• 关于

    基础算法不可用

    的搜索结果

回答

标记-清除算法:标记无用对象,然后进行清除回收。缺点:效率不高,无法清除垃圾碎片。复制算法:按照容量划分二个大小相等的内存区域,当一块用完的时候将活着的对象复制- 到另一块上,然后再把已使用的内存空间一次清理掉。缺点:内存使用率不高,只有原来的一半。标记-整理算法:标记无用对象,让所有存活的对象都向一端移动,然后直接清除掉端边界以外的内存。分代算法:根据对象存活周期的不同将内存划分为几块,一般是新生代和老年代,新生代基本采用复制算法,老年代采用标记整理算法。 标记-清除算法 标记无用对象,然后进行清除回收。 标记-清除算法(Mark-Sweep)是一种常见的基础垃圾收集算法,它将垃圾收集分为两个阶段: 标记阶段:标记出可以回收的对象。清除阶段:回收被标记的对象所占用的空间。 标记-清除算法之所以是基础的,是因为后面讲到的垃圾收集算法都是在此算法的基础上进行改进的。 优点:实现简单,不需要对象进行移动。 ** 缺点**:标记、清除过程效率低,产生大量不连续的内存碎片,提高了垃圾回收的频率。 标记-清除算法的执行的过程如下图所示 复制算法 为了解决标记-清除算法的效率不高的问题,产生了复制算法。它把内存空间划为两个相等的区域,每次只使用其中一个区域。垃圾收集时,遍历当前使用的区域,把存活对象复制到另外一个区域中,最后将当前使用的区域的可回收的对象进行回收。 优点:按顺序分配内存即可,实现简单、运行高效,不用考虑内存碎片。 缺点:可用的内存大小缩小为原来的一半,对象存活率高时会频繁进行复制。 复制算法的执行过程如下图所示 标记-整理算法 在新生代中可以使用复制算法,但是在老年代就不能选择复制算法了,因为老年代的对象存活率会较高,这样会有较多的复制操作,导致效率变低。标记-清除算法可以应用在老年代中,但是它效率不高,在内存回收后容易产生大量内存碎片。因此就出现了一种标记-整理算法(Mark-Compact)算法,与标记-整理算法不同的是,在标记可回收的对象后将所有存活的对象压缩到内存的一端,使他们紧凑的排列在一起,然后对端边界以外的内存进行回收。回收后,已用和未用的内存都各自一边。 优点:解决了标记-清理算法存在的内存碎片问题。 缺点:仍需要进行局部对象移动,一定程度上降低了效率。 标记-整理算法的执行过程如下图所示 分代收集算法 当前商业虚拟机都采用分代收集的垃圾收集算法。分代收集算法,顾名思义是根据对象的存活周期将内存划分为几块。一般包括年轻代、老年代 和 永久代,如图所示:

剑曼红尘 2020-03-11 12:54:21 0 浏览量 回答数 0

回答

选择一门编程语言,例如C之类的。如果不想学编程,就尝试下Excel里面的公式。-------------------------算法的定义 算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。 算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。 一个算法应该具有以下五个重要的特征: 1、有穷性: 一个算法必须保证执行有限步之后结束; 2、确切性: 算法的每一步骤必须有确切的定义; 3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件; 4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的; 5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。 计算机科学家尼克劳斯-沃思曾著过一本著名的书《数据结构十算法= 程序》,可见算法在计算机科学界与计算机应用界的地位。 [编辑本段]算法的复杂度 同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。 时间复杂度 算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做 T(n)=Ο(f(n)) 因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。 空间复杂度 算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。 详见百度百科词条"算法复杂度" [编辑本段]算法设计与分析的基本方法 1.递推法 递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。它把问题分成若干步,找出相邻几步的关系,从而达到目的,此方法称为递推法。 2.递归 递归指的是一个过程:函数不断引用自身,直到引用的对象已知 3.穷举搜索法 穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,并从众找出那些符合要求的候选解作为问题的解。 4.贪婪法 贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。 5.分治法 把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。 6.动态规划法 动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。 7.迭代法 迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法。 [编辑本段]算法分类 算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法。 算法可以宏泛的分为三类: 有限的,确定性算法 这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。 有限的,非确定算法 这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。 无限的算法 是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。 [编辑本段]举例 经典的算法有很多,如:"欧几里德算法,割圆术,秦九韶算法"。 [编辑本段]算法经典专著 目前市面上有许多论述算法的书籍,其中最著名的便是《计算机程序设计艺术》(The Art Of Computer Programming) 以及《算法导论》(Introduction To Algorithms)。 [编辑本段]算法的历史 “算法”即演算法的大陆中文名称出自《周髀算经》;而英文名称Algorithm 来自于9世纪波斯数学家al-Khwarizmi,因为al-Khwarizmi在数学上提出了算法这个概念。“算法”原为"algorism",意思是阿拉伯数字的运算法则,在18世纪演变为"algorithm"。欧几里得算法被人们认为是史上第一个算法。 第一次编写程序是Ada Byron于1842年为巴贝奇分析机编写求解解伯努利方程的程序,因此Ada Byron被大多数人认为是世界上第一位程序员。因为查尔斯·巴贝奇(Charles Babbage)未能完成他的巴贝奇分析机,这个算法未能在巴贝奇分析机上执行。 因为"well-defined procedure"缺少数学上精确的定义,19世纪和20世纪早期的数学家、逻辑学家在定义算法上出现了困难。20世纪的英国数学家图灵提出了著名的图灵论题,并提出一种假想的计算机的抽象模型,这个模型被称为图灵机。图灵机的出现解决了算法定义的难题,图灵的思想对算法的发展起到了重要作用的。

马铭芳 2019-12-02 01:19:58 0 浏览量 回答数 0

回答

HBASE开发不难,你不能局限在一门存储产品上,不然就业面受限严重,除非你的HBase水平努力达到专家水平。建议往大数据实时计算方向,把相关流程都提升到你目前认为还在行的HBase水准。硬件技能很简单,相关大数据产品的基础运维命令要熟悉,软件技能当然要学会多一些的大数据产品,至少能自己部署出来一整套高可用的运行环境,单单只会HBase的话,你的就业面就很窄了,毕竟现在用HBase的公司并不算特别多,尤其是涉及到算法这一块(越来越流行),HBase有它的局限性,这个时候更多的是用到KV or KKV等结构化存储产品。另外,大公司未来用SPARK也会越来越少,很多都是定制化开发的产品。

贺定圆 2019-12-02 00:41:31 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

不搞清这8大算法思想,刷再多题效果也不好的 7月23日 【今日算法】

游客ih62co2qqq5ww 2020-07-29 11:10:09 3 浏览量 回答数 1

问题

【直播回顾】21天搭建推荐系统:实现“千人千面”个性化推荐(含视频)

小柒2012 2019-12-01 21:21:27 7489 浏览量 回答数 1

回答

受到这篇文章( )的启发,我突然想起对我所会的和要学的语言做个分类。确定一下专业的程序员到底需要会多少种语言。 1.系统类。只有C一个,必须学,而且需要在几个系统上编程就要学几次。学习系统类语言需要的是对系统结构和运行原理的了解,因此抽离系统的学习语法/抽象库/代码结构是没有任何意义的。 2.面对对象类。C#,Java等,推荐Java。构架方法优美大气,代码容易修改容易阅读,复用性好。然而做事上架梁叠屋,吃个馒头洗三遍手。可以学习构架方法,千万别学做事方法。 3.一门快速的脚本语言。Python, Php, Perl, Bash,各有特色。实际上如果你有空可以统统学一遍,非常有好处。快速脚本语言的特色就是整合其他代码和已经存在的东西,快速的构建出一个可用的程序。 按照上面的分类,程序员最少要会五种语言,我假定是C/Java/Python/Scheme/Asm80x86。C++不要学,那个是万恶之源。那么下面列举了我推荐的一些书单,可以由浅而深的学习这些语言。 1.入门,《21天学习C语言》《Dive Into Python》《80x86汇编基础教程》等等,这类书的目地是快速的教会是使用语言和语法。完成这个阶段的程序员可以找一些简单的题目做一下,但还不能独立完成普通程序的编写。 2.简单,《Think In Java》《数据结构与算法(Java语言版)》《设计模式》。这个层面基本涉及了数据结构,设计模式和编程方法。完成这个阶段后,可以找几个实际项目玩一玩了。 3.普通,《操作系统:设计和实现》《Unix系统编程》《windows核心编程》《TCP-IP详解》《Effective C》。这个层面涉及了系统运作原理和细节。完成这个阶段就可以写一些系统工具了。 4.阅读,《Python源码剖析》《深入浅出MFC》《Linux内核完全注释》。这个阶段注重阅读和积累各种代码经验。 5.专家,《计算机程序的构造和解释》《计算机程序设计艺术》《MIT算法导论》《数值算法》。通过前面的学习,普通程序编写应当已经不成问题。这个阶段面对的是将实际问题抽象成数学问题后,试图从数学上进行解决的过程。从此以上,就是数学的领域了。

琴瑟 2019-12-02 01:19:49 0 浏览量 回答数 0

回答

第一种OutOfMemoryError: PermGen space发生这种问题的原意是程序中使用了大量的jar或class,使java虚拟机装载类的空间不够,与Permanent Generation space有关。解决这类问题有以下两种办法:增加java虚拟机中的XX:PermSize和XX:MaxPermSize参数的大小,其中XX:PermSize是初始永久保存区域大小,XX:MaxPermSize是最大永久保存区域大小。如针对tomcat6.0,在catalina.sh 或catalina.bat文件中一系列环境变量名说明结束处(大约在70行左右) 增加一行: JAVA_OPTS=" -XX:PermSize=64M -XX:MaxPermSize=128m" 如果是windows服务器还可以在系统环境变量中设置。感觉用tomcat发布sprint+struts+hibernate架构的程序时很容易发生这种内存溢出错误。使用上述方法,我成功解决了部署ssh项目的tomcat服务器经常宕机的问题。清理应用程序中web-inf/lib下的jar,如果tomcat部署了多个应用,很多应用都使用了相同的jar,可以将共同的jar移到tomcat共同的lib下,减少类的重复加载。这种方法是网上部分人推荐的,我没试过,但感觉减少不了太大的空间,最靠谱的还是第一种方法。第二种OutOfMemoryError: Java heap space发生这种问题的原因是java虚拟机创建的对象太多,在进行垃圾回收之间,虚拟机分配的到堆内存空间已经用满了,与Heap space有关。解决这类问题有两种思路:检查程序,看是否有死循环或不必要地重复创建大量对象。找到原因后,修改程序和算法。 我以前写一个使用K-Means文本聚类算法对几万条文本记录(每条记录的特征向量大约10来个)进行文本聚类时,由于程序细节上有问题,就导致了Java heap space的内存溢出问题,后来通过修改程序得到了解决。增加Java虚拟机中Xms(初始堆大小)和Xmx(最大堆大小)参数的大小。如:set JAVA_OPTS= -Xms256m -Xmx1024m第三种OutOfMemoryError:unable to create new native thread在java应用中,有时候会出现这样的错误:OutOfMemoryError: unable to create new native thread.这种怪事是因为JVM已经被系统分配了大量的内存(比如1.5G),并且它至少要占用可用内存的一半。有人发现,在线程个数很多的情况下,你分配给JVM的内存越多,那么,上述错误发生的可能性就越大。那么是什么原因造成这种问题呢?每一个32位的进程最多可以使用2G的可用内存,因为另外2G被操作系统保留。这里假设使用1.5G给JVM,那么还余下500M可用内存。这500M内存中的一部分必须用于系统dll的加载,那么真正剩下的也许只有400M,现在关键的地方出现了:当你使用Java创建一个线程,在JVM的内存里也会创建一个Thread对象,但是同时也会在操作系统里创建一个真正的物理线程(参考JVM规范),操作系统会在余下的400兆内存里创建这个物理线程,而不是在JVM的1500M的内存堆里创建。在jdk1.4里头,默认的栈大小是256KB,但是在jdk1.5里头,默认的栈大小为1M每线程,因此,在余下400M的可用内存里边我们最多也只能创建400个可用线程。这样结论就出来了,要想创建更多的线程,你必须减少分配给JVM的最大内存。还有一种做法是让JVM宿主在你的JNI代码里边。给出一个有关能够创建线程的最大个数的估算公式:(MaxProcessMemory - JVMMemory - ReservedOsMemory) / (ThreadStackSize) = Number of threads对于jdk1.5而言,假设操作系统保留120M内存:1.5GB JVM: (2GB-1.5Gb-120MB)/(1MB) = ~380 threads1.0GB JVM: (2GB-1.0Gb-120MB)/(1MB) = ~880 threads对于栈大小为256KB的jdk1.4而言,1.5GB allocated to JVM: ~1520 threads1.0GB allocated to JVM: ~3520 threads 对于这个异常我们首先需要判断下,发生内存溢出时进程中到底都有什么样的线程,这些线程是否是应该存在的,是否可以通过优化来降低线程数; 另外一方面默认情况下java为每个线程分配的栈内存大小是1M,通常情况下,这1M的栈内存空间是足足够用了,因为在通常在栈上存放的只是基础类型的数据或者对象的引用,这些东西都不会占据太大的内存, 我们可以通过调整jvm参数,降低为每个线程分配的栈内存大小来解决问题,例如在jvm参数中添加-Xss128k将线程栈内存大小设置为128k。

蛮大人123 2019-12-02 02:27:59 0 浏览量 回答数 0

问题

分享一个技术大会-SDCC2016大数据技术架构实战峰会(杭州站)

商务会议网 2019-12-01 21:41:42 3335 浏览量 回答数 0

问题

云数据库OceanBase的架构演进【精品问答集锦】

管理贝贝 2019-12-01 19:27:44 40771 浏览量 回答数 25

回答

软件工程(Software Engineering,简称为SE)是一门研究用工程化方法构建和维护有效的、实用的和高质量的软件的学科。它涉及到程序设计语言,数据库,软件开发工具,系统平台,标准,设计模式等方面。 在现代社会中,软件应用于多个方面。典型的软件比如有电子邮件,嵌入式系统,人机界面,办公套件,操作系统,编译器,数据库,游戏等。同时,各个行业几乎都有计算机软件的应用,比如工业,农业,银行,航空,政府部门等。这些应用促进了经济和社会的发展,使得人们的工作更加高效,同时提高了生活质量。 软件工程师是对应用软件创造软件的人们的统称,软件工程师按照所处的领域不同可以分为系统分析员,软件设计师,系统架构师,程序员,测试员等等。人们也常常用程序员来泛指各种软件工程师。 软件工程(SoftWare Engineering)的框架可概括为:目标、过程和原则。 (1)软件工程目标:生产具有正确性、可用性以及开销合宜的产品。正确性指软件产品达到预期功能的程度。可用性指软件基本结构、实现及文档为用户可用的程度。开销合宜是指软件开发、运行的整个开销满足用户要求的程度。这些目标的实现不论在理论上还是在实践中均存在很多待解决的问题,它们形成了对过程、过程模型及工程方法选取的约束。 (2)软件工程过程:生产一个最终能满足需求且达到工程目标的软件产品所需要的步骤。软件工程过程主要包括开发过程、运作过程、维护过程。它们覆盖了需求、设计、实现、确认以及维护等活动。需求活动包括问题分析和需求分析。问题分析获取需求定义,又称软件需求规约。需求分析生成功能规约。设计活动一般包括概要设计和详细设计。概要设计建立整个软件系统结构,包括子系统、模块以及相关层次的说明、每一模块的接口定义。详细设计产生程序员可用的模块说明,包括每一模块中数据结构说明及加工描述。实现活动把设计结果转换为可执行的程序代码。确认活动贯穿于整个开发过程,实现完成后的确认,保证最终产品满足用户的要求。维护活动包括使用过程中的扩充、修改与完善。伴随以上过程,还有管理过程、支持过程、培训过程等。 (3)软件工程的原则是指围绕工程设计、工程支持以及工程管理在软件开发过程中必须遵循的原则。 一、软件工程概述 概念:应需而生 软件工程是一类工程。工程是将理论和知识应用于实践的科学。就软件工程而言,它借鉴了传统工程的原则和方法,以求高效地开发高质量软件。其中应用了计算机科学、数学和管理科学。计算机科学和数学用于构造模型与算法,工程科学用于制定规范、设计范型、评估成本及确定权衡,管理科学用于计划、资源、质量和成本的管理。 软件工程这一概念,主要是针对20世纪60年代“软件危机”而提出的。它首次出现在1968年NATO(北大西洋公约组织)会议上。自这一概念提出以来,围绕软件项目,开展了有关开发模型、方法以及支持工具的研究。其主要成果有:提出了瀑布模型,开发了一些结构化程序设计语言(例如PASCAL语言,Ada语言)、结构化方法等。并且围绕项目管理提出了费用估算、文档复审等方法和工具。综观60年代末至80年代初,其主要特征是,前期着重研究系统实现技术,后期开始强调开发管理和软件质量。 70年代初,自“软件工厂”这一概念提出以来,主要围绕软件过程以及软件复用,开展了有关软件生产技术和软件生产管理的研究与实践。其主要成果有:提出了应用广泛的面向对象语言以及相关的面向对象方法,大力开展了计算机辅助软件工程的研究与实践。尤其是近几年来,针对软件复用及软件生产,软件构件技术以及软件质量控制技术、质量保证技术得到了广泛的应用。目前各个软件企业都十分重视资质认证,并想通过这些工作进行企业管理和技术的提升。软件工程所涉及的要素可概括如下: 根据这一框架,可以看出:软件工程涉及了软件工程的目标、软件工程原则和软件工程活动。 目标:我的眼里只有“产品” 软件工程的主要目标是:生产具有正确性、可用性以及开销合宜的产品。正确性意指软件产品达到预期功能的程度。可用性指软件基本结构、实现及文档为用户可用的程度。开销合宜性是指软件开发、运行的整个开销满足用户要求的程度。这些目标的实现不论在理论上还是在实践中均存在很多问题有待解决,它们形成了对过程、过程模型及工程方法选取的约束。 软件工程活动是“生产一个最终满足需求且达到工程目标的软件产品所需要的步骤”。主要包括需求、设计、实现、确认以及支持等活动。需求活动包括问题分析和需求分析。问题分析获取需求定义,又称软件需求规约。需求分析生成功能规约。设计活动一般包括概要设计和详细设计。概要设计建立整个软件体系结构,包括子系统、模块以及相关层次的说明、每一模块接口定义。详细设计产生程序员可用的模块说明,包括每一模块中数据结构说明及加工描述。实现活动把设计结果转换为可执行的程序代码。确认活动贯穿于整个开发过程,实现完成后的确认,保证最终产品满足用户的要求。支持活动包括修改和完善。伴随以上活动,还有管理过程、支持过程、培训过程等。 框架:四项基本原则是基石 软件工程围绕工程设计、工程支持以及工程管理,提出了以下四项基本原则: 第一,选取适宜开发范型。该原则与系统设计有关。在系统设计中,软件需求、硬件需求以及其他因素之间是相互制约、相互影响的,经常需要权衡。因此,必须认识需求定义的易变性,采用适宜的开发范型予以控制,以保证软件产品满足用户的要求。 第二,采用合适的设计方法。在软件设计中,通常要考虑软件的模块化、抽象与信息隐蔽、局部化、一致性以及适应性等特征。合适的设计方法有助于这些特征的实现,以达到软件工程的目标。 第三,提供高质量的工程支持。“工欲善其事,必先利其器”。在软件工程中,软件工具与环境对软件过程的支持颇为重要。软件工程项目的质量与开销直接取决于对软件工程所提供的支撑质量和效用。 第四,重视开发过程的管理。软件工程的管理,直接影响可用资源的有效利用,生产满足目标的软件产品,提高软件组织的生产能力等问题。因此,仅当软件过程得以有效管理时,才能实现有效的软件工程。 这一软件工程框架告诉我们,软件工程的目标是可用性、正确性和合算性;实施一个软件工程要选取适宜的开发范型,要采用合适的设计方法,要提供高质量的工程支撑,要实行开发过程的有效管理;软件工程活动主要包括需求、设计、实现、确认和支持等活动,每一活动可根据特定的软件工程,采用合适的开发范型、设计方法、支持过程以及过程管理。根据软件工程这一框架,软件工程学科的研究内容主要包括:软件开发范型、软件开发方法、软件过程、软件工具、软件开发环境、计算机辅助软件工程(CASE) 及软件经济学等。 作用:高效开发高质量软件 自从软件工程概念提出以来,经过30多年的研究与实践,虽然“软件危机”没得到彻底解决,但在软件开发方法和技术方面已经有了很大的进步。尤其应该指出的是,自80年代中期,美国工业界和政府部门开始认识到,在软件开发中,最关键的问题是软件开发组织不能很好地定义和管理其软件过程,从而使一些好的开发方法和技术都起不到所期望的作用。也就是说,在没有很好定义和管理软件过程的软件开发中,开发组织不可能在好的软件方法和工具中获益。 根据调查,中国的现状几乎和美国10多年前的情况一样,软件开发过程没有明确规定,文档不完整,也不规范,软件项目的成功往往归功于软件开发组的一些杰出个人或小组的努力。这种依赖于个别人员上的成功并不能为全组织的软件生产率和质量的提高奠定有效的基础,只有通过建立全组织的过程改善,采用严格的软件工程方法和管理,并且坚持不懈地付诸实践,才能取得全组织的软件过程能力的不断提高。 这一事实告诉我们,只有坚持软件工程的四条基本原则,既重视软件技术的应用,又重视软件工程的支持和管理,并在实践中贯彻实施,才能高效地开发出高质量的软件。

云篆 2019-12-02 01:21:35 0 浏览量 回答数 0

回答

一、Java内存分配     Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域。这些区域存储不同类型的数据,这些区域的内存分配和销毁的时间也不同,有的区域随着虚拟机进程的启动而存在,有些区域则是依赖用户线程的启动和结束而建立和销毁。根据《Java虚拟机规范(第2版)》的规定,Java虚拟机管理的内存包括五个运行时数据区域,如下图所示:      1、方法区     方法区(Method Area)是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息(包括类的名称、方法信息、成员变量信息)、常量、静态变量、以及编译器编译后的代码等数据。当方法区无法满足内存分配需求时,将抛出OutOfMemeryError异常。     运行时常量池(Runtime Constant Pool)是方法区的一部分,此区域会在两种情况下存储数据。     (1)class文件的常量池中的数据     class文件中的常量池用于存放编译期生成的各种字面值和常量,这部分内容在类被加载后存放到方法区的运行时常量池中。     字面值:private String name="zhangSan";private int age = 23+3;     常量:private final String TAG = "MainActivity";private final int age = 26;     (2)运行期间生成的常量     运行时常量池相对于class文件常量池的另外一个重要特征是具备动态性,Java语言并不要求常量一定只能在编译期产生,也就是并非预置入class文件中常量池的内容才能进入方法区运行时常量池,运行期间也可能将新的常量放入池中,这种特性被开发人员利用得比较多的便是String类的intern()方法。String str = "abc".intern();当运行时常量池中存在字符串"abc时,将该字符串的引用返回,赋值给str,否则创建字符串"abc",加入运行时常量池中,并返回引用赋值给str。既然运行时常量池是方法区的一部分,自然会受到方法区内存的限制,当常量池无法再申请到内存时会抛出OutOfMemoryError异常。 2、虚拟机栈     虚拟机栈是线程私有的内存空间,每个线程都有一个线程栈,每个方法被执行时都会创建一个栈帧,方法执行完成,栈帧弹出,线程运行结束,线程栈被回收。虚拟机栈就是Java中的方法执行的内存模型,每个方法在执行的同时都会创建一个栈帧,这个栈帧用于存储局部变量表、操作数栈、指向当前方法所属的类的运行时常量池的引用、方法返回地址等信息,每个方法从调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中入栈到出栈的过程。局部变量表用来存储方法中的局部变量,包括方法中声明的变量以及函数形参。对于基本数据类型的变量,则直接存储它的值,对于引用类型的变量,则存的是指向对象的引用。局部变量表的大小在编译器就可以确定其大小,并且在程序执行期间局部变量表的大小是不会改变的。程序中的所有计算过程都是在借助于操作数栈来完成的。指向运行时常量池的引用,因为在方法执行的过程中有可能需要用到类中的常量,所以必须要有一个引用指向当前方法所属的类的运行时常量池。方法返回地址,当一个方法执行完毕之后,要返回之前调用它的地方,因此在栈帧中必须保存一个方法返回地址。     在Java虚拟机规范中,对这个区域规定了两种异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;如果虚拟机栈可以动态扩展(当前大部分的Java虚拟机都可动态扩展,只不过Java虚拟机规范中也允许固定长度的虚拟机栈),当扩展时无法申请到足够的内存时会抛出OutOfMemoryError异常。 3、本地方法栈     本地方法栈也是线程私有的内存空间,本地方法栈与Java栈所发挥的作用是非常相似的,它们之间的区别不过是Java栈执行Java方法,本地方法栈执行的是本地方法,有的虚拟机直接把本地方法栈和虚拟机栈合二为一。 4、堆     Java堆是Java虚拟机所管理的内存中最大的一块,在虚拟机启动时创建,此内存区域的目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。从内存分配的角度来看,线程共享的Java堆中可能划分出多个线程私有的分配缓冲区(TLAB)。Java堆可以处于物理上不连续的内存空间,只要逻辑上连续即可,在实现上,既可以实现固定大小的,也可以是扩展的。如果堆中没有足够的内存分配给实例,并且堆也无法再拓展时,将会抛出OutOfMemeryError异常。     堆是运行时动态分配内存,对象在没有引用变量指向它的时候,才变成垃圾,但是仍然占着内存,在程序空闲的时候(没有工作线程运行,GC线程优先级最低)或者堆内存不足的时候(GC线程被触发),被垃圾回收器释放掉,由于要在运行时动态分配内存,存取速度较慢。 5、程序计数器     程序计数器的作用可以看做是当前线程所执行的字节码的行号指示。字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。由于Java虚拟机的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间的计数器互不影响,独立存储,我们称这类内存区域为线程私有的内存。如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是Natvie方法,这个计数器值则为空。 二、Java内存回收     对于虚拟机栈空间,当方法调用结束后,基本类型变量、引用类型变量、形参占据的空间会被自动释放,但引用类型指向的对象在堆中,堆中的无用内存由垃圾回收线程回收,GC线程优先级最低,只有当没有工作线程存在时GC线程才会执行,或者堆空间不足时会自动触发GC线程工作。除了回收内存,GC线程还负责整理堆中的碎片。 1、四种引用类型     Java中的对象引用分为四种,强引用类型、软引用类型、弱引用类型、虚引用类型。Java中提供这四种引用类型主要有两个目的:第一是可以让程序员通过代码的方式决定某些对象的生命周期;第二是有利于JVM进行垃圾回收。使用软引用和弱引用可以有效的避免oom。软引用关联的对象,只有软引用关联时,才可回收,如果有强引用同时关联,不会回收对象占用的内存,弱引用也如此。 (1)强引用     强引用是使用最普遍的引用,类似Object obj = new Object()、String str = "hello"。如果一个对象具有强引用,那垃圾回收器绝不会回收它。当内存空间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足的问题。 (2)软引用(SoftReference)     软引用是用来描述一些有用但并不是必需的对象,在Java中用java.lang.ref.SoftReference类来表示,如果内存空间足够,垃圾回收器就不会回收它;如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用通常用于网页缓存、图片缓存,防止内存溢出,在内存充足的时候,缓存对象会一直存在,在内存不足的时候,缓存对象占用的内存会被垃圾收集器回收。使用示例: public void testSoftReference() { Map<String,SoftReference<Bitmap>> imagesCache = new HashMap<String,SoftReference<Bitmap>>(); Bitmap bitmap = getBitmap(); SoftReference<Bitmap> image1 = new SoftReference<Bitmap>(bitmap); imagesCache.put("image1",image1); SoftReference<Bitmap> result_SoftReference = imagesCache.get("image1"); Bitmap result_Bitmap = result_SoftReference .get(); } import java.lang.ref.SoftReference; public class Main { public static void main(String[] args) { SoftReference<String> sr = new SoftReference<String>(new String("hello")); System.out.println(sr.get()); } } (3)弱引用(WeakReference)     弱引用也是用来描述非必需对象的,但是它的强度比软引用更弱一些,在java中用java.lang.ref.WeakReference类来表示。当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象,不过由于垃圾回收器是一个优先级很低的线程,因此不一定会很快发现那些只具有弱引用的对象。弱引用可以用于:单例类持有一个activity引用时,会造成内存泄露,把activity声明为弱引用,在activity销毁后,垃圾收集器扫描到activity对象时,会回收activity对象的内存。使用示例: public class SingleTon1 { private static final SingleTon1 mInstance = null; private WeakReference<Context> mContext; private SingleTon1(WeakReference<Context> context) { mContext = context; } public static SingleTon1 getInstance(WeakReference<Context> context) { if (mInstance == null) { synchronized (SingleTon1.class) { if (mInstance == null) { mInstance = new SingleTon1(context); } } } return mInstance; } } public class MyActivity extents Activity { public void onCreate (Bundle savedInstanceState){ super.onCreate(savedInstanceState); setContentView(R.layout.main); SingleTon1 singleTon1 = SingleTon1.getInstance(new WeakReference<Context>(this)); } }import java.lang.ref.WeakReference; public class Main { public static void main(String[] args) { WeakReference<String> sr = new WeakReference<String>(new String("hello")); System.out.println(sr.get()); System.gc(); //通知JVM的gc进行垃圾回收 System.out.println(sr.get()); } } 输出结果: hellonull     第二个输出结果是null,这说明只要JVM进行垃圾回收,被弱引用关联的对象必定会被回收掉。不过要注意的是,这里所说的被弱引用关联的对象是指只有弱引用与之关联,如果存在强引用同时与之关联,则进行垃圾回收时也不会回收该对象(软引用也是如此)。 (4)虚引用     虚引用和软引用、弱引用不同,它并不影响对象的生命周期,也无法通过虚引用来取得一个对象实例,在java中用java.lang.ref.PhantomReference类表示。如果一个对象与虚引用关联,则跟没有引用与之关联一样,在任何时候都可能被垃圾回收器回收。虚引用必须和引用队列(ReferenceQueue)联合使用,如下: import java.lang.ref.PhantomReference;import java.lang.ref.ReferenceQueue; public class Main { public static void main(String[] args) { ReferenceQueue<String> queue = new ReferenceQueue<String>(); PhantomReference<String> pr = new PhantomReference<String>(new String("hello"), queue); System.out.println(pr.get()); } } 2、垃圾回收算法 (1)标记-清除(Mark-Sweep)    标记-清除(Mark-Sweep)算法,分为标记和清除两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象。 标记-清除算法主要问题是:1、效率问题,标记和清除过程的效率很低2、空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致,当程序在以后的运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集 (2)复制(Copying)算法     复制算法,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对其中的一块进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。 复制算法的主要问题是:1、复制算法将内存缩小为原来的一半,过于浪费2、对象存活率较高时就要执行较多的复制操作,造成频繁GC,效率将会变低 (3)标记-整理(Mark-Compact)     标记-整理算法的标记过程仍然与标记-清除算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存,这样连续的内存空间就比较多了。     如上图所示,所有存活的对象依次向左上角移动,(0,4)移动到(0,2),(1,0)移动到(0,3),依次类推,当所有的存活对象移动完成后,把剩余的所有空间清空,也就是清空(1,1)后的所有空间。 (4)分代回收(generational collection) 程序创建的大部分对象的生命周期都很短,只有一小部分对象的生命周期比较长,根据这样的规律,一般把Java堆分为Young Generation(新生代),Old Generation(老年代)和Permanent Generation(持久代),上面几种算法是通过分代回收混合在一起的,这样就可以根据各个年代的特点采用最适当的回收算法。 (1)新生代     在新生代中,有一个叫Eden Space的空间,主要是用来存放新生的对象,还有两个Survivor Spaces(from、to), 这两个区域大小相等,相当于copying算法中的两个区域,它们用来存放每次垃圾回收后存活下来的对象。在新生代中,垃圾回收一般用Copying的算法,速度快。     当新建对象无法放入eden区时,将触发minor collection(minorGC 是清理新生代的GC线程,eden的清理,from、to的清理都由MinorGC完成),将eden区与from区的存活对象复制到to区,经过一次垃圾回收,eden区和from区清空,to区中则紧密的存放着存活对象;当eden区再次满时,minor collection将eden区和to区的存活对象复制到from区,eden区和to区被清空,from区存放eden区和to区的存活对象,就这样from区和to区来回切换。如果进行minor collection的时候,发现to区放不下,则将eden区和from区的部分对象放入成熟代。另一方面,即使to区没有满,JVM依然会移动世代足够久远的对象到成熟代。 (2)成熟代     在成熟代中主要存放应用程序中生命周期长的内存对象,垃圾回收一般用mark-compact的算法,速度慢些,但减少内存要求。如果成熟代放满对象,无法从新生代移入新的对象,那么将触发major collection(major GC清理整合OldGen的内存空间)。 (3)永久代    在永久代中,主要用来放JVM自己的反射对象,比如类对象、方法对象、成员变量对象、构造方法对象等。     此外,垃圾回收一般是在程序空闲的时候(没有工作线程,GC线程优先级较低)或者堆内存不足的时候自动触发,也可以调用System.gc()主动的通知Java虚拟机进行垃圾回收,但这只是个建议,Java虚拟机不一定马上执行,启动时机的选择由JVM决定,并且取决于堆内存中Eden区是否可用 作者:喜六六 来源:CSDN 原文:https://blog.csdn.net/qq_29078329/article/details/78929457 版权声明:本文为博主原创文章,转载请附上博文链接!

auto_answer 2019-12-02 01:50:42 0 浏览量 回答数 0

回答

你好,这里有208份资料,详情请参考:https://github.com/ty4z2008/Qix/blob/master/ds.md 《Reconfigurable Distributed Storage for Dynamic Networks》介绍:这是一篇介绍在动态网络里面实现分布式系统重构的paper.论文的作者(导师)是MIT读博的时候是做分布式系统的研究的,现在在NUS带学生,不仅仅是分布式系统,还有无线网络.如果感兴趣可以去他的主页了解. 《Distributed porgramming liboratory》介绍:分布式编程实验室,他们发表的很多的paper,其中不仅仅是学术研究,还有一些工业界应用的论文. 《MIT Theory of Distributed Systems》介绍:麻省理工的分布式系统理论主页,作者南希·林奇在2002年证明了CAP理论,并且著《分布式算法》一书. 《Notes on Distributed Systems for Young Bloods》介绍:分布式系统搭建初期的一些建议 《Principles of Distributed Computing》介绍:分布式计算原理课程 《Google's Globally-Distributed Database》介绍:Google全球分布式数据介绍,中文版 《The Architecture Of Algolia’s Distributed Search Network》介绍:Algolia的分布式搜索网络的体系架构介绍 《Build up a High Availability Distributed Key-Value Store》介绍:构建高可用分布式Key-Value存储系统 《Distributed Search Engine with Nanomsg and Bond》介绍:Nanomsg和Bond的分布式搜索引擎 《Distributed Processing With MongoDB And Mongothon》介绍:使用MongoDB和Mongothon进行分布式处理 《Salt: Combining ACID and BASE in a Distributed Database》介绍:分布式数据库中把ACID与BASE结合使用. 《Makes it easy to understand Paxos for Distributed Systems》介绍:理解的Paxos的分布式系统,参考阅读:关于Paxos的历史 《There is No Now Problems with simultaneity in distributed systems》介绍:There is No Now Problems with simultaneity in distributed systems 《Distributed Systems》介绍:伦敦大学学院分布式系统课程课件. 《Distributed systems for fun and profit》介绍:分布式系统电子书籍. 《Distributed Systems Spring 2015》介绍:卡内基梅隆大学春季分布式课程主页 《Distributed Systems: Concepts and Design (5th Edition)》介绍: 电子书,分布式系统概念与设计(第五版) 《走向分布式》介绍:这是一位台湾网友 ccshih 的文字,短短的篇幅介绍了分布式系统的若干要点。pdf 《Introduction to Distributed Systems Spring 2013》介绍:清华大学分布式系统课程主页,里面的schedule栏目有很多宝贵的资源 《Distributed systems》介绍:免费的在线分布式系统书籍 《Some good resources for learning about distributed computing》介绍:Quora上面的一篇关于学习分布式计算的资源. 《Spanner: Google’s Globally-Distributed Database》介绍:这个是第一个全球意义上的分布式数据库,也是Google的作品。其中介绍了很多一致性方面的设计考虑,为了简单的逻辑设计,还采用了原子钟,同样在分布式系统方面具有很强的借鉴意义. 《The Chubby lock service for loosely-coupled distributed systems》介绍:Google的统面向松散耦合的分布式系统的锁服务,这篇论文详细介绍了Google的分布式锁实现机制Chubby。Chubby是一个基于文件实现的分布式锁,Google的Bigtable、Mapreduce和Spanner服务都是在这个基础上构建的,所以Chubby实际上是Google分布式事务的基础,具有非常高的参考价值。另外,著名的zookeeper就是基于Chubby的开源实现.推荐The google stack,Youtube:The Chubby lock service for loosely-coupled distributed systems 《Sinfonia: a new paradigm for building scalable distributed systems》介绍:这篇论文是SOSP2007的Best Paper,阐述了一种构建分布式文件系统的范式方法,个人感觉非常有用。淘宝在构建TFS、OceanBase和Tair这些系统时都充分参考了这篇论文. 《Data-Intensive Text Processing with MapReduce》介绍:Ebook:Data-Intensive Text Processing with MapReduce. 《Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System》介绍:Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System. 《Distributed Query Processing》介绍:分布式查询入门. 《Distributed Systems and the End of the API》介绍:分布式系统和api总结. 《Distributed Query Reading》介绍:分布式系统阅读论文,此外还推荐github上面的一个论文列表The Distributed Reader。 《Replication, atomicity and order in distributed systems》介绍:Replication, atomicity and order in distributed systems 《MIT course:Distributed Systems》介绍:2015年MIT分布式系统课程主页,这次用Golang作为授课语言。6.824 Distributed Systems课程主页 《Distributed systems for fun and profit》介绍:免费分布式系统电子书。 《Ori:A Secure Distributed File System》介绍:斯坦福开源的分布式文件系统。 《Availability in Globally Distributed Storage Systems》介绍:Google论文:设计一个高可用的全球分布式存储系统。 《Calvin: Fast Distributed Transactions For Partitioned Database Systems》介绍:对于分区数据库的分布式事务处理。 《Distributed Systems Building Block: Flake Ids》介绍:Distributed Systems Building Block: Flake Ids. 《Introduction to Distributed System Design》介绍:Google Code University课程,如何设计一个分布式系统。 《Sheepdog: Distributed Storage System for KVM》介绍:KVM的分布式存储系统. 《Readings in Distributed Systems Systems》介绍:分布式系统课程列表,包括数据库、算法等. 《Tera》介绍:来自百度的分布式表格系统. 《Distributed systems: for fun and profit》介绍:分布式系统的在线电子书. 《Distributed Systems Reading List》介绍:分布式系统资料,此外还推荐Various articles about distributed systems. 《Designs, Lessons and Advice from Building Large Distributed Systems》介绍:Designs, Lessons and Advice from Building Large Distributed Systems. 《Testing a Distributed System》介绍:Testing a distributed system can be trying even under the best of circumstances. 《The Google File System》介绍: 基于普通服务器构建超大规模文件系统的典型案例,主要面向大文件和批处理系统, 设计简单而实用。 GFS是google的重要基础设施, 大数据的基石, 也是Hadoop HDFS的参考对象。 主要技术特点包括: 假设硬件故障是常态(容错能力强), 64MB大块, 单Master设计,Lease/链式复制, 支持追加写不支持随机写. 《Bigtable: A Distributed Storage System for Structured Data》介绍:支持PB数据量级的多维非关系型大表, 在google内部应用广泛,大数据的奠基作品之一 , Hbase就是参考BigTable设计。 Bigtable的主要技术特点包括: 基于GFS实现数据高可靠, 使用非原地更新技术(LSM树)实现数据修改, 通过range分区并实现自动伸缩等.中文版 《PacificA: Replication in Log-Based Distributed Storage Systems》介绍:面向log-based存储的强一致的主从复制协议, 具有较强实用性。 这篇文章系统地讲述了主从复制系统应该考虑的问题, 能加深对主从强一致复制的理解程度。 技术特点: 支持强一致主从复制协议, 允许多种存储实现, 分布式的故障检测/Lease/集群成员管理方法. 《Object Storage on CRAQ, High-throughput chain replication for read-mostly workloads》介绍:分布式存储论文:支持强一直的链式复制方法, 支持从多个副本读取数据,实现code. 《Finding a needle in Haystack: Facebook’s photo storage》介绍:Facebook分布式Blob存储,主要用于存储图片. 主要技术特色:小文件合并成大文件,小文件元数据放在内存因此读写只需一次IO. 《Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency》介绍: 微软的分布式存储平台, 除了支持类S3对象存储,还支持表格、队列等数据模型. 主要技术特点:采用Stream/Partition两层设计(类似BigTable);写错(写满)就封存Extent,使得副本字节一致, 简化了选主和恢复操作; 将S3对象存储、表格、队列、块设备等融入到统一的底层存储架构中. 《Paxos Made Live – An Engineering Perspective》介绍:从工程实现角度说明了Paxo在chubby系统的应用, 是理解Paxo协议及其应用场景的必备论文。 主要技术特点: paxo协议, replicated log, multi-paxo.参考阅读:关于Paxos的历史 《Dynamo: Amazon’s Highly Available Key-Value Store》介绍:Amazon设计的高可用的kv系统,主要技术特点:综和运用一致性哈希,vector clock,最终一致性构建一个高可用的kv系统, 可应用于amazon购物车场景.新内容来自分布式存储必读论文 《Efficient Replica Maintenance for Distributed Storage Systems》介绍:分布式存储系统中的副本存储问题. 《PADS: A Policy Architecture for Distributed Storage Systems》介绍:分布式存储系统架构. 《The Chirp Distributed Filesystem》介绍:开源分布式文件系统Chirp,对于想深入研究的开发者可以阅读文章的相关Papers. 《Time, Clocks, and the Ordering of Events in a Distributed System》介绍:经典论文分布式时钟顺序的实现原理. 《Making reliable distributed systems in the presence of sodware errors》介绍:面向软件错误构建可靠的分布式系统,中文笔记. 《MapReduce: Simplified Data Processing on Large Clusters》介绍:MapReduce:超大集群的简单数据处理. 《Distributed Computer Systems Engineering》介绍:麻省理工的分布式计算课程主页,里面的ppt和阅读列表很多干货. 《The Styx Architecture for Distributed Systems》介绍:分布式系统Styx的架构剖析. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上面的一个问答:有哪些关于分布式计算学习的好资源. 《RebornDB: The Next Generation Distributed Key-Value Store》介绍:下一代分布式k-v存储数据库. 《Operating System Concepts Ninth Edition》介绍:分布式系统归根结底还是需要操作系统的知识,这是耶鲁大学的操作系统概念书籍首页,里面有提供了第8版的在线电子版和最新的学习操作系统指南,学习分布式最好先学习操作系统. 《The Log: What every software engineer should know about real-time data's unifying abstraction》介绍:分布式系统Log剖析,非常的详细与精彩. 中文翻译 | 中文版笔记. 《Operating Systems Study Guide》介绍:分布式系统基础之操作系统学习指南. 《分布式系统领域经典论文翻译集》介绍:分布式系统领域经典论文翻译集. 《Maintaining performance in distributed systems》介绍:分布式系统性能维护. 《Computer Science from the Bottom Up》介绍:计算机科学,自底向上,小到机器码,大到操作系统内部体系架构,学习操作系统的另一个在线好材料. 《Operating Systems: Three Easy Pieces》介绍:<操作系统:三部曲>在线电子书,虚拟、并发、持续. 《Database Systems: reading list》介绍:数据库系统经典论文阅读列,此外推送github上面的db reading. 《Unix System Administration》介绍:Unix System Administration ebook. 《The Amoeba Distributed Operating System》介绍:分布式系统经典论文. 《Principles of Computer Systems》介绍:计算机系统概念,以分布式为主.此外推荐Introduction to Operating Systems笔记 《Person page of EMİN GÜN SİRER》介绍:推荐康奈尔大学的教授EMİN GÜN SİRER的主页,他的研究项目有分布式,数据存储。例如HyperDex数据库就是他的其中一个项目之一. 《Scalable, Secure, and Highly Available Distributed File Access》介绍:来自卡内基梅隆如何构建可扩展的、安全、高可用性的分布式文件系统,其他papers. 《Distributed (Deep) Machine Learning Common》介绍:分布式机器学习常用库. 《The Datacenter as a Computer》介绍:介绍了如何构建仓储式数据中心,尤其是对于现在的云计算,分布式学习来说很有帮助.本书是Synthesis Lectures on Computer Architecture系列的书籍之一,这套丛书还有 《The Memory System》,《Automatic Parallelization》,《Computer Architecture Techniques for Power Efficiency》,《Performance Analysis and Tuning for General Purpose Graphics Processing Units》,《Introduction to Reconfigurable Supercomputing》,Memory Systems Cache, DRAM, Disk 等 《helsinki:Distributed Systems Course slider》介绍:来自芬兰赫尔辛基的分布式系统课程课件:什么是分布式,复制,一致性,容错,同步,通信. 《TiDB is a distributed SQL database》介绍:分布式数据库TiDB,Golang开发. 《S897: Large-Scale Systems》介绍:课程资料:大规模系统. 《Large-scale L-BFGS using MapReduce》介绍:使用MapReduce进行大规模分布式集群环境下并行L-BFGS. 《Twitter是如何构建高性能分布式日志的》介绍:Twitter是如何构建高性能分布式日志的. 《Distributed Systems: When Limping Hardware Is Worse Than Dead Hardware》介绍:在分布式系统中某个组件彻底死了影响很小,但半死不活(网络/磁盘),对整个系统却是毁灭性的. 《Tera - 高性能、可伸缩的结构化数据库》介绍:来自百度的分布式数据库. 《SequoiaDB is a distributed document-oriented NoSQL Database》介绍:SequoiaDB分布式文档数据库开源. 《Readings in distributed systems》介绍:这个网址里收集了一堆各TOP大学分布式相关的课程. 《Paxos vs Raft》介绍:这个网站是Raft算法的作者为教授Paxos和Raft算法做的,其中有两个视频链接,分别讲上述两个算法.参考阅读:关于Paxos的历史 《A Scalable Content-Addressable Network》介绍:A Scalable Content-Addressable Network. 《500 Lines or Less》介绍:这个项目其实是一本书( The Architecture of Open Source Applications)的源代码附录,是一堆大牛合写的. 《MIT 6.824 Distributed System》介绍:这只是一个课程主页,没有上课的视频,但是并不影响你跟着它上课:每一周读两篇课程指定的论文,读完之后看lecture-notes里对该论文内容的讨论,回答里面的问题来加深理解,最后在课程lab里把所看的论文实现。当你把这门课的作业刷完后,你会发现自己实现了一个分布式数据库. 《HDFS-alike in Go》介绍:使用go开发的分布式文件系统. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上关于学习分布式的资源问答. 《SeaweedFS is a simple and highly scalable distributed file system》介绍:SeaweedFS是使用go开发的分布式文件系统项目,代码简单,逻辑清晰. 《Codis - yet another fast distributed solution for Redis》介绍:Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没有明显的区别 《Paper: Coordination Avoidance In Distributed Databases By Peter Bailis》介绍:Coordination Avoidance In Distributed Databases. 《从零开始写分布式数据库》介绍:本文以TiDB 源码为例. 《what we talk about when we talk about distributed systems》介绍:分布式系统概念梳理,为分布式系统涉及的主要概念进行了梳理. 《Distributed locks with Redis》介绍:使用Redis实现分布式锁. 《CS244b: Distributed Systems》介绍: 斯坦福2014年秋季分布式课程. 《RAMP Made Easy》介绍: 分布式的“读原子性”. 《Strategies and Principles of Distributed Machine Learning on Big Data》介绍: 大数据分布式机器学习的策略与原理. 《Distributed Systems: What is the CAP theorem?》介绍: 分布式CAP法则. 《How should I start to learn distributed storage system as a beginner?》介绍: 新手如何步入分布式存储系统. 《Cassandra - A Decentralized Structured Storage System》介绍: 分布式存储系统Cassandra剖析,推荐白皮书Introduction to Apache Cassandra. 《What is the best resource to learn about distributed systems?》介绍: 分布式系统学习资源. 《What are some high performance TCP hacks?》介绍: 一些高性能TCP黑客技巧. 《Maintaining performance in distributed systems》介绍:分布式系统性能提升. 《A simple totally ordered broadcast protocol》介绍:Benjamin Reed 和 Flavio P.Junqueira 所著论文,对Zab算法进行了介绍,zab算法是Zookeeper保持数据一致性的核心,在国内有很多公司都使用zookeeper做为分布式的解决方案.推荐与此相关的一篇文章ZooKeeper’s atomic broadcast protocol: Theory and practice. 《zFS - A Scalable Distributed File System Using Object Disk》介绍:可扩展的分布式文件系统ZFS,The Zettabyte File System,End-to-end Data Integrity for File Systems: A ZFS Case Study. 《A Distributed Haskell for the Modern Web》介绍:分布式Haskell在当前web中的应用. 《Reasoning about Consistency Choices in Distributed Systems》介绍:POPL2016的论文,关于分布式系统一致性选择的论述,POPL所接受的论文,github上已经有人整理. 《Paxos Made Simple》介绍:Paxos让分布式更简单.译文.参考阅读:关于Paxos的历史,understanding Paxos part1,Understanding Paxos – Part 2.Quora: What is a simple explanation of the Paxos algorithm?,Tutorial Summary: Paxos Explained from Scratch,Paxos algorithm explained, part 1: The essentials,Paxos algorithm explained, part 2: Insights 《Consensus Protocols: Paxos》介绍:分布式系统一致性协议:Paxos.参考阅读:关于Paxos的历史 《Consensus on Transaction Commit》介绍:事务提交的一致性探讨. 《The Part-Time Parliaments》介绍:在《The Part-Time Parliament》中描述了基本协议的交互过程。在基本协议的基础上完善各种问题得到了最终的议会协议。 为了让人更容易理解《The Part-Time Parliament》中描述的Paxos算法,Lamport在2001发表了《Paxos Made Simple》,以更平直的口头语言描述了Paxos,而没有包含正式的证明和数学术语。《Paxos Made Simple》中,将算法的参与者更细致的划分成了几个角色:Proposer、Acceptor、Learner。另外还有Leader和Client.参考阅读:关于Paxos的历史 《Paxos Made Practical》介绍:看这篇论文时可以先看看理解Paxos Made Practical. 《PaxosLease: Diskless Paxos for Leases》介绍:PaxosLease:实现租约的无盘Paxos算法,译文. 《Paxos Made Moderately Complex》介绍:Paxos算法实现,译文,同时推荐42 Paxos Made Moderately Complex. 《Hadoop Reading List》介绍:Hadoop学习清单. 《Hadoop Reading List》介绍:Hadoop学习清单. 《2010 NoSQL Summer Reading List》介绍:NoSQL知识清单,里面不仅仅包含了数据库阅读清单还包含了分布式系统资料. 《Raft: Understandable Distributed Consensus》介绍:Raft可视化图帮助理解分布式一致性 《Etcd:Distributed reliable key-value store for the most critical data of a distributed system》介绍:Etcd分布式Key-Value存储引擎 《Understanding Availability》介绍:理解peer-to-peer系统中的可用性究竟是指什么.同时推荐基于 Peer-to-Peer 的分布式存储系统的设计 《Process structuring, synchronization, and recovery using atomic actions》介绍:经典论文 《Programming Languages for Parallel Processing》介绍:并行处理的编程语音 《Analysis of Six Distributed File Systems》介绍:此篇论文对HDFS,MooseFS,iRODS,Ceph,GlusterFS,Lustre六个存储系统做了详细分析.如果是自己研发对应的存储系统推荐先阅读此篇论文 《A Survey of Distributed File Systems》介绍:分布式文件系统综述 《Concepts of Concurrent Programming》介绍:并行编程的概念,同时推荐卡内基梅隆FTP 《Concurrency Control Performance Modeling:Alternatives and Implications》介绍:并发控制性能建模:选择与意义 《Distributed Systems - Concepts and Design 5th Edition》介绍:ebook分布式系统概念与设计 《分布式系统设计的形式方法》介绍:分布式系统设计的形式方法 《互斥和选举算法》介绍:互斥和选举算法 《Actors:A model Of Concurrent Cornputation In Distributed Systems》介绍:经典论文 《Security Engineering: A Guide to Building Dependable Distributed Systems》介绍:如何构建一个安全可靠的分布式系统,About the Author,Bibliography:文献资料,章节访问把链接最后的01换成01-27即可 《15-712 Advanced and Distributed Operating Systems》介绍:卡内基梅隆大学的分布式系统博士生课程主页,有很丰富的资料 《Dapper, Google's Large-Scale Distributed Systems Tracing Infrastructure》介绍:Dapper,大规模分布式系统的跟踪系统,译文,译文对照 《CS262a: Advanced Topics in Computer Systems》介绍:伯克利大学计算机系统进阶课程,内容有深度,涵盖分布式,数据库等内容 《Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System》介绍:PB级分布式系统构建/扩展经验 《CS162: Operating Systems and Systems Programming》介绍:伯克利大学计算机系统课程:操作系统与系统编程 《MDCC: Multi-Data Center Consistency》介绍:MDCC主要解决跨数据中心的一致性问题中间件,一种新的协议 《Research at Google:Distributed Systems and Parallel Computing》介绍:google公开对外发表的分布式系统与并行计算论文 《HDFS Architecture Guide》介绍:分布式文件系统HDFS架构 《ActorDB distributed SQL database》介绍:分布式 Key/Value数据库 《An efficient data location protocol for self-organizing storage clusters》介绍:是著名的Ceph的负载平衡策略,文中提出的几种策略都值得尝试,比较赞的一点是可以对照代码体会和实践,如果你还需要了解可以看看Ceph:一个 Linux PB 级分布式文件系统,除此以外,论文的引用部分也挺值得阅读的,同时推荐Ceph: A Scalable, High-Performance Distributed File System 《A Self-Organizing Storage Cluster for Parallel Data-Intensive Applications》介绍:Surrento的冷热平衡策略就采用了延迟写技术 《HBA: Distributed Metadata Management for Large Cluster-Based Storage Systems》介绍:对于分布式存储系统的元数据管理. 《Server-Side I/O Coordination for Parallel File Systems》介绍:服务器端的I/O协调并行文件系统处理,网络,文件存储等都会涉及到IO操作.不过里面涉及到很多技巧性的思路在实践时需要斟酌 《Distributed File Systems: Concepts and Examples》介绍:分布式文件系统概念与应用 《CSE 221: Graduate Operating Systems》介绍:加利福尼亚大学的研究生操作系统课程主页,论文很值得阅读 《S4: Distributed Stream Computing Platform》介绍:Yahoo出品的流式计算系统,目前最流行的两大流式计算系统之一(另一个是storm),Yahoo的主要广告计算平台 《Pregel: a system for large-scale graph processing》介绍:Google的大规模图计算系统,相当长一段时间是Google PageRank的主要计算系统,对开源的影响也很大(包括GraphLab和GraphChi) 《GraphLab: A New Framework for Parallel Machine Learning》介绍:CMU基于图计算的分布式机器学习框架,目前已经成立了专门的商业公司,在分布式机器学习上很有两把刷子,其单机版的GraphChi在百万维度的矩阵分解都只需要2~3分钟; 《F1: A Distributed SQL Database That Scales》介绍:这篇论文是Google 2013年发表的,介绍了F1的架构思路,13年时就开始支撑Google的AdWords业务,另外两篇介绍文章F1 - The Fault-Tolerant Distributed RDBMS Supporting Google's Ad Business .Google NewSQL之F1 《Cockroach DB:A Scalable, Survivable, Strongly-Consistent SQL Database》介绍:CockroachDB :一个可伸缩的、跨地域复制的,且支持事务的数据存储,InfoQ介绍,Design and Architecture of CockroachDb 《Multi-Paxos: An Implementation and Evaluation》介绍:Multi-Paxos实现与总结,此外推荐Paxos/Multi-paxos Algorithm,Multi-Paxos Example,地址:ftp://ftp.cs.washington.edu/tr/2009/09/UW-CSE-09-09-02.PDF 《Zab: High-performance broadcast for primary-backup systems》介绍:一致性协议zab分析 《A Distributed Hash Table》介绍:分布式哈希算法论文,扩展阅读Introduction to Distributed Hash Tables,Distributed Hash Tables 《Comparing the performance of distributed hash tables under churn》介绍:分布式hash表性能的Churn问题 《Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web》介绍:分布式系统的CAP问题,推荐Perspectives on the CAP Theorem.对CAP理论的解析文章,PODC ppt,A plain english introduction to CAP Theorem,IEEE Computer issue on the CAP Theorem 《F2FS: A New File System for Flash Storage》介绍:闪存存储文件系统F2FS 《Better I/O Through Byte-Addressable, Persistent Memory》介绍:微软发表的关于i/o访问优化论文 《tmpfs: A Virtual Memory File System》介绍:虚拟内存文件系统tmpfs 《BTRFS: The Linux B-tree Filesystem》介绍:Linux B-tree文件系统. 《Akamai technical publication》介绍:Akamai是全球最大的云计算机平台之一,承载了全球15-30%网络流量,如果你是做CDN或者是云服务,这个里面的论文会给你很有帮助.例如这几天看facebook开源的osquery。找到通过db的方式运维,找到Keeping Track of 70,000+ Servers: The Akamai Query System这篇论文,先看论文领会思想,然后再使用工具osquery实践 《BASE: An Acid Alternative》介绍:来自eBay 的解决方案,译文Base: 一种Acid的替代方案,应用案例参考保证分布式系统数据一致性的6种方案 《A Note on Distributed Computing》介绍:Jim Waldo和Sam Kendall等人共同撰写了一篇非常有名的论文“分布式计算备忘录”,这篇论文在Reddit上被人推荐为“每个程序员都应当至少读上两篇”的论文。在这篇论文中,作者表示“忽略本地计算与分布式计算之间的区别是一种危险的思想”,特别指出了Emerald、Argus、DCOM以及CORBA的设计问题。作者将这些设计问题归纳为“三个错误的原则”: “对于某个应用来说,无论它的部署环境如何,总有一种单一的、自然的面向对象设计可以符合其需求。” “故障与性能问题与某个应用的组件实现直接相关,在最初的设计中无需考虑这些问题。” “对象的接口与使用对象的上下文无关”. 《Distributed Systems Papers》介绍:分布式系统领域经典论文列表. 《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》介绍:Consistent Hashing算法描述. 《SIGMOD 2016: Accepted Research Papers》介绍:SIGMOD是世界上最有名的数据库会议之一,最具有权威性,收录论文审核非常严格.2016年的SIGMOD 会议照常进行,上面收录了今年SIGMOD收录的论文,把题目输入google中加上pdf就能找到,很多论文值得阅读,SIGMOD 2015 《Notes on CPSC 465/565: Theory of Distributed Systems》介绍:耶鲁大学的分布式系统理论课程笔记 《Distributed Operating System Doc PDF》介绍:分布式系统文档资源(可下载) 《Anatomy of a database system》介绍:数据库系统剖析,这本书是由伯克利大学的Joseph M. Hellerstein和M. Stonebraker合著的一篇论文.对数据库剖析很有深度.除此以外还有一篇文章Architecture of a Database System。数据库系统架构,厦门大学的数据库实验室教授林子雨组织过翻译 《A Relational Model of Data for Large Shared Data Banks》介绍:数据库关系模型论文 《RUC Innovative data systems reaserch lab recommand papers》介绍:中国人民大学数据研究实验室推荐的数据库领域论文 《A Scalable Distributed Information Management System》介绍:构建可扩展的分布式信息管理系统 《Distributed Systems in Haskell》介绍:Haskell中的分布式系统开发 《Large-scale cluster management at Google with Borg》介绍:Google使用Borg进行大规模集群的管理,伯克利大学ppt介绍,中文版 《Lock Free Programming Practice》介绍:并发编程(Concurrency Programming)资料,主要涵盖lock free数据结构实现、内存回收方法、memory model等备份链接 密码: xc5j 《Distributed Algorithms Lecture Notes for 6.852》介绍:Nancy Lynch's的分布式算法研究生课程讲义 《Distributed Algorithms for Topic Models》介绍:分布式算法主题模型. 《RecSys - ACM Recommender Systems》介绍:世界上非常有名的推荐系统会议,我比较推荐接收的PAPER 《All Things Distributed》介绍:推荐一个博客,博主是Amazon CTO Werner Vogels,这是一个关注分布式领域的博客.大部分博文是关于在工业界应用. 《programming, database, distributed system resource list》介绍:这个Git是由阿里(alibaba)的技术专家何登成维护,主要是分布式数据库. 《Making reliable distributed systems in the presence of sodware errors》介绍:Erlang的作者Joe Armstrong撰写的论文,面对软件错误构建可靠的分布式系统.中文译版 《CS 525: Advanced Distributed Systems[Spring 2016]》介绍:伊利诺伊大学的Advanced Distributed Systems 里把各个方向重要papers(updated Spring 2015)列举出来,可以参考一下 《Distributed Algorithms》介绍:这是一本分布式算法电子书,作者是Jukka Suomela.讲述了多个计算模型,一致性,唯一标示,并发等. 《TinyLFU: A Highly Efficient Cache Admission Policy》介绍:当时是在阅读如何设计一个缓存系统时看到的,然后通过Google找到了这一篇关于缓存策略的论文,它是LFU的改良版,中文介绍.如果有兴趣可以看看Golang实现版。结合起来可能会帮助你理解 《6.S897: Large-Scale Systems》介绍:斯坦福大学给研究生开的分布式系统课程。教师是 spark 作者 matei. 能把这些内容真正理解透,分布式系统的功力就很强了。 《学习分布式系统需要怎样的知识?》介绍:[怎么学系列]学习分布式系统需要怎样的知识? 《Distributed systems theory for the distributed systems engineer》介绍:分布式系统工程师的分布式系统理论 《A Distributed Systems Reading List》介绍:分布式系统论文阅读列表 《Distributed Systems Reading Group》介绍:麻省理工大学分布式系统小组,他们会把平时阅读到的优秀论文分享出来。虽然有些论文本页已经收录,但是里面的安排表schedule还是挺赞的 《Scalable Software Architecture》介绍:分布式系统、可扩展性与系统设计相关报告、论文与网络资源汇总. 《MapReduce&Hadoop resource》介绍:MapReduce&Hadoop相关论文,涉及分布式系统设计,性能分析,实践,优化等多个方面 《Distributed Systems: Principles and Paradigms(second edtion)》介绍:分布式系统原理与范型第二版,课后解答 《Distributed Systems Seminar's reading list for Spring 2017》介绍:分布式系统研讨会论文阅读列表 《A Critique of the CAP Theorem》介绍:这是一篇评论CAP定理的论文,学习CAP很有帮助,推荐阅读评论文章"A Critique of the CAP Theorem" 《Evolving Distributed Systems》介绍:推荐文章不断进化的分布式系统.

suonayi 2019-12-02 03:17:27 0 浏览量 回答数 0

回答

本文根据微信朋友圈负责人陈明在2015年ArchSummit大会的演讲“微信朋友圈技术之道”整理的,由于声音不清晰,所以整理的不够全面,抱歉朋友圈每天的发表量超过10亿,浏览量超过100亿,它的技术思路值得学习朋友圈的核心数据表有四个核心的表(1)发布记录了所有用户所有的基础信息比如发布图片数量、图片的URL、谁可以看、谁不可以看……(2)相册每个用户是独立的,记录了该用户所发布的所有内容这个表很小,只是保存用户发布记录的索引(3)评论是针对某个具体发布的朋友评论和点赞操作(4)时间线记录一个用户所有朋友的发布内容朋友圈流程发朋友圈流程(1)用户在微信客户端发布照片及文字内容时,客户端先把图片上传到最近的cdn(2)上传后得到了图片的url,客户端会把发布的详细信息(图片url、文字……)发送给朋友圈后台(3)朋友圈后台把发布的详细信息写入发布表(4)把新发布信息的索引写入相册表(5)批量更新所有好友的timeline(1)用户读取自己timeline,获取好友新的发布信息的索引集合(2)根据每个发布信息索引,读取发布详情,同时到评论表中读取此条发布的评论的点赞容灾设计微信在全球设立4个数据中心上海 - 服务北方用户深圳 - 服务南方香港 - 服务东南亚、中东、非洲加拿大 - 服务美洲和欧洲每个数据中心内分为多个园区,例如上海,由A、B、C三个园区构成,每一个园区带宽同时连接联通、电信,而且容量都有富余,无论任何一个区出现问题,比如 C区不可用了,那么用户的客户端会自动连接到另外两个区,这两个区有足够的容量承载所有的服务,这种切换是无损的、无感知的微博本身的产品设计算法与产品相结合,搭载在高效稳定的架构上,才能发挥它的最大功效。,使得即使没有推荐系统,仍然会形成一个大的用户关系网络,实现信息快速传播;而衡量一个事物的价 值,一个简单的方法是对比看看保留它和去掉它时的差别。微博需要健康的用户关系网络,保障用户feed流的质量,且需要优质信息快速流动,通过传播淘汰低 质信息。微博推荐的作用在于加速这一过程,并在特定的情况下控制信息的流向,所以微博推荐的角色是一个加速器和控制器。就是系统的价值,即建立关联、促进流动和传播

杨冬芳 2019-12-02 03:01:06 0 浏览量 回答数 0

回答

本文介绍AliSQL的内核版本更新说明。 MySQL 8.0 20200229 新特性 Performance Agent:更加便捷的性能数据统计方案。通过MySQL插件的方式,实现MySQL实例内部各项性能数据的采集与统计。 在半同步模式下添加网络往返时间,并记录到性能数据。 性能优化 允许在只读实例上进行语句级并发控制(CCL)操作。 备实例支持Outline。 Proxy短连接优化。 优化不同CPU架构下的pause指令执行时间。 添加内存表查看线程池运行情况。 Bug修复 在低于4.9的Linux Kenerls中禁用ppoll,使用poll代替。 修复wrap_sm4_encrypt函数调用错误问题。 修复在滚动审核日志时持有全局变量锁的问题。 修复恢复不一致性检查的问题。 修复io_statistics表出现错误time值的问题。 修复无效压缩算法导致崩溃的问题。 修复用户列与5.6不兼容的问题。 20200110 新特性 Inventory Hint:新增了三个hint, 支持SELECT、UPDATE、INSERT、DELETE 语句,快速提交/回滚事务,提高业务吞吐能力。 性能优化 启动实例时,先初始化Concurrency Control队列结构,再初始化Concurrency Control规则。 异步清除文件时继续取消小文件的链接。 优化Thread Pool性能。 默认情况下禁用恢复不一致性检查。 更改设置变量所需的权限: 设置以下变量所需的权限已更改为普通用户权限: auto_increment_increment auto_increment_offset bulk_insert_buffer_size binlog_rows_query_log_events 设置以下变量所需的权限已更改为超级用户或系统变量管理用户权限: binlog_format binlog_row_image binlog_direct sql_log_off sql_log_bin 20191225 新特性 Recycle Bin:临时将删除的表转移到回收站,还可以设置保留的时间,方便您找回数据。 性能优化 提高短连接处理性能。 使用专用线程为maintain user服务,避免HA失败。 通过Redo刷新Binlog时出现错误会显式释放文件同步锁。 删除不必要的TCP错误日志。 默认情况下启用线程池。 Bug修复 修复慢日志刷新的问题。 修复锁定范围不正确的问题。 修复TDE的Select函数导致的核心转储问题。 20191115 新特性 Statement Queue:针对语句的排队机制,将语句进行分桶排队,尽量把可能具有相同冲突的语句放在一个桶内排队,减少冲突的开销。 20191101 新特性 为TDE添加SM4加密算法。 保护备实例信息:拥有SUPER或REPLICATION_SLAVE_ADMIN权限的用户才能插入/删除/修改表slave_master_info、slave_relay_log_info、slave_worker_info。 提高自动递增键的优先级:如果表中没有主键或非空唯一键,具有自动增量的非空键将是第一候选项。 对系统表和处于初始化状态线程用到的表,不进行Memory引擎到MyISAM引擎的自动转换。 Redo Log刷新到磁盘之前先将Binlog文件刷新到磁盘。 实例被锁定时也会影响临时表。 添加新的基于LSM树的事务存储引擎X-Engine。 性能优化 Thread Pool:互斥优化。 Performance Insight:性能点支持线程池。 参数调整: primary_fast_lookup:会话参数,默认值为true。 thread_pool_enabled:全局参数,默认值为true。 20191015 新特性 TDE:支持透明数据加密TDE(Transparent Data Encryption)功能,可对数据文件执行实时I/O加密和解密,数据在写入磁盘之前进行加密,从磁盘读入内存时进行解密。 Returning:Returning功能支持DML语句返回Resultset,同时提供了工具包(DBMS_TRANS)便于您快捷使用。 强制将引擎从MyISAM/MEMORY转换为InnoDB:如果全局变量force_memory/mysiam_to_innodb为ON,则创建/修改表时会将表引擎从MyISAM/MEMORY转换为InnoDB。 禁止非高权限账号切换主备实例。 性能代理插件:收集性能数据并保存到本地格式化文本文件,采用文件轮循方式,保留最近的秒级性能数据。 Innodb mutex timeout cofigurable:可配置全局变量innodb_fatal_semaphore_wait_threshold,默认值:600。 忽略索引提示错误:可配置全局变量ignore_index_hint_error,默认值:false。 可关闭SSL加密功能。 TCP错误信息:返回TCP方向(读取、读取等待、写入等待)错误及错误代码到end_connection事件,并且输出错误信息到错误日志。 Bug修复 支持本地AIO的Linux系统内,在触发线性预读之前会合并AIO请求。 优化表/索引统计信息。 如果指定了主键,则直接访问主索引。 20190915 Bug修复 修复Cmd_set_current_connection内存泄露问题。 20190816 新特性 Thread Pool:将线程和会话分离,在拥有大量会话的同时,只需要少量线程完成活跃会话的任务即可。 Statement Concurrency Control:通过控制并发数应对突发的数据库请求流量、资源消耗过高的语句访问以及SQL访问模型的变化,保证MySQL实例持续稳定运行。 Statement Outline:利用Optimizer Hint和Index Hint让MySQL稳定执行计划。 Sequence Engine:简化获取序列值的复杂度。 Purge Large File Asynchronously:删除单个表空间时,会将表空间文件重命名为临时文件,等待异步清除进程清理临时文件。 Performance Insight:专注于实例负载监控、关联分析、性能调优的利器,帮助您迅速评估数据库负载,找到性能问题的源头,提升数据库的稳定性。 优化实例锁状态:实例锁定状态下,可以drop或truncate表。 Bug修复 修复文件大小计算错误的问题。 修复偶尔出现的内存空闲后再次使用的问题。 修复主机缓存大小为0时的崩溃问题。 修复隐式主键与CTS语句的冲突问题。 修复慢查询导致的slog出错问题。 20190601 性能优化 缩短日志表MDL范围,减少MDL阻塞的可能性。 重构终止选项的代码。 Bug修复 修复审计日志中没有记录预编译语句的问题。 屏蔽无效表名的错误日志。 MySQL 5.7基础版/高可用版 20200229 新特性 Performance Agent:更加便捷的性能数据统计方案。通过MySQL插件的方式,实现MySQL实例内部各项性能数据的采集与统计。 在半同步模式下添加网络往返时间,并记录到性能数据。 性能优化 优化不同CPU架构下的pause指令执行时间。 Proxy短连接优化。 添加内存表查看线程池运行情况。 Bug修复 修复DDL重做日志不安全的问题。 修复io_statistics表出现错误time值的问题。 修复更改表导致服务器崩溃的问题。 修复MySQL测试用例。 20200110 性能优化 异步清除文件时继续取消小文件的链接。 优化Thread Pool性能。 thread_pool_enabled参数的默认值调整为OFF。 20191225 新特性 内部账户管理与防范:调整用户权限保护数据安全。 性能优化 提高短连接处理性能。 使用专用线程为maintain user服务,避免HA失败。 删除不必要的TCP错误日志。 优化线程池。 Bug修复 修复读写分离时mysqld进程崩溃问题。 修复密钥环引起的核心转储问题。 20191115 Bug修复 修复主备切换后审计日志显示变量的问题。 20191101 新特性 为TDE添加SM4加密算法。 如果指定了主键,则直接访问主索引。 对系统表和处于初始化状态线程用到的表,不进行Memory引擎到MyISAM引擎的自动转换。 性能优化 Thread Pool:互斥优化。 引入审计日志缓冲机制,提高审计日志的性能。 Performance Insight:性能点支持线程池。 默认开启Thread Pool。 Bug修复 在处理维护用户列表时释放锁。 补充更多TCP错误信息。 20191015 新特性 轮换慢日志:为了在收集慢查询日志时保证零数据丢失,轮换日志表会将慢日志表的csv数据文件重命名为唯一名称并创建新文件。您可以使用show variables like '%rotate_log_table%';查看是否开启轮换慢日志。 性能代理插件:收集性能数据并保存到本地格式化文本文件,采用文件轮轮循方式,保留最近的秒级性能数据。 强制将引擎从MEMORY转换为InnoDB:如果全局变量rds_force_memory_to_innodb为ON,则创建/修改表时会将表引擎从MEMORY转换为InnoDB。 TDE机制优化:添加keyring-rds插件与管控系统/密钥管理服务进行交互。 TCP错误信息:返回TCP方向(读取、读取等待、写入等待)错误及错误代码到end_connection事件,并且输出错误信息到错误日志。 Bug修复 修复DDL中的意外错误Error 1290。 20190925 参数修改 将系统变量auto_generate_certs的默认值由true改为false。 增加全局只读变量auto_detact_certs,默认值为false,有效值为[true | false]。 该系统变量在Server端使用OpenSSL编译时可用,用于控制Server端在启动时是否在数据目录下自动查找SSL加密证书和密钥文件,即控制是否开启Server端的证书和密钥的自动查找功能。 20190915 新特性 Thread Pool:将线程和会话分离,在拥有大量会话的同时,只需要少量线程完成活跃会话的任务即可。 20190815 新特性 Purge Large File Asynchronously:删除单个表空间时,会将表空间文件重命名为临时文件,等待异步清除进程清理临时文件。 Performance Insight:专注于实例负载监控、关联分析、性能调优的利器,帮助您迅速评估数据库负载,找到性能问题的源头,提升数据库的稳定性。 优化实例锁状态:实例锁定状态下,可以drop或truncate表。 Bug修复 禁止在set rds_current_connection命令中设置rds_prepare_begin_id。 允许更改已锁定用户的信息。 禁止用关键字actual作为表名。 修复慢日志导致时间字段溢出的问题。 20190510版本 新特性:允许在事务内创建临时表。 20190319版本 新特性:支持在handshake报文内代理设置threadID。 20190131版本 升级到官方5.7.25版本。 关闭内存管理功能jemalloc。 修复内部变量net_lenth_size计算错误问题。 20181226版本 新特性:支持动态修改binlog-row-event-max-size,加速无主键表的复制。 修复Proxy实例内存申请异常的问题。 20181010版本 支持隐式主键。 加快无主键表的主备复制。 支持Native AIO,提升I/O性能。 20180431版本 新特性: 支持高可用版。 支持SQL审计。 增强对处于快照备份状态的实例的保护。 MySQL 5.7三节点企业版 20191128 新特性 支持读写分离。 Bug修复 修复部分场景下Follower Second_Behind_Master计算错误问题。 修复表级并行复制事务重试时死锁问题。 修复XA相关bug。 20191016 新特性 支持MySQL 5.7高可用版(本地SSD盘)升级到三节点企业版。 兼容MySQL官方GTID功能,默认不开启。 合并AliSQL MySQL 5.7基础版/高可用版 20190915版本及之前的自研功能。 Bug修复 修复重置备实例导致binlog被关闭问题。 20190909 新特性 优化大事务在三节点强一致状态下的执行效率。 支持从Leader/Follower进行Binlog转储。 支持创建只读实例。 系统表默认使用InnoDB引擎。 Bug修复 修复Follower日志清理命令失效问题。 修复参数slave_sql_verify_checksum=OFF和binlog_checksum=crc32时Slave线程异常退出问题。 20190709 新特性 支持三节点功能。 禁用semi-sync插件。 支持表级并行复制、Writeset并行复制。 支持pk_access主键查询加速。 支持线程池。 合并AliSQL MySQL 5.7基础版/高可用版 20190510版本及之前的自研功能。 MySQL 5.6 20200229 新特性 支持Proxy读写分离功能。 性能优化 优化线程池功能。 优化不同CPU架构下的pause指令执行时间。 Bug修复 修复XA事务部分提交的问题。 20200110 新特性 Thread Pool:将线程和会话分离,在拥有大量会话的同时,只需要少量线程完成活跃会话的任务即可。 性能优化 异步清除文件时继续取消小文件的链接。 Bug修复 修复页面清理程序的睡眠时间计算不正确问题。 修复SELECT @@global.gtid_executed导致的故障转移失败问题。 修复IF CLIENT KILLED AFTER ROLLBACK TO SAVEPOINT PREVIOUS STMTS COMMITTED问题。 20191212 性能优化 删除不必要的tcp错误日志 20191115 Bug修复 修复慢日志时间戳溢出问题。 20191101 Bug修复 修复刷新日志时切换慢日志的问题,仅在执行刷新慢日志时切换慢日志。 修正部分显示错误。 20191015 新特性 轮换慢日志:为了在收集慢查询日志时保证零数据丢失,轮换日志表会将慢日志表的csv数据文件重命名为唯一名称并创建新文件。您可以使用show variables like '%rotate_log_table%';查看是否开启轮换慢日志。 SM4加密算法:添加新的SM4加密算法,取代旧的SM加密算法。 Purge Large File Asynchronously:删除单个表空间时,会将表空间文件重命名为临时文件,等待异步清除进程清理临时文件。 TCP错误信息:返回TCP方向(读取、读取等待、写入等待)错误及错误代码到end_connection事件,并且输出错误信息到错误日志。 引入审计日志缓冲机制,提高审计日志的性能。。 Bug修复 禁用pstack,避免存在大量连接时可能导致pstack无响应。 修复隐式主键与create table as select语句之间的冲突。 自动清除由二进制日志创建的临时文件。 20190815 优化实例锁状态:实例锁定状态下,可以drop或truncate表。 20190130版本 修复部分可能导致系统不稳定的bug。 20181010版本 添加参数rocksdb_ddl_commit_in_the_middle(MyRocks)。如果这个参数被打开,部分DDL在执行过程中将会执行commit操作。 201806** (5.6.16)版本 新特性:slow log精度提升为微秒。 20180426(5.6.16)版本 新特性:引入隐藏索引,支持将索引设置为不可见,详情请参见参考文档。 修复备库apply线程的bug。 修复备库apply分区表更新时性能下降问题。 修复TokuDB下alter table comment重建整张表问题,详情请参见参考文档。 修复由show slave status/show status可能触发的死锁问题。 20171205(5.6.16)版本 修复OPTIMIZE TABLE和ONLINE ALTER TABLE同时执行时会触发死锁的问题。 修复SEQUENCE与隐含主键冲突的问题。 修复SHOW CREATE SEQUENCE问题。 修复TokuDB引擎的表统计信息错误。 修复并行OPTIMIZE表引入的死锁问题。 修复QUERY_LOG_EVENT中记录的字符集问题。 修复信号处理引起的数据库无法停止问题,详情请参见参考文档。 修复RESET MASTER引入的问题。 修复备库陷入等待的问题。 修复SHOW CREATE TABLE可能触发的进程崩溃问题。 20170927(5.6.16)版本 修复TokuDB表查询时使用错误索引问题。 20170901(5.6.16)版本 新特性: 升级SSL加密版本到TLS 1.2,详情请参见参考文档。 支持Sequence。 修复NOT IN查询在特定场景下返回结果集有误的问题。 20170530 (5.6.16)版本 新特性:支持高权限账号Kill其他账号下的连接。 20170221(5.6.16)版本 新特性:支持读写分离简介。 MySQL 5.5 20181212 修复调用系统函数gettimeofday(2) 返回值不准确的问题。该系统函数返回值为时间,常用来计算等待超时,时间不准确时会导致一些操作永不超时。

游客yl2rjx5yxwcam 2020-03-08 13:18:55 0 浏览量 回答数 0

问题

【教程免费下载】面向机器学习的自然语言标注

知与谁同 2019-12-01 22:07:43 1333 浏览量 回答数 0

回答

大数据平台的搭建步骤: 1、linux系统安装    一般使用开源版的Redhat系统--CentOS作为底层平台。为了提供稳定的硬件基础,在给硬盘做RAID和挂载数据存储节点的时,需要按情况配置。2、分布式计算平台/组件安装  国内外的分布式系统的大多使用的是Hadoop系列开源系统。Hadoop的核心是HDFS,一个分布式的文件系统。在其基础上常用的组件有Yarn、Zookeeper、Hive、Hbase、Sqoop、Impala、ElasticSearch、Spark等使用开源组件的优点:1)使用者众多,很多bug可以在网上找的答案(这往往是开发中最耗时的地方)。2)开源组件一般免费,学习和维护相对方便。3)开源组件一般会持续更新,提供必要的更新服务『当然还需要手动做更新操作』。4)因为代码开源,若出bug可自由对源码作修改维护。3、数据导入数据导入的工具是Sqoop。用它可以将数据从文件或者传统数据库导入到分布式平台『一般主要导入到Hive,也可将数据导入到Hbase』。4、数据分析数据分析一般包括两个阶段:数据预处理和数据建模分析。数据预处理是为后面的建模分析做准备,主要工作时从海量数据中提取可用特征,建立大宽表。这个过程可能会用到Hive SQL,Spark QL和Impala。数据建模分析是针对预处理提取的特征/数据建模,得到想要的结果。这一块最好用的是Spark。常用的机器学习算法,如朴素贝叶斯、逻辑回归、决策树、神经网络、TFIDF、协同过滤等,都已经在ML lib里面,调用比较方便。5、结果可视化及输出API可视化一般式对结果或部分原始数据做展示。一般有两种情况,行数据展示,和列查找展示。要基于大数据平台做展示,会需要用到ElasticSearch和Hbase。Hbase提供快速『ms级别』的行查找。 ElasticSearch可以实现列索引,提供快速列查找。 大数据平台搭建中的主要问题1、稳定性 Stability 理论上来说,稳定性是分布式系统最大的优势,因为它可以通过多台机器做数据及程序运行备份以确保系统稳定。但也由于大数据平台部署于多台机器上,配置不合适,也可能成为最大的问题。 2、可扩展性 Scalability 如何快速扩展已有大数据平台,在其基础上扩充新的机器是云计算等领域应用的关键问题。在实际2B的应用中,有时需要增减机器来满足新的需求。如何在保留原有功能的情况下,快速扩充平台是实际应用中的常见问题。 来源于网络,供您参考,如若满意,请点击右侧【采纳答案】,如若还有问题,请点击【追问】 希望我的回答对您有所帮助,望采纳! ~ O(∩_∩)O~

保持可爱mmm 2019-12-02 03:03:49 0 浏览量 回答数 0

回答

什么是机器学习? 如果人类能够训练机器从过去的数据中学习呢?嗯,这被称为机器学习,但它不仅仅是学习,它还涉及理解和推理,所以今天我们将学习机器学习的基础知识。 插一段《Python3入门机器学习经典算法与应用》这门课程中的解释: 人类是怎么学习的?通过给大脑输入一定的资料,经过学习总结得到知识和经验,有当类似的任务时可以根据已有的经验做出决定或行动。 机器学习(Machine Learning)的过程与人类学习的过程是很相似的。机器学习算法本质上就是获得一个 f(x) 函数表示的模型,如果输入一个样本 x 给 f(x) 得到的结果是一个类别,解决的就是一个分类问题,如果得到的是一个具体的数值那么解决的就是回归问题。 机器学习与人类学习的整体机制是一致的,有一点区别是人类的大脑只需要非常少的一些资料就可以归纳总结出适用性非常强的知识或者经验,例如我们只要见过几只猫或几只狗就能正确的分辨出猫和狗,但对于机器来说我们需要大量的学习资料,但机器能做到的是智能化不需要人类参与。 简单的示例 保罗听新歌,他根据歌曲的节奏、强度和声音的性别来决定喜欢还是不喜欢。 为了简单起见,我们只使用速度和强度。所以在这里,速度是在 x 轴上,从缓慢到快速,而强度是在 y 轴上,从轻到重。我们看到保罗喜欢快节奏和高亢的歌曲,而他不喜欢慢节奏和轻柔的歌曲。 现在我们知道了保罗的选择,让我们看看保罗听一首新歌,让我们给它命名这首歌 A,歌曲 A 速度快,强度飙升,所以它就在这里的某个地方。看看数据,你能猜出球在哪里会喜欢这首歌? ![7.jpg](https://ucc.alicdn.com/pic/d eveloper-ecology/a61a1dd9937f4aa4bba873397609969b.jpg) 对,保罗喜欢这首歌。 通过回顾保罗过去的选择,我们能够很容易地对未知的歌曲进行分类。假设现在保罗听了一首新歌,让我们把它贴上 B 的标签,B 这首歌就在这里的某个地方,节奏中等,强度中等,既不放松也不快速, 既不轻缓也不飞扬。 现在你能猜出保罗喜欢还是不喜欢它吗?不能猜出保罗会喜欢或不喜欢它,其他选择还不清楚。没错,我们可以很容易地对歌曲 A 进行分类,但是当选择变得复杂时,就像歌曲B 一样。机器学习可以帮你解决这个问题。 让我们看看如何。在歌曲 B 的同一个例子中,如果我们在歌曲 B 周围画一个圆圈,我们会看到有四个绿色圆点表示喜欢,而一个红色圆点不喜欢。 如果我们选择占大多数比例的绿色圆点,我们可以说保罗肯定会喜欢这首歌,这就是一个基本的机器学习算法,它被称为 K 近邻算法, 这只是众多机器学习算法之一中的一个小例子。 但是当选择变得复杂时会发生什么?就像歌曲 B 的例子一样,当机器学习进入时,它会学习数据,建立预测模型,当新的数据点进来时,它可以很容易地预测它。数据越多,模型越好,精度越高。 机器学习的分类 机器学习的方式有很多,它可以是监督学习、无监督学习或强化学习。 监督学习 让我们首先快速了解监督学习。假设你的朋友给你 100 万个三种不同货币的硬币,比如说一个是 1 欧元,一个是 1 欧尔,每个硬币有不同的重量,例如,一枚 1 卢比的硬币重 3 克, 一欧元重 7 克,一欧尔重 4 克,你的模型将预测硬币的货币。在这里,体重成为硬币的特征,而货币成为标签,当你将这些数据输入机器学习模型时,它会学习哪个特征与哪个结果相关联。 例如,它将了解到,如果一枚硬币是三克,它将是一枚卢比硬币。根据新硬币的重量,你的模型将预测货币。因此,监督学习使用标签数据来训练模型。在这里,机器知道对象的特征以及与这些特征相关的标签。 无监督学习 在这一点上,让我们看看与无监督学习的区别。假设你有不同球员的板球数据集。当您将此数据集送给机器时,机器会识别玩家性能的模式,因此它会在 x 轴上使用各自的 Achatz 对这些数据进行处理,同时在 y 轴上运行 在查看数据时,你会清楚地看到有两个集群,一个集群是得分高,分较少的球员,而另一个集群是得分较少但得分较多的球员,所以在这里我们将这两个集群解释为击球手和投球手。 需要注意的重要一点是,这里没有击球手、投球手的标签,因此 使用无标签数据的学习是无监督学习。因此,我们了解了数据被标记的监督学习和数据未标记的无监督学习。 强化学习 然后是强化学习,这是一种基于奖励的学习,或者我们可以说它的工作原理是反馈。 在这里,假设你向系统提供了一只狗的图像,并要求它识别它。系统将它识别为一只猫,所以你给机器一个负面反馈,说它是狗的形象,机器会从反馈中学习。最后,如果它遇到任何其他狗的图像,它将能够正确分类,那就是强化学习。 让我们看一个流程图,输入给机器学习模型,然后根据应用的算法给出输出。如果是正确的,我们将输出作为最终结果,否则我们会向火车模型提供反馈,并要求它预测,直到它学 机器学习的应用 你有时不知道在当今时代,机器学习是如何成为可能的,那是因为今天我们有大量可用的数据,每个人都在线,要么进行交易,要么上网,每分钟都会产生大量数据,数据是分析的关键。 此外,计算机的内存处理能力也在很大程度上增加,这有助于他们毫不拖延地处理手头如此大量的数据。 是的,计算机现在拥有强大的计算能力,所以有很多机器学习的应用。 仅举几例,机器学习用于医疗保健,在医疗保健中,医生可以预测诊断,情绪分析。 科技巨头在社交媒体上所做的推荐是另一个有趣的应用。金融部门的机器学习欺诈检测,并预测电子商务部门的客户流失。 小测验 我希望你已经理解了监督和无监督学习,所以让我们做一个快速测验,确定给定的场景是使用监督还是非监督学习。 场景 1:  Facebook 从一张标签照片相册中识别出你的朋友场景 2: Netflix 根据某人过去的电影选择推荐新电影场景 3: 分析可疑交易的银行数据并标记欺诈交易 场景 1: Facebook 在一张标签照片相册中的照片中识别你的朋友解释: 这是监督学习。在这里,Facebook 正在使用标记的照片来识别这个人。因此,标记的照片成为图片的标签,我们知道当机器从标记的数据中学习时,它是监督学习。 场景 2: 根据某人过去的音乐选择推荐新歌解释: 这是监督学习。该模型是在预先存在的标签 (歌曲流派) 上训练分类器。这是 Netflix,Pandora 和 Spotify 一直在做的事情,他们收集您已经喜欢的歌曲/电影,根据您的喜好评估功能,然后根据类似功能推荐新电影/歌曲。 场景 3: 分析可疑交易的银行数据并标记欺诈交易解释: 这是无监督学习。在这种情况下,可疑交易没有定义,因此没有 “欺诈” 和 “非欺诈” 的标签。该模型试图通过查看异常交易来识别异常值,并将其标记为 “欺诈”。

剑曼红尘 2020-04-15 19:05:53 0 浏览量 回答数 0

回答

能干的多了去了看下面弹性计算云服务器ECS:可弹性扩展、安全、稳定、易用的计算服务块存储:可弹性扩展、高性能、高可靠的块级随机存储专有网络 VPC:帮您轻松构建逻辑隔离的专有网络负载均衡:对多台云服务器进行流量分发的负载均衡服务弹性伸缩:自动调整弹性计算资源的管理服务资源编排:批量创建、管理、配置云计算资源容器服务:应用全生命周期管理的Docker服务高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机批量计算:简单易用的大规模并行批处理计算服务E-MapReduce:基于Hadoop/Spark的大数据处理分析服务数据库云数据库RDS:完全兼容MySQL,SQLServer,PostgreSQL云数据库MongoDB版:三节点副本集保证高可用云数据库Redis版:兼容开源Redis协议的Key-Value类型云数据库Memcache版:在线缓存服务,为热点数据的访问提供高速响应PB级云数据库PetaData:支持PB级海量数据存储的分布式关系型数据库云数据库HybridDB:基于Greenplum Database的MPP数据仓库云数据库OceanBase:金融级高可靠、高性能、分布式自研数据库数据传输:比GoldenGate更易用,阿里异地多活基础架构数据管理:比phpMyadmin更强大,比Navicat更易用存储对象存储OSS:海量、安全和高可靠的云存储服务文件存储:无限扩展、多共享、标准文件协议的文件存储服务归档存储:海量数据的长期归档、备份服务块存储:可弹性扩展、高性能、高可靠的块级随机存储表格存储:高并发、低延时、无限容量的Nosql数据存储服务网络CDN:跨运营商、跨地域全网覆盖的网络加速服务专有网络 VPC:帮您轻松构建逻辑隔离的专有网络高速通道:高速稳定的VPC互联和专线接入服务NAT网关:支持NAT转发、共享带宽的VPC网关大数据(数加)MaxCompute:原名ODPS,是一种快速、完全托管的TB/PB级数据仓库解决方案大数据开发套件:提供可视化开发界面、离线任务调度运维、快速数据集成、多人协同工作等功能,拥有强大的Open API为数据应用开发者提供良好的再创作生态DataV数据可视化:专精于业务数据与地理信息融合的大数据可视化,通过图形界面轻松搭建专业的可视化应用, 满足您日常业务监控、调度、会展演示等多场景使用需求关系网络分析:基于关系网络的大数据可视化分析平台,针对数据情报侦察场景赋能,如打击虚假交易,审理保险骗赔,案件还原研判等推荐引擎:推荐服务框架,用于实时预测用户对物品偏好,支持 A/B Test 效果对比公众趋势分析:利用语义分析、情感算法和机器学习,分析公众对品牌形象、热点事件和公共政策的认知趋势企业图谱:提供企业多维度信息查询,方便企业构建基于企业画像及企业关系网络的风险控制、市场监测等企业级服务数据集成:稳定高效、弹性伸缩的数据同步平台,为阿里云各个云产品提供离线(批量)数据进出通道分析型数据库:在毫秒级针对千亿级数据进行即时的多维分析透视和业务探索流计算:流式大数据分析平台,提供给用户在云上进行流式数据实时化分析工具人工智能机器学习:基于阿里云分布式计算引擎的一款机器学习算法平台,用户通过拖拉拽的方式可视化的操作组件来进行试验,平台提供了丰富的组件,包括数据预处理、特征工程、算法组件、预测与评估语音识别与合成:基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验人脸识别:提供图像和视频帧中人脸分析的在线服务,包括人脸检测、人脸特征提取、人脸年龄估计和性别识别、人脸关键点定位等独立服务模块印刷文字识别:将图片中的文字识别出来,包括身份证文字识别、门店招牌识别、行驶证识别、驾驶证识别、名片识别等证件类文字识别场景云安全(云盾)服务器安全(安骑士):由轻量级Agent和云端组成,集检测、修复、防御为一体,提供网站后门查杀、通用Web软件0day漏洞修复、安全基线巡检、主机访问控制等功能,保障服务器安全DDoS高防IP:云盾DDoS高防IP是针对互联网服务器(包括非阿里云主机)在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠Web应用防火墙:网站必备的一款安全防护产品。 通过分析网站的访问请求、过滤异常攻击,保护网站业务可用及资产数据安全加密服务:满足云上数据加密,密钥管理、加解密运算需求的数据安全解决方案CA证书服务:云上签发Symantec、CFCA、GeoTrust SSL数字证书,部署简单,轻松实现全站HTTPS化,防监听、防劫持,呈现给用户可信的网站访问数据风控:凝聚阿里多年业务风控经验,专业、实时对抗垃圾注册、刷库撞库、活动作弊、论坛灌水等严重威胁互联网业务安全的风险绿网:智能识别文本、图片、视频等多媒体的内容违规风险,如涉黄,暴恐,涉政等,省去90%人力成本安全管家:基于阿里云多年安全实践经验为云上用户提供的全方位安全技术和咨询服务,为云上用户建立和持续优化云安全防御体系,保障用户业务安全云盾混合云:在用户自有IDC、专有云、公共云、混合云等多种业务环境为用户建设涵盖网络安全、应用安全、主机安全、安全态势感知的全方位互联网安全攻防体系态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案先知:全球顶尖白帽子和安全公司帮你找漏洞,最私密的安全众测平台。全面体检,提早发现业务漏洞及风险,按效果付费移动安全:为移动APP提供安全漏洞、恶意代码、仿冒应用等检测服务,并可对应用进行安全增强,提高反破解和反逆向能力。互联网中间件企业级分布式应用服务EDAS:以应用为中心的中间件PaaS平台、消息队列MQ:Apache RocketMQ商业版企业级异步通信中间件分布式关系型数据库服务DRDS:水平拆分/读写分离的在线分布式数据库服务云服务总线CSB:企业级互联网能力开放平台业务实施监控服务ARMS:端到端一体化实时监控解决方案产品分析E-MapReduce:基于Hadoop/Spark的大数据处理分析服务云数据库HybirdDB:基于Greenplum Database的MPP数据仓库高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机大数据计算服务MaxCompute:TB/PB级数据仓库解决方案分析型数据库:海量数据实时高并发在线分析开放搜索:结构化数据搜索托管服务管理与监控云监控:指标监控与报警服务访问控制:管理多因素认证、子账号与授权、角色与STS令牌资源编排:批量创建、管理、配置云计算资源操作审计:详细记录控制台和API操作密钥管理服务:安全、易用、低成本的密钥管理服务应用服务日志服务:针对日志收集、存储、查询和分析的服务开放搜索:结构化数据搜索托管服务性能测试:性能云测试平台,帮您轻松完成系统性能评估邮件推送:事务/批量邮件推送,验证码/通知短信服务API网关:高性能、高可用的API托管服务,低成本开放API物联网套件:助您快速搭建稳定可靠的物联网应用消息服务:大规模、高可靠、高并发访问和超强消息堆积能力视频服务视频点播:安全、弹性、高可定制的点播服务媒体转码:为多媒体数据提供的转码计算服务视频直播:低延迟、高并发的音频视频直播服务移动服务移动推送:移动应用通知与消息推送服务短信服务:验证码和短信通知服务,三网合一快速到达HTTPDNS:移动应用域名防劫持和精确调整服务移动安全:为移动应用提供全生命周期安全服务移动数据分析:移动应用数据采集、分析、展示和数据输出服务移动加速:移动应用访问加速云通信短信服务:验证码和短信通知服务,三网合一快速到达语音服务:语音通知和语音验证,支持多方通话流量服务:轻松玩转手机流量,物联卡专供物联终端使用私密专线:号码隔离,保护双方的隐私信息移动推送:移动应用通知与消息推送服务消息服务:大规模、高可靠、高并发访问和超强消息堆积能力邮件推送:事务邮件、通知邮件和批量邮件的快速发送

巴洛克上校 2019-12-02 00:25:55 0 浏览量 回答数 0

回答

多集成 • 身份认证与访问控制 KMS借助于身份认证机制(AccessKey)来鉴别请求的合法性,KMS还通过与访问控制(RAM)集成,允许您配置多样化的自定义策略,满足不同的授权场景。任何请求仅由合法用户发起且满足RAM对权限的动态检测(基于属性的访问控制,简称ABAC),才能被KMS接受。详情请参见使用RAM实现访问控制。 • 审计密钥的使用 KMS通过与操作审计(ActionTrail)集成,可以查看近期KMS的使用状况,也可以将KMS使用情况存储到OSS等其他云服务中,满足更长周期的审计需求。详情请参见使用ActionTrail记录操作事件。 • 控制云产品集成加密 KMS和阿里云ECS、RDS、OSS等多个产品无缝集成。通过一方集成,您可以很容易的使用KMS主密钥加密和控制您存储在这些服务中的数据,帮助您保持对云上计算和存储环境的控制,而您只需要付出密钥的管理成本,无需实现复杂的加密能力。同时集成加密解决了其他云产品中原生数据的加密保护问题。详情请参见服务端集成加密概述和服务端集成加密的云产品。 易使用 • 轻松实现加密 KMS提供简单的密码运算API,简化和抽象了密码学概念,让您可以轻松的使用API完成数据的加解密。对于需要密钥层次结构的应用,KMS提供了方便的信封加密能力,快速实现密钥层次结构:生成一个数据密钥,并将主密钥(CMK)用作密钥加密密钥(Key Encryption Key,简称KEK)来保护数据密钥。详情请参见什么是信封加密? • 集中的密钥托管 密钥管理服务为您提供对密钥的集中化托管与控制。 o 您可以随时创建新的用户主密钥,并通过访问控制(RAM)轻松管理谁可以访问该密钥 o 您可以通过操作审计(ActionTrail)审核密钥的使用情况。 o 您可以从线下密钥管理基础设施(KMI)或在阿里云加密服务中创建的HSM里将密钥导入到KMS。无论在KMS内创建的密钥还是外部导入的密钥,密钥中的机密信息或者敏感数据都会被阿里云上的其他云产品用于加密保护。 • 支持自带密钥(BYOK) KMS支持自带密钥(Bring Your Own Key,简称BYOK)。您可以将密钥租借给KMS用作云上数据的加密保护,从而更好的管理密钥。可租借的密钥包括以下两种: o 线下密钥管理基础设施(Key Management Infrastructure,简称KMI)里的密钥 o 在阿里云加密服务中自主管理的HSM中的密钥 说明 通过安全合规的密钥交换算法,导入到KMS的托管密码机中的密钥不会被任何机制所导出,密钥明文不会被操作者或任何第三者查看。详情请参见导入密钥材料和保持对密钥的控制。 • 自定义密钥轮转策略 KMS允许您根据所需的安全策略来自动轮转对称加密密钥。您只需要为主密钥(CMK)配置一个自定义的轮转周期,KMS会自动为您生成新的加密密钥版本。一个主密钥可以有多个密钥版本,其中每个版本可以被用来解密对应的密文数据,而最新的密钥版本(称为主版本)是活跃加密密钥,用于加密当前传入的数据。详情请参见自动轮转密钥。 高可靠、高可用、可伸缩 作为全托管的分布式服务,KMS在每个地域构建了多可用区冗余的密码计算能力,保证阿里云上各个产品和您的自定义应用向KMS发起的请求可以得到低延迟处理。您可以根据需要,在不同地域的KMS创建足够的密钥,而不必担心底层设施的扩容或缩容。 安全与合规能力 KMS经过严格的安全设计和审核,保证您的密钥在阿里云得到最严格的保护。 • KMS仅提供基于TLS的安全访问通道,并且仅使用安全的传输加密算法套件,符合PCI DSS等安全规范。 • KMS提供了监管机构许可和认证的密码设施。根据地域分布,分别提供了经国家密码管理局检测和认证的硬件密码设备,取得了FIPS 140-2第三级认证和运行在FIPS许可的第三级模式下的密码设备。详情请参见合规。 • KMS使用硬件安全模块来托管密钥,从而达到更高的安全标准,详情请参见托管密码机简介。 低成本 使用KMS,您可以按需使用和付费。 • 您无需支付采购硬件密码设备的初始成本以及对硬件系统进行运维、修补、老旧替换的持续开销。 • KMS为您节省了搭建具有可用性和可靠性密码设备集群,以及自建密钥管理设施的研发成本和维护开销。 • KMS与其他产品的集成为您节省了研发数据加密系统的开销,仅需通过管理密钥而获得可控的云上数据加密的能力。 密钥管理服务(Key Management Service,简称KMS) 阿里云提供的密钥管理服务可以提供密钥的安全托管及密码运算等服务。KMS内置密钥轮转等安全实践,支持其它云产品通过一方集成的方式对其管理的用户数据进行加密保护。借助KMS,您可以专注于数据加解密、电子签名验签等业务功能,无需花费大量成本来保障密钥的保密性、完整性和可用性。 用户主密钥(Customer Master Key,简称CMK) 用户主密钥主要用于加密保护数据密钥并产生信封,也可直接用于加密少量的数据。您可以调用KMS的API CreateKey创建一个用户主密钥。 信封加密(Envelope Encryption) 当您需要加密业务数据时,您可以调用KMS的API GenerateDataKey或GenerateDataKeyWithoutPlaintext生成一个对称密钥,同时使用指定的用户主密钥加密该对称密钥(被密封的信封保护)。在传输或存储等非安全的通信过程中,直接传递被信封保护的对称密钥。当您需要使用该对称密钥时,打开信封取出密钥即可。详情请参见什么是信封加密? 数据密钥(Data Key,简称DK) 数据密钥为加密数据使用的明文数据密钥。 说明 您可以调用KMS的API GenerateDataKey生成一个数据密钥,同时使用指定用户主密钥加密该数据密钥,返回数据密钥的明文(DK) 和密文(EDK)。 信封数据密钥(Enveloped Data Key/Encrypted Data Key,简称EDK) 信封数据密钥为通过信封加密技术保密后的密文数据密钥。 说明 如果暂时不需要数据密钥的明文,您可以调用KMS的API GenerateDataKeyWithoutPlaintext仅返回数据密钥密文。 硬件安全模块(Hardware Security Module,简称HSM) 硬件安全模块也称为密码机,是一种执行密码运算、安全生成和存储密钥的硬件设备。KMS提供的托管密码机可以满足监管机构的检测认证要求,为用户在KMS托管的密钥提供更高的安全等级保证。详情请参见托管密码机简介。 加密上下文(Encryption Context) 加密上下文是KMS对可认证加密(Authenticated Encryption with Associated Data,简称AEAD)的封装。KMS将传入的加密上下文作为对称加密算法的额外认证数据(Additional Authenticated Data,简称AAD)进行密码运算,从而为加密数据额外提供完整性(Integrity)和可认证性(Authenticity)的支持。详情请请见EncryptionContext说明。

LiuWH 2020-03-26 10:00:05 0 浏览量 回答数 0

回答

约翰逊法是作业排序中的一种排序方法。这种方法适用的条件是:n个工件经过二、三台设备(有限台设备)加工,所有工件在有限设备上加工的次序相同。为了便于阐述这种方法的具体做法,下面结合一个例子来进行说明: 例:有五个工件在二台设备上加工,加工顺序相同,现在设备1上加工,再在设备2上加工,工时列于下表1中,用约翰逊法排序。 表1 加工工时表 具体步骤为: 第一步,取出最小工时t12=2。如该工时为第一工序的,则最先加工;反之,则放在最后加工。此例是A工件第二工序时间,按规则排在最后加工。 第二步,将该已排序工作划去。 第三步,对余下的工作重复上述排序步骤,直至完毕。此时t21=t42=3,B工件第一工序时间最短,最先加工;D工件第二工序时间最短,排在余下的工件中最后加工。最后得到的排序为:B-C-E-D-A。整批工件的停留时间为27分钟。 更一般的情况是工件加工顺序不同,称为随机性排序。由杰克逊对约翰逊法稍加改进后得到求解方法,称为杰克逊算法。 [周期性生产类型作业计划编制] 周期性生产类型由于是多产品轮番生产,零件数量又十分大,作业计划的难度比较大。作业计划分厂部计划和车间计划。在车间计划中的作业排序问题是一件十分困难的工作。 一、 厂部作业计划 厂部作业计划一般只以产品作为计划单位,如产品结构比较简单,厂部计划的能力又很强,也可做部件计划。在确定了周期性生产类型的期量标准的基础上,根据其量标准下达产品的生产批量,以及投入出产的时间,就是厂部计划的主要内容。实际上,采用这种生产方式的企业由于产品大结构复杂,产品生产周期比较长,往往都超过一个月。厂部都是根据订单安排月度计划,当品种数量比较多时,很难做批量计划,这时的厂部计划主要下达月度的生产总量和具体的产品品种规格。由于产品周期垮了数个月,还要下达产品的出产日期、毛坯的投入出产期和机加工的投入出产期,计划单位为产品。部件和零件的生产计划由车间考虑。 二、 车间作业计划 车间接到的生产任务是一个计划期的总生产量,车间要进一步细分任务,分批生产。主要考虑的问题是生产能力的平衡、零部件数量上的配套、提高设备利用率、缩短生产周期、减少在制品资金占用量,所以计划难度很高。大多数企业都是凭经验安排计划。作车间作业计划时,有一些定量模型和方法可供适用,如多品种轮番生产的最小生产费用计划方法就是其中常用的一种。。 三、 作业排序 周期性生产类型的生产组织形式是工艺专业化,车间往往就是生产过程中的某个工艺阶段,每个零件在车间内要经过某几个工序的加工。因此车间的作业计划中工件加工的排序问题是一个难点。其难处在于零件种类多,加工的工艺流程和加工工时差别较大。一般采取重点管住关键零件和关键设备的方法。 零件加工排序问题一般可作如下描述:n种零件在有m台设备的车间内加工,每种零件加工所需要的设备数可以是不同的,加工的顺序也可以不同,要求排出效果尽可能好的工件加工次序。目前对这个问题的研究所取得的成果只能解决少数几种特殊条件下的排序问题,其思路是先确定一个优化目标,再寻求解题模型。通常取一批加工任务在车间内停留的时间最短为优化目标。 下面做简要介绍。 1、 n个工件在一台设备上加工 这是一种最简单的排序问题,只要按如下规则排序既可以了。 式中,ti为第i个工件的加工工时,该式的排序规律是加工工时短的工件先加工。 2、 n个工件需经过二台设备加工 比较简单的一种情况是所有工件在二台设备上加工的次序相同,此时用约翰逊法可以求解。更一般的情况是工件加工顺序不同,称为随机排序。由杰克逊对约翰逊法稍加改进后得到求解方法,称为杰克逊算法。 3、 n个工件在三台设备上加工 随着设备数量的增加,优化难度加大。在三台设备上加工,当满足一定条件时有优化方法。如果n个工件的加工顺序相同,且满足以下两条件中的任何一条,可用约翰逊法求解。 算法如下: 第一步,令 Ti1=ti1+ti2 Ti2=ti2+ti3 得到两台虚拟设备的工序工时; 第二步,对二台虚拟设备,按约翰逊法排序。 对于三台设备的随机性问题还没有简便的优化方法。 4、 二个工件在m台设备上加工 这种情况下可用分枝定界法求解,如设备数量较大,则工作量很大,通常采用图解法。但图解法不能保证是最优解。 上述四种情况在实际生产中只是少数情况,可见多数情况下还没有好的解法,一般可根据排队理论采用计算机模拟方法。 [最小批量法] 最小批量法是确定批量和生产间隔期时常用的一种以量定期法。此方法从设备利用和生产率方面考虑批量的选择,要时的选定的批量能够保证一次准备结束时间对批量加工时间的比值不大于给定的数值。可用下式表示: 损失系数由经验确定,可参考下表1: 表1 准备结束时间损失系数 [经济批量法] 经济批量法是确定批量和生产间隔期时常用的一种以量定期方法。生产费用与批量之间存在着函数关系,批量主要通过两方面因素影响生产费用:一是生产准备费用,这部分费用随生产批次增减而变化;二是保管费用,即在制品在存储保管期间所发生的费用,如仓库管理费用、资金呆滞损失、存货的损耗费用等。这些费用与批量大小和存储时间长短有关。 [周期性生产类型作业计划的期量标准] 周期性生产类型的作业计划的期量标准主要包括批量和生产间隔期、生产周期和生产提前期,合理制定期量标准可以使生产资源得到较好的利用。下面分别阐述这些期量标准。 一、 批量和生产间隔期 采用周期性生产类型的企业,由于产品体积大、结构复杂,再加上品种多等因素,不能采取月度计划一次投料生产的方法。否则不但使在制品充满生产现场,使现场一片混乱,甚至发生生产场地不够用的现象,还会占用大量的流动资金。但又不能像流水生产那样每天小批量的投料生产,所以需要确定一个合理的生产批量。 批量是指一次性投入生产的同种制品的数量。每投一次需要消耗一次准备结束时间,,用于熟悉图纸、领取工卡量居、调整设备工装等等作业。生产间隔期是相邻两批同种工件投入(或产出)的时间间隔。在周期性重复生产条件下批量和生产间隔期有如下关系: 批量=平均日产量*生产间隔期 在生产任务稳定条件下,日产量不变,则批量与生产间隔期成正比。批量大,则间隔期长,相应的在制品数量也大,生产周期较长,这样对使用流动资金是不利的。反之,如批量小,会导致频繁变动产品,增加准备结束作业次数,多消耗准备结束时间,降低设备利用率,也是不利的。因此确定批量和生产间隔期,需要在这些因素之间进行平衡,达到既有利于流动资金的有效使用,又提高设备的利用率。 确定批量和生产间隔期通常有两种方式。 (一) 以量定期法 当平均日产量不变时,批量与生产间隔期互为因果关系,此方法的思路为,先根据综合经济效果确定批量,然后推算生产间隔期,对间隔期做适当的修正后,再对批量做调整。这种方式又有几种具体的方法:最小批量法、经济批量法等。 (二) 以期定量法 此方法的思路为先确定生产间隔期,在推算出批量。按照零件复杂程度、体积大小、价值高低确定各个零件的生产间隔期,然后根据生产数量推算出批量。为了管理上的方便企业都事先制定好标准生产间隔期,数值通常取月工作日(20天)的约数,如1天、2天、4天、5天(一周)、10天、20天(1月)等等。采用这种方法使生产间隔期和相应的批量规范化了,便于管理。标准生产间隔期表如下表1所示: 表1 标准生产间隔期表 生产间隔期与批量的总数不宜太多,一般不超过六种为宜。 二、 生产周期 生产周期是指从加工对象投产起,到它完工时止所经历的日历时间。生产周期这一期量标准是编制生产作业计划和确定产品及其零件在各工艺阶段投入和产出日期的主要依据,是成批生产作业计划的一项重要期量标准。 对产品来说,它的生产周期包括毛坯准备、零件加工、部件装配、成品总装、油漆,直到入库为止的全部时间,如下图2所示: 图2 产品生产周期结构示意图 生产周期可以按零件工序、零件加工过程和产品进行计算。其中零件工序生产周期是计算产品生产周期的基础。这里分别介绍它们的计算方法: 1、 零件工序生产周期 指一批零件在某道工序上的作业时间。计算公式如下: 式中:Tp--修正后的零件加工生产周期; a--为平行系数。 上述公式也适用于计算装配阶段的生产周期。 2、 产品生产周期 产品生产周期是各工艺阶段的生产周期与所有保险期之和。 [多品种轮番生产的最小生产费用计划方法] 多品种轮番生产的最小生产费用计划方法是车间制定生产作业计划时常可用到的一种很有用的定量方法。这种方法的思路是将计划期划分为几个长度相等的循环流程,在每个循环流程中实行多品种轮番生产;以循环流程长度作为因变量,列出生产费用函数,求出最小费用循环流程;最后从该流程长度推算出各品种的批量。 设: Di--第i种产品计划期需求量; Pi--第i种产品计划期生产能力; tmi--第i种产品单件加工时间,tmi=1/Pi; ti--第i种产品批量生产时间,ti=Qi·tmi; tsi--第i种产品准备与结束时间; Si--第i种产品一次准备、结束单位时间的费用; Ci--第i种产品单位产品计划期储存费用; Qi--第i种产品生产批量; Ii--第i种产品在制品数量; L--循环流程长度,

云篆 2019-12-02 01:19:19 0 浏览量 回答数 0

回答

如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢。我希望这个书单列表内容丰富,可以涵盖很多东西。” 1、《代码大全》 史蒂夫·迈克康奈尔 推荐数:1684 “优秀的编程实践的百科全书,《代码大全》注重个人技术,其中所有东西加起来, 就是我们本能所说的“编写整洁的代码”。这本书有50页在谈论代码布局。” —— Joel Spolsky 对于新手来说,这本书中的观念有点高阶了。到你准备阅读此书时,你应该已经知道并实践过书中99%的观念。– esac Steve McConnell的原作《代码大全》(第1版)是公认的关于编程的最佳实践指南之一, 在过去的十多年间,本书一直在帮助开发人员编写更好的软件。 现在,作者将这本经典著作全新演绎,融入了最前沿的实践技术,加入了上百个崭新的代码示例, 充分展示了软件构建的艺术性和科学性。 McConnell汇集了来自研究机构、学术界以及业界日常实践的主要知识, 把最高效的技术和最重要的原理交织融会为这本既清晰又实用的指南。 无论您的经验水平如何,也不管您在怎样的开发环境中工作,也无论项目是大是小, 本书都将激发您的思维并帮助您构建高品质的代码。 《代码大全(第2版))》做了全面的更新,增加了很多与时俱进的内容,包括对新语言、新的开发过程与方法论的讨论等等。 2、《程序员修炼之道》 推荐数:1504 对于那些已经学习过编程机制的程序员来说,这是一本卓越的书。 或许他们还是在校生,但对要自己做什么,还感觉不是很安全。 就像草图和架构之间的差别。虽然你在学校课堂上学到的是画图,你也可以画的很漂亮, 但如果你觉得你不太知道从哪儿下手,如果某人要你独自画一个P2P的音乐交换网络图,那这本书就适合你了。—— Joel 《程序员修炼之道:从小工到专家》内容简介:《程序员修炼之道》由一系列独立的部分组成, 涵盖的主题从个人责任、职业发展,知道用于使代码保持灵活、并且易于改编和复用的各种架构技术, 利用许多富有娱乐性的奇闻轶事、有思想性的例子及有趣的类比, 全面阐释了软件开发的许多不同方面的最佳实践和重大陷阱。 无论你是初学者,是有经验的程序员,还是软件项目经理,《程序员修炼之道:从小工到专家》都适合你阅读。 3、《计算机程序的构造和解释》 推荐数:916 就个人而言,这本书目前为止对我影响醉倒的一本编程书。 《代码大全》、《重构》和《设计模式》这些经典书会教给你高效的工作习惯和交易细节。 其他像《人件集》、《计算机编程心理学》和《人月神话》这些书会深入软件开发的心理层面。 其他书籍则处理算法。这些书都有自己所属的位置。 然而《计算机程序的构造和解释》与这些不同。 这是一本会启发你的书,它会燃起你编写出色程序的热情; 它还将教会你认识并欣赏美; 它会让你有种敬畏,让你难以抑制地渴望学习更多的东西。 其他书或许会让你成为一位更出色的程序员,但此书将一定会让你成为一名程序员。 同时,你将会学到其他东西,函数式编程(第三章)、惰性计算、元编程、虚拟机、解释器和编译器。 一些人认为此书不适合新手。 个人认为,虽然我并不完全认同要有一些编程经验才能读此书,但我还是一定推荐给初学者。 毕竟这本书是写给著名的6.001,是麻省理工学院的入门编程课程。 此书或许需要多做努力(尤其你在做练习的时候,你也应当如此),但这个价是对得起这本书的。 4、《C程序设计语言》 推荐数:774 这本书简洁易读,会教给你三件事:C 编程语言;如何像程序员一样思考;底层计算模型。 (这对理解“底层”非常重要)—— Nathan 《C程序设计语言》(第2版新版)讲述深入浅出,配合典型例证,通俗易懂,实用性强, 适合作为大专院校计算机专业或非计算机专业的C语言教材,也可以作为从事计算机相关软硬件开发的技术人员的参考书。 《C程序设计语言》(第2版新版)原著即为C语言的设计者之一Dennis M.Ritchie和著名的计算机科学家Brian W.Kernighan合著的 一本介绍C语言的权威经典著作。 我们现在见到的大量论述C语言程序设计的教材和专著均以此书为蓝本。 原著第1版中介绍的C语言成为后来广泛使用的C语言版本——标准C的基础。 人们熟知的“hello,world”程序就是由本书首次引入的,现在,这一程序已经成为所有程序设计语言入门的第一课。 5、《算法导论》 推荐数:671 《代码大全》教你如何正确编程; 《人月神话》教你如何正确管理; 《设计模式》教你如何正确设计…… 在我看来,代码只是一个工具,并非精髓。 开发软件的主要部分是创建新算法或重新实现现有算法。 其他部分则像重新组装乐高砖块或创建“管理”层。 我依然梦想这样的工作,我的大部分时间(>50%)是在写算法,其他“管理”细节则留给其他人…… —— Ran Biron 经典的算法书,被亚马逊网,《程序员》等评选为2006年最受读者喜爱的十大IT图书之一。 算法领域的标准教材,全球多所知名大学选用 MIT名师联手铸就,被誉为“计算机算法的圣经” 编写上采用了“五个一”,即一章介绍一个算法、一种设计技术、一个应用领域和一个相关话题。 6、《重构:改善既有代码的设计》 推荐数:617 《重构:改善既有代码的设计》清晰地揭示了重构的过程,解释了重构的原理和最佳实践方式, 并给出了何时以及何地应该开始挖掘代码以求改善。 书中给出了70多个可行的重构,每个重构都介绍了一种经过验证的代码变换手法的动机和技术。 《重构:改善既有代码的设计》提出的重构准则将帮助你一次一小步地修改你的代码,从而减少了开发过程中的风险。 《重构:改善既有代码的设计》适合软件开发人员、项目管理人员等阅读, 也可作为高等院校计算机及相关专业师生的参考读物。 我想我不得不推荐《重构》:改进现有代码的设计。—— Martin 我必须承认,我最喜欢的编程语录是出自这本书:任何一个傻瓜都能写出计算机能理解的程序, 而优秀的程序员却能写出别人能读得懂的程序。—— Martin Fowler 7、《设计模式》 推荐数:617 自1995年出版以来,本书一直名列Amazon和各大书店销售榜前列。 近10年后,本书仍是Addison-Wesley公司2003年最畅销的图书之一。 中文版销售逾4万册。 就我而言,我认为四人帮编著的《设计模式》是一本极为有用的书。 虽然此书并不像其他建议一样有关“元”编程,但它强调封装诸如模式一类的优秀编程技术, 因而鼓励其他人提出新模式和反模式(antipatterns),并运用于编程对话中。—— Chris Jester-Young 8、《人月神话》 推荐数:588 在软件领域,很少能有像《人月神话》一样具有深远影响力并且畅销不衰的著作。 Brooks博士为人们管理复杂项目提供了最具洞察力的见解。 既有很多发人深省的观点,又有大量软件工程的实践。 本书内容来自Brooks博士在IBM公司System/360家族和OS/360中的项目管理经验。 该书英文原版一经面世,即引起业内人士的强烈反响,后又译为德、法、日、俄中等多种语言,全球销量数百万册。 确立了其在行业内的经典地位。 9、《计算机程序设计艺术》 推荐数:542 《计算机程序设计艺术》系列著作对计算机领域产生了深远的影响。 这一系列堪称一项浩大的工程,自1962年开始编写,计划出版7卷,目前已经出版了4卷。 《美国科学家》杂志曾将这套书与爱因斯坦的《相对论》等书并列称为20世纪最重要的12本物理学著作。 目前Knuth正将毕生精力投入到这部史诗性著作的撰写中。 这是高德纳倾注心血写的一本书。—— Peter Coulton 10、《编译原理》(龙书) 推荐数:462 我很奇怪,居然没人提到龙书。(或许已有推荐,我没有看到)。 我从没忘过此书的第一版封面。 此书让我知道了编译器是多么地神奇绝妙。- DB 11、《深入浅出设计模式》 推荐数:445 强大的写作阵容。 《Head First设计模式》(中文版) 作者Eric Freeman; ElElisabeth Freeman是作家、讲师和技术顾问。 Eric拥有耶鲁大学的计算机科学博士学位,E1isabath拥有耶鲁大学的计算机科学硕士学位。 Kathy Sierra(javaranch.com的创始人)FHBert Bates是畅销的HeadFirst系列书籍的创立者,也是Sun公司Java开发员认证考试的开发者。 本书的产品设计应用神经生物学、认知科学,以及学习理论,这使得这本书能够将这些知识深深地印在你的脑海里, 不容易被遗忘。 本书的编写方式采用引导式教学,不直接告诉你该怎么做,而是利用故事当作引子,带领读者思考并想办法解决问题。 解决问题的过程中又会产生一些新的问题,再继续思考、继续解决问题,这样可以加深体会。 作者以大量的生活化故事当背景,例如第1章是鸭子,第2章是气象站,第3章是咖啡店, 书中搭配大量的插图(几乎每一页都有图),所以阅读起来生动有趣,不会感觉到昏昏欲睡。 作者还利用歪歪斜斜的手写字体,增加“现场感”。 精心设计许多爆笑的对白,让学习过程不会太枯燥。 还有模式告白节目,将设计模式拟人化成节目来宾,畅谈其内在的一切。 每一章都有数目不等的测验题。 每章最后有一页要点整理,这也是精华所在,我都是利用这一页做复习。 我知道四人帮的《设计模式》是一本标准书,但倒不如先看看这部大部头,此书更为简易。 一旦你了解了解了基本原则,可以去看四人帮的那本圣经了。- Calanus 12、《哥德尔、艾舍尔、巴赫书:集异璧之大成》 推荐数:437 如果下昂真正深入阅读,我推荐道格拉斯·侯世达(Douglas Hofstadter)的《哥德尔、艾舍尔、巴赫书》。 他极为深入研究了程序员每日都要面对的问题:递归、验证、证明和布尔代数。 这是一本很出色的读物,难度不大,偶尔有挑战,一旦你要鏖战到底,将是非常值得的。 – Jonik 13、《代码整洁之道》 推荐数:329 细节之中自有天地,整洁成就卓越代码 尽管糟糕的代码也能运行,但如果代码不整洁,会使整个开发团队泥足深陷, 写得不好的代码每年都要耗费难以计数的时间和资源。 然而这种情况并非无法避免。 著名软件专家RoberfC.Marlin在《代码整洁之道》中为你呈现出了革命性的视野。 Martin携同ObjectMetltor公司的同事,从他们有关整洁代码的最佳敏捷实践中提炼出软件技艺的价值观, 以飨读者,让你成为更优秀的程序员——只要你着手研读《代码整洁之道》。 阅读《代码整洁之道》需要你做些什么呢。你将阅读代码——大量代码。 《代码整洁之道》促使你思考代码中何谓正确,何谓错误。 更重要的是,《代码整洁之道》将促使你重新评估自己的专业价值观,以及对自己技艺的承诺。 从《代码整洁之道》中可以学到: 好代码和糟糕的代码之间的区别; 如何编写好代码,如何将糟糕的代码转化为好代码; 如何创建好名称、好函数、好对象和好类; 如何格式化代码以实现其可读性的最大化; 如何在不妨碍代码逻辑的前提下充分实现错误处理; 如何进行单元测试和测试驱动开发。 虽然《代码整洁之道》和《代码大全》有很多共同之处,但它有更为简洁更为实际的清晰例子。 – Craig P. Motlin 14、《Effective C++》和《More Effective C++》 推荐数:297 在我职业生涯早期,Scott Meyer的《Effective C++》和后续的《More Effective C++》都对我的编程能力有着直接影响。 正如当时的一位朋友所说,这些书缩短你培养编程技能的过程,而其他人可能要花费数年。 去年对我影响最大的一本书是《大教堂与市集》,该书教会我很有关开源开发过程如何运作,和如何处理我代码中的Bug。 – John Channing 15、《编程珠玑》 推荐数:282 多年以来,当程序员们推选出最心爱的计算机图书时,《编程珠玑》总是位列前列。 正如自然界里珍珠出自细沙对牡蛎的磨砺,计算机科学大师Jon Bentley以其独有的洞察力和创造力, 从磨砺程序员的实际问题中凝结出一篇篇不朽的编程“珠玑”, 成为世界计算机界名刊《ACM通讯》历史上最受欢迎的专栏, 最终结集为两部不朽的计算机科学经典名著,影响和激励着一代又一代程序员和计算机科学工作者。 本书为第一卷,主要讨论计算机科学中最本质的问题:如何正确选择和高效地实现算法。 尽管我不得不羞愧地承认,书中一半的东西我都没有理解,但我真的推荐《编程珠玑》,书中有些令人惊奇的东西。 – Matt Warren 16、《修改代码的艺术》by Michael Feathers 本书是继《重构》和《重构与模式》之后探讨修改代码技术的又一里程碑式的著作, 而且从涵盖面和深度上都超过了前两部经典。 书中不仅讲述面向对象语言(Java、C#和C++)代码,也有专章讨论C这样的过程式语言。 作者将理解、测试和修改代码的原理、技术和最新工具(自动化重构工具、单元测试框架、仿对象、集成测试框架等), 与解依赖技术和大量开发和设计优秀代码的原则、最佳实践相结合,许多内容非常深入,而且常常发前人所未发。 书中处处体现出作者独到的洞察力,以及多年开发和指导软件项目所积累的丰富经验和深厚功力。 通过这部集大成之作,你不仅能掌握最顶尖的修改代码技术,还可以大大提高对代码和软件开发的领悟力。 我认为没有任何一本书能向这本书一样影响了我的编程观点。 它明确地告诉你如何处理其他人的代码,含蓄地教会你避免哪些(以及为什么要避免)。- Wolfbyte 同意。很多开发人员讨论用干净的石板来编写软件。 但我想几乎所有开发人员的某些时候是在吃其他开发人员的狗食。– Bernard Dy 17、《编码:隐匿在计算机软硬件背后的语言》 这是一本讲述计算机工作原理的书。 不过,你千万不要因为“工作原理”之类的字眼就武断地认为,它是晦涩而难懂的。 作者用丰富的想象和清晰的笔墨将看似繁杂的理论阐述得通俗易懂,你丝毫不会感到枯燥和生硬。 更重要的是,你会因此而获得对计算机工作原理较深刻的理解。 这种理解不是抽象层面上的,而是具有一定深度的,这种深度甚至不逊于“电气工程师”和“程序员”的理解。 不管你是计算机高手,还是对这个神奇的机器充满敬畏之心的菜鸟, 都不妨翻阅一下《编码:隐匿在计算机软硬件背后的语言》,读一读大师的经典作品,必然会有收获。 我推荐Charles Petzold的《编码》。 在这个充满工具和IDE的年代,很多复杂度已经从程序员那“抽取”走了,这本书一本开眼之作。 – hemil 18、《禅与摩托车维修艺术 / Zen and the Art of Motorcycle Maintenance》 对我影响最大的那本书是 Robert Pirsig 的《禅与摩托车维修艺术》。 不管你做什么事,总是要力求完美,彻底了解你手中的工具和任务,更为重要的是, 要有乐趣(因为如果你做事有乐趣,一切将自发引向更好的结果)。 – akr 19、《Peopleware / 人件集:人性化的软件开发》 Demarco 和 Lister 表明,软件开发中的首要问题是人,并非技术。 他们的答案并不简单,只是令人难以置信的成功。 第二版新增加了八章内容。 – Eduardo Molteni 20、《Coders at Work / 编程人生》 这是一本访谈笔录,记录了当今最具个人魅力的15位软件先驱的编程生涯。 包括DonaldKnuth、Jamie Zawinski、Joshua Bloch、Ken Thompson等在内的业界传奇人物,为我们讲述了 他们是怎么学习编程的,在编程过程中发现了什么以及他们对未来的看法, 并对诸如应该如何设计软件等长久以来一直困扰很多程序员的问题谈了自己的观点。 一本非常有影响力的书,可以从中学到一些业界顶级人士的经验,了解他们如何思考并工作。 – Jahanzeb Farooq 21、《Surely You’re Joking, Mr. Feynman! / 别闹了,费曼先生。》 虽然这本书可能有点偏题,但不管你信不信,这本书曾在计算机科学专业课程的阅读列表之上。 一个优秀的角色模型,一本有关好奇心的优秀书籍。 – mike511 22、《Effective Java 中文版》 此书第二版教你如何编写漂亮并高效的代码,虽然这是一本Java书,但其中有很多跨语言的理念。 – Marcio Aguiar 23、《Patterns of Enterprise Application Architecture / 企业应用架构模式》 很奇怪,还没人推荐 Martin Fowler 的《企业应用架构模式》- levi rosol 24、《The Little Schemer》和《The Seasoned Schemer》 nmiranda 这两本是LISP的英文书,尚无中文版。 美国东北大学网站上也有电子版。 25、《交互设计之路》英文名:《The Inmates Are Running The Asylum: Why High Tech Products Drive Us Crazy and How to Restore the Sanity》该书作者:Alan Cooper,人称Visual Basic之父,交互设计之父。 本书是基于众多商务案例,讲述如何创建更好的、高客户忠诚度的软件产品和基于软件的高科技产品的书。 本书列举了很多真实可信的实际例子,说明目前在软件产品和基于软件的高科技产品中,普遍存在着“难用”的问题。 作者认为,“难用”问题是由这些产品中存在着的高度“认知摩擦”引起的, 而产生这个问题的根源在于现今软件开发过程中欠缺了一个为用户利益着想的前期“交互设计”阶段。 “难用”的产品不仅损害了用户的利益,最终也将导致企业的失败。 本书通过一些生动的实例,让人信服地讲述了由作者倡导的“目标导向”交互设计方法在解决“难用”问题方面的有效性, 证实了只有改变现有观念,才能有效地在开发过程中引入交互设计,将产品的设计引向成功。 本书虽然是一本面向商务人员而编写的书,但也适合于所有参与软件产品和基于软件的高科技产品开发的专业人士, 以及关心软件行业和高科技行业现状与发展的人士阅读。 他还有另一本中文版著作:《About Face 3 交互设计精髓》 26、《Why’s (Poignant) Guide to Ruby 》 如果你不是程序员,阅读此书可能会很有趣,但如果你已经是个程序员,可能会有点乏味。 27、《Unix编程艺术》 It is useful regardless operating system you use. – J.F. Sebastian 不管你使用什么操作系统,这本书都很有用。 – J.F. Sebastian 28、《高效程序员的45个习惯:敏捷开发修炼之道》 45个习惯,分为7个方面:工作态度、学习、软件交付、反馈、编码、调试和协作。 每一个具体的习惯里,一开始提出一个谬论,然后展开分析,之后有正队性地提出正确的做法,并设身处地地讲出了正确做法给你个人的“切身感受”,最后列出几条注意事项,帮助你修正自己的做法(“平衡的艺术”)。 29、《测试驱动开发》 前面已经提到的很多书都启发了我,并影响了我,但这本书每位程序员都应该读。 它向我展示了单元测试和TDD的重要性,并让我很快上手。 – Curro 我不关心你的代码有多好或优雅。 如果你没有测试,你或许就如同没有编写代码。 这本书得到的推荐数应该更高些。 人们讨论编写用户喜欢的软件,或既设计出色并健壮的高效代码,但如果你的软件有一堆bug,谈论那些东西毫无意义。– Adam Gent 30、《点石成金:访客至上的网页设计秘笈》 可用性设计是Web设计中最重要也是难度最大的一项任务。 《点石成金-访客至上的网页设计秘笈(原书第二版)》作者根据多年从业的经验,剖析用户的心理, 在用户使用的模式、为扫描进行设计、导航设计、主页布局、可用性测试等方面提出了许多独特的观点, 并给出了大量简单、易行的可用性设计的建议。 本书短小精炼,语言轻松诙谐,书中穿插大量色彩丰富的屏幕截图、趣味丛生的卡通插图以及包含大量信息的图表, 使枯燥的设计原理变得平易近人。 本书适合从事Web设计和Web开发的技术人员阅读,特别适合为如何留住访问者而苦恼的网站/网页设计人员阅读。 这是一本关于Web设计原则而不是Web设计技术的书。 本书作者是Web设计专家,具有丰富的实践经验。 他用幽默的语言为你揭示Web设计中重要但却容易被忽视的问题,只需几个小时, 你便能对照书中讲授的设计原则找到网站设计的症结所在,令你的网站焕然一新。

青衫无名 2019-12-02 01:20:04 0 浏览量 回答数 0

回答

【丁宁-清华大学-阿里达摩院自然语言技术实习体验】 作者简介:丁宁,清华大学计算机科学与技术系2年级博士生,研究方向为自然语言处理、信息抽取、语言表示学习等,在ACL、EMNLP、AAAI、IJCAI等发表多篇文章,作为研究型实习生在阿里达摩院实习半年+。 实习体会 很幸运能来到阿里巴巴进行实习!组里的氛围特别好,同事和师兄师姐都非常专业、友善、亲切。无论是科研上还是工作生活上的任 何问题,都能得到慷慨的帮助。在这里,我认识了一批学术和生活上的榜样(我的主管每天都吃健康餐,而我牛肉汤泡饼),结交了志同道合的朋友(排队喝牛肉汤回来写论文的日子),见识到了IT同学的认真负责(远程帮我调试打印机,周末修电脑),见过了马云老师,也亲身经历了一次双十一奋战。阿里的科研积淀和文化氛围都让我感到收获颇丰,感谢阿里巴巴提供研究型实习生这一高水平项目,也期待更多的同学可以加入研究型实习生的大家庭。 科研心得& 工作宣传 今年在阿里巴巴所做的跨领域分词工作被ACL 2020高分接收,其中meta review说“well-written, well-motivated with strong results, sure accept”。其实这句话可以很好地总结评判科研论文好坏的标准,实际上或许现阶段的科研也并没有什么秘密,动机明确、方法得当、实验充分,就可以形成一篇不错的科研论文。当然了,如果想做出让领域内眼前一亮的工作,可能就需要一些灵光一闪了。 具体到我们的工作上来,跨领域任务往往面临目标领域精标注数据缺失的问题,具体到分词任务上来说,这种数据缺失往往会导致OOV和词的分布差异问题。本文通过弱监督启发式算法来进行远程标注,并引入对抗学习来进行降噪。本文的实验中以newswire (新闻语料)作为源领域,在5个不同的目标领域数据上都取得了较好的效果。 这个工作或许有助于我们真正的往跨领域的两个通用问题上去设计了相关的解决办法。论文名字:《Coupling Distant Annotation and Adversarial Training for Cross-Domain Chinese Word Segmentation》,具体可以查看达摩院的官方宣传~:ACL 2020有哪些值得关注的论文? - 阿里巴巴达摩院的回答 - 知乎https://www.zhihu.com/question/385259014/answer/1190808208 另外,也宣传一下作为co-author的另一篇ACL 2020论文,是实习生同事周洁(上海交大研究生)的工作,瞄准多层级文本分类任务,设计层级敏感编码器将多层结构作为有向图建模,并且实现了一个串行和并行的版本,论文名字:Hierarchy-Aware Global Model for Hierarchical Text Classification。 还有另一个实习生同事张浩宇(国防科大博士生)在IJCAI 2020的工作,使用noisy learning的方法去进行远程监督entity typing降噪,方法非常优雅,论文名字:Learning with Noise: Improving Distantly-Supervised Fine-grained Entity Typing via Automatic Relabeling。 【杜志浩-哈尔滨工业大学-我在达摩院作实习研究僧的那些事儿】 经韩老师介绍,2019年7月,有幸进入阿里巴巴达摩院成为一名实习研究僧。如今也已半年有余,期间发生的事情仍然历历在目。从初出茅庐的不安,到积极融入的快乐,再到宠辱不惊的泰然,一路走来收获良多! 初出茅庐 其实,刚到达摩院语音算法组时,我的内心充满了不安。这种不安来自于初出茅庐的不自信,不知自己能否胜任这份工作,为公司带来效益。同时,也来自于环境转变的不适应,换了一个全新的环境,对公司内的工作方式、待人接物都不甚了解。 但是,在算法组师兄师姐的帮助下,我的这些不安很快就烟消云散了。为了能够使我尽快熟悉工作内容、了解工作方式,雷鸣师兄坚持每周四晚上为实习生开组会,拉着仕良哥、智颖等很多小伙伴一起讨论算法思路和实验中遇到的问题。我想他们应该都挺忙的吧,但还是牺牲自己休息的时间来参加组会。 刚来的那段时间,除了“雷老师,xxx麻烦审批通过一下”以外,我说的最多的恐怕就是“xx姐/哥,xxx在哪”。由于对很多事情都不了解,比如服务器怎么申请啊,oss怎么弄啊,我总是要麻烦逍北姐、遥仙哥等目之所及的小伙伴。他们一边在忙自己的工作一边还不厌其烦的告诉我,为我提供了莫大的帮助。 积极融入 在算法组这段时间,让我印象最为深刻的一句话就是“我们做事情都很直接,有什么问题,就带着方案提出来”。以前,总是被教育和鼓励发现问题,在阿里,找到问题只是完成了第一步,还需要再提出一个切实可行的解决方案。期间发生的一段小插曲让我现在依然记忆犹新。  为了准备910,语音测试组的小伙伴每天都在紧张的进行测试。其中一项是对语音实时转录及翻译软件的稳定性测试。由于已经进入应用阶段,不能在直接将数据送入到模型中,需要将语音播放出来,再由软件录音进行测试。播放的内容是马老师的演讲,对于坐在旁边的小伙伴来说既是一件好事,也是一件坏事。由于马老师的演讲实在太引人入胜了,每次他们进行测试时,我们都无法专心工作,最终只能……。 咳咳,我心想,这么下去也不是事儿啊,梦想要有,生活也得继续啊,得想想办法解决一下这个问题。我尝试了各种办法,但似乎都无法绕过功放这个问题。最终功夫不负有心人,找到了一款虚拟声卡的软件,能够将一个应用程序的音频输出直接作为另一个应用程序的输入。在熟悉过这个软件的使用方式后,我找到测试组的组长,向他提出了我现在的处境和解决方案。他告诉我,他也知道这样会打扰到周边的人,但是之前也没有太好的办法,感谢我提出的解决方案。 虽然这只是实习期间的一段小插曲,但是我依然印象深刻。通过这件事,我践行了带着方案提问题,这一阿里人所特有的工作方式,让我感觉自己正在逐渐融入到这个集体当中。 宠辱不惊 经过几个月“死去”又“活来”的做实验、写论文,我跟雷鸣师兄合作的语音增强相关工作投稿到了ICASSP 2020。这是语音信号处理领域的顶级会议,在来阿里之前,我也投稿过一次,但不幸被拒。为了准备这篇文章,雷鸣师兄跟我保持着很高互动,了解实验进度,适时的进行指导。此外,还有仕良哥帮助我进行语音畸变的评估。 2020年1月25日这一天,是我国的传统节日,春节,同时也是ICASSP出结果的日子。在得知结果前,我的内心非常忐忑。但当得知接收的喜讯时,我反而没有想象中那么兴奋,没有想象中那么高兴。我的第一反应是看看审稿人的意见,看看我专家们对我文章的看法,还有哪些不足和需要改进的地方。 我想宠辱不惊的心态应该是我在阿里的一个重要收获吧,不以物喜不以己悲。尽力做好自己该做的事儿,结果自然水到渠成。 再说两句 在阿里的这段实习使我受益匪浅。这里有乐于助人、善解人意的师兄师姐,也有认真负责、要求严格的主管Leader;有弹性自由的工作时间,也有肝到深夜的满腔热情;有最新最热的研究成果,也有成熟稳定的应用软件。这里不像实验室的象牙塔,关注技术的同时,也更关注技术如何落地、如何应用到生活中去,最终如何造福亿万用户。 韩鹏-KAUST-青春没有我之阿里巴巴天猫精灵争夺赛被迫写的研究心得 竞选宣言: 在阿里实习摸了几个月的鱼,最开心的就是又吃到了祖国的美食,虽然杭州的食物实在是太清淡了,但总比我在沙特每天吃水煮青菜不放盐要好很多。在阿里的这几个月,让我看淡了很多,发现生命里比较重要的就是长在自己脑袋上的头发,不能太年轻就失去他们。女网红我是感觉自己这辈子没机会了,毕竟流量明星也不是靠推荐算法能捧红的,也就希望能够得到这次500块钱的天猫精灵,请大家pick我。 研究心得: 多抱大腿 为了凑足300字的内心情感白描: 这个世界实在是太无聊了,尤其疫情导致的只能居家办公,我已经憋得快精神失常了,虽然平时也不是那么正常。希望这个世界早日恢复原来的美好,我还打算去越南胡志明市的日式KTV感受一下女仆装呢,希望疫情不会让这些服务业倒闭呢吧。 居然还不够300字,感觉生命浪费在写文字上要比大保健上还是好一些的,希望这些文字能够启发你,虽然我感觉也并没有什么意义,而人活着的意义又是什么呢? 【韩镕罄-南加州大学- 阿里研究型实习生体验】 简介: 经过两年研究时间,找到了学校的教职,也找到了老婆,感谢阿里~ 2018年八月来阿里做研究型实习生,本人在南加州大学商学院读Operations Management 的Ph.D. 块两年时间做了几篇 field experiment paper, 感觉阿里有太多好玩有趣的商业问题可以讨论直接研究。 通过和阿里的合作顺利找到UIUC 伊利诺伊大学香槟分校的常任轨教职。 更神奇的是,在实习期间,随便刷个阿里妹儿的相亲帖, 加个微信 聊一聊 发现和自己一天生日。 就是你了!现在已经结婚快半年! 三十而立,一切静好,感谢阿里! 【马腾-清华大学- 阿里巴巴RI项目心得】 我与阿里之缘 在2019年的夏天,后来成为我主管的文侑来到清华进行交流,当时的我刚刚完成了一个学术项目的研究,正在寻求于之后的研究方向。恰好在交流会上碰见了文侑,经过一番交流之后吗,了解到操作系统团队是阿里 RDMA 技术的先行者和推广者,这正是我计划之后想要研究的方向,于是便一拍即合。由于我之前所研究的领域刚好符合是阿里目前正在做的一些项目,所以文侑提供了一个可以在阿里实习的机会。 在通过了多轮面试之后,我终于成功的入职了操作系统内核组作为学术型实习生。从2018年九月初入职至今,将近两年的时间,我也逐渐地适应了在阿里的生活,松弛有度而又充满欢乐。在这里我也结识了许多要好的朋友,并且,通过公司组织的各种聚会和团建的活动,让我解释了许多有着共同语言爱好的伙伴,大家给与了我这个新人很多的帮助和照顾,使我也渐渐地融入了这个有爱的团队。 在阿里的学术成果 在阿里实习期间,在同事们的帮助下,我顺利地完成了两个与我所在实验室合作的学术项目,并且这两个项目也幸运的产出了两篇高质量的论文,分别发表在了不同领域的高水平会议当中。 其中,第一篇论文发表在第21届Cluster会议,与2019年在美国阿尔伯克基召开。Cluster 是高性能计算方向计算机系统领域的主要会议,这个工作提出并实现了统一高效的 RDMA 消息中间件,解决了 RDMA 在实际生产过程中的一些关键可靠性和可用性问题,例如:极简的接口抽象,必要的上层消息确认机制,中间件辅助流控配合 DCQCN,结合生产系统的诊断机制等等,目前该技术已经被广泛应用在阿里巴巴基础云产品中(包括:数据库,分布式存储等)。另外一个工作则发表在了第25届 ASPLOS会议。ASPLOS 是操作系统,体系结构和编程语言三个方向综合的计算机系统领域顶级会议。这篇论文是和我所在的清华高性能所合作完成的,文章中第一次提出了利用RDMA将数据中心的NVM做disaggregation, 实现了高效的框架,同时证明了这种新架构的可行性。 在阿里的感想 阿里巴巴操作系统团队是一直致力于建立和完善系统领域工业界和学术界的纽带,并且在持续实践工业界和学术界之间的问题分享和工作互动,他们希望通过这些分析和互动能够更好地促进中国在世界计算机系统领域的整体发展和创新。作为操作系统团队中的一员,我深切了解到了先进技术对于企业发展的重要性,在实习的过程中,同我所在的实验室进行合作,我更是深深感受到只有通过学术与工业相辅相成,才能够真正让企业发展先进技术。另外一方面,经过一段时间的实习,我对所在的操作系统团队和阿里技术部门的工作有了更深入的了解,我对自己也有了进一步的规划,计划在毕业之后能够入职阿里,通过我的努力,继续在追逐技术之路上奋斗着。 【亓家鑫-新加坡南洋理工大学- 阿里云实习心得】 非常荣幸我们的研究工作*《Two causal principles for improving visual dialog》*获得了同行的认可,并收录在CVPR 2020会议中。在此要特别感谢我的教授,MReaL实验室成员以及阿里城市大脑实验室师兄师姐一直以来的支持和帮助。比起论文本身的内容,我更希望跟大家分享一年来做研究的心得和感悟,虽然目前我仍然是一个萌新,不过我希望通过萌新的角度能带给大家一些研究上的启发。 开始一个研究之前,选择方向很重要。当然,每一个方向都有自己的优缺点,比如新的方向“容易”发文章,可能将其他领域原有的方法引入加一些调整就可以达到比较高的结果。不过如果没有坚实的创新,在同行评议时,可能会受到质疑。一旦没有通过,再转投时可能发现已经落后于其他人。“老“的方向可能会感觉灌水困难,不过因为我没有真正做过经典的方向,所以不太好发表评论。根据观察,在一堆全面而又坚实的研究中找到创新点,对萌新来说确实困难,不过一旦有所突破,肯定会对这个社区产生广泛的影响。作为一个萌新,可能不会自己选择方向或者领域,所以接受导师或者主管的安排成了唯一的选择,不过要相信自己的导师和主管,因为大家都是在帮助你,而且他们经验丰富。只有当自己走完一套研究的流程,并且真正找到自己感兴趣或者觉得可以有所突破的方向,那可能才是真正属于自己的研究的开始。 当选定了方向,开始做研究的时候,清楚的了解所有有关的方法是非常重要的,因为这样可以防止你的idea被存在的方法“抄袭“。其实对一个比较成熟的研究方向来说,简单思考得到的idea一般都会被提出过。不过研究完所有存在方法后,要跳出这些方法,因为阅读他们的方法可能不是来借鉴,更多的是防止撞车,想要真正有创新,在别人的方法上改动往往是不够的,这就要求我们重新审视这个任务甚至数据集的每一个样本。当然目前即使是学术界toy的数据集也有动辄几十万的数据量,看完是不可能的,不过根据自己的思路统计一些数据特征,有时候对研究会产生很大的帮助。当觉得自己已经掌握了这个数据集或者这个任务的时候,应该是跑一些baseline来练习了。 我作为萌新,没有从零开始写,而是找了一个现成的模型开始修改,这样难度会减少很多,不过毕竟是别人的代码,还是有很多不舒服的地方,所以等自己成熟了的时候,有空的时候,一定要从头写一遍。当然我也不知道什么时候有空。当我开始修改baseline的时候,此次的研究旅行就算是上路了,在接受导师的指引的同时也可以自己不断的尝试自己的想法,因为不知道什么是有用的。我作为萌新刚开始的感受是我觉得可能我想的都有用,那一定要去试一下,所以我也建议大家多试一下,说不定真的有用呢,反正电费不花自己的。当一个东西有用的时候,就可以来思考他为什么有用了,当你想好它为什么有用并且通过了广泛的测试,就到了跟大家分享成果的时候。 当然,一个有用的idea背后可能有无数个没用的idea,至于他们为什么没用,我觉得如果实在是有兴趣,可以研究一下,但是有时候会花大量的时间。举一个实际的例子,我在去年做visual dialog比赛,大概四月份就发现了一个有用的方法,之后也顺利的拿到了第一并且在此基础上进行探究和扩展发表了自己的成果。不过同时,当时有一个效果降低的操作一直困扰着我,直到六个月以后,当然这六个月中还做了其他的事情,我才发现了它真正的原因,并且最终变成了我文章中的一句话。举这个例子的目的是,研究没有效果的idea会对研究有所帮助,不过可能会收益较低。 研究成果的发表是一个很重要的过程,它可以给领域内的同行以启发,甚至可以影响本领域之外的人,所以有时候高度总结自己的思想是一件有用的事情。比如我所做的工作我认为进行高度总结之后可以得到一个启发是:对多模态任务来说不一定所有模态都是平等的,对模型来说所存在模态也不一定是影响结果的全部。除了对自己motivation的总结,应用细节以及结果展示也是非常重要的,因为我是萌新,怎样写出一篇文章的经验肯定是不足的,所以在此不再赘述。在发表完文章之后,“售后服务“也是非常重要的一点,这也是我的教授教我的很重要的理念。因为发表的内容不是刊登出来就结束了,而是你对社区贡献的开始,之后做研究可能会发现更好的实现,或者当时的理论没有讲清楚完善,这些都可以补充到自己的代码中,让大家更好的了解你的思路和工作,或许以后还能收获好评。 此外,实验室的成员就是自己研究道路上的引导者和伙伴,会对自己的研究产生各种各样至关重要的影响,大多时候大家都不会吝惜跟你讨论分享自己的观点,有时还会亲自帮助你解决问题,所以要记得经常参加团建和小集体聚会。不过也不能太依赖别人,每当遇到问题的时候,特别是技术性的问题,还是依靠自己解决的好,毕竟未来总会离开实验室,离开乐于帮助你的人。最后,保护好自己的头发,还是要早睡早起,调不出来的bug熬夜也调不出来,不work的idea可能真的不work,没有人保证炼出来的一定是金子,不要过分影响正常的作息,毕竟这不是百米赛跑,也不能算是马拉松,而是长久的起码好几年以上要坚持的事业。不过我作为萌新才刚刚起步,依然没有体会到最艰难的时刻,不过做好心理准备还是应该的,该来的总是会来的。最后的最后希望这些浅显的经验总结能够给大家带来一点儿帮助,谢谢大家的阅读。 【田冰川-南京大学- 在阿里网络团队实习两年是一种怎样的体验?】 简介: 大家好!我是田冰川,南京大学2016级直博生,导师为田臣老师,研究方向为计算机网络。2018年6月,我以研究型实习生的身份入职阿里巴巴基础设施事业部网络研究团队,实习期间主要从事网络验证相关的研究工作,即通过形式化方法与灰度测试,来降低网络变更中的潜在风险。 2018年既是网络研究团队刚刚组建的一年,也是研究型实习生在阿里刚刚起步的一年。这年春天,经我导师田臣老师介绍,我参加了研究型实习生面试,加入了网络研究团队。 来到团队后,我参加的第一个研究项目是“金睛”,用以保障复杂ACL变更的正确性。ACL即访问控制列表,网络中的ACL决定着流量的连通性。网络架构演化有时会伴随着对ACL的迁移,如何保证迁移前后网络连通性是等价的,是困扰架构与运营部门的一大难题,而金睛项目则是为该问题而生。项目落地以来,金睛系统多次在骨干网ACL迁移中对变更方案进行了验证,并逐渐扩展至对边缘网络的验证。相关论文发表于SIGCOMM 2019主会,我在会场进行了20余分钟的演讲,与我们团队的另一篇文章HPCC共同成为阿里集团在网络领域top1学术会议主会中的首次亮相。 时间总是过的很快。转眼间,我来阿里已经两年了,自金睛之后,又陆续参与了多个研究课题。在阿里的时间越久,就越能切身体会到学术界研究与工业界研究的不同。在阿里实习以来,我接触到的所有研究课题,都不是凭空“想”出来的空中楼阁,更不是靠别人论文“启发”出来的二手课题,而是源自于真实业务的现阶段瓶颈与下一阶段发展趋势——这一点是高校科研很难做到的。 这两年间,我对科研这件事的心态也发生了进一步的变化。2017年,来到阿里之前,我的论文达到了学校博士毕业的最低要求,相当于没有了毕业之忧,对科研的心态从“先拿到博士学位再说”,变成了“想要做出点什么,不想让自己的博士5年就这么水过去”;在来到阿里,接触到工业界的前沿课题之后,我对科研的心态再一次发生了转变,变成“因为认可一件事的价值,所以想要去做好”——这已经成为一种内在的驱动力,让我在认真工作的同时,享受研究带来的乐趣。 如果一切顺利的话,我将于2021年6月博士毕业。能在阿里巴巴度过专属实习生的“三年醇”,想必也是人生中的一大成就了! 【吴秉哲-北京大学- 吴师傅的博士研究课题:大数据时代的数据隐私研究方向初探】 加上本科的时间,不知不觉已经在燕园里面呆了八年了,明年不出意外应该就会离开学校去业界工作。准备最近以文章的形式梳理一下博士几年的研究以及生活的心路历程。由于内容比较分散,所以决定分为几个不同的部分。这次推送封面图片是16年骑行到加乌拉山口遥看喜马拉雅山脉的图片,而我在阿里的花名是风远,意为远处的风。希望多年之后,还有一颗少年的心,投入每天永不变。这次借着阿里内部一个活动的机会,写了今天的这篇稿子,为大家介绍一下我的thesis topic。 已经在蚂蚁实习了一年了,一年时光匆匆而过,而在蚂蚁金服度过的这段时光带给了我很多研究以及生活中的体验,这一年里学到的经验也将伴随着我之后的研究之路。 我本科四年是在数院度过,在研究生阶段决定转换方向到计算机系。博士的前两年一直在跌跌撞撞地寻找自己的研究方向,尝试过很多方向均以失败告终。终于在第三年的时候,误打误撞开始研究起机器学习的隐私保护问题并找到了很多灵感,开始沉淀了一些基本的研究工作。有一天我从一个朋友那里听到了她关于金服这边隐私保护机器学习的团队介绍,当时我就决定要到业界的前沿去看一看隐私保护的真实业界需求。在此之前,我已经在谷歌,IBM等公司有过多段实习的经历,但是在蚂蚁这一次实习经历,是与我自己研究方向最接近,也是时间最长的一次。借着这次约稿的机会,以此文简单总结一下自己过去两年在这一方向的研究。 隐私保护与共享学习 目前随着各种机器学习算法在集团的业务落地,许多隐私泄露与数据滥用的风险相继而来。 尤其是在蚂蚁金服这样一个拥有很多支付数据的企业,数据安全以及隐私保护的重要性更是不言而喻。站在商业合作的角度,如何实现不同公司或者部门之间的数据共享学习也是我所在的团队现在攻坚的一个问题。在这样一个研究背景下,我来到了蚂蚁金服的共享智能团队,开始和师兄师姐们从不同的维度对上述问题展开了深入的研究。 共享学习这样一个概念听起来很美好,但是实际落地起来却困难重重,需要考虑到上层软件算法的设计以及底层系统和硬件的优化,才有可能真正在实际的业务中兼顾效率和隐私保护强度。共享智能团队在这一方向上有着得天独厚的优势。一是领先的业务场景,在国际同行好多还停留在学术研究阶段时,我们团队已经和国内多家银行有了合作。另一个则是技术沉淀的领先。因为金服自身业务的特殊性,我们团队很早就开始了隐私保护机器学习和共享学习的布局,包括很多原始的技术沉淀,强大的工程团队以及学术预研团队。这些积累也使得我们能够很快地摸清最新的一些研究成果并能将其吸入到我们自己的系统当中。 我自己关于隐私保护机器学习的研究主要是围绕着三个层面展开,分别是理论,算法设计,以及系统和硬件优化。在理论层面,我主要针对现有的各种机器学习算法,建立相应的隐私泄露分析框架,比如我们在之前的工作中,针对一种常用的贝叶斯学习的算法根据雷尼差分隐私建立了隐私泄露的定量分析框架,我们进一步使用我们的框架和已有的一些泛化误差上界做了联系,从而能从多个角度去解释该算法的隐私泄露原因。在算法设计层面,我们针对各种已有的新兴算法以及场景,比如图神经网络,推荐系统建立了相应的共享学习算法,并利用我们的理论框架,对这些算法的隐私保护强度做了定量的评估。除开上层的理论和算法设计,底层的系统和硬件的优化同样是非常重要的一环。 在我们团队,我们主打基于硬件可信执行环境 (TEE)的机器学习serving系统,我针对我们当前这套服务系统,结合神经网络计算的一些特点,定制了该系统的一系列优化措施大大提升了整个系统的吞吐量。我也将其中一些措施注册了专利,并在前几天得到了内部的专利授权。除开上述介绍的学术研究方面的成果,我也参与了IEEE共享学习标准的制定会议,这也使得我从标准制定者的角度去更深地思考如何使用技术在未来社会中实现隐私与效率的兼顾。 总之,我自己很感谢能成为共享智能团队的一员,我在这里学到的最宝贵的经验就是详细地从上到下了解了这样一个大团队的合作与分工,学习他们是如何一步步从最初的需求分析,算法设计,到最后真正的业务落地。也很高兴和各位共享智能的同事度过自己博士生涯中很重要的一年。也非常感谢我的博士导师对我研究的无条件支持。回看博士这一路的艰辛,也是感慨万千。有点像自己之前高原骑行的经历,经历了爬到坡顶的缺氧与无力,终在转角处遇见了骑行途中最美的雪山风光。

游客bnlxddh3fwntw 2020-05-19 16:05:51 0 浏览量 回答数 0

问题

100%移植阿里云移动测试技术,竟仅需1周?! ——移动测试专有云(1)

mqc 2019-12-01 21:11:15 1796 浏览量 回答数 0

问题

【教程免费下载】Flume日志收集与MapReduce模式

沉默术士 2019-12-01 22:07:57 1285 浏览量 回答数 1

问题

比较Apache Hadoop生态系统中不同的文件格式和存储引擎的性能

anrui2016 2019-12-01 22:03:39 2706 浏览量 回答数 0

回答

Java Java核心技术·卷 I(原书第10版)| Core Java Volume 讲的很全面,书中的代码示例都很好,很适合Java入门。 但是作者不太厚道的是把现在没人用的GUI编程放在了第一卷,基本上10~13章是可以不用读的。 Java性能权威指南|Java Performance: The Definitive Guide 市面上介绍Java的书有很多,但专注于Java性能的并不多,能游刃有余地展示Java性能优化难点的更是凤毛麟角,本书即是其中之一。 通过使用JVM和Java平台,以及Java语言和应用程序接口,本书详尽讲解了Java性能调优的相关知识,帮助读者深入理解Java平台性能的各个方面,最终使程序如虎添翼。 实战Java高并发程序设计|葛一鸣 由部分段落的行文来看,搬了官方文档。 也有一些第一人称的叙述和思考,也能看出作者也是花了一点心思的。胜在比较基础,涉及到的知识点也还很全面(讲到了流水线计算和并发模型这些边边角角的),但是由于是编著,全书整体上不够统一和深入,适合作为学习高并发的第一本工具书。 Java 8实战 对Java8的新特性讲解的十分到位,尤其是lamdba表达式和流的操作。 再者对于Java8并发处理很有独到见解。对于并行数据处理和组合式异步编程还需要更深的思考才能更加掌握。 推荐给再用java8但没有去真正了解的人看,有很多你不知道的细节、原理和类库设计者的用心良苦在里面、内容没有很难,抽出几个小时就能看完,花费的时间和收获相比,性价比很高。 Java并发编程实战 先不谈本书的内容如何,光书名就足够吸引不少目光。“并发”这个词在Java世界里往往和“高级、核心”等字眼相联系起来,就冲着这两个字,都将勾起软件工程师们埋藏在心底那种对技术的探索欲和对高级API的驾驭感。 程序员嘛,多少都有点职业病。其实Java对“并发”优化从未停止过,从5.0到7.0,几乎每个版本的新特性里,都会针对前一版本在“并发”上有所改进。这种改进包括提供更丰富的API接口、JVM底层性能优化等诸多方面。 Thinking in Java 很美味的一本书,不仅有icecreamm,sundae,sandwich,还有burrito!真是越看越饿啊~ Effective Java中文版(第3版)|Effective Java Third Edition Java 高阶书籍,小白劝退。介绍了关于Java 编程的90个经验技巧。 作者功力非常强悍,导致这本书有时知识面迁移很广。总之,非常适合有一定Java开发经验的人阅读提升。 深入理解Java虚拟机(第3版)| 周志明 浅显易懂。最重要的是开启一扇理解虚拟机的大门。 内存管理机制与Java内存模型、高效并发这三章是特别实用的。 Java虚拟机规范(Java SE 8版)|爱飞翔、周志明 整本书就觉得第二章的方法字节码执行流程,第四章的前8节和第五章能看懂一些。其他的过于细致和琐碎了。 把Java字节码讲的很清楚了,本质上Java虚拟机就是通过字节码来构建的一套体系罢了。所以字节码说的非常细致深入。 数据&大数据 数据结构与算法分析|Data Structures and Algorithm Analysis in Java 数据结构是计算机的核心,这部书以java语言为基础,详细的介绍了基本数据结构、图、以及相关的排序、最短路径、最小生成树等问题。 但是有一些高级的数据结构并没有介绍,可以通过《数据结构与算法分析——C语言描述》来增加对这方面的了解。 MySQL必知必会 《MySQL必知必会》MySQL是世界上最受欢迎的数据库管理系统之一。 书中从介绍简单的数据检索开始,逐步深入一些复杂的内容,包括联结的使用、子查询、正则表达式和基于全文本的搜索、存储过程、游标、触发器、表约束,等等。通过重点突出的章节,条理清晰、系统而扼要地讲述了读者应该掌握的知识,使他们不经意间立刻功力大增。 数据库系统概念|Datebase System Concepts(Fifth Edition) 从大学读到现在,每次拿起都有新的收获。而且这本书还是对各个数据相关领域的概览,不仅仅是数据库本身。 高性能MySQL 对于想要了解MySQL性能提升的人来说,这是一本不可多得的书。 书中没有各种提升性能的秘籍,而是深入问题的核心,详细的解释了每种提升性能的原理,从而可以使你四两拨千斤。授之于鱼不如授之于渔,这本书做到了。 高可用MySQL 很实用的书籍,只可惜公司现有的业务和数据量还没有达到需要实践书中知识的地步。 利用Python进行数据分析|唐学韬 内容还是跟不上库的发展速度,建议结合里面讲的库的文档来看。 内容安排上我觉得还不错,作者是pandas的作者,所以对pandas的讲解和设计思路都讲得很清楚。除此以外,作者也是干过金融数据分析的,所以后面专门讲了时间序列和金融数据的分析。 HBase 看完影印版第一遍,开始以为会是大量讲API,实际上除了没有将HBase源代码,该讲的都讲了,CH8,9章留到最后看的,确实有点顿悟的感觉,接下来需要系统的看一遍Client API,然后深入代码,Come ON! Programming Hive Hive工具书,Hive高级特性。 Hadoop in Practice| Alex Holmes 感觉比action那本要强 像是cookbook类型的 整个过完以后hadoop生态圈的各种都接触到了 这本书适合当参考手册用。 Hadoop技术内幕|董西成 其实国人能写这样的书,感觉还是不错的,不过感觉很多东西不太深入,感觉在深入之前,和先有整体,带着整体做深入会更好一点, jobclient,jobtracer,tasktracer之间的关系最好能系统化 Learning Spark 很不错,core的原理部分和api用途解释得很清楚,以前看文档和代码理解不了的地方豁然开朗。 不足的地方是后几章比较弱,mllib方面没有深入讲实现原理。graphx也没有涉及 ODPS权威指南 基本上还算一本不错的入门,虽然细节方面谈的不多,底层也不够深入,但毕竟是少有的ODPS书籍,且覆盖面很全,例子也还行。 数据之巅|徐子沛 从一个新的视角(数据)切入,写美国历史,统计学的发展贯穿其中,草蛇灰线,伏脉千里,读起来波澜壮阔。 消息队列&Redis RabbitMQ实战 很多年前的书了,书中的例子现在已经不适用了,推荐官方教程。 一些基础还是适用,网上也没有太多讲rab的书籍,将就看下也行,我没用过所以…. Apache Kafka源码剖析|徐郡明 虽然还没看,但知道应该不差。我是看了作者的mybatis源码分析,再来看这本的,相信作者。 作者怎么有这么多时间,把框架研究的这么透彻,佩服,佩服。 深入理解Kafka:核心设计与实践原理|朱忠华 通俗易懂,图文并茂,用了很多图和示例讲解kafka的架构,从宏观入手,再讲到细节,比较好,值得推荐。 深入理解Kafka是市面上讲解Kafka核心原理最透彻的,全书都是挑了kafka最核心的细节在讲比如分区副本选举、分区从分配、kafka数据存储结构、时间轮、我认为是目前kafka相关书籍里最好的一本。 Kafka 认真刷了 kafka internal 那章,看了个talk,算是入了个门。 系统设计真是门艺术。 RocketMQ实战与原理解析|杨开元 对RocketMQ的脉络做了一个大概的说明吧,深入细节的东西还是需要自己看代码 Redis设计与实现|黄健宏 部分内容写得比较啰嗦,当然往好了说是对新手友好,不厌其烦地分析细节,但也让整本书变厚了,个人以为精炼语言可以减少20%的内容。 对于有心一窥redis实现原理的读者来说,本书展露了足够丰富的内容和细节,却不至于让冗长的实现代码吓跑读者——伪代码的意义在此。下一步是真正读源码了。 Redis 深度历险:核心原理与应用实践|钱文品 真心不错,数据结构原理+实际应用+单线程模型+集群(sentinel, codis, redis cluster), 分布式锁等等讲的都十分透彻。 一本书的作用不就是系统性梳理,为读者打开一扇窗,读者想了解更多,可以自己通过这扇窗去Google。这本书的一个瑕疵是最后一章吧,写的仓促了。不过瑕不掩瑜。 技术综合 TCP/IP详解 卷1:协议 读专业性书籍是一件很枯燥的事,我的建议就是把它作为一本手册,先浏览一遍,遇到问题再去详细查,高效。 Netty in Action 涉及到很多专业名词新概念看英文原版顺畅得多,第十五章 Choosing the right thread model 真是写得太好了。另外结合Ron Hitchens 写的《JAVA NIO》一起看对理解JAVA NIO和Netty还是很有帮助的 ZooKeeper 值得使用zookeeper的人员阅读, 对于zookeeper的内部机制及api进行了很详细的讲解, 后半部分深入地讲解了zookeeper中ensemble互相协作的流程, 及group等高级配置, 对zookeeper的高级应用及其它类似系统的设计都很有借鉴意义. 从Paxos到Zookeeper|倪超 分布式入门鼻祖,开始部分深入阐述cap和base理论,所有的分布式框架都是围绕这个理论的做平衡和取舍,中间 zk的原理、特性、实战也讲的非常清晰,同时讲cap理论在zk中是如何体现,更加深你对cap的理解. 深入理解Nginx(第2版)|陶辉 云里雾里的快速读了一遍,主要是读不懂,读完后的感受是设计的真好。 原本是抱着了解原理进而优化性能的想法来读的,却发现书中的内容都是讲源码,作者对源码的注释超级详细,非常适合开发者,但不适合使用者,给个五星好评是因为不想因为我这种菜鸡而埋没了高质量内容。 另外别人的代码写的真好看,即便是过程式语言程序也吊打我写的面向对象语言程序。 作者是zookeeper的活跃贡献者,而且是很资深的研究员,内容比较严谨而且较好的把握住了zk的精髓。书很薄,但是没有废话,选题是经过深思熟虑的。 深入剖析Tomcat 本书深入剖析Tomcat 4和Tomcat 5中的每个组件,并揭示其内部工作原理。通过学习本书,你将可以自行开发Tomcat组件,或者扩展已有的组件。 Tomcat是目前比较流行的Web服务器之一。作为一个开源和小型的轻量级应用服务器,Tomcat 易于使用,便于部署,但Tomcat本身是一个非常复杂的系统,包含了很多功能模块。这些功能模块构成了Tomcat的核心结构。本书从最基本的HTTP请求开始,直至使用JMX技术管理Tomcat中的应用程序,逐一剖析Tomcat的基本功能模块,并配以示例代码,使读者可以逐步实现自己的Web服务器。 深入理解计算机系统 | 布莱恩特 无论是内容还是纸张印刷,都是满分。计算机学科的集大成之作。引导你如何练内功的,算是高配版本的计算机导论,目的是釜底抽薪引出来操作系统、组成原理这些专业核心的课程。帮助我们按图索骥,点亮一个一个技能树。 架构探险分布式服务框架 | 李业兵 刚看前几章的时候,心里满脑子想得都是这特么贴一整页pom文件代码上来干鸡毛,又是骗稿费的,买亏了买亏了,后来到序列化那章开始,诶?还有那么点意思啊。 到服务注册中心和服务通讯,60块钱的书钱已经赚回来了。 知识是无价的,如果能花几十块钱帮你扫了几个盲区,那就是赚了。 深入分析JavaWeb技术内幕 | 许令波 与这本书相识大概是四年前是在老家的北方图书城里,当时看到目录的感觉是真的惊艳,对当时刚入行的自己来说,这简直就是为我量身定做的扫盲科普集啊。 但是可惜的是,这本书在后来却一直没机会读上。然后经过四年的打怪升级之后,这次的阅读体验依旧很好。 其中,java编译原理、 Servlet工作原理、 Tomcat、spring和iBatis这几章的收获很大。 前端 jQuery 技术内幕| 高云 非常棒的一本书,大大降低了阅读jquery源码的难度(虽然还是非常难)。 Head First HTML与CSS(第2版) 翻了非常久的时间 断断续续 其实从头翻到尾 才发现一点都不难。 可我被自己的懒惰和畏难情绪给拖累了 简单说 我成了自己往前探索的负担。网页基础的语法基本都涵盖了 限于文本形态 知识点都没法像做题一样被反复地运用和复习到。通俗易懂 这不知算是多高的评价? 作为入门真心算不错了 如果更有耐心 在翻完 HTML 后 对 CSS 部分最好是可以迅速过一遍 找案例练习估计更好 纸上得来终觉浅 总是这样。 JavaScript高级程序设计(第3版) JavaScript最基础的书籍,要看认真,慢慢地看,累计接近1000小时吧。而且对象与继承,性能优化,HTML5 api由于没有实践或缺乏代码阅读量导致看的很糊涂,不过以后可以遇到时再翻翻,或者看更专业的书。 深入理解ES6 Zakas的又一部杰作,他的作品最优秀的地方在于只是阐述,很少评价,这在帮助我们夯实基础时十分有意义,我也喜欢这种风格。 我是中英文参照阅读的,译本后半部分有一些文字上的纰漏,但是总体来说忠实原文,水平还是相当不错,希望再版时可以修复这些文字问题。 高性能JavaScript 还是挺不错的。尤其是对初学者。总结了好多程序方面的好习惯。 不过对于老手来说,这些常识已经深入骨髓了。 深入浅出Node.js|朴灵 本书是我看到现在对Node.JS技术原理和应用实践阐述的最深入,也最全面的一本书。鉴于作者也是淘宝的一位工程师,在技术总是国外好的大环境下,没有理由不给本书五颗星。 作者秉着授人于鱼不如授人于渔的精神,细致入微的从V8虚拟机,内存管理,字符串与Buffer的应用,异步编程的思路和原理这些基础的角度来解释Node.JS是如何工作的,比起市面上众多教你如何安装node,用几个包编写一些示例来比,本书绝对让人受益匪浅。 认真看完本书,几乎可以让你从一个Node的外行进阶到专家的水平。赞! 总结 其实我觉得在我们现在这个浮躁的社会,大家闲暇时间都是刷抖音,逛淘宝,微博……他们都在一点点吞噬你的碎片时间,如果你尝试着去用碎片的时间看看书,我想时间久了你自然能体会这样的好处。 美团技术团队甚至会奖励读完一些书本的人,很多公司都有自己的小图书馆,我觉得挺好的。 文章来自:敖丙

剑曼红尘 2020-03-20 14:52:22 0 浏览量 回答数 0

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。

hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

回答

遍历一个 List 有哪些不同的方式?每种方法的实现原理是什么?Java 中 List 遍历的最佳实践是什么? 遍历方式有以下几种: for 循环遍历,基于计数器。在集合外部维护一个计数器,然后依次读取每一个位置的元素,当读取到最后一个元素后停止。 迭代器遍历,Iterator。Iterator 是面向对象的一个设计模式,目的是屏蔽不同数据集合的特点,统一遍历集合的接口。Java 在 Collections 中支持了 Iterator 模式。 foreach 循环遍历。foreach 内部也是采用了 Iterator 的方式实现,使用时不需要显式声明 Iterator 或计数器。优点是代码简洁,不易出错;缺点是只能做简单的遍历,不能在遍历过程中操作数据集合,例如删除、替换。 最佳实践:Java Collections 框架中提供了一个 RandomAccess 接口,用来标记 List 实现是否支持 Random Access。 如果一个数据集合实现了该接口,就意味着它支持 Random Access,按位置读取元素的平均时间复杂度为 O(1),如ArrayList。如果没有实现该接口,表示不支持 Random Access,如LinkedList。 推荐的做法就是,支持 Random Access 的列表可用 for 循环遍历,否则建议用 Iterator 或 foreach 遍历。 说一下 ArrayList 的优缺点 ArrayList的优点如下: ArrayList 底层以数组实现,是一种随机访问模式。ArrayList 实现了 RandomAccess 接口,因此查找的时候非常快。ArrayList 在顺序添加一个元素的时候非常方便。 ArrayList 的缺点如下: 删除元素的时候,需要做一次元素复制操作。如果要复制的元素很多,那么就会比较耗费性能。插入元素的时候,也需要做一次元素复制操作,缺点同上。 ArrayList 比较适合顺序添加、随机访问的场景。 如何实现数组和 List 之间的转换? 数组转 List:使用 Arrays. asList(array) 进行转换。List 转数组:使用 List 自带的 toArray() 方法。 代码示例: ArrayList 和 LinkedList 的区别是什么? 数据结构实现:ArrayList 是动态数组的数据结构实现,而 LinkedList 是双向链表的数据结构实现。随机访问效率:ArrayList 比 LinkedList 在随机访问的时候效率要高,因为 LinkedList 是线性的数据存储方式,所以需要移动指针从前往后依次查找。增加和删除效率:在非首尾的增加和删除操作,LinkedList 要比 ArrayList 效率要高,因为 ArrayList 增删操作要影响数组内的其他数据的下标。内存空间占用:LinkedList 比 ArrayList 更占内存,因为 LinkedList 的节点除了存储数据,还存储了两个引用,一个指向前一个元素,一个指向后一个元素。线程安全:ArrayList 和 LinkedList 都是不同步的,也就是不保证线程安全; 综合来说,在需要频繁读取集合中的元素时,更推荐使用 ArrayList,而在插入和删除操作较多时,更推荐使用 LinkedList。 补充:数据结构基础之双向链表 双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱。所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点。 ArrayList 和 Vector 的区别是什么? 这两个类都实现了 List 接口(List 接口继承了 Collection 接口),他们都是有序集合 线程安全:Vector 使用了 Synchronized 来实现线程同步,是线程安全的,而 ArrayList 是非线程安全的。性能:ArrayList 在性能方面要优于 Vector。扩容:ArrayList 和 Vector 都会根据实际的需要动态的调整容量,只不过在 Vector 扩容每次会增加 1 倍,而 ArrayList 只会增加 50%。 Vector类的所有方法都是同步的。可以由两个线程安全地访问一个Vector对象、但是一个线程访问Vector的话代码要在同步操作上耗费大量的时间。 Arraylist不是同步的,所以在不需要保证线程安全时时建议使用Arraylist。 插入数据时,ArrayList、LinkedList、Vector谁速度较快?阐述 ArrayList、Vector、LinkedList 的存储性能和特性? ArrayList、LinkedList、Vector 底层的实现都是使用数组方式存储数据。数组元素数大于实际存储的数据以便增加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数据慢。 Vector 中的方法由于加了 synchronized 修饰,因此 Vector 是线程安全容器,但性能上较ArrayList差。 LinkedList 使用双向链表实现存储,按序号索引数据需要进行前向或后向遍历,但插入数据时只需要记录当前项的前后项即可,所以 LinkedList 插入速度较快。 多线程场景下如何使用 ArrayList? ArrayList 不是线程安全的,如果遇到多线程场景,可以通过 Collections 的 synchronizedList 方法将其转换成线程安全的容器后再使用。例如像下面这样: 为什么 ArrayList 的 elementData 加上 transient 修饰? ArrayList 中的数组定义如下: private transient Object[] elementData; 再看一下 ArrayList 的定义: public class ArrayList extends AbstractList implements List<E>, RandomAccess, Cloneable, java.io.Serializable 可以看到 ArrayList 实现了 Serializable 接口,这意味着 ArrayList 支持序列化。transient 的作用是说不希望 elementData 数组被序列化,重写了 writeObject 实现: 每次序列化时,先调用 defaultWriteObject() 方法序列化 ArrayList 中的非 transient 元素,然后遍历 elementData,只序列化已存入的元素,这样既加快了序列化的速度,又减小了序列化之后的文件大小。 List 和 Set 的区别 List , Set 都是继承自Collection 接口 List 特点:一个有序(元素存入集合的顺序和取出的顺序一致)容器,元素可以重复,可以插入多个null元素,元素都有索引。常用的实现类有 ArrayList、LinkedList 和 Vector。 Set 特点:一个无序(存入和取出顺序有可能不一致)容器,不可以存储重复元素,只允许存入一个null元素,必须保证元素唯一性。Set 接口常用实现类是 HashSet、LinkedHashSet 以及 TreeSet。 另外 List 支持for循环,也就是通过下标来遍历,也可以用迭代器,但是set只能用迭代,因为他无序,无法用下标来取得想要的值。 Set和List对比 Set:检索元素效率低下,删除和插入效率高,插入和删除不会引起元素位置改变。 List:和数组类似,List可以动态增长,查找元素效率高,插入删除元素效率低,因为会引起其他元素位置改变 Set接口 说一下 HashSet 的实现原理? HashSet 是基于 HashMap 实现的,HashSet的值存放于HashMap的key上,HashMap的value统一为PRESENT,因此 HashSet 的实现比较简单,相关 HashSet 的操作,基本上都是直接调用底层 HashMap 的相关方法来完成,HashSet 不允许重复的值。 HashSet如何检查重复?HashSet是如何保证数据不可重复的? 向HashSet 中add ()元素时,判断元素是否存在的依据,不仅要比较hash值,同时还要结合equles 方法比较。 HashSet 中的add ()方法会使用HashMap 的put()方法。 HashMap 的 key 是唯一的,由源码可以看出 HashSet 添加进去的值就是作为HashMap 的key,并且在HashMap中如果K/V相同时,会用新的V覆盖掉旧的V,然后返回旧的V。所以不会重复( HashMap 比较key是否相等是先比较hashcode 再比较equals )。 以下是HashSet 部分源码: hashCode()与equals()的相关规定: 如果两个对象相等,则hashcode一定也是相同的 两个对象相等,对两个equals方法返回true 两个对象有相同的hashcode值,它们也不一定是相等的 综上,equals方法被覆盖过,则hashCode方法也必须被覆盖 hashCode()的默认行为是对堆上的对象产生独特值。如果没有重写hashCode(),则该class的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)。 ** ==与equals的区别** ==是判断两个变量或实例是不是指向同一个内存空间 equals是判断两个变量或实例所指向的内存空间的值是不是相同 ==是指对内存地址进行比较 equals()是对字符串的内容进行比较3.==指引用是否相同 equals()指的是值是否相同 HashSet与HashMap的区别 Queue BlockingQueue是什么? Java.util.concurrent.BlockingQueue是一个队列,在进行检索或移除一个元素的时候,它会等待队列变为非空;当在添加一个元素时,它会等待队列中的可用空间。BlockingQueue接口是Java集合框架的一部分,主要用于实现生产者-消费者模式。我们不需要担心等待生产者有可用的空间,或消费者有可用的对象,因为它都在BlockingQueue的实现类中被处理了。Java提供了集中BlockingQueue的实现,比如ArrayBlockingQueue、LinkedBlockingQueue、PriorityBlockingQueue,、SynchronousQueue等。 在 Queue 中 poll()和 remove()有什么区别? 相同点:都是返回第一个元素,并在队列中删除返回的对象。 不同点:如果没有元素 poll()会返回 null,而 remove()会直接抛出 NoSuchElementException 异常。 代码示例: Queue queue = new LinkedList (); queue. offer("string"); // add System. out. println(queue. poll()); System. out. println(queue. remove()); System. out. println(queue. size()); Map接口 说一下 HashMap 的实现原理? HashMap概述: HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。 HashMap的数据结构: 在Java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。 HashMap 基于 Hash 算法实现的 当我们往Hashmap中put元素时,利用key的hashCode重新hash计算出当前对象的元素在数组中的下标存储时,如果出现hash值相同的key,此时有两种情况。(1)如果key相同,则覆盖原始值;(2)如果key不同(出现冲突),则将当前的key-value放入链表中获取时,直接找到hash值对应的下标,在进一步判断key是否相同,从而找到对应值。理解了以上过程就不难明白HashMap是如何解决hash冲突的问题,核心就是使用了数组的存储方式,然后将冲突的key的对象放入链表中,一旦发现冲突就在链表中做进一步的对比。 需要注意Jdk 1.8中对HashMap的实现做了优化,当链表中的节点数据超过八个之后,该链表会转为红黑树来提高查询效率,从原来的O(n)到O(logn) HashMap在JDK1.7和JDK1.8中有哪些不同?HashMap的底层实现 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做拉链法的方式可以解决哈希冲突。 JDK1.8之前 JDK1.8之前采用的是拉链法。拉链法:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。 JDK1.8之后 相比于之前的版本,jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。 JDK1.7 VS JDK1.8 比较 JDK1.8主要解决或优化了一下问题: resize 扩容优化引入了红黑树,目的是避免单条链表过长而影响查询效率,红黑树算法请参考解决了多线程死循环问题,但仍是非线程安全的,多线程时可能会造成数据丢失问题。 HashMap的put方法的具体流程? 当我们put的时候,首先计算 key的hash值,这里调用了 hash方法,hash方法实际是让key.hashCode()与key.hashCode()>>>16进行异或操作,高16bit补0,一个数和0异或不变,所以 hash 函数大概的作用就是:高16bit不变,低16bit和高16bit做了一个异或,目的是减少碰撞。按照函数注释,因为bucket数组大小是2的幂,计算下标index = (table.length - 1) & hash,如果不做 hash 处理,相当于散列生效的只有几个低 bit 位,为了减少散列的碰撞,设计者综合考虑了速度、作用、质量之后,使用高16bit和低16bit异或来简单处理减少碰撞,而且JDK8中用了复杂度 O(logn)的树结构来提升碰撞下的性能。 putVal方法执行流程图 ①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容; ②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③; ③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals; ④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤; ⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可; ⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。 HashMap的扩容操作是怎么实现的? ①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容; ②.每次扩展的时候,都是扩展2倍; ③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。 在putVal()中,我们看到在这个函数里面使用到了2次resize()方法,resize()方法表示的在进行第一次初始化时会对其进行扩容,或者当该数组的实际大小大于其临界值值(第一次为12),这个时候在扩容的同时也会伴随的桶上面的元素进行重新分发,这也是JDK1.8版本的一个优化的地方,在1.7中,扩容之后需要重新去计算其Hash值,根据Hash值对其进行分发,但在1.8版本中,则是根据在同一个桶的位置中进行判断(e.hash & oldCap)是否为0,重新进行hash分配后,该元素的位置要么停留在原始位置,要么移动到原始位置+增加的数组大小这个位置上 HashMap是怎么解决哈希冲突的? 答:在解决这个问题之前,我们首先需要知道什么是哈希冲突,而在了解哈希冲突之前我们还要知道什么是哈希才行; 什么是哈希? Hash,一般翻译为“散列”,也有直接音译为“哈希”的,这就是把任意长度的输入通过散列算法,变换成固定长度的输出,该输出就是散列值(哈希值);这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。 所有散列函数都有如下一个基本特性**:根据同一散列函数计算出的散列值如果不同,那么输入值肯定也不同。但是,根据同一散列函数计算出的散列值如果相同,输入值不一定相同**。 什么是哈希冲突? 当两个不同的输入值,根据同一散列函数计算出相同的散列值的现象,我们就把它叫做碰撞(哈希碰撞)。 HashMap的数据结构 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做链地址法的方式可以解决哈希冲突: 这样我们就可以将拥有相同哈希值的对象组织成一个链表放在hash值所对应的bucket下,但相比于hashCode返回的int类型,我们HashMap初始的容量大小DEFAULT_INITIAL_CAPACITY = 1 << 4(即2的四次方16)要远小于int类型的范围,所以我们如果只是单纯的用hashCode取余来获取对应的bucket这将会大大增加哈希碰撞的概率,并且最坏情况下还会将HashMap变成一个单链表,所以我们还需要对hashCode作一定的优化 hash()函数 上面提到的问题,主要是因为如果使用hashCode取余,那么相当于参与运算的只有hashCode的低位,高位是没有起到任何作用的,所以我们的思路就是让hashCode取值出的高位也参与运算,进一步降低hash碰撞的概率,使得数据分布更平均,我们把这样的操作称为扰动,在JDK 1.8中的hash()函数如下: static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);// 与自己右移16位进行异或运算(高低位异或) } 这比在JDK 1.7中,更为简洁,相比在1.7中的4次位运算,5次异或运算(9次扰动),在1.8中,只进行了1次位运算和1次异或运算(2次扰动); JDK1.8新增红黑树 通过上面的链地址法(使用散列表)和扰动函数我们成功让我们的数据分布更平均,哈希碰撞减少,但是当我们的HashMap中存在大量数据时,加入我们某个bucket下对应的链表有n个元素,那么遍历时间复杂度就为O(n),为了针对这个问题,JDK1.8在HashMap中新增了红黑树的数据结构,进一步使得遍历复杂度降低至O(logn); 总结 简单总结一下HashMap是使用了哪些方法来有效解决哈希冲突的: 使用链地址法(使用散列表)来链接拥有相同hash值的数据;使用2次扰动函数(hash函数)来降低哈希冲突的概率,使得数据分布更平均;引入红黑树进一步降低遍历的时间复杂度,使得遍历更快; **能否使用任何类作为 Map 的 key? **可以使用任何类作为 Map 的 key,然而在使用之前,需要考虑以下几点: 如果类重写了 equals() 方法,也应该重写 hashCode() 方法。 类的所有实例需要遵循与 equals() 和 hashCode() 相关的规则。 如果一个类没有使用 equals(),不应该在 hashCode() 中使用它。 用户自定义 Key 类最佳实践是使之为不可变的,这样 hashCode() 值可以被缓存起来,拥有更好的性能。不可变的类也可以确保 hashCode() 和 equals() 在未来不会改变,这样就会解决与可变相关的问题了。 为什么HashMap中String、Integer这样的包装类适合作为K? 答:String、Integer等包装类的特性能够保证Hash值的不可更改性和计算准确性,能够有效的减少Hash碰撞的几率 都是final类型,即不可变性,保证key的不可更改性,不会存在获取hash值不同的情况 内部已重写了equals()、hashCode()等方法,遵守了HashMap内部的规范(不清楚可以去上面看看putValue的过程),不容易出现Hash值计算错误的情况; 如果使用Object作为HashMap的Key,应该怎么办呢? 答:重写hashCode()和equals()方法 重写hashCode()是因为需要计算存储数据的存储位置,需要注意不要试图从散列码计算中排除掉一个对象的关键部分来提高性能,这样虽然能更快但可能会导致更多的Hash碰撞; 重写equals()方法,需要遵守自反性、对称性、传递性、一致性以及对于任何非null的引用值x,x.equals(null)必须返回false的这几个特性,目的是为了保证key在哈希表中的唯一性; HashMap为什么不直接使用hashCode()处理后的哈希值直接作为table的下标 答:hashCode()方法返回的是int整数类型,其范围为-(2 ^ 31)~(2 ^ 31 - 1),约有40亿个映射空间,而HashMap的容量范围是在16(初始化默认值)~2 ^ 30,HashMap通常情况下是取不到最大值的,并且设备上也难以提供这么多的存储空间,从而导致通过hashCode()计算出的哈希值可能不在数组大小范围内,进而无法匹配存储位置; 那怎么解决呢? HashMap自己实现了自己的hash()方法,通过两次扰动使得它自己的哈希值高低位自行进行异或运算,降低哈希碰撞概率也使得数据分布更平均; 在保证数组长度为2的幂次方的时候,使用hash()运算之后的值与运算(&)(数组长度 - 1)来获取数组下标的方式进行存储,这样一来是比取余操作更加有效率,二来也是因为只有当数组长度为2的幂次方时,h&(length-1)才等价于h%length,三来解决了“哈希值与数组大小范围不匹配”的问题; HashMap 的长度为什么是2的幂次方 为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀,每个链表/红黑树长度大致相同。这个实现就是把数据存到哪个链表/红黑树中的算法。 这个算法应该如何设计呢? 我们首先可能会想到采用%取余的操作来实现。但是,重点来了:“取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是2的 n 次方;)。” 并且 采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是2的幂次方。 那为什么是两次扰动呢? 答:这样就是加大哈希值低位的随机性,使得分布更均匀,从而提高对应数组存储下标位置的随机性&均匀性,最终减少Hash冲突,两次就够了,已经达到了高位低位同时参与运算的目的; HashMap 与 HashTable 有什么区别? 线程安全: HashMap 是非线程安全的,HashTable 是线程安全的;HashTable 内部的方法基本都经过 synchronized 修饰。(如果你要保证线程安全的话就使用 ConcurrentHashMap 吧!); 效率: 因为线程安全的问题,HashMap 要比 HashTable 效率高一点。另外,HashTable 基本被淘汰,不要在代码中使用它; 对Null key 和Null value的支持: HashMap 中,null 可以作为键,这样的键只有一个,可以有一个或多个键所对应的值为 null。但是在 HashTable 中 put 进的键值只要有一个 null,直接抛NullPointerException。 **初始容量大小和每次扩充容量大小的不同 **: ①创建时如果不指定容量初始值,Hashtable 默认的初始大小为11,之后每次扩充,容量变为原来的2n+1。HashMap 默认的初始化大小为16。之后每次扩充,容量变为原来的2倍。②创建时如果给定了容量初始值,那么 Hashtable 会直接使用你给定的大小,而 HashMap 会将其扩充为2的幂次方大小。也就是说 HashMap 总是使用2的幂作为哈希表的大小,后面会介绍到为什么是2的幂次方。 底层数据结构: JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。Hashtable 没有这样的机制。 推荐使用:在 Hashtable 的类注释可以看到,Hashtable 是保留类不建议使用,推荐在单线程环境下使用 HashMap 替代,如果需要多线程使用则用 ConcurrentHashMap 替代。 如何决定使用 HashMap 还是 TreeMap? 对于在Map中插入、删除和定位元素这类操作,HashMap是最好的选择。然而,假如你需要对一个有序的key集合进行遍历,TreeMap是更好的选择。基于你的collection的大小,也许向HashMap中添加元素会更快,将map换为TreeMap进行有序key的遍历。 HashMap 和 ConcurrentHashMap 的区别 ConcurrentHashMap对整个桶数组进行了分割分段(Segment),然后在每一个分段上都用lock锁进行保护,相对于HashTable的synchronized锁的粒度更精细了一些,并发性能更好,而HashMap没有锁机制,不是线程安全的。(JDK1.8之后ConcurrentHashMap启用了一种全新的方式实现,利用CAS算法。) HashMap的键值对允许有null,但是ConCurrentHashMap都不允许。 ConcurrentHashMap 和 Hashtable 的区别? ConcurrentHashMap 和 Hashtable 的区别主要体现在实现线程安全的方式上不同。 底层数据结构: JDK1.7的 ConcurrentHashMap 底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构跟HashMap1.8的结构一样,数组+链表/红黑二叉树。Hashtable 和 JDK1.8 之前的 HashMap 的底层数据结构类似都是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的; 实现线程安全的方式(重要): ① 在JDK1.7的时候,ConcurrentHashMap(分段锁) 对整个桶数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。(默认分配16个Segment,比Hashtable效率提高16倍。) 到了 JDK1.8 的时候已经摒弃了Segment的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6以后 对 synchronized锁做了很多优化) 整个看起来就像是优化过且线程安全的 HashMap,虽然在JDK1.8中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本;② Hashtable(同一把锁) :使用 synchronized 来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。 两者的对比图: HashTable: JDK1.7的ConcurrentHashMap: JDK1.8的ConcurrentHashMap(TreeBin: 红黑二叉树节点 Node: 链表节点): 答:ConcurrentHashMap 结合了 HashMap 和 HashTable 二者的优势。HashMap 没有考虑同步,HashTable 考虑了同步的问题。但是 HashTable 在每次同步执行时都要锁住整个结构。 ConcurrentHashMap 锁的方式是稍微细粒度的。 ConcurrentHashMap 底层具体实现知道吗?实现原理是什么? JDK1.7 首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。 在JDK1.7中,ConcurrentHashMap采用Segment + HashEntry的方式进行实现,结构如下: 一个 ConcurrentHashMap 里包含一个 Segment 数组。Segment 的结构和HashMap类似,是一种数组和链表结构,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素,每个 Segment 守护着一个HashEntry数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment的锁。 该类包含两个静态内部类 HashEntry 和 Segment ;前者用来封装映射表的键值对,后者用来充当锁的角色;Segment 是一种可重入的锁 ReentrantLock,每个 Segment 守护一个HashEntry 数组里得元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment 锁。 JDK1.8 在JDK1.8中,放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,synchronized只锁定当前链表或红黑二叉树的首节点,这样只要hash不冲突,就不会产生并发,效率又提升N倍。 结构如下: 如果该节点是TreeBin类型的节点,说明是红黑树结构,则通过putTreeVal方法往红黑树中插入节点;如果binCount不为0,说明put操作对数据产生了影响,如果当前链表的个数达到8个,则通过treeifyBin方法转化为红黑树,如果oldVal不为空,说明是一次更新操作,没有对元素个数产生影响,则直接返回旧值;如果插入的是一个新节点,则执行addCount()方法尝试更新元素个数baseCount; 辅助工具类 Array 和 ArrayList 有何区别? Array 可以存储基本数据类型和对象,ArrayList 只能存储对象。Array 是指定固定大小的,而 ArrayList 大小是自动扩展的。Array 内置方法没有 ArrayList 多,比如 addAll、removeAll、iteration 等方法只有 ArrayList 有。 对于基本类型数据,集合使用自动装箱来减少编码工作量。但是,当处理固定大小的基本数据类型的时候,这种方式相对比较慢。 如何实现 Array 和 List 之间的转换? Array 转 List: Arrays. asList(array) ;List 转 Array:List 的 toArray() 方法。 comparable 和 comparator的区别? comparable接口实际上是出自java.lang包,它有一个 compareTo(Object obj)方法用来排序comparator接口实际上是出自 java.util 包,它有一个compare(Object obj1, Object obj2)方法用来排序 一般我们需要对一个集合使用自定义排序时,我们就要重写compareTo方法或compare方法,当我们需要对某一个集合实现两种排序方式,比如一个song对象中的歌名和歌手名分别采用一种排序方法的话,我们可以重写compareTo方法和使用自制的Comparator方法或者以两个Comparator来实现歌名排序和歌星名排序,第二种代表我们只能使用两个参数版的Collections.sort(). 方法如何比较元素? TreeSet 要求存放的对象所属的类必须实现 Comparable 接口,该接口提供了比较元素的 compareTo()方法,当插入元素时会回调该方法比较元素的大小。TreeMap 要求存放的键值对映射的键必须实现 Comparable 接口从而根据键对元素进 行排 序。 Collections 工具类的 sort 方法有两种重载的形式, 第一种要求传入的待排序容器中存放的对象比较实现 Comparable 接口以实现元素的比较; 第二种不强制性的要求容器中的元素必须可比较,但是要求传入第二个参数,参数是Comparator 接口的子类型(需要重写 compare 方法实现元素的比较),相当于一个临时定义的排序规则,其实就是通过接口注入比较元素大小的算法,也是对回调模式的应用(Java 中对函数式编程的支持)。

剑曼红尘 2020-03-24 14:41:57 0 浏览量 回答数 0

问题

阿里云归档存储简介

云栖大讲堂 2019-12-01 21:07:35 1328 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站