数情况可能是文本格式问题,是否在windows底下修改过脚本,这种情况会修改行尾符。另外你的集群配置怎么做的

爱吃鱼的程序员 2020-06-08 17:29:27 0 浏览量 回答数 0

回答

python可以做shell脚本吗? 首先介绍一个函数: os.system(command) 这个函数可以调用shell运行命令行command并且返回它的返回值。试一下在 python的解释器里输入os.system(”ls -l”),就可以看到”ls”列出了当前目录下的文件。可以说,通过这个函数,python就拥有了shell的所有能力。呵呵。。不过,通常这条命令不需要用到。因为shell常用的那些命令在python中通常有对应而且同样简洁的写法。 shell中最常用的是ls命令,python对应的写法是:os.listdir(dirname),这个函数返回字符串列表,里面是所有的文件名,不过不包含”.”和”..”。如果要遍历整个目录的话就会比较复杂一点。我们等下再说吧。先在解释器里试一下: os.listdir(”/”) [’tmp’, ‘misc’, ‘opt’, ‘root’, ‘.autorelabel’, ’sbin’, ’srv’, ‘.autofsck’, ‘mnt’, ‘usr’, ‘var’, ‘etc’, ’selinux’, ‘lib’, ‘net’, ‘lost found’, ’sys’, ‘media’, ‘dev’, ‘proc’, ‘boot’, ‘home’, ‘bin’] 就像这样,接下去所有命令都可以在python的解释器里直接运行观看结果。 对应于cp命令的是:shutil.copy(src,dest),这个函数有两个参数,参数src是指源文件的名字,参数dest则是目标文件或者目标目录的名字。 如果dest是一个目录名,就会在那个目录下创建一个相同名字的文件。与shutil.copy函数相类似的是 shutil.copy2(src,dest),不过copy2还会复制最后存取时间和最后更新时间。 不过,shell的cp命令还可以复制目录,python的shutil.copy却不行,第一个参数只能是一个文件。这怎么办?其实,python还有个shutil.copytree(src,dst[,symlinks]) 。参数多了一个symlinks,它是一个布尔值,如果是True的话就创建符号链接。 移动或者重命名文件和目录呢?估计被聪明的朋友猜到了,shutil.move(src,dst),呵呵。。与mv命令类似,如果src和dst在同一个文件系统上,shutil.move只是简单改一下名字,如果src和dst在不同的文件系统上,shutil.move会先把src复制到dst,然后删除src文件。看到现在,大多数朋友应该已经对 python的能力有点眉目了,接下来我就列个表,介绍一下其它的函数: os.chdir(dirname)把当前工作目录切换到dirname下 os.getcwd()返回当前的工作目录路径 os.chroot(dirname)把dirname作为进程的根目录。和*nix下的chroot命令类似 os.chmod(path,mode)更改path的权限位。mode可以是以下值(使用or)的组合: os.S_ISUIDos.S_ISGIDos.S_ENFMTos.S_ISVTXos.S_IREADos.S_IWRITEos.S_IEXECos.S_IRWXUos.S_IRUSRos.S_IWUSRos.S_IXUSRos.S_IRWXGos.S_IRGRPos.S_IWGRPos.S_IXGRPos.S_IRWXOos.S_IROTHos.S_IWOTHos.S_IXOTH 具体它们是什么含义,就不仔细说了,基本上就是R代表读,W代表写,X代表执行权限。USR 代表用户,GRP代表组,OTH代表其它。 os.chown(path,uid,gid)改变文件的属主。uid和gid为-1的时候不改变原来的属主。 os.link(src,dst)创建硬连接 os.mkdir(path,[mode])创建目录。mode的意义参见os.chmod(),默认是0777 os.makedirs(path,[mode])和os.mkdir()类似,不过会先创建不存在的父目录。 os.readlink(path)返回path这个符号链接所指向的路径 os.remove(path)删除文件,不能用于删除目录 os.rmdir(path)删除文件夹,不能用于删除文件 os.symlink(src,dst)创建符号链接 shutil.rmtree(path[,ignore_errors[,onerror]]) 删除文件夹介绍了这么多,其实只要查一下os和shutil两个模块的文档就有了,呵呵。。真正编写 shell脚本的时候还需要注意: 1.环境变量。python的环境变量保存在os.environ这个字典里,可以用普通字典的方法修改它,使用system启动其它程序的时候会自动被继承。比如: os.environ[”fish”]=”nothing”不过也要注意,环境变量的值只能是字符串。和shell有些不同的是,python没有 export环境变量这个概念。为什么没有呢?因为python没有必要有:-) 2.os.path这个模块里包含了很多关于路径名处理的函数。在shell里路径名处理好像不是很重要,但是在python里经常需要用到。最常用的两个是分离和合并目录名和文件名: os.path.split(path) -> (dirname,basename)这个函数会把一个路径分离为两部分,比如:os.path.split(”/foo /bar.dat”)会返回(”/foo”,”bar.dat”) os.path.join(dirname,basename)这个函数会把目录名和文件名组合成一个完整的路径名,比如:os.path.join(”/foo”,”bar.dat”)会返回”/foo/bar.dat”。这个函数和os.path.split()刚好相反。 还有这些函数: os.path.abspath(path)把path转成绝对路径 os.path.expanduser(path)把path中包含的”~”和”~user”转换成用户目录 os.path.expandvars(path)根据环境变量的值替换path中包含的”$name”和”${name}”,比如环境变量 FISH=nothing,那os.path.expandvars(”$FISH/abc”)会返回”nothing/abc” os.path.normpath(path)去掉path中包含的”.”和”..” os.path.splitext(path)把path分离成基本名和扩展名。比如:os.path.splitext(”/foo /bar.tar.bz2″)返回(’/foo/bar.tar’, ‘.bz2′)。要注意它和os.path.split()的区别 3.在os模块有一个很好用的函数叫os.stat()没有介绍,因为os.path模块里包含了一组和它具有同样功能的函数,但是名字更好记一点。 os.path.exists(path)判断文件或者目录是否存在 os.path.isfile(判断path所指向的是否是一个普通文件,而不是目录 os.path.isdir(path) 判断path所指向的是否是一个目录,而不是普通文件 os.path.islink(path)判断path所指向的是否是一个符号链接 os.path.ismount(path)判断path所指向的是否是一个挂接点(mount point) os.path.getatime(path)返回path所指向的文件或者目录的最后存取时间。 os.path.getmtime(path)返回path所指向的文件或者目录的最后修改时间 os.path.getctime(path)返回path所指向的文件的创建时间 os.path.getsize(path返回path所指向的文件的大小 4.应用python编写shell脚本经常要用到os,shutil,glob(正则表达式的文件名),tempfile(临时文件),pwd(操作/etc/passwd文件),grp(操作/etc/group文件),commands(取得一个命令的输出)。前面两个已经基本上介绍完了,后面几个很简单,看一下文档就可以了。 5.sys.argv是一个列表,保存了python程序的命令行参数。其中 sys.argv[0]是程序本身的名字。不能光说不练,接下来我们就编写一个用于复制文件的简单脚本。前两天叫我写脚本的同事有个几万个文件的目录,他想复制这些文件到其它的目录,又不能直接复制目录本身。他试了一下”cp src/* dest/”结果报了一个命令行太长的错误,让我帮他写一个脚本。操起python来:import sys,os.path,shutilfor f in os.listdir(sys.argv[1]):shutil.copy(os.path.join(sys.argv[1],f),sys.argv[2]) 再试一下linuxapp版里的帖子——把一个文件夹下的所有文件重命名成 10001~10999。可以这样写:import os.path,sysdirname=sys.argv[1]i=10001for f in os.listdir(dirname):src=os.path.join(dirname,f)if os.path.isdir(src):continueos.rename(src,str(i)) i =1 os.chkdir(path) 转换到目录path 下。 os.system('md a') 可以直接创建目录。 os.name字符串指示你正在使用的平台。比如对于Windows,它是'nt',而对于Linux/Unix用户,它是'posix'。● os.getcwd()函数得到当前工作目录,即当前Python脚本工作的目录路径。● os.getenv()和os.putenv()函数分别用来读取和设置环境变量。● os.listdir()返回指定目录下的所有文件和目录名。● os.remove()函数用来删除一个文件。● os.system()函数用来运行shell命令。● os.linesep字符串给出当前平台使用的行终止符。例如,Windows使用'rn',Linux使用'n'而Mac使用'r'。● os.path.split()函数返回一个路径的目录名和文件名。 os.path.split('/home/swaroop/byte/code/poem.txt') ('/home/swaroop/byte/code', 'poem.txt')● os.path.isfile()和os.path.isdir()函数分别检验给出的路径是一个文件还是目录。类似地,os.path.exists()函数用来检验给出的路径是否真地存在。 文件重定向 已有PY文件new1.py ,在命令行下输入:new1>new.txt 可以将new1运行的结果输出到文件new.txt,这称为流重定向。

元芳啊 2019-12-02 01:04:36 0 浏览量 回答数 0

问题

Git 改变了分布式 Web 开发规则:报错

kun坤 2020-06-08 11:09:24 3 浏览量 回答数 1

问题

linux下php多线程的妙用(转):报错

kun坤 2020-06-14 09:08:45 0 浏览量 回答数 0

问题

性能测试:软件测试的重中之重

云效平台 2019-12-01 21:45:09 5839 浏览量 回答数 1

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

问题

【每日一教程6.18】HHVM安装使用教程-高效的PHP运行环境提升PHP性能9倍

李逵 2019-12-01 22:01:57 13700 浏览量 回答数 6

回答

nginx的静态页面都进不去的话应该是OS的TCP出了问题吧,要不看看你这个服务器当前的文件描述符数量`ulimit -n`。######回复 @snailkky : 解决了没?是这个原因吗?######回复 @口口口S口口口 : 真是太感谢你了! 我现在很怀疑就是这个原因造成的,我去试试看。######回复 @snailkky : :cold_sweat:我也只是知道这个东西,或许你可以写个测试用例试一下,用Jmeter定个6000进程访问看看######一般每个进程最多允许同时打开1024个文件,这1024个文件中还得除去每个进程必然打开的标准输入,标准输出,标准错误,服务器监听socket,进程间通讯的unix域socket等文件,那么剩下的可用于客户端socket连接的文件数就只有大概1024-10=1014个左右。也就是说缺省情况下,基于Linux的通讯程序最多允许同时1014个TCP并发连接。 是这个原因造成的吗?######65535###### 负载均衡,可以先开3个nginx,9个项目。######你这种就是性能不行, 上来就是分布式, 负载均衡。 明显几千连接,资源系统资源占用不高,是什么环节出了问题。 搞分布式,负载均衡就是掩耳盗铃######回复 @天空-sky : worker_connections 我配置了65535,另外worker_processes 我配置为8######nginx 还有worker_connections配置,可以了解下###### 密集IO情况下的Nginx调优方案: nginx进程数调到CPU核数的1.5倍,并且把每个进程平均绑到每个CPU上,多出来的让Linux自动调度到空闲CPU。 突然并发的情况下,Tomcat调优方法: 调成多进程+多线程运行模式,并且空闲时保留进程不少于CPU核数的一半。 nginx和tomcat采用fastcgi方式互交。###### 我简单看了一下,服务器很正确,监控正常,你的高峰瘫痪是指?######就是很多用户进不来,我自己也进不去,加载不出来,nginx部署的另一个静态页也无法访问###### 单机的配置降一降,拆分成多节点呗。###### 使用令牌桶做限流处理###### 我更好奇你这个监控是怎么看到的,为什么我的云监控没你的这么细######额,懂了,但是你好像是升级版的,我的是免费版的! 看了下升级版的,一个月都要1099:joy:######在云服务监控-云服务器ECS,你点进去,再点单个的监控,就可以显示这个图表了。###### 光看这个不太好分析,信息量太少。首先tomcat本身支持的并发就不高,到了6000肯定是没办法支持的,即使你将你的maxThread设置为2000,以你机器的性能也无法发挥线程的优势,反而增加了CPU线程切换的资源耗费。如果流量真的有这么大,那需要考虑做集群来承载。另外如果你的应用是IO型的,可以试试tomcat的NIO方式。######我是spring boot2,tomcat默认就是nio######高版本的tomcat好像默认都是nio,那如果是这样的话,高配服务器就发挥不了它的性能,感觉挺鸡肋的。######看症状貌似你的服务器是共享实例,积分用完之后cpu占用率不能超过20%######我这个是通用型实例 不是共享型###### 看下带宽######没有,因为我也怕是带宽的问题,然后我又升级到了60M,程序也没有变化。######回复 @snailkky : 出问题的那天,带宽使用情况怎么样?有没有出现不足######现在是5M带宽,但我那天临时升级到了20M

kun坤 2020-06-07 09:02:49 0 浏览量 回答数 0

问题

系统默认安装的vsftp的简单配置教程

mxf851x 2019-12-01 20:28:28 12219 浏览量 回答数 2
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板