• 关于

    前向安全性怎么搭建

    的搜索结果

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 39926 浏览量 回答数 17

问题

应该如何使用阿里云?高级篇

rippletek 2019-12-01 21:14:53 20970 浏览量 回答数 18

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。

hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

万券齐发助力企业上云,爆款产品低至2.2折起!

限量神券最高减1000,抢完即止!云服务器ECS新用户首购低至0.95折!

问题

程序员的3年之痒改变的不止薪水

小柒2012 2019-12-01 21:08:36 19089 浏览量 回答数 18

回答

01「思维陷阱」是一个人职场平庸的根本原因 有没有人想过:为什么有些人在职场显得能力特别差? 我们生活在一个容易让人焦虑的时代,每天都需要主动或者被动地接受大量的信息,但少有人清醒地知道,这些信息悄悄改变了我们的“思维方式”乃至“行为”,引导我们走进陷阱。 如果你不能意识到,你可能正在被“思维陷阱”拖入平庸和焦虑的痛苦中。 为了方便理解,我下面列出三种最常见的陷入“思维陷阱”的人,对照看看自己是不是: 热衷快餐知识,却不能清醒知道自己无知的人 习惯什么都“靠自己”的人 无法一眼看透事物发展背后本质的人 **1. 热衷快餐知识 ** 却不能清醒知道自己无知的人 伴随着知识付费的崛起,近几年出现了大量热衷快餐知识的人_他们是朋友圈的“概念狂人”,对权威、意见领袖的观点非常追捧,关于最新的话题他总能发表看法,他们热衷于走捷径,转发的文章总是散发着贩卖焦虑的气味。 但如果与他们深入交流,你会发现:除了这些二手的快餐知识,他们对常识和经典无知的可怕。 这些人最大的特点是不知道自己的无知——认为自己脑子中的想法是什么样,世界就是什么样。这种人在职场有一个很难缠的习惯:很喜欢先入为主一个自己坚持的观点,然后再围绕这个观点去寻找支持论据。 如果这种人有较高的执行力,那就太可怕了——因为在他们很努力地将片面的理解付诸行动时,你根本无法说服他,一切都要等他让所有人都撞得头破血流停下来才能进行调整。 **2. 习惯 ** 什么都“靠自己”的人 如果一个人看多了鸡汤文里“什么都不如自己可靠”的口号,或者片面理解了近几年常说的“为结果负责”这句话,那他就会走入“靠自己”的思维陷阱。 这些人最大的特点就是害怕麻烦别人,害怕拒绝——认为目前事物无法圆满完成的原因,主要是自身实力或资源还不够,所以会一味地增强自身资源以期望达到目标。 他们既不能看到别人那里多余的可协作资源,也不能将自己的资源为别人所用。 因为害怕暴露出错,他们也不擅长分享和求助。 他们会觉得自己深刻理解了“责任”的意义,但是却总是感到每天的工作压力山大,那些习惯在办公室里加班到凌晨但效率低下的员工往往是这种人。 **3. 无法一眼看透事物发展背后矛盾本质的人 ** 《教父》最有名的一句话是“花半秒钟就看透事物本质的人,和一生都看不清事物本质的人,注定是截然不同的命运。” 那什么是“事物的本质”呢? 其实就是位于事物发展中底层的矛盾。 如果一个人看事物或者解决工作难题的时候,没有思考背后的矛盾和规律的习惯,就容易流于表面,他们可能洞察力不错,比起一般人能关注那些细节,但是却缺乏全局观,容易纠结在自己的小世界里。 注意:没有日常观察思考“事物发展背后的矛盾”习惯的人,注定无法成长为团队的领导者! 在职场,他们是需要反复指导和争论,耗费团队沟通成本的下属,在解决问题时,他们是无法快速清晰找到问题抓手的那群人;在生活中,他们往往又会陷入“拎不清”或“选择困难”的麻烦中。 02 那些互联网大神 是如何跳出“思维陷阱”的? “思维陷阱”就藏在人性的弱点中,它是如此可怕和不易察觉,我们必须保持一些日常思考习惯来对抗它对我们的影响。 也许你能从下面三位阿里巴巴高管身上拥有的特质中找到答案,这些习惯帮助他们克服“思维陷阱”在中国最复杂的商业经济体——阿里巴巴中取得了事业上的巨大成就。 他们是那些经历过绝望后谷底反弹的人,那些长期默默坚持而又一鸣惊人的人,那些在危急关头敢于独自按下刹车键的人,他们分别是钉钉创始人无招、盒马鲜生创始人侯毅,以及现在的淘宝天猫总裁蒋凡。 **1. 钉钉创始人无招 ** 抛下已知去“观察”外界的习惯 “无招”是花名,如果结合他在阿里的经历看,会发现很有意思。 钉钉创始人无招 2014年,阿里经历了强推社交产品“来往”的巨大挫折;在智能手机全国开始普及的年代,因为社交用户基数大,而且极度高频的入口级特性,社交产品所能带来的安全感是各大互联网厂商都极度渴望的,所以你可以理解为什么马化腾会把微信横空出世称为:抢到第一张移动互联网船票。 而陈航和他所在的团队,就是试图通过挑战微信,为阿里赢得安全感的一群人。 用再造一个“微信”来挑战微信,结果就是无招需要和团队把一场惨痛的失败消化下来。 但有没有人想过:这样的严重挫败陷入的低谷,对一个产品型的团队领导者也许是一件好事——因为绝望会让一个人抛弃原有的脑子里对世界所有的理解,进入一种彻底放空和内省状态,这时候才能静下心来观察和阅读世界真正的需要。 这与悟道的逻辑不谋而合。 作为一个产品经理可能会反思:任何大而广的东西一定有弱点,如果说微信的社交面是一条横线,需要观察寻找的,是哪里可以诞生一条尚未挖掘的纵线。 那么这条纵线是什么呢? 静心向内看就会有答案,那就是阿里生态圈的万千小B企业。 如果你进入用户的心中去“观察”他们的想法,你就会用心眼看到后面的答案。 之后被外界评价“反人性”的钉钉迅速破圈微信获得了成功,而鹅厂主打“温度”的企业微信却一直不温不火,这个现象背后原因是什么? 很多人认为是因为钉钉抓住了老板的强压执行力需求,自上而下地推动市场,所以在微信办公的大环境下撕开了一个缺口。还有人同时认为无招是个冷酷的人。 但我现在却不这样认为。 在仔细阅读和研究了关于钉钉2015年来,所有无招在公开场合的发言和对钉钉产品的理解后,我认为他是国内少有的具备高度同理心的产品经理型CEO之一。 他身上有一种放下固有认知,虚心“观察”用户内心所需的能力,而且这几乎融入了他和团队的日常习惯中。 可能连使用者自己都不知道,钉钉的成功最深处,是在碎片化办公的大环境下,人性中饱含的对深度工作专注和效率的追求。而在这一点上,无论是老板还是员工,只要他还算是 “想做事的人” 那就是共通的! 人们只会说自己要一匹更快的马,但亨利福特却能观察到人心深处对速度的追求,为人们造出汽车。 “观察”的不是表面,而应该是人的内心! 在这个状态中,最重要的是要保持不带任何预设立场的“空”,不先入为主,不画地为牢,带着无知观察世界。 你不能带着“已知”去看待市场;不能孤立地,刻板地去读那些所谓的“大数据”,也不能光靠人云亦云来判断用户真正的需求,而要用“无知”的心态去接近和观察用户——那些一个个自然人的情绪和需要,以人为本。 不然,就会像百度沉迷于搜索引擎的修补,放出了头条;腾讯放弃了对用户工作外时间使用的的观察,做大了抖音。 如果他们的产品经理愿意走出北上广高大上的写字楼,走到他们真正需要服务的“群众”中去,结合数据和实践,也许就会“观察”到——哦~原来世界不是自己坐在角落里想象的那样。 钉钉所有的员工,入职后第一课就是被要求放下已知,带着空杯进入那些小B企业中,同工同吃,“观察”和阅读用户内心真正的需要。 “无”招胜有招——《笑傲江湖》里风清扬传给令狐冲的第一句话。 **2. 盒马鲜生创始人侯毅 ** 保持“关联性”思考的习惯 说完钉钉的无招,我们再看看盒马的侯毅。 盒马鲜生创始人侯毅 侯毅这个人很有意思,因为他最早是刘强东的“兄弟”,在京东长期希望推动一个类似盒马的前瞻O2O项目,无奈一直没有人关注;最后被逍遥子识才,多次劝说后,决定加入阿里,盒马鲜生是这么来的(这里不得不说:老逍简直比老萧还厉害)。 盒马鲜生是带火了“新零售”这个概念的明星企业,但很多人其实不懂“新零售”是什么。 所谓新零售的准确定义,其实就是在各种资源的关联和协同组合中,寻求一种能大大节约成本,提高价值的新组合。 为什么代表人物会是侯毅? 你可以理解成:因为长年专注在线下线上相结合的领域,侯毅的脑子有了一个叫“资源相互联系”的魔方,每天他都需要转动几次,去寻找数个变量组合资源中,无限接近“提高价值降低成本”的最优解。 所以这样看盒马和侯毅,你就可以突然看懂了:为什么可以推出“盒区房”这种以小博大的品牌亮点,通过捆绑房地产这个敏感话题,达到巨大宣传效果;以及明白为什么在今年的艰难时期,盒马能够快速反应,第一个推出了大显身手的“共享员工”模式了。 盒马的品牌是围绕着社区服务来的,线下线上配合的打法中,作为领导者的侯毅永远不能孤立地去思考,如果只想着依靠自己的力量去发展,那就坏事了。 保持日常的关联性思考,也有助于让一般人看竞争时,不陷入二元对立的表面理解。 用“关联性”的思维来理解阿里的战略,你会发现:任何与阿里展开竞争的企业,他们需要面对的是整个的阿里军团。 比如美团面对的是饿了么和口碑吗?那么盒马呢?大润发呢?银泰呢?支付宝呢?阿里云呢?天猫超市呢? 所以作为普通人,你可以学到的是永远不要只想着只用自己的资源和能力去做事。 一定要懂得资源之间的“关联性”,不要怕麻烦别人,也许你也能给别人创造价值呢?所以,你也可以在大脑中培养一个“关联性”思考事物的魔方。 **3. 淘宝天猫总裁蒋凡 ** 思索事物发展背后矛盾的习惯 当宣布蒋凡挑大梁的时候,很多人会问:为什么张勇和马云会选择一个少壮派? 淘宝天猫总裁蒋凡 也许张勇最能理解蒋凡:因为他们都是那种“在关键时刻孤独地扮演过‘扳道工’角色的人”——无论当时对他们来说,自己在不在最重要的位置上。 在蒋凡身上,有着外界所说的“一眼看穿底层逻辑”的能力;也是当下信息爆炸的时代,一种透过乱七八糟的消息迷雾,看到复杂事物中最简单的常识的能力。 这种能力,就是要看透推动事物发展背后的矛盾。 一个外表复杂的事物,它的本质其实是常识,就像新闻联播里每天在说的“当下主要矛盾已经转化为人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾”。 到底什么是“消费升级”? 必须要用矛盾的观点看: 我们这些五环内白领在双11抢不到戴森吸尘器的不是真正的主要矛盾,你看不到的地方,“国内的大多数”的小镇青年想买一件耐克配国潮,而自己所处的城镇既没有CBD和没有大商场,下班时间甚至都不知道怎么打发——这才是主要矛盾。 去拼多多拼个9块9的手纸,被五环内用户嘲讽为“消费降级”,可你要知道拼多多的手纸不是为你准备的,是为广大“中国的大多数”准备的——这,才是真正的消费升级! 但在那个年代,并不是所有人都能认清主要矛盾。 当时即使在阿里内部,长年的竞争也让一部分人陷入了思维陷阱,认为京东是天猫最大的追赶者。 那时候也有人知道小镇青年的重要性,可是当时大家的理解还停留在跑到农村去刷墙。 拼多多为什么能够在阿里眼皮下迅速崛起呢!? 如果说是把握了下沉市场还是流于表面,你用矛盾的观点看本质: 第一点,2015~2017年间,大量阿里生态内的小小B端的角色,如底层商家、淘客、羊毛党因为阿里战略调整,对外发生了外溢,这些互联网游牧民走到哪,哪里就形成了新的细小供应链——这些人离开阿里要吃饭啊,这是最主要矛盾。 第二点,低价智能机和微信支付相结合,带来了小镇青年整体电商用户盘子扩大——这些人的日常时间要怎么打发,身边可能连个高级商场都没有,这是次主要矛盾。 这些东西,身处五环内的你在那个年代里,光看数据是不会马上发现的,只有靠细微的洞察才能感知到: 快递小哥的包裹里是不是开始有了别的平台的商品? 老家父母亲戚的朋友圈,是不是很多东西变了? 地方台的的综艺节目里面,广告赞助商是不是出现了不认识的牌子?(可惜很多北上广人不看电视) 那些像游牧民族一样的羊毛党,被你屏蔽朋友圈的微商妈妈又在忙什么? 透过现象看本质,拼多多就是抓住了这些要素悄悄长大的。 蒋凡上任后面对这个需要被再次重视的市场,是怎么抓“主要矛盾”的? 首先是重新平衡天猫、淘宝的重心,平衡“大多数用户”和B端之间的消费和供给——这不是拿捏尺度的平面问题,而是一个对顶层架构重新分析、设计的立体问题。 选用模式更适合五环外市场的聚划算做渠道下沉,向低线城市渗透、并且覆盖全年龄段,尽快封堵挤压拼多多的继续扩张 发力短视频、抖音、网红,直播这些内容场景,再通过大数据精准推送,通过占领用户时间,赢得市场,让B端人群比如主播网红下沉去填补C端的使用手机时间。 带领品牌商家下沉。之前很多品牌集中在打一二线市场,原有的渠道网络对于下沉市场是滞后的。但随着阿里的强势运营,优质的中部商家做敲门砖品牌迅速得以下沉——提前占住山头,让对手仰攻。 随着最近淘宝特价推出,结合淘宝、聚划算、天猫、淘小铺全面出击,阿里军团的刀枪剑戟朝向了同一个方向:B端搭建架构,C端占领时间,蒋凡完成了对北上广人群和下沉市场的一记全垒打! 目前我们还不知道拼多多的黄铮会如何接下蒋凡这一记硬球——因为占据了品牌优势,拼多多对阿里会长期处于一种“仰攻”状态。 这就难受了,毕竟狮子猛回头扑向一只咬自己尾巴的鬣狗很容易,但鬣狗要一口吃下一只狮子却很难。 03 你该如何训练“三种思维” 获得职场成功! 写到这里,你也许会说:似乎这些思维习惯也没有多么的深奥啊?这些难道不是常识吗? 你说的没错,但那些高手恰恰是将尝试变成了一种日常习惯去反复练习——因为“思维陷阱”会无时无刻存在,人必须通过训练保持觉知才行,所以我们需要复习一下这三种思维习惯: **1. 如何训练 ** 带着无知“观察”的思维习惯? 日常中,很多人会觉得自己的情商和同理心不足,不知道对方心里想什么,要怎么办? 这就可以先从“观察”自己的内心的练习开始。 练习“观察”的方式: 保持空无,抛下预设 ▼ 用客体视角觉察出自己内心与行为的关系 ▼ 再试着深入“阅读”他人内心与行为的关系 ▼ 结合规律,分析出外界真实的需要 ▼ 在生活与工作中做出策略调整或反应 ▼ 保持练习,达到情商和洞察力的提高 如果观察熟练,可以用这个方法去看世界和他人的情绪,进而搞明白对方真正的需要,即使是对方没有清晰表达出来的。 打个比方:春节时期,网上那种对于钟南山敬佩和对湖北一些事情愤怒的两极声音,如果你用心观察,你会发现他们的底层其实是同一种情绪“恐惧”——恐惧引发了行为,无论是愤怒还是寻找安全感。 再打个比方:如你单位中有一个人,别人都说这个人是自私自利的小人;你通过“观察”发现,原来对方只是个内心缺乏安全感的可怜人,所以也就可以在职场打交道中理解和推测出对方的想法和行为,读出对方真正的内心需要。 做市场运营,产品经理,品牌定位,尤其需要这种“观察”他人内心真正需要的能力。 **2. 如何训练 ** 保持“关联性”思考的习惯? 如何培养“关联性”思维,在职场拿到资源,产生更好的协作? 练习“关联性”思维的方式: 抛开过去那种任何事都想着“自己干”的想法,问自己三个问题: 我现在要做的事情,有没有利他性? 可以不可以与他人形成合力? 最终取得的成果,能不能多方共享? 如果三个问题想清楚了没问题,那么不怕拒绝,厚着脸皮干就完了! 如果三个问题想清楚了没问题,那么不怕拒绝,厚着脸皮干就完了! 日常要留心,自己和他人身上,有哪些可以“做成事”的资源,这并不是要人学会自利,而是需要培养自己的协作性;自己的专业知识,钱,甚至体力,时间,人脉圈,都是能一起互相协作的资源。 除了人与人的资源关联性,还可以培养物与物相互跨界联系的能力。 比如在阿里,训练公关的新闻策划能力,就有一种称之为“两只试管法”的日常思考方法。 你可以想象成左手握一个产品试管,右手握一个情绪试管,然后两种试剂倒在了一起,产生神奇的化学反应。 比如: 盒马鲜生(线下的果蔬生鲜服务设施/一种都市快节奏生活方式)+ 房价(情绪饱满的高敏感民生话题)= 品牌概念:盒区房 进口水果 + 北上广的生活压力(情绪饱满的消费焦虑)= 热门话题:车厘子自由 “关联性”思维练习配合“观察”运用在策划和创意里,是不是非常有趣? **3. 如何训练 ** “看穿事物底层矛盾”的思维习惯? 看事物的底层逻辑,也同样需要上面的两种思维。 日常可以多读读经典,少接触如今的“时髦概念书”以免被先入为主污染,枕头边可以放一本《毛选》,其中《矛盾论》和《实践论》是精华。 日常遇到争议性的事情,不要着急下判断,也不要站队;就站在旁观者的角度,思考思考为什么双方会这么想,他们各自有哪些需要没有被满足? 渐渐地,在别人眼中,你成了一开口就可以直击问题本质的人。 等到熟练之后,再拿来看一个人群或者一片市场,思考和实践调研他们真正的供需中,有哪些地方是目前供需所不平衡的,在这样不平衡产生的痛点中,出现了什么替代方案? 以上就是我所分享的练习方法。 最后补充一点:如果有一件事你觉得一定会如此,那么保险起见尝试从相反的方向推论看有没有漏洞。 你还可以经常对外分享自己的心得和观点(我自己就在用这种方式保持二次学习和修正提炼),不要担心出错,通过理性的交流和思辨,通过他人的认知进行思辨和修正。 通过这种方式收获了解,你会发现:自己其实并不孤独。 参考: 《毛选》 《行为》罗伯特·M·萨波斯基 《智能的结构》霍华德·加德纳 《硬球》克里斯·马修斯 《合作的进化》罗伯特.阿克塞尔罗德 《笑傲江湖》金庸 作者:舒扬,笔名舍予兄(个人WX:shuyang9451)休养前担任阿里健康高级公关专家,目前是一名 长跑 和 行为心理学 爱好者,著有畅销书《共鸣》,一个喜欢深夜在朋友圈发长篇思考的人。事业目标是成为最好的公关,在这条路上将永远是一个学生。

剑曼红尘 2020-04-13 11:47:20 0 浏览量 回答数 0

回答

回 2楼(zc_0101) 的帖子 您好,       您的问题非常好,SQL SERVER提供了很多关于I/O压力的性能计数器,请选择性能计算器PhysicalDisk(LogicalDisk),根据我们的经验,如下指标的阈值可以帮助你判断IO是否存在压力: 1.  % Disk Time :这个是磁盘时间百分比,这个平均值应该在85%以下 2.  Current Disk Queue Length:未完成磁盘请求数量,这个每个磁盘平均值应该小于2. 3.  Avg. Disk Queue Length:磁盘请求队列的平均长度,这个每个磁盘平均值也应该小于2 4.  Disk Transfers/sec:每次磁盘传输数量,这个每个磁盘的最大值应该小于100 5.  Disk Bytes/sec:每次磁盘传入字节数,这个在普通的磁盘上应该在10M左右 6.  Avg. Disk Sec/Read:从磁盘读取的平均时间,这个平均值应该小于10ms(毫秒) 7.  Avg. Disk Sec/Write:磁盘写入的平均时间,这个平均值也应该小于10ms(毫秒) 以上,请根据自己的磁盘系统判断,比如传统的机械臂磁盘和SSD有所不同。 一般磁盘的优化方向是: 1. 硬件优化:比如使用更合理的RAID阵列,使用更快的磁盘驱动器,添加更多的内存 2. 数据库设置优化:比如创建多个文件和文件组,表的INDEX和数据放到不同的DISK上,将数据库的日志放到单独的物理驱动器,使用分区表 3. 数据库应用优化:包括应用程序的设计,SQL语句的调整,表的设计的合理性,INDEX创建的合理性,涉及的范围很广 希望对您有所帮助,谢谢! ------------------------- 回 3楼(鹰舞) 的帖子 您好,      根据您的描述,由于查询产生了副本REDO LOG延迟,出现了架构锁。我们知道SQL SERVER 2012 AlwaysOn在某些数据库行为上有较多变化。我们先看看架构锁: 架构锁分成两类: 1. SCH-M:架构更改锁,主要发生在数据库SCHEMA的修改上,从你的描述看,没有更改SCHEMA,那么可以排除这个因素 2. SCH-S:架构稳定锁,主要发生在数据库的查询编译等活动 根据你的情况,应该属于SCH-S导致的。查询编译活动主要发生有新增加了INDEX, 更新了统计信息,未参数化的SQL语句等等 对于INDEX和SQL语句方面应,我想应该不会有太多问题。 我们重点关注一下统计信息:SQL SERVER 2012 AG副本的统计信息维护有两种: 1. 主体下发到副本 2. 临时统计信息存储在TEMPDB 对于主体下发的,我们可以设置统计信息的更新行为,自动更新时,可以设置为异步的(自动更新统计信息必须首先打开): USE [master] GO ALTER DATABASE [Test_01]     SET AUTO_UPDATE_STATISTICS_ASYNC ON WITH NO_WAIT GO 这样的话查询优化器不等待统计信息更新完成即编译查询。可以优化一下你的BLOCK。 对于临时统计信息存储在TEMPDB里面也是很重要的,再加上ALWAYSON的副本数据库默认是快照隔离,优化TEMPDB也是必要的,关于优化TEPDB这个我想大部分都知道,这里只是提醒一下。 除了从统计信息本身来解决,在查询过程中,可以降低查询的时间,以尽量减少LOCK的时间和范围,这需要优化你的SQL语句或者应用程序。 以上,希望对您有所帮助。谢谢! ------------------------- 回 4楼(leamonjxl) 的帖子 这是一个关于死锁的问题,为了能够提供帮助一些。请根据下列建议进行: 1.    跟踪死锁 2.    分析死锁链和原因 3.    一些解决办法 关于跟踪死锁,我们首先需要打开1222标记,例如DBCC TRACEON(1222,-1), 他将收集的信息写入到死锁事件发生的服务器上的日志文件中。同时建议打开Profiler的跟踪信息: 如果发生了死锁,需要分析死锁发生的根源在哪里?我们不是很清楚你的具体发生死锁的形态是怎么样的。 关于死锁的实例也多,这里不再举例。 这里只是提出一些可以解决的思路: 1.    减少锁的争用 2.    减少资源的访问数 3.    按照相同的时间顺序访问资源 减少锁的争用,可以从几个方面入手 1.    使用锁提示,比如为查询语句添加WITH (NOLOCK), 但这还取决于你的应用是否允许,大部分分布式的系统都是可以加WITH (NOLOCK), 金融行业可能需要慎重。 2.    调整隔离级别,使用MVCC,我们的数据库默认级别是READ COMMITED. 建议修改为读提交快照隔离级别,这样的话可以尽量读写不阻塞,只不过MVCC的ROW VERSION保存到TEMPDB下面,需要维护好TEMPDB。当然如果你的整个数据库隔离级别可以设置为READUNCOMMINTED,这些就不必了。 减少资源的访问数,可以从如下几个方面入手: 1.    使用聚集索引,非聚集INDEX的叶子页面与堆或者聚集INDEX的数据页面分离。因此,如果对非聚集INDEX 操作的话,会产生两个锁,一个是基本表,一个是非聚集INDEX。而聚集INDEX就不一样,聚集INDEX的叶子页面和表的数据页面相同,他只需要一个LOCK。 2.    查询语句尽量使用覆盖INDEX, 使用全覆盖INDEX,就不需要访问基本表。如果没有全覆盖,还会通过RID或者CLUSTER INDEX访问基本表,这样产生的LOCK可能会与其他SESSION争用。 按照相同的时间顺序访问资源: 确保每个事务按照相同的物理顺序访问资源。两个事务按照相同的物理顺序访问,第一个事务会获得资源上的锁而不会被第二个事务阻塞。第二个事务想获得第一个事务上的LOCK,但被第一个事务阻塞。这样的话就不会导致循环阻塞的情况。 ------------------------- 回 4楼(leamonjxl) 的帖子 两种方式看你的业务怎么应用。这里不仅是分表的问题,还可能存在分库,分服务器的问题。取决与你的架构方案。 物理分表+视图,这是一种典型的冷热数据分离的方案,大致的做法如下: 1.    保留最近3个月的数据为当前表,也即就是我们说的热数据 2.    将其他数据按照某种规则分表,比如按照年或者季度或者月,这部分是相对冷的数据 分表后,涉及到几个问题: 第一问题是,转移数据的过程,一般是晚上业务比较闲来转移,转移按照一定的规则来做,始终保持3个月,这个定时任务本身也很消耗时间 再者,关于查询部分,我想你们的数据库服务器应该通过REPLICATION做了读写分离的吧,主库我觉得压力不会太大,主要是插入或者更新,只读需要做视图来包含全部的数据,但通过UNION ALL所有分表的数据,最后可能还是非常大,在某些情况下,性能不一定好。这个是不是业务上可以解决。比如,对于1年前的历史数据,放在单独的只读上,相对热的数据放在一起,这样压力也会减少。 分区表的话,因为涉及到10亿数据,要有好的分区方案,相对比较简单一点。但对于10亿的大表,始终是个棘手的问题,无论分多少个分区,单个服务器的资源也是有限的。可扩展性方面也存在问题,比如在只读上你没有办法做服务器级别的拆分了。这可能也会造成瓶颈。 现在很多企业都在做分库分表,这些的要解决一些高并发,数据量大的问题。不知是否考虑过类似于中间件的方案,比如阿里巴巴的TDDL类似的方案,如果你有兴趣,可以查询相关资料。 ------------------------- 回 9楼(jiangnii) 的帖子 阿里云数据库不仅提供一个数据库,还提供数据库一种服务。阿里云数据库不仅简化了基础架构的部署,还提供了数据库高可用性架构,备份服务,性能诊断服务,监控服务,专家服务等等,保证用户放心、方便、省心地使用数据库,就像水电一样。以前的运维繁琐的事,全部由阿里云接管,用户只需要关注数据库的使用和具体的业务就好。 关于优化和在云数据库上处理大数据量或复杂的数据操作方面,在云数据库上是一样的,没有什么特别的地方,不过我们的云数据库是使用SSD磁盘,这个比普通的磁盘要快很多,IO上有很大的优势。目前单个实例支持1T的数据量大小。陆续我们会推出更多的服务,比如索引诊断,连接诊断,容量分析,空间诊断等等,这些工作可能是专业的DBA才能完成的,以后我们会提供自动化的服务来为客户创造价值,希望能帮助到客户。 谢谢! ------------------------- 回 12楼(daniellin17) 的帖子 这个问题我不知道是否是两个问题,一个是并行度,另一个是并发,我更多理解是吞吐量,单就并行度而言。 提高并行度需要考虑的因素有: 1.    可用于SQL SERVER的CPU数量 2.    SQL SERVER的版本(32位/64位) 3.    可用内存 4.    执行的查询类型 5.    给定的流中处理的行数 6.    活动的并发连接数量 7.    sys.configurations参数:affinity mask/max server memory (MB)/ max degree of parallelism/ cost threshold for parallelism 以DOP的参数控制并行度为例,设置如下: SELECT * FROM sys.configurations WITH (NOLOCK) WHERE name = 'max degree of parallelism' EXEC sp_configure 'max degree of parallelism',2 RECONFIGURE WITH OVERRIDE 经过测试,DOP设置为2是一个比较适中的状态,特别是OLTP应用。如果设置高了,会产生较多的SUSPEND进程。我们可以观察到资源等待资源类型是:CXPACKET 你可以用下列语句去测试: DBCC SQLPERF('sys.dm_os_wait_stats',CLEAR) SELECT * FROM sys.dm_os_wait_stats WITH (NOLOCK) ORDER BY 2 DESC ,3 DESC 如果是吞吐量的话。优化的范围就很广了。优化是系统性的。硬件配置我们选择的话,大多根据业务量来预估,然后考虑以下: 1.    RAID的划分,RAID1适合存放事务日志文件(顺序写),RAID10/RAID5适合做数据盘,RAID10是条带化并镜像,RAID5条带化并奇偶校验 2.    数据库设置,比如并行度,连接数,BUFFER POOL 3.    数据库文件和日志文件的存放规则,数据库文件的多文件设置规则 4.    TEMPDB的优化原则,这个很重要的 5.    表的设计方面根据业务类型而定 6.    CLUSTERED INDEX和NONCLUSTERED INDEX的设计 7.    阻塞分析 8.    锁和死锁分析 9.    执行计划缓冲分析 10.    存储过程重编译 11.    碎片分析 12.    查询性能分析,这个有很多可以优化的方式,比如OR/UNION/类型转换/列上使用函数等等 我这里列举一个高并发的场景: 比如,我们的订单,比如搞活动的时候,订单刷刷刷地增长,单个实例可能每秒达到很高很高,我们分析到最后最常见的问题是HOT PAGE问题,其等待类型是PAGE LATCH竞争。这个过程可以这么来处理,简单列几点,可以参考很多涉及高并发的案例: 1.    数据库文件和日志文件分开,存放在不同的物理驱动器磁盘上 2.    数据库文件需要与CPU个数形成一定的比例 3.    表设计可以使用HASH来作为表分区 4.    表可以设置无序的KEY/INDEX,比如使用GUID/HASH VALUE来定义PRIMARY KEY CLUSTER INDEX 5.    我们不能将自增列设计为聚集INDEX 这个场景只是针对高并发的插入。对于查询而言,是不适合的。但这些也可能导致大量的页拆分。只是在不同的场景有不同的设计思路。这里抛砖引玉。 ------------------------- 回 13楼(zuijh) 的帖子 ECS上现在有两种磁盘,一种是传统的机械臂磁盘,另一种是SSD,请先诊断你的IO是否出现了问题,本帖中有提到如何判断磁盘出现问题的相关话题,请参考。如果确定IO出现问题,可以尝试使用ECS LOCAL SSD。当然,我们欢迎你使用云数据库的产品,云数据库提供了很多有用的功能,比如高可用性,灵活的备份方案,灵活的弹性方案,实用的监控报警等等。 ------------------------- 回 17楼(豪杰本疯子) 的帖子 我们单个主机或者单个实例的资源总是有限的,因为涉及到很大的数据量,对于存储而言是个瓶颈,我曾使用过SAN和SAS存储,SAN存储的优势确实可以解决数据的灵活扩展,但是SAN也分IPSAN和FIBER SAN,如果IPSAN的话,性能会差一些。即使是FIBER SAN,也不是很好解决性能问题,这不是它的优势,同时,我们所有DB SERVER都连接到SAN上,如果SAN有问题,问题涉及的面就很广。但是SAS毕竟空间也是有限的。最终也会到瓶颈。数据量大,是造成性能问题的直接原因,因为我们不管怎么优化,一旦数据量太大,优化的能力总是有限的,所以这个时候更多从架构上考虑。单个主机单个实例肯定是抗不过来的。 所以现在很多企业在向分布式系统发展,对于数据库而言,其实有很多形式。我们最常见的是读写分离,比如SQL SERVER而言,我们可以通过复制来完成读写分离,SQL SERVER 2012及以后的版本,我们可以使用ALWAYSON来实现读写分离,但这只能解决性能问题,那空间问题怎么解决。我们就涉及到分库分表,这个分库分表跟应用结合得紧密,现在很多公司通过中间件来实现,比如TDDL。但是中间件不是每个公司都可以玩得转的。因此可以将业务垂直拆分,那么DB也可以由此拆分开来。举个简单例子,我们一个典型的电子商务系统,有订单,有促销,有仓库,有配送,有财务,有秒杀,有商品等等,很多公司在初期,都是将这些放在一个主机一个实例上。但是这些到了一定规模或者一定数据量后,就会出现性能和硬件资源问题,这时我们可以将它们独立一部分获完全独立出来。这些都是一些好的方向。希望对你有所帮助。 ------------------------- 回 21楼(dt) 的帖子 问: 求大数据量下mysql存储,优化方案 分区好还是分表好,分的过程中需要考虑事项 mysql高并发读写的一些解决办法 答: 分区:对于应用来说比较简单,改造较少 分表: 应用需较多改造,优点是数据量太大的情况下,分表可以拆分到多个实例上,而分区不可以。 高并发优化,有两个建议: 1.    优化事务逻辑 2.    解决mysql高并发热点,这个可以看看阿里的一个热点补丁: http://www.open-open.com/doc/view/d58cadb4fb68429587634a77f93aa13f ------------------------- 回 23楼(aelven) 的帖子 对于第一个问题.需要看看你的数据库架构是什么样的?比如你的架构具有高可用行?具有读写分离的架构?具有群集的架构.数据库应用是否有较冷门的功能。高并发应该不是什么问题。可扩展性方面需要考虑。阿里云数据库提供了很多优势,比如磁盘是性能超好的SSD,自动转移的高可用性,没有任何单点,自动灵活的备份方案,实用的监控报警,性能监控服务等等,省去DBA很多基础性工作。 你第二个问题,看起来是一个高并发的场景,这种高并发的场景容易出现大量的LOCK甚至死锁,我不是很清楚你的业务,但可以建议一下,首先可以考虑快照隔离级别,实现行多版本控制,让读写不要阻塞。至于写写过程,需要加锁的粒度降低最低,同时这种高并发也容易出现死锁,关于死锁的分析,本帖有提到,请关注。 第三个问题,你用ECS搭建自己的应用也是可以的,RDS数据库提供了很多功能,上面已经讲到了。安全问题一直是我们最看重的问题,肯定有超好的防护的。 ------------------------- 回 26楼(板砖大叔) 的帖子 我曾经整理的关于索引的设计与规范,可以供你参考: ----------------------------------------------------------------------- 索引设计与规范 1.1    使用索引 SQL SERVER没有索引也可以检索数据,只不过检索数据时扫描这个表而异。存储数据的目的,绝大多数都是为了再次使用,而一般数据检索都是带条件的检索,数据查询在数据库操作中会占用较大的比例,提高查询的效率往往意味着整个数据库性能的提升。索引是特定列的有序集合。索引使用B-树结构,最小优化了定位所需要的键值的访问页面量,包含聚集索引和非聚集索引两大类。聚集索引与数据存放在一起,它决定表中数据存储的物理顺序,其叶子节点为数据行。 1.2    聚集索引 1.2.1    关于聚集索引 没聚集索引的表叫堆。堆是一种没有加工的数据,以行标示符作为指向数据存储位置的指针,数据没有顺序。聚集索引的叶子页面和表的数据页面相同,因此表行物理上按照聚集索引列排序,表数据的物理顺序只有一种,所以一个表只有一个聚集索引。 1.2.2    与非聚集索引关系 非聚集索引的一个索引行包含指向表对应行的指针,这个指针称为行定位器,行定位器的值取决于数据页保存为堆还是被聚集。若是堆,行定位器指向的堆中数据行的行号指针,若是聚集索引表,行定位器是聚集索引键值。 1.2.3    设计聚集索引注意事项     首先创建聚集索引     聚集索引上的列需要足够短     一步重建索引,不要使用先DROP再CREATE,可使用DROP_EXISTING     检索一定范围和预先排序数据时使用,因为聚集索引的叶子与数据页面相同,索引顺序也是数据物理顺序,读取数据时,磁头是按照顺序读取,而不是随机定位读取数据。     在频繁更新的列上不要设计聚集索引,他将导致所有的非聚集所有的更新,阻塞非聚集索引的查询     不要使用太长的关键字,因为非聚集索引实际包含了聚集索引值     不要在太多并发度高的顺序插入,这将导致页面分割,设置合理的填充因子是个不错的选择 1.3    非聚集索引 1.3.1    关于非聚集索引 非聚集索引不影响表页面中数据的顺序,其叶子页面和表的数据页面时分离的,需要一个行定位器来导航数据,在将聚集索引时已经有说明,非聚集索引在读取少量数据行时特别有效。非聚集索引所有可以有多个。同时非聚集有很多其他衍生出来的索引类型,比如覆盖索引,过滤索引等。 1.3.2    设计非聚集索引     频繁更新的列,不适合做聚集索引,但可以做非聚集索引     宽关键字,例如很宽的一列或者一组列,不适合做聚集索引的列可作非聚集索引列     检索大量的行不宜做非聚集索引,但是可以使用覆盖索引来消除这种影响 1.3.3    优化书签查找 书签会访问索引之外的数据,在堆表,书签查找会根据RID号去访问数据,若是聚集索引表,一般根据聚集索引去查找。在查询数据时,要分两个部分来完成,增加了读取数据的开销,增加了CPU的压力。在大表中,索引页面和数据页面一般不会临近,若数据只存在磁盘,产生直接随机从磁盘读取,这导致更多的消耗。因此,根据实际需要优化书签查找。解决书签查找有如下方法:     使用聚集索引避免书签查找     使用覆盖索引避免书签查找     使用索引连接避免数据查找 1.4    聚集与非聚集之比较 1.4.1    检索的数据行 一般地,检索数据量大的一般使用聚集索引,因为聚集索引的叶子页面与数据页面在相同。相反,检索少量的数据可能非聚集索引更有利,但注意书签查找消耗资源的力度,不过可考虑覆盖索引解决这个问题。 1.4.2    数据是否排序 如果数据需要预先排序,需要使用聚集索引,若不需要预先排序就那就选择聚集索引。 1.4.3    索引键的宽度 索引键如果太宽,不仅会影响数据查询性能,还影响非聚集索引,因此,若索引键比较小,可以作为聚集索引,如果索引键够大,考虑非聚集索引,如果很大的话,可以用INCLUDE创建覆盖索引。 1.4.4    列更新的频度 列更新频率高的话,应该避免考虑所用非聚集索引,否则可考虑聚集索引。 1.4.5    书签查找开销 如果书签查找开销较大,应该考虑聚集索引,否则可使用非聚集索引,更佳是使用覆盖索引,不过得根据具体的查询语句而看。 1.5    覆盖索引 覆盖索引可显著减少查询的逻辑读次数,使用INCLUDE语句添加列的方式更容易实现,他不仅减小索引中索引列的数据,还可以减少索引键的大小,原因是包含列只保存在索引的叶子级别上,而不是索引的叶子页面。覆盖索引充当一个伪的聚集索引。覆盖索引还能够有效的减少阻塞和死锁的发生,与聚集索引类似,因为聚集索引值发生一次锁,非覆盖索引可能发生两次,一次锁数据,一次锁索引,以确保数据的一致性。覆盖索引相当于数据的一个拷贝,与数据页面隔离,因此也只发生一次锁。 1.6    索引交叉 如果一个表有多个索引,那么可以拥有多个索引来执行一个查询,根据每个索引检索小的结果集,然后就将子结果集做一个交叉,得到满足条件的那些数据行。这种技术可以解决覆盖索引中没有包含的数据。 1.7    索引连接 几乎是跟索引交叉类似,是一个衍生品种。他将覆盖索引应用到交叉索引。如果没有单个覆盖索引查询的索引而多个索引一起覆盖查询,SQL SERVER可以使用索引连接来完全满足查询而不需要查询基础表。 1.8    过滤索引 用来在可能没有好的选择性的一个或者多个列上创建一个高选择性的关键字组。例如在处理NULL问题比较有效,创建索引时,可以像写T-SQL语句一样加个WHERE条件,以排除某部分数据而检索。 1.9    索引视图 索引视图在OLAP系统上可能有胜算,在OLTP会产生过大的开销和不可操作性,比如索引视图要求引用当前数据库的表。索引视图需要绑定基础表的架构,索引视图要求企业版,这些限制导致不可操作性。 1.10    索引设计建议 1.10.1    检查WHERE字句和连接条件列 检查WHERE条件列的可选择性和数据密度,根据条件创建索引。一般地,连接条件上应当考虑创建索引,这个涉及到连接技术,暂时不说明。 1.10.2    使用窄的索引 窄的索引有可减少IO开销,读取更少量的数据页。并且缓存更少的索引页面,减少内存中索引页面的逻辑读取大小。当然,磁盘空间也会相应地减少。 1.10.3    检查列的唯一性 数据分布比较集中的列,种类比较少的列上创建索引的有效性比较差,如果性别只有男女之分,最多还有个UNKNOWN,单独在上面创建索引可能效果不好,但是他们可以为覆盖索引做出贡献。 1.10.4    检查列的数据类型 索引的数据类型是很重要的,在整数类型上创建的索引比在字符类型上创建索引更有效。同一类型,在数据长度较小的类型上创建又比在长度较长的类型上更有效。 1.10.5    考虑列的顺序 对于包含多个列的索引,列顺序很重要。索引键值在索引上的第一上排序,然后在前一列的每个值的下一列做子排序,符合索引的第一列通常为该索引的前沿。同时要考虑列的唯一性,列宽度,列的数据类型来做权衡。 1.10.6    考虑索引的类型 使用索引类型前面已经有较多的介绍,怎么选择已经给出。不再累述。 ------------------------- 回 27楼(板砖大叔) 的帖子 这两种都可以吧。看个人的喜好,不过微软现在的统一风格是下划线,比如表sys.all_columns/sys.tables,然后你再看他的列全是下划线连接,name     /object_id    /principal_id    /schema_id    /parent_object_id      /type    /type_desc    /create_date    /modify_date 我个人的喜好也是喜欢下划线。    

石沫 2019-12-02 01:34:30 0 浏览量 回答数 0

回答

2014年12月第2周 1)SLB植入cookie和SLB重写cookie有什么区别? cookie植入,表示直接由SLB系统来分配和管理对客户端进行的cookie植入操作,用户在进行配置时 需要指定会话保持的超时时间; cookie重写,表示SLB系统会根据用户自定义cookie名称来分配和管理对客户端进行的cookie植入操 作,便于用户识别和区分自定义的cookie名称 http://help.aliyun.com/doc/view/13510025.html?spm=0.0.0.0.vwbsGF 2)SLB有没有对外提供API接口,因为我想做到用程序自动去控制SLB的操作? SLB api您可以参考http://help.aliyun.com/view/13621674.html? spm=5176.7114037.1996646101.1.9RoTFM&pos=1 3)使用slb怎么实现数据的单向同步和双向同步? 单向同步可以使用rsync,双向同步的话rsync需要借用别的服务来实现,如unison+inotify。 4)slb的vip是否可以实现远程登录? slb 的vip无法实现远程登录。 5)slb的带宽是所有后端ECS服务器的带宽总和吗? 不是,使您购买的slb实例带宽。 6)slb健康检查机制是什么? 用户开启健康检查功能后,当后端某个ECS健康检查出现问题时会将请求转发到其他健康检查正常的 ECS上,而当该ECS恢复正常运行时,SLB会将其自动恢复到对外或对内的服务中。 针对7层(HTTP协议)服务,SLB系统的健康检查机制为:默认通过SLB的后端系统来向该ECS应用服务 器配置的缺省首页发起http head请求(缺省通过在服务监听配置中指定的后端ECS端口进行访问), 返回200 OK后将视为后端ECS运行正常,否则视为后端ECS运行异常。如果用户用来进行健康检查的页 面并不是应用服务器的缺省首页,那么需要用户指定相应的URI。如果用户对http head请求限定了 host字段的参数,那么需要用户指定相应的URL。用户也可以通过设定健康检查的频率、健康阈值和 不健康阈值来更好的控制健康检查功能。 针对4层(TCP协议)服务,SLB系统的健康检查机制为:默认通过在服务监听配置中指定的后端ECS端 口发起访问请求,如果端口访问正常则视为后端ECS运行正常,否则视为后端ECS运行异常。 当用户后端ECS健康检查异常后,SLB系统会将该ECS的转发权重设置为0,从而确保新的连接不会再被 转发到该ECS上,而已经建立的连接的请求却不会被直接断掉。 针对可能引起健康检查异常的排查思路点击这里查看。 关于健康检查的参数配置,提供如下参考建议: 响应超时时间:5秒 健康检查间隔:2秒 不健康阈值:3 健康阈值:3 7)权重设置为0怎么办? 权重为0的服务器将无法提供服务。 8)健康检查异常的排查思路? 参考http://help.aliyun.com/doc/view/13510029.html?spm=0.0.0.0.Oa9Ezv ------------------------- 12月份第3周1)轮询与最小连接数方式的区别是什么?当前SLB支持轮询和最小连接数2种模式的转发规则。“轮询模式”会将外部和内部的访问请求依序分发给后端ECS进行处理,而“最小连接数模式”会将外部和内部的访问请求分发给当前连接数最小的一台后端ECS进行处理。2)SLB支持redis的主备?目前我们的SLB不支持主备模式(冷备),只支持"轮询"和"最小连接数"两种负载模式。关于SLB的原理您可以参阅如下博文:http://blog.aliyun.com/149 基于ECS的redis搭建,您可以参阅论坛中其它用户的分享案例:http://bbs.aliyun.com/read/161389.html3)负载均衡的多台服务器之间文件会不会自动同步?slb是不会自动同步的,需要您自行配置。4)四层和七层检查的区别是什么?如果是4层(TCP)配置,健康检查只是简单的TCP握手,不会真正去访问您的业务。但对于7层(HTTP)配置,会发HTTP请求(类似于正常访问),并根据返回状态码判断服务状态(2XX表示服务正常)。5)我有多个slb,之前一个slb由于被攻击被黑洞给屏蔽了外部请求,是否可以在slb 并屏蔽后 能够自动将请求分发到另外的slb?由于攻击导致屏蔽外部请求的话,slb没有自动切换的方法的。6)目前slb是否可以设置黑名单?暂不支持。7)我的slb实例控制台显示是停止,为什么?需要给监听的端口设置带宽才能正常。  8)我使用了 SLB那么ESC 需要购买带宽吗?不需要的。但如需要管理ECS,则可购买少些的带宽如1M来管理。9)slb变更计费方式需要多久才能生效?变更和计费将在第二日零点后生效。10)私网SLB的使用,是如何收费的呢?私网slb是不收取费用的。 ------------------------- 12月第4周1)最近用slb后打开网页老出现503 和504错误?一般都是从ECS获取站点信息等异常导致的。您首先先确保源站都可以正常的访问。2)slb检查时突然发现SLB监听错误,怎么回事?配置的健康检查的域名为空,检查的路径是/index.html,目前查看服务器中只有站点c绑定了空主机头,且站点目录下有index.html,而此站点是停止状态,现已帮您启用,查看服务器的健康检查状态已经正常。3)我想使用slb搭建一个负载均衡,后端使用windows服务器,想咨询一下后端服务器是否需要进行什么特别配置呢?另外使用了slb后,后端还能否得到用户的真实IP地址呢,要不要进行什么特殊配置才可以得到后端用户的真实IP。后端服务器的操作系统和web环境最好保持一致,硬件配置上没有什么特别的,4层tcp是可以直接获得前端用户访问的真实地址的,7层http需要在后端web服务端设置一下,参考http://help.aliyun.com/view/13502961.html?spm=5176.7114037.1996646101.1.oRpnOM&pos=14)slb支持https吗?slb您可以通过TCP协议配置443端口的方式来实现,但是安全证书需要保存在您的后端ECS上。5)健康检查后续是否提供多个域名?健康检查只支持一个域名。6)我想关闭负载均衡的健康检查,请问如何配置?4层tcp是无法关闭健康检查的,7层http可以在控制台关闭。健康检查是不会消耗您服务器的资源的,因为slb都是通过内网ip来进行健康检查。7)如何在BLS上 限制单个IP 禁止访问 我的网站呢?SLB暂时不支持设置屏蔽用户端IP。 ------------------------- Re:Re负载均衡SLB常见咨询问题(持续连载) 引用第2楼517449116于2014-12-17 15:54发表的 Re负载均衡SLB常见咨询问题(持续连载) : 如果开启健康检查,健康检查异常的话,是不是就不会给这个异常的ECS分发? [url=http://bbs.aliyun.com/job.php?action=topost&tid=188736&pid=596806][/url] 异常的话不会在分发。 ------------------------- 2015年1月第1周1)有2台ECS起名叫A和B做SLB,A权重设的100 B权重设的0.请问.当A死机时,SLB是否会转到权重是0的B上?如果有一台设置为0,永远都不会有请求转发到此服务器上,即使权重100的宕机也不会转发到0权重的。2)会话保持的选择?开启会话保持功能后,SLB会把来自同一客户端的访问请求分发到同一台后端ECS上进行处理。针对7层(HTTP协议)服务,SLB系统是基于cookie的会话保持。针对4层(TCP协议)服务,SLB系统是基于IP地址的会话保持。3)用nagios或zabbix监控网络带宽,是否可以监控 slb的流量?nagios或zabbix,cacti是要要被监控端安装snmp或者相关agent ,slb不支持安装这些,所以无法通过这条监控软件进行监控。您可以在slb的控制台里面进行查看流量等相关信息。4)用了负载均衡后升级带宽,是不是只用在负载上面升级就可以了,ECS是不是不用在升级了?SLB与后端服务器是经过内网通信,所以如果业务量增加,您对SLB的带宽调整就行,不需要对服务器ECS进行带宽的升级。 ------------------------- 2015年1月第2周 1)SLB到期之后,会对SLB有关联的云主机怎么处理?云主机还没到期的前提下  我想把网站域名解析到SLB上 如果SLB到期了 会影响到我的网站服务么? 云服务器是不会有什么影响的,会自动又变成单独的云服务器可以供您使用的。但是如果您的域名是解析到SLB上,那么会影响到您的站点访问的。服务器上不会有其他的问题感谢您的支持。 2)当SLB 状态为停止的时候 还计算费用吗?停止后公网slb会收取实例费用。SLB价格总览参考:http://help.aliyun.com/view/11108234_13502923.html?spm=0.0.0.0.kBLsVA 3)做了SLB负载均衡,四层和7层负载均衡是否都走slb带宽? 都走slb带宽。 4)我想 移除 slb下的ecs(用作其他用途),请问在移除的时候是否会影响被负载到这台 ecs上的服务的使用 ,也是说slb这是是怎么处理的? 您可以将要移除的主机的权重更改为0 ,这样默认就不会在分发到权重为0的主机上,这个时候您可以移除该主机。但要确保您的另外一台服务器可以承受所有的访问。 5)SLB实例如何释放? 您需要登录管理控制台点击负载均衡。查询您之前创建的实例在哪个节点下,然后释放您的实例。 6)SLB按照小时的带宽计费, 是否需要每小时调整?比如我可否按照一个比较高的上限, 比如3G,然后每个小时按照该小时的峰值进行独立计费呢?   在一个自然日内,限制用户变更计费方式的次数为1次,变更计费方式将在第二日零点后生效;比如用户在今天5月5日的10:00提交了变更计费方式,那么该变配申请将在明天5月6日00:00后生效。http://help.aliyun.com/view/13502923.html?spm=5176.7114037.1996646101.3.67L5dm&pos=2;SLB目前最大带宽是1000Mbps 7)SLB可以限制每个ip的访问频率吗?(工单1F684MN)slb不支持这样配置的。 8)为什么我设置SLB健康检查间隔为5S,但却每秒都有很多请求?因为用于健康检查的服务ip不止一个,每秒中都会有不同的内网ip进行健康检查,健康检查是通过内网方式,不会消耗您后端服务器的资源,您可以将健康检查间隔阈值跳大些,这样监测频率会降低很多。 ------------------------- Re:负载均衡SLB常见咨询问题(持续连载至2015年1月第3周) 2015年1月第3周 1.发现很多100.97.0.0/16 的ip段扫描,给我服务器带来很大压力,怎么办? 100.97.0.0/16 是我们slb的健康检查服务ip段,如果给服务器带来较大压力,请调整健康检查的设置;健康检查的话 1)调低检查频率 2)设置检查静态文件,而不是默认首页或者动态文件 3)设置一个不记录日志的virtualhost,专门用于健康检查。 2)SLB里的带宽 和后面对应服务器的带宽有什么关联关系?比如SLB我设置了带宽为10M, 但是我后 面2台服务器购买的带宽都只有2M, 这种情况带宽以哪个为准? 如果您设置的是常规7层slb负载均衡,那么网站访问所使用的带宽,都将通过slb而不需要消耗云服 务器的带宽,但是云服务器本身的系统更新,以及您更新网站等等也是需要带宽的,因此您保留2M 即可。 3)采用流量计费方式的话带宽是否没有限制? SLB按流量计费最大的带宽是1G。 4)请问我如何获得一个外网SLB期所对应的内网IP呢?比如现在我有一个外网SLB下挂了一个ECS, 而ECS的iptables里我想做一些配置,针对来自于这个SLB的请求做一个判断,我需要知道这个外网 SLB的内网IP。 目前SLB与后端通过如下地址段进行交互: 10.158.0.0/16 10.159.0.0/16 100.97.0.0/16 您可以针对上述地址段做相关配置。 5)如何确保SLB后端的多台ECS之间的数据同步呢? 目前,有很多类似的工具可以实现服务器之间的数据同步,比如:rsync。具体使用及选择,还请通 过其他途径获得更多的介绍资料及指导信息。您也可以将您的ECS配置成无状态的应用服务器,而数 据和文件统一存放在RDS和OSS服务上。 ------------------------- 2015年1月第4周1.为什么我的SLB实例突然消失了?请检查您的SLB服务是否设置了自动释放时间导致。2.我想关掉负载均衡,怎么操作?您直接登录到阿里云管理控制台——slb负载均衡——实例中查询创建的slb服务,后方有“释放”的按钮,您直接释放即可。3. 我现在有两个阿里账号里面都有ECS,我能不能在一个slb里面配置不同阿里云账户下的ECS?目前只能将同一账户下的服务器添加到SLB中,无法跨账户添加。4.ECS做负载均衡需要用户做额外的配置吗?可以参考http://help.aliyun.com/knowledge_detail.htm?knowledgeId=5973987。5. 云服务器上做数据库负载均衡如何实现,需要购买什么产品 ?文件服务器能否做负载均衡,比如10台文件服务器,包括读写这种的  ?1)数据库集群,用slb理论上是可以做的,但是如果您需要集群级别的数据库,建议使用我们的RDS。2)文件服务器也可以负载均衡,使用slb在均衡,保持会话,但是有一个问题是后端文件同步的,需要您自行同步,如 rsync。6.看SLB的说明是支持ddos的防护的,请问下,SLB的防护的峰值是多少,超过峰值黑洞时间是多少?这个与slb所在地区有关,和ecs的防御阀值是一样的,黑洞时间也是2.5小时。7. slb第七层是基于haproxy还是nginx还是tengine实现的?使用tengine实现的。8.7层和4层 SLB的超时时间是多少?7层超时时间是60s,4层超时时间是900s。9.负载均衡健康检查请求数量太多,怎么回事?因为slb前端机器是一组机器,所以健康检查请求较多,请您不要担心,集群内的每台服务都会对您的健康按照您设定的频率去做健康检查:您可以按照上述方法去优化您的健康检查项,看似请求量很大,但是对您资源消耗很少的,有2个建议给您:1)扩大健康检查的频率2)将检查页面配置为静态页面。这样请求消耗的资源会节省。10. SLB配置中的最小连接数是基于什么样判断?SLB会自动判断 当前ECS 的established 来判断是否转发。 ------------------------- 2015年2月第1周1)我想了解下SLB按流量计费是不是每小时需要扣0.02元?按量付费,国内节点配置费用是按照0.02/小时。流量单独计费。按带宽计费:采取按小时计费,以日结算(运行未满一日,按照当日实际使用小时数*当日开通的最高带宽的天价格/24)。如果您使用SLB实例的时间不足一小时,按一小时收费。2)请问健康检查发的什么请求? head 还是 get?head请求。3)SLB最大连接数如何来设置?目前暂不支持设置最大连接数限制。4)SLB 后端有两个服务器HA1和HA2,为什么我将HA1的权重设置成0,SLB的健康检查就有告警呢?slb四层的话,只要权重设置为0,那么健康检查就是显示异常。 ------------------------- 2015年2月第3周1)负载均衡SLB的实例防攻击防御是多少?我们有云盾的防御黑洞策略,比如以杭州节点的slb,其最高防御的流量阈值为5G,当最大流量超过5G,您的slb vip则会被加入到黑洞中,触发黑洞会使ecs或者slb正常使用中断2.5小时,这个您可以通过云盾管理控制台查看到这个说明。2) 我其他机房的服务器能添加到你们的负载均衡SLB中吗?不可以的,slb使用的是内网和后端的ECS互联,无法直接添加非阿里云主机的服务器,且slb后端的ecs需要使用同一节点的主机。3)负载均衡服务支持的最大负载均衡实例数目多少?总体峰值可支持每秒新建链接数大约多少?SLB对于后端服务器的数目是没有限制的。对于总体峰值每秒新建连接数是没有限制的。但是因为SLB前端是云盾服务,所以最大值取决于云盾中您配置的请求数。您可以查看云盾看到具体的值。4)SLB按量计费为什么需要设置带宽峰值?如果不设置带宽峰值,遇到攻击等情况,可能流量打的非常高的,带宽流量峰值您可以在slb控制台设置。5)在SLB控制面板看到的流入流量,要比后端服务器的eth0的income流量小很多, 请问slb的流入流量是否应该等于后端服务器的内网网卡入流量吗?不等于的,后端的eth0包括了slb的流量,还有其他的流量,包括ecs直接的内网通信等。slb只做转发,不处理请求的,slb通过内网转发到ecs。6)SLB中的月账单 是指我们拥有所有的 SLB 实例的计费呢,还是单独的某个 SLB 的计费?月账单是指您不同类型产品,截止当前日期内月内消费计费额度的,是所有SLB产品的。您也可以通过账单明细进行查询具体信息的。 ------------------------- 2014年2月第4周1)10.159.63.55,这个内网ip,总是恶意访问我们网站?SLB系统除了会通过系统服务器的内网IP将来自外部的访问请求转到后端ECS上之外,还会对ECS进行健康检查(前提是您已经开启了这一功能)和对您的SLB服务进行可用性监控,这些访问的来源都是由SLB系统发起的,具体包含的IP地址段是:杭州、青岛、北京、深圳节点SLB系统IP地址段:10.159.0.0/16,10.158.0.0/16和100.97.0.0/16,为了确保您对外服务的可用性,请确保对上述地址的访问配置放行规则。2)slb计费方式变更需要多久,业务会受到影响么?变更计费方式与变更配置说明1、支持用户在按使用流量和按公网带宽2种计费方式间切换;2、支持按固定带宽方式计费的用户灵活变更带宽配置;3、在一个自然日内,限制用户变更计费方式的次数为1次,变更计费方式将在第二日零点后生效;比如:用户在今天5月5日的10:00提交了变更计费方式,那么该变配申请将在明天5月6日00:00后生效。4、按固定带宽方式计费变更带宽配置即时生效,带宽计费取自然日内用户开通的最高带宽。5、对客户业务不会造成影响;3)负载均衡能将我的外部非阿里云服务器和ECS服务器放到一块?目前负载均衡SLB仅支持阿里云ECS,无法支持外部非阿里云服务器。4)slb是否有连接数限制,需要大量终端一直与平台保持长连接,阿里云能提多少长连接?SLB没有并发连接数限制的,slb是转发请求不做处理,实际连接数还要跟您后端的处理能力有关。 ------------------------- 2015年3月第1周1)调整权重会对SLB已经有的正常连接有影响吗?目前调整权重会对调整权重的这台主机已有的连接产生影响,会有连接卡主,卡住时间由健康检查配置的时间决定。2)slb是否支持UDP协议?目前SLB暂不支持UDP协议。3)现在TCP四层负载均衡的出口带宽受ECS机器的出口带宽限制吗?slb和ECS之间走的是内网流量,带宽是不受限制的。4)如果没有外网ip, 是否可以用slb的4层转发 ?没有带宽4层SLB也是可以使用的。 ------------------------- Re:负载均衡SLB常见咨询问题(持续连载至2015年3月第1周) 2015年3月第2周 1)SLB变更计费方式并支付成功后无法添加配置? SLB在一个自然日内,限制用户变更计费方式的次数为1次,变更计费方式将在第二日零点后生效查看您今天变更过一 次计费方式,开始时间:2015-03-09 00:00:00。原按使用流量计费,在2015-03-09 00:00:00后变更为按固定带宽计 费,带宽峰值: 2Mbps。同时在您新的计费方式生效之前,您是无法对该SLB进行修改配置的。 2)我的账户怎么欠费¥7.88,这是怎么回事? 查看您有使用负载均衡slb业务,在slb产品的账单欠费,请您登陆用户中心-消费记录-账单明细中查看 记录。 3)如何屏蔽健康检查探测的日志记录? 关闭或者屏蔽对test.php访问日志的方式: 在站点配置文件中添加内容: location ~ /test.php { access_log off; fastcgi_pass 127.0.0.1:9000; fastcgi_index index.php; include fastcgi.conf; } 注: 1、对test.php的location必须要放置在对php|php5处理前,否则会因为先被进行全局匹配导致无法生效。 2、还可以用另一种方案实现: a、在后端服务器中单独为用于健康检查的页面建立一个站点; b、关闭这个站点的日志记录: location ~ .*\.(php|php5)?$ { access_log off; fastcgi_pass 127.0.0.1:9000; fastcgi_index index.php; include fastcgi.conf; } 3、如果检查页面是其他格式,比如test.html,可以采用如下方式进行屏蔽: location ~ /test.html { access_log off; } 4.我想问下SLB的固定带宽,10M是不是上行和下行最大都能达到10M? 固定带宽指的是下行带宽最大达到10M,上行带宽没有限制。上行带宽指的是SLB的入流量(上行),就是进入SLB的 流量。带宽指的是SLB的出流量(下行),就是SLB对外发生给客户端的流量。 5.一般配置SLB的时候有个权重0到100,是如何选择数值的? 权重需要您根据后端机器的配置进行选择比如AB两台机器性能一致就分别设置50,这样请求就会在这两台机器上轮询 ,不同权重决定请求分发的分配。 ------------------------- 2015年3月第3周1)公网的SLB和ECS之间的流量是否收费?不收费。2) 想做SLB+两台ECS,附件OSS,程序Discuz。但是不知道如何实现?slb要求后端的两台ecs数据是一致的,为了保持数据的一致性,建议共享存数和数据,静态文件放置到oss里,数据库文件走自己搭建的主从或者,连接同一台rds。3)按流量计算是否需要设置峰值?按流量计费不需要设置峰值的。4)如何建一个子帐号来管理负载均衡SLB?子账户无法管理负载均衡服务。

qilu 2019-12-02 01:15:34 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板