• 关于

    信息查询系统如何搭建

    的搜索结果

问题

云服务器ECS

黄一刀 2020-04-04 04:10:42 856 浏览量 回答数 1

问题

Linux 系统云服务器 ECS 如何使用

boxti 2019-12-01 21:48:42 1800 浏览量 回答数 2

回答

Linux下如何进行FTP设置  ECSLinux服务器如何配置网站以及绑定域名  Ubuntu安装vncserver实现图形化访问  阿里云Docker镜像库  ECSlinux中添加ftp用户,并设置相应的权限  CentOS6.5安装vncserver实现图形化访问  LinuxSCP命令复制传输文件的用法  Mysql,phpmyadmin密码忘了怎么  Linux下l2tp客户端xl2tpd的安装配置  使用SFTP方式传输文件  ECSLinux系统盘网站数据更换至数据盘  WDCP的报错处理  Linux中PHP如何安装curl扩展方法  修改Linux服务器的ssh端口  ECSLinux配置vnc文档  运维分享--阿里云linux系统mysql密码修改脚本  20步打造最安全的NginxWeb服务器  SSH配置存在问题,导致登录和传输数据很慢  ECSLinux下如何查看定位当前正在运行的Nginx的配置文件  ECS服务器CentOS系统如何开放端口  查看Linux下默认的DNS  FTP主动被动模式配置混乱导致无法登录  linux环境配置phpmyadmin  ECSLinux系统下VSFTP配置的FTP上传文件报错“553Couldnotcreatefile”  ECSLinuxMysql启动提示Toomanyarguments(firstextrais'start')  运维分享--阿里云linux系统ssh远程连接检查脚本  ECSLinux系统授权mysql外网访问  ECSLinux服务器nginx禁止空主机头配置  ECSLinux服务器通过FTP无法查看到.htaccess文件  ECSLinux服务器下Mysql自动备份脚本的使用方法  ECS-linux授权mysql外网访问  用date命令修改Linux系统的时间为什么无效  运维分享--阿里云linux系统web日志分析脚本  ECSLinux服务器messagebus默认关闭导致安装桌面环境后无法正常使用  ECSNginx+php中php-fpm参数配置  运维分享--阿里云linux系统mysql连接检查脚本  iptables的conntrack表满了导致访问网站很慢  运维分享--阿里云linux系统带宽监测脚本  如何调整目录文件的拥有者和拥有组  yum操作报错处理  ECSLinux配置vsftpd限制FTP账户访问其它目录  vsftp报错:500OOPS:vsftpd:cannotlocateuserspecifiedin'ftp_username':ftp  Linux主机系统目录误操作权限修改为777修复方法  ECSNginx中https的配置说明  运维分享--阿里云linux系统负载状态检查脚本  ECSLinux服务器AMH云主机面板启动、关闭操作  ECSLinux服务器关闭磁盘自检  ECSLinux配置key认证登录后因为相关文件权限错误导致连接失败-Connectionclosedbyforeignhost  ECSLinux系统服务器解决ssh反向代理监听ip错误问题  ECSLinux设置定时任务crontab  ECSGentoo系统中mirrorselect获取内容失败提示Nameorservicenotknown  ECSLinux系统服务器ping域名返回Unknownhost报错  IIS、Nginx或Apache访问日志存在182.92.12.0/24段访问记录  Nginx日志的解释  ECSLinux系统wget下载文件  ECSLinux服务器内部无法解析域名  ECS路由表错误导致无法ping通  ECSLinux主机修改主机名  wordpress插件oss4wpurl无法访问  ECSLinux查看隐藏文件  Linux系统服务器解决vsftp服务使用root登录失败  ECSLinuxPPTP客户端登陆后获取地址错误  Linux系统服务器解决内外双网卡均显示内网IP地址问题  ECSLinux系统NetworkManager导致网络异常  外部PingECSLinux丢包严重  ECSLinux检查Nginx配置文件  ECSLinux系统判断当前运行的Apache所使用的配置文件  Apache访问日志的说明  ECSLinux.htacess文件上传无法显示  linux服务器内无法访问其他站点的检查处理方法  ECSmysql无法启动报错Can'tcreate/writetofile'/tmp/ibfguTtC  ECSLiunx系统服务器执行ls查询命令提示bash:ls:commandnotfound  Linux为何执行命令会执行历史命令  ECSLinux系统如何检查系统上一次重启的时间  ECSLinux下MySQL排查基本步骤  Linux系统如何查看mysql版本号  MySQL中查看慢SQL的日志文件方法  phpMyAdmin修改配置可以上传大文件  openSUSE下开机自动运行脚本命令的方法  给Linux系统添加一个回收站  ECSLinux分区异常无法挂载  ECSLinux上安装Cloudfs启动失败提示找不到库文件libunwind.so.8  ECSLinux清理/tmp目录下的文件原理  Liunx系统服务器通过prefork模块限制apache进程数量  ECSCentOS6.5系统下Apache配置https服务  Noinputfilespecified的解决方法  Apache、Nginx支持跨域访问  Apache环境下配置404错误页方法  ECSLinux通过修改Apache配置301重定向的方法  ECSLinux主机无法互访处理  ECSlinux服务器启用了TRACEMethod.怎么关闭  Apache运行参考的调整优化  ECSApache如何关闭目录访问  ECS服务器隐藏apache版本信息  ECSLinux判断HTTP端口监听状态的方法  ECSLinuxApache限制客户端访问网站的速度  负载均衡+ECS站点虚拟子目录的设置案例  ECS网站访问504错误分析  为何Ubuntu开启UFW后,VPC下的SNAT转发就失效了  ECSDebian自定义镜像启动无法SSH  ECSLinux云服务器如何确认文件系统只读?  ECSLinux创建文件报错Read-onlyfilesystem  恢复ext4文件系统中使用rm命令误删除的文件  ECSLinux删除乱码文件的方法  net.ipv4.tcp_fin_timeout修改导致的TCP链接异常排查  ECSLinux执行sh脚本提示Nosuchfileordirectory  /var/log/message日志报错  通过sshtunnel连接内网ECS和RDS  CentOS7中MySQL服务启动失败的解决思路  ECSLinux系统启动提示“Giverootpasswordformaintenance”  结束云盾客户端进程后如何启用  Ubuntu服务器中配置AWStats  CentOS6非root用户使用sftp服务  ssh避免客户端长久未操作导致连接中断  删除binglog导致mysql无法启动  ECSLinux服务器修改SSH端口号不生效的检查方法  ftp传输失败问题解决方法  ECSLinux下使用extundelete恢复被误删的文件  ECSLinux基于nginx环境通过.htaccess配置rewrite伪静态示例  ECSLinux系统利用openssl生成强密码  ECSCentOS6配置PPTPVPN  Last命令关于reboot记录的含义  Ubuntu修改运行级别的总结  ECSCentOS6系统PPTPVPN脚本  ECSLinux系统如何配置gentoo的源  ECSCentOS系统配置VPN客户端  多域名跳转——不同域名指向不同子目录  Centos配置PPTPVPN后无法打开网页  mysql不能远程连接  ECSLinux系统修改文件或目录权限方法  ECSWDCP破解mysql以及wdcp后台管理密码  ECSLinux系统如何设置SSH白名单  EcsLinux系统一键安装web环境下tomcat添加站点方法  Centos7安装vnc  Setuptools软件包版本太老导致ECSLinux安装AliyunCLI出错  Apache配置二级域名  ECSlinux重启丢失分区表  Linux系统服务器安装使用sar工具获取系统运行状态方式  ECSUbuntu开启sftp连接  linux系统mysql跳过密码登陆操作登陆设置  mysql报错LostconnectiontoMySQLserverat'readinginitialcommunicationpacket'  Ubuntuapt-get安装提errorprocessingpackageinstall-info(--configure)  Nodejs的版本升级和使用  Nodejs连接RDSMySQL数据库  ECS公共镜像Ubuntu,Centos的内核版本查看方法  ECSLinux服务器修改时区  Apache禁止未经许可的域名访问ECS上的网站  ECSLinux如何隐藏文件和文件夹  ECSmysql.sock丢失问题解决方法  ECSLinux云服务器centos将系统时区从UTC时间改为CST  ECSLinux云服务器权限问题说明  ECSLinux系统盘数据转移方法  Linux下忘记mysql的root密码  ECSMySQL编译安装支持innodb引擎  ECSLinuxNAT哈希表满导致服务器丢包  ECSLinux服务器重启后mount出错的解决方法  Centos6.5添加IPv6支持  ECSubuntu系统修改DNS/etc/resolv.conf无法保存  ECSLinux如何增加虚拟内存swap  ECSLinuxtraceroute使用方法  ECSLinux系统磁盘再次挂载报错没有有效的分区表  如何删除yum的缓存信息  ECSLinux服务器yum的查询功能  centos6怎么使用RPMForge软件源仓库  ECSLinux服务器Nginxrewrite示例  ECSLinuxCentOS6ssh连上就断掉并报错“fatal:mm_request_send:write:Brokenpipe”  mysql上传报错#1064-YouhaveanerrorinyourSQLsyntax  EcsLinux中rpm安装文件命令常用选项  ECSLinux系统kjournald进程占用io资源高的解决方法  ECSLinux如果通过i节点删除无法删除的文件  ECSLinux基于zabbix搭建企业级监控平台  ECSLinux系统yum卸载重装  ECSCentOS6.5OpenVPN配置  ECSLinux使用SFTP登陆时报错:Receivedunexpectedend-of-filefromSFTPserver  ECSLinux如何增加数据盘iNode数量  ECSLinux查看目录没有颜色  ECSLinux系统tmp目录的安全设置  ECSLinux下shm设备的安全设定  ECSCentOS多线程下载工具Axel使用说明  ECSLinuxcurl使用证书访问HTTPS站点  Linux系统中vsftp用户无法登陆的相关说明  Nginx配置文件中rewrite指令标志位的说明与使用  ECSLinux中ss命令显示连接状态的使用说明  ECSLinux系统没有程序运行通过top观察发现cpu很空闲  Linux下的文件权限检查和修改  ECSLinux云服务器利用chatter命令锁定系统重要文件  ECSCentos7安装OpenVPN  ECS上搭建反向代理通过内网访问OSS服务  ECSLinux下的script命令记录用户操作行为  Ubuntu下使用slay命令结束某个用户的所有进程  Nginx配置文件中root与alias指令的区别  Nginx配置文件中rewrite指令的使用  ECSLinux如何修改PATH变量  Centos安装桌面后在远程终端管理里面无法使用键盘和鼠标  ECSLinux下Apache忽略网站URL的大小写的方法  ECSLinux服务器利用Nethogs监控每个进程的网络使用情况  ECSapt-get安装软件或更新时提示apt-get的Segmentationfaultsts  ubuntu开机出现memtest86,重启也无法取消的原因  Linux下History命令显示操作时间,用户和登录IP  ECSLinux服务器使用htop监控负载 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:16:20 0 浏览量 回答数 0

万券齐发助力企业上云,爆款产品低至2.2折起!

限量神券最高减1000,抢完即止!云服务器ECS新用户首购低至0.95折!

问题

ECS实例管理FAQ

boxti 2019-12-01 21:48:18 1514 浏览量 回答数 0

问题

数据库百问,教你快速上手数据库

yq传送门 2019-12-01 20:16:46 31116 浏览量 回答数 21

问题

弹性伸缩

黄一刀 2020-04-04 02:13:52 91 浏览量 回答数 1

问题

阿里云服务器 如何处理网站高并发流量问题?(含教程)

元芳啊 2019-12-01 21:54:35 1511 浏览量 回答数 1

回答

ECS磁盘 我想在ECS 跨服务器进行数据拷贝,有没有知道实现方法的? Linux系统服务器重启或初始化系统之后,再登录服务器执行df -h查看磁盘挂载,发现数据不见了。这是为什么?能不能找回来? 重启服务器后发现/alidata目录所有数据丢失。怎么才能找回来呢? ECS Linux扩容格式化磁盘提示magic number in super-block while trying to open /dev/xvdb1 ? Linux 实例初始化系统盘后,怎样才能重新挂载数据盘? 如何在ECS 利用快照创建磁盘实现无损扩容数据盘? ECS云服务器磁盘FAQ云服务器磁盘I/O速度是多少? Linux 购买了数据盘,但是系统中看不到怎么办? ECS系统盘和数据盘二次分区FAQ,系统盘能否再次划分出一个分区用作数据存储? ECS系统盘和数据盘二次分区FAQ,数据盘能否再次划分出一个分区用作数据存储? ECS系统盘和数据盘二次分区FAQ,划分了多个分区的磁盘,做快照时是针对该分区的,还是针对磁盘的? ECS系统盘和数据盘二次分区FAQ,磁盘二次分区有哪些注意事项? ECS系统盘和数据盘二次分区FAQ,数据盘进行二次分区后,此时回滚快照后,数据盘是几个分区? 什么是可用区? 怎么根据服务器应用需求选择可用区? 按量付费云盘和云盘有什么区别? 按量付费云盘和普通云盘的性能和数据安全性一样吗,磁盘性能会有提升吗? 可以使用用户快照创建按量付费云盘吗? 什么是挂载点? 一块按量付费云盘可以挂载到多个 ECS 实例上吗? 一台 ECS 实例能同时挂载多少块按量付费云盘吗? 按量付费云盘能够挂载到包年包月和按量付费 ECS 实例上吗? 为什么挂载按量付费云盘时找不到我想挂载的 ECS 实例? 购买按量付费云盘后,挂载到目标 ECS 实例的挂载点是否还需要执行磁盘挂载操作? 我已经操作过续费变配,在续费变配期内是否还能将普通云盘转为按量付费云盘? ECS快照 为什么我的按量付费云盘没有自动快照了? 重新初始化磁盘时,我的快照会丢失吗? 更换系统盘时,我的快照会丢失吗? 卸载按量付费云盘时,我的磁盘会丢数据吗? 我能够卸载系统盘吗? 什么是独立云磁盘? 什么是可用区? 独立云磁盘跟现在的磁盘有什么区别? 服务器应用与可用区选择的选择关系是怎么样的? 独立云磁盘怎么收费? 独立云磁盘能够挂载到包年包月实例上吗? 独立云磁盘和普通云磁盘的磁盘性能和数据安全性一样吗,磁盘性能会有提升吗? 我的包年包月实例上不需要的磁盘能不能卸载? 为什么我的独立云磁盘和我的实例一起释放了? 为什么独立云磁盘挂载时找不到我想挂载的实例? 为什么我在本实例列表中选择独立云磁盘挂载时找不到我想要挂载的磁盘? 我删除磁盘的时候,快照会被保留吗? 为什么我的独立云磁盘没有自动快照了? 为什么我不能购买独立云磁盘? 一台实例能挂载多少块独立云磁盘? 卸载独立云磁盘时,我的磁盘会丢数据吗? 我的系统盘能够卸载吗? 什么是设备名? 为什么我在控制台上找不到重置磁盘,更换操作系统,回滚快照的操作了? 重新初始化磁盘时,我的快照会丢失吗? 更换系统盘时,我的快照会丢失吗? 为什么我的数据盘不能选择临时磁盘 独立云磁盘服务器的应用场景有哪些? 可以使用用户快照创建独立云磁盘吗? 独立云磁盘购买后挂载到目标实例的挂载点后,是否还需要执行磁盘挂载操作? 本地SSD盘“本地”是指? 本地SSD盘适合的用户场景有哪些? SSD盘相对之前的普通云盘性能提升多少,是否可以提供具体参数? 本地SSD盘是否支持在原ECS上进行添加或者将原云磁盘更换成本地SSD盘? 本地SSD盘购买后是否支持升级? SSD 云盘具备怎样的 I/O 性能? SSD云盘的数据可靠性是怎样的? SSD 云盘适合的应用场景有哪些? SSD 云盘相对普通云盘性能提升多少?是否可以提供具体参数? I/O 优化是什么概念?能将存量的 ECS 实例升级为 I/O 优化的实例吗? 是否支持将原普通云盘更换成 SSD 云盘? 如何购买 SSD 云盘,I/O 优化的实例及 SSD 云盘的价格是多少? 为什么 I/O 优化的实例有时启动比较耗时? 有些自定义镜像不支持创建 I/O 优化的实例,我该如何操作? 购买SSD云盘后是否支持升级? 使用了 I/O 优化实例和 SSD 云盘之后,Linux 系统在分区挂载的时候报错。 为什么我用 fio 测试性能时,会导致实例宕机? 云盘参数和性能测试工具及方法有推荐的吗? 我想扩容系统盘,求详细步骤! 所有块存储都支持系统盘扩容吗?有地域限制吗? 包年包月和按量付费的ECS实例都支持系统盘扩容吗? 新购ECS时,系统盘开始单独收费?老用户存量的系统盘如何收费? 新购ECS时,系统盘开始单独收费?老用户存量的系统盘如何收费?系统盘扩容是否需要停机操作? 系统盘扩容上线后,系统盘的容量范围多少? 哪些镜像支持系统盘扩容? 云服务器续费变配后,不支持更换系统盘时指定系统盘容量? 系统盘扩容之后是否支持再缩容? 扩容系统盘应注意的问题? 回滚磁盘报错,进行快照回滚的时候,出现如下错误提示: 执行回滚磁盘需要停止实例,并确保当前磁盘没有创建中的快照和没有更换过操作系统。 这是什么原因? 普通云盘和SSD云盘添加挂载信息时有哪些要注意的事项? 申请公测资格 什么是共享块存储? 共享块存储适用于哪些行业和业务场景? 为什么需要共享块存储? 如何正确使用共享块存储? 我能跨地域挂载共享块存储吗? 共享块存储产品规格有哪些? 我想知道阿里云产品的售卖模式和公测范围! 公测购买入口是哪,求链接! 有没有谁分享下共享块存储性能测试命令? 数据盘挂载问题导致数据无法访问,我要怎么排查问题? 我要怎样才能在Linux和Windows主机之间挂载ntfs格式云盘? 为什么ECS实例里文件系统和快照空间大小不一致?在ECS实例内删除文件后再打快照,发现快照容量并没有变小。 ECS实例如何优化快照使用成本? 在ECS实例里什么是快照商业化? 在ECS实例里,快照商业化后过渡优惠期是什么时候? 在ECS实例里,快照商业化的用户范围包括有哪些? 在ECS实例里,如果我已经开通了 OSS,快照会自动存到我的 OSS Bucket 吗?是否需要重新再创建一个 Bucket 来存储快照? 已经购买了 OSS 预付费存储包,同时在使用快照和 OSS 服务,那么存储包会优先抵扣哪个产品? 快照商业化之后,我希望继续使用,需要购买哪个产品,云盘还是对象存储OSS资源包? 快照商业化的收费模式是怎样的? 快照费用的计算方法是怎样的? 快照收费后,不停止自动快照是否就开始收取费用? 快照要收费了,之前的快照要被删除吗? 如果不想付费,之前的快照能继续使用吗? 快照收费后,之前创建的手动快照和自动快照都会收费吗? 快照收费前停止快照策略,需手动删除历史快照吗?正式收费后会直接删除我的历史快照吗? 快照收费以后,账户欠费对快照有什么影响? 如果账号欠费,有关联关系(创建过磁盘或者镜像)的快照,在欠费15天之后是否会被删除? 快照服务和块存储服务的关系,在收费方面的关系是什么? 快照容量是如何计算的,是等于磁盘大小吗? ECS实例内删除文件会减少空间占用吗? 为什么快照容量大于文件系统内看到的数据量? 参考快照增量说明,如中间快照被删除,后面的快照能否使用? 如何开通快照服务? 快照和镜像的关系? 如何在保留关联实例和磁盘的情况下,删除快照跟镜像,快照、实例、镜像之间的关系? 快照和块存储、OSS对象存储是什么关系? 一块云盘能否设置多个快照策略? 快照 2.0 服务包括哪些内容? 快照有什么用途? 快照 2.0 服务支持的云盘类型? 快照数量有什么限制? 快照保留时长怎样? 打快照对块存储 I/O 性能有多少影响? 快照怎么收费? 老的自动快照策略什么时候不可用? 老的快照策略产生的快照什么时候删除? 自动快照功能细节有哪些? 用户的自定义快照和自动快照有冲突吗? 我能保留其中想要的自动快照而让系统不删除吗? 如果一个自动快照被引用(用户创建自定义镜像或者磁盘),会导致自动快照策略执行失败吗? 我如果什么都没有设置,自动快照会启动吗? 自动快照能够删除吗? 自动快照具体在什么时间创建能看到吗? 我如何区分哪些快照是自动快照和用户快照? 更换系统盘、云服务器 ECS 到期后或手动释放磁盘时,自动快照会不会释放? 未随磁盘释放和更换系统盘释放的自动快照会一直保留吗? 云服务器 ECS 到期后或手动释放磁盘时,手工快照会不会释放? 我能单独制定某几块磁盘执行或取消自动快照吗? 云服务器 ECS 有没有自动备份? 磁盘无快照是否能够回滚或数据恢复? 快照回滚能否单独回滚某个分区或部分数据? 系统盘快照回滚是否会影响数据盘? 更换系统后,快照能否回滚? 在回滚快照前,有哪些注意事项? 怎样使ECS回滚快照后同步数据? 如何通过API配置定时自定义快照? 超出预付费存储包的流量,会怎么收费? ECS镜像 Aliyun Linux 17.01 特性有哪些,有说明文档吗? 云市场镜像有哪些功能? 镜像能带来哪些便利? 目前镜像支持哪些服务器环境和应用场景? 镜像是否安全? 选择了镜像后能更换吗? 镜像安装使用过程中出问题了怎么办? Docker私有镜像库是什么? 自定义镜像如何查看数据盘? 自定义镜像,如何卸载和删除 disk table 里的数据? 如何确认已经卸载数据盘,并可以新建自定义镜像? ECS 实例释放后,自定义镜像是否还存在? ECS 实例释放后,快照是否还存在? 用于创建自定义镜像的云服务器 ECS 实例到期或释放数据后,创建的自定义镜像是否受影响?使用自定义镜像开通的云服务器 ECS 实例是否受影响? 使用自定义镜像创建的 ECS 实例是否可以更换操作系统?更换系统后原来的自定义镜像是否还可以使用? 更换系统盘时另选操作系统,是否可以使用自定义镜像? 已创建的自定义镜像,是否可以用于更换另一台云服务器 ECS 的系统盘数据? 是否可以升级自定义镜像开通的云服务器 ECS 的 CPU、内存、带宽、硬盘等? 是否可以跨地域使用自定义镜像? 包年包月云服务器 ECS 的自定义镜像,是否可以用于开通按量付费的云服务器 ECS? ECS Windows企业版和标准版区别 什么情况下需要复制镜像? 可以复制哪些镜像? 当前有哪些支持镜像复制功能的地域? 复制一个镜像大概需要多久? 复制镜像怎么收费的? 在复制镜像过程中,源镜像和目标镜像有什么限制? 怎么复制我的云账号的镜像资源到其他云账号的其他地域? 复制镜像有镜像容量限制吗? 如何购买镜像市场镜像? 按次购买的镜像的使用期限是多久? 镜像市场的镜像支持退款吗? 镜像市场商业化后,还有免费的镜像市场镜像吗? 在杭州买了一个镜像市场的镜像,能否在北京创建ECS实例或者更换系统盘? ECS实例使用镜像市场的镜像,升级和续费ECS实例,需要为镜像继续付费吗? ECS实例使用镜像市场的镜像,实例释放后,继续购买ECS实例还可以免费使用该镜像吗? 使用镜像市场镜像创建ECS实例,该实例创建一个自定义镜像,使用该自定义镜像创建ECS实例需要为该镜像付费吗? 来源于镜像市场的镜像复制到其他地域创建ECS实例,是否需要为该镜像付费? 如果把来源于镜像市场的自定义镜像共享给其他账号(B)创建ECS实例,账号B是否需要为该镜像付费? 如果使用镜像市场的镜像或者来源于镜像市场的镜像进行更换系统盘,需要付费吗? ECS实例正在使用镜像市场的镜像,进行重置系统盘需要收费吗? 怎么调用ECS API,使用镜像市场镜像或者来源镜像市场的自定义镜像或者共享镜像,创建ECS实例和更换系统盘? 如果没有购买镜像市场的镜像或者来源于镜像市场的镜像,在调用ECS API 使用该镜像创建ECS实例和更换系统盘,会报错吗? 我的ESS是自动创建机器的,并且量是不固定,设置最小值为10台,最大值为100台,那么使用镜像市场的镜像如何保证我的的需求实例能正常弹出来? 镜像市场的镜像是否支持批量购买? 如果之前使用的镜像市场的镜像,已不存在该商品(如:jxsc000010、jxsc000019),怎能保证已经设置的弹性伸缩组的机器的正常弹出? 1个product code能否支持不同region的镜像? 我买了100 product code同样值的镜像,是否可以支持在所有的地域可用? 为什么有的ECS云服务器无法选择Windows操作系统? 操作系统是否要收费? 我能否自己安装或者升级操作系统? 服务器的登录用户名密码是什么? 能否更换或升级操作系统? 操作系统是否有图形界面? 如何选择操作系统? 操作系统自带 FTP 上传吗? 每个用户最多可以获得多少个共享镜像? 每个镜像最多可以共享给多少个用户? 使用共享镜像是否占用我的镜像名额? 使用共享镜像创建实例的时候存不存在地域限制? 我曾把自己账号中的某个自定义镜像共享给其他账号,现在我可以删除这个镜像吗 我把某个自定义镜像(M)的共享账号(A)给删除了,会有什么影响? 使用共享镜像创建实例存在什么样的风险? 我把自定义镜像共享给其他账号,存在什么风险? 我能把别人共享给我的镜像再共享给他人吗? 我把镜像共享给他人,还能使用该镜像创建实例吗? ECS Windows服务器桌面分辨率过高导致VNC花屏处理方法通过 管理终端 进入服务器后,把 Windows 服务器桌面分辨率设置过高,确定后,WebVNC 出现花屏。 ECS创建自定义镜像创建服务器为何需要注释挂载项 勾选"IO优化实例"选项导致购买ECS实例时无法选择云市场镜像 如何为 Linux 服务器安装 GRUB 历史Linux镜像的问题修复方案 如何处理 CentOS DNS 解析超时? 什么是镜像市场的包年包月和按周付费镜像? 预付费镜像能与哪种 ECS 实例搭配使用? 怎么购买预付费镜像?可以单独购买吗? 预付费镜像怎么付费? 预付费镜像到期了就不能用了吗?怎么继续使用? 购买预付费镜像后,如果我不想再使用这个镜像,能要求退款吗? 退款时,费用怎么结算? 预付费镜像能转换为按量付费镜像吗? 预付费镜像与其它镜像之间能互换吗?更换后费用怎么计算? 在哪里查看并管理我购买的预付费镜像? 使用预付费镜像制作的自定义镜像会收费吗?预付费镜像过期对于自定义镜像有什么影响? ECS 实例操作系统选择说明 阿里云支持哪些 SUSE 版本? SUSE 操作系统提供哪些服务支持? ECS安全组 如何检查 TCP 80 端口是否正常工作? 什么是安全组? 为什么在购买 ECS 实例的时候选择安全组? 安全组配置错误会造成哪些影响? 专有网络实例设置安全组规则时为什么不能设置公网规则? 创建 ECS 实例时我还没创建安全组怎么办? 为什么无法访问 25 端口? 为什么我的安全组里自动添加了很多规则? 为什么有些安全组规则的优先级是 110? 为什么我在安全组里放行了 TCP 80 端口,还是无法访问 80 端口? ECS安全组被添加内网ip地址了,是怎么回事? 能说明下ECS安全组中规则的优先级执行匹配顺序吗? ECS实例安全组默认的公网规则被删除导致无法ping通,ECS 服务器无法ping通,排查防火墙、网卡IP配置无误,回滚系统后仍然无法ping通。 我刚购买了ECS实例,如何选择及配置安全组? 没有添加默认安全组访问规则-导致通过API创建的ECS实例断网,要怎么恢复? 使用ECS安全组工具撤销之前账号间互通的操作 ECS网络 带宽与上传、下载速度峰值的有什么关系? 弹性公网IP在哪里可以查看流量和带宽监控信息? 我用的是ECS Ubuntu系统,要怎么单独禁用和启动内外网卡? ECS 实例子网划分和掩码是什么? ECS 实例网络带宽是否独享? 带宽单线还是双线,电信还是网通? 5 Mbps 带宽怎么理解? 带宽的价格是多少? 不同地域的 ECS 实例之间的内网是通的吗? 为何新建的 ECS 实例就有 200 Kbps 左右入网流量? 我的 ECS 实例经常能在 Web 日志中看到大量的恶意 IP 访问我的网站,疑有刷流量和恶意访问的嫌疑,询问云盾是否有屏蔽 IP 的功能? 包月ECS新购时是否可以选择带宽按照使用流量计费? 包月ECS带宽按流量计费是如何计费的? 目前使用的固定带宽计费,是否可以转换为带宽按流量计费? 是否可以随时调整流量带宽峰值? 续费变更配置时(比如到期时间为2015年3月31日,续费一个月到4月30日),如果将包月ECS按固定带宽计费改成按流量付费计费,操作以后在未生效前(3月31日前),是否还可以升级带宽? 续费变更配置时候将包月ECS带宽按流量计费改成按固定带宽计费,为什么我的带宽服务停掉了? 如果账号没有足够余额,欠费怎么办?ECS实例也会停掉吗? 带宽流量欠费是否有短信通知? 当带宽按照流量计费欠费时,是否可以对实例进行升级 CPU、内存操作? 欠费充值后带宽是自动恢复的吗? 包月带宽转流量计费后,流量价格是多少? ECS 服务器出现了异地登录怎么办? 爱哪里可以查看云服务器 ECS 公网流量统计总和? 我的ECS 实例对外 DDoS 攻击导致被锁定了,要如何处理 ? 什么是云服务器 ECS 的入网带宽和出网带宽? ECS云服务器如何禁用公网IP? ECS 实例停止(关机)后按量付费带宽仍产生流量,ECS 实例在控制台上状态为已停止,但按量付费的带宽每小时仍会产生不小的费用,且此时 ECS 实例正在遭受攻击,云盾控制台中 DDoS 防护中 ECS 的状态为清洗中。 访问ECS服务器的网站提示“由于你访问的URL可能对网站造成安全威胁,您的访问被阻断”,这是什么原因? 服务器黑洞是什么?求科普! 如果想确认该服务器的IP信息和地理位置,要在哪里去查询? 我想知道客户端本地到ECS服务器是不是丢包,要怎么测试? 内网和公共 NTP 服务器是什么?它们两个有什么区别 我能 ping 通但端口不通,这是端口的问题吗? 如何通过防火墙策略限制对外扫描行为? 我想用手机移动端网络路由跟踪探测,可以吗? 云监控中的ECS带宽和ECS控制台中看到的带宽不一致是什么原因? 云服务器ECS三张网卡有什么区别? Ubuntu系统ECS使用“如何通过防火墙策略限制对外扫描行为”脚本之后出现无法远程、数据库连接不上。 什么业务场景需要在专有网络(VPC)类型ECS购买PublicIP? 怎么购买专有网络(VPC)类型分配 PublicIP 的 ECS? 专有网络(VPC)类型 ECS 的 PublicIP 和 EIP 的区别? 专有网络(VPC)类型ECS的 PublicIP 的可以升级带宽吗? 专有网络(VPC)类型ECS的 PublicIP 可以解绑吗? 如果购买网络(VPC)类型 ECS 的时候,没有分配公网 IP,该怎么才能分配一个公网 IP? 怎么查询专有网络(VPC)类型 ECS 的 PublicIP 的监控数据? 怎么查询专有网络(VPC)类型ECS的按流量付费的 PublicIP 的账单? 专有网络和经典网络的 PublicIP 异同? 专有网络(VPC)类型 ECS 购买 PublicIP 的付费方式? ECS API 如何通过 API / SDK 实现不同账号 ECS 实例的内网通信? ECS API绑定公网IP报错:The IP is already in use分析 ECS API修改实例带宽不能指定时间范围吗? 所在可用区不支持相应磁盘类型-导致ECS API创建实例报错 用ECS API创建实例的时候,返回如下错误信息: "Code": "InvalidDataDiskCategory.NotSupported" 如何创建有公网 IP 的 ECS 实例? 通过API或SDK查询安全组规则无法显示所有的规则,这是怎么回事? 如何通过OpenAPI创建ECS实例的流程状态描述? 数据传输服务DTS实时同步功能,我想只同步表结构,要怎么做? 如何获取控制台RequestId? 阿里云中国站部分地域实例什么时候降价? ECS Linux 实例怎么设置 Locale 变量? 克隆ECS服务器的方法 其它国家和地区是否都可以提供经典网络和专有网络的类型呢?网络类型是否可以变更呢? 各个地域的网络覆盖范围是什么呢? 其他相关问题 不同地域的实例,价格一样吗? 如果我使用其它国家和地区的实例搭建了一个网站,我的用户将通过域名访问网站,这个域名需要 ICP 备案吗? 为什么有些实例规格只能在中国大陆地域购买,而在其它国家和地区无法购买? 可否将中国大陆地域的实例迁移到其它国家和地区呢? 如何在其它国家和地区部署 ECS 实例? 我要买其它国家和地区的实例,需要单独申请一个国际站账号吗? ——更多ECS相关问题—— · ECS故障处理百问合集

问问小秘 2020-01-02 15:49:17 0 浏览量 回答数 0

问题

码农必备套件

仙游 2019-12-01 22:09:42 2528 浏览量 回答数 0

问题

技术创业难?看他们如何玩转大数据与机器学习

福利达人 2019-12-01 21:17:03 2307 浏览量 回答数 0

问题

记录我在阿里云备案的过程

神马刘麻子 2019-12-01 21:49:10 1536 浏览量 回答数 2

问题

性能测试技术怎么进行?

猫饭先生 2019-12-01 21:26:08 1341 浏览量 回答数 0

问题

大数据时代——数据存储技术百问

yq传送门 2019-12-01 20:27:42 31965 浏览量 回答数 35

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。

hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

回答

你好,这里有208份资料,详情请参考:https://github.com/ty4z2008/Qix/blob/master/ds.md 《Reconfigurable Distributed Storage for Dynamic Networks》介绍:这是一篇介绍在动态网络里面实现分布式系统重构的paper.论文的作者(导师)是MIT读博的时候是做分布式系统的研究的,现在在NUS带学生,不仅仅是分布式系统,还有无线网络.如果感兴趣可以去他的主页了解. 《Distributed porgramming liboratory》介绍:分布式编程实验室,他们发表的很多的paper,其中不仅仅是学术研究,还有一些工业界应用的论文. 《MIT Theory of Distributed Systems》介绍:麻省理工的分布式系统理论主页,作者南希·林奇在2002年证明了CAP理论,并且著《分布式算法》一书. 《Notes on Distributed Systems for Young Bloods》介绍:分布式系统搭建初期的一些建议 《Principles of Distributed Computing》介绍:分布式计算原理课程 《Google's Globally-Distributed Database》介绍:Google全球分布式数据介绍,中文版 《The Architecture Of Algolia’s Distributed Search Network》介绍:Algolia的分布式搜索网络的体系架构介绍 《Build up a High Availability Distributed Key-Value Store》介绍:构建高可用分布式Key-Value存储系统 《Distributed Search Engine with Nanomsg and Bond》介绍:Nanomsg和Bond的分布式搜索引擎 《Distributed Processing With MongoDB And Mongothon》介绍:使用MongoDB和Mongothon进行分布式处理 《Salt: Combining ACID and BASE in a Distributed Database》介绍:分布式数据库中把ACID与BASE结合使用. 《Makes it easy to understand Paxos for Distributed Systems》介绍:理解的Paxos的分布式系统,参考阅读:关于Paxos的历史 《There is No Now Problems with simultaneity in distributed systems》介绍:There is No Now Problems with simultaneity in distributed systems 《Distributed Systems》介绍:伦敦大学学院分布式系统课程课件. 《Distributed systems for fun and profit》介绍:分布式系统电子书籍. 《Distributed Systems Spring 2015》介绍:卡内基梅隆大学春季分布式课程主页 《Distributed Systems: Concepts and Design (5th Edition)》介绍: 电子书,分布式系统概念与设计(第五版) 《走向分布式》介绍:这是一位台湾网友 ccshih 的文字,短短的篇幅介绍了分布式系统的若干要点。pdf 《Introduction to Distributed Systems Spring 2013》介绍:清华大学分布式系统课程主页,里面的schedule栏目有很多宝贵的资源 《Distributed systems》介绍:免费的在线分布式系统书籍 《Some good resources for learning about distributed computing》介绍:Quora上面的一篇关于学习分布式计算的资源. 《Spanner: Google’s Globally-Distributed Database》介绍:这个是第一个全球意义上的分布式数据库,也是Google的作品。其中介绍了很多一致性方面的设计考虑,为了简单的逻辑设计,还采用了原子钟,同样在分布式系统方面具有很强的借鉴意义. 《The Chubby lock service for loosely-coupled distributed systems》介绍:Google的统面向松散耦合的分布式系统的锁服务,这篇论文详细介绍了Google的分布式锁实现机制Chubby。Chubby是一个基于文件实现的分布式锁,Google的Bigtable、Mapreduce和Spanner服务都是在这个基础上构建的,所以Chubby实际上是Google分布式事务的基础,具有非常高的参考价值。另外,著名的zookeeper就是基于Chubby的开源实现.推荐The google stack,Youtube:The Chubby lock service for loosely-coupled distributed systems 《Sinfonia: a new paradigm for building scalable distributed systems》介绍:这篇论文是SOSP2007的Best Paper,阐述了一种构建分布式文件系统的范式方法,个人感觉非常有用。淘宝在构建TFS、OceanBase和Tair这些系统时都充分参考了这篇论文. 《Data-Intensive Text Processing with MapReduce》介绍:Ebook:Data-Intensive Text Processing with MapReduce. 《Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System》介绍:Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System. 《Distributed Query Processing》介绍:分布式查询入门. 《Distributed Systems and the End of the API》介绍:分布式系统和api总结. 《Distributed Query Reading》介绍:分布式系统阅读论文,此外还推荐github上面的一个论文列表The Distributed Reader。 《Replication, atomicity and order in distributed systems》介绍:Replication, atomicity and order in distributed systems 《MIT course:Distributed Systems》介绍:2015年MIT分布式系统课程主页,这次用Golang作为授课语言。6.824 Distributed Systems课程主页 《Distributed systems for fun and profit》介绍:免费分布式系统电子书。 《Ori:A Secure Distributed File System》介绍:斯坦福开源的分布式文件系统。 《Availability in Globally Distributed Storage Systems》介绍:Google论文:设计一个高可用的全球分布式存储系统。 《Calvin: Fast Distributed Transactions For Partitioned Database Systems》介绍:对于分区数据库的分布式事务处理。 《Distributed Systems Building Block: Flake Ids》介绍:Distributed Systems Building Block: Flake Ids. 《Introduction to Distributed System Design》介绍:Google Code University课程,如何设计一个分布式系统。 《Sheepdog: Distributed Storage System for KVM》介绍:KVM的分布式存储系统. 《Readings in Distributed Systems Systems》介绍:分布式系统课程列表,包括数据库、算法等. 《Tera》介绍:来自百度的分布式表格系统. 《Distributed systems: for fun and profit》介绍:分布式系统的在线电子书. 《Distributed Systems Reading List》介绍:分布式系统资料,此外还推荐Various articles about distributed systems. 《Designs, Lessons and Advice from Building Large Distributed Systems》介绍:Designs, Lessons and Advice from Building Large Distributed Systems. 《Testing a Distributed System》介绍:Testing a distributed system can be trying even under the best of circumstances. 《The Google File System》介绍: 基于普通服务器构建超大规模文件系统的典型案例,主要面向大文件和批处理系统, 设计简单而实用。 GFS是google的重要基础设施, 大数据的基石, 也是Hadoop HDFS的参考对象。 主要技术特点包括: 假设硬件故障是常态(容错能力强), 64MB大块, 单Master设计,Lease/链式复制, 支持追加写不支持随机写. 《Bigtable: A Distributed Storage System for Structured Data》介绍:支持PB数据量级的多维非关系型大表, 在google内部应用广泛,大数据的奠基作品之一 , Hbase就是参考BigTable设计。 Bigtable的主要技术特点包括: 基于GFS实现数据高可靠, 使用非原地更新技术(LSM树)实现数据修改, 通过range分区并实现自动伸缩等.中文版 《PacificA: Replication in Log-Based Distributed Storage Systems》介绍:面向log-based存储的强一致的主从复制协议, 具有较强实用性。 这篇文章系统地讲述了主从复制系统应该考虑的问题, 能加深对主从强一致复制的理解程度。 技术特点: 支持强一致主从复制协议, 允许多种存储实现, 分布式的故障检测/Lease/集群成员管理方法. 《Object Storage on CRAQ, High-throughput chain replication for read-mostly workloads》介绍:分布式存储论文:支持强一直的链式复制方法, 支持从多个副本读取数据,实现code. 《Finding a needle in Haystack: Facebook’s photo storage》介绍:Facebook分布式Blob存储,主要用于存储图片. 主要技术特色:小文件合并成大文件,小文件元数据放在内存因此读写只需一次IO. 《Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency》介绍: 微软的分布式存储平台, 除了支持类S3对象存储,还支持表格、队列等数据模型. 主要技术特点:采用Stream/Partition两层设计(类似BigTable);写错(写满)就封存Extent,使得副本字节一致, 简化了选主和恢复操作; 将S3对象存储、表格、队列、块设备等融入到统一的底层存储架构中. 《Paxos Made Live – An Engineering Perspective》介绍:从工程实现角度说明了Paxo在chubby系统的应用, 是理解Paxo协议及其应用场景的必备论文。 主要技术特点: paxo协议, replicated log, multi-paxo.参考阅读:关于Paxos的历史 《Dynamo: Amazon’s Highly Available Key-Value Store》介绍:Amazon设计的高可用的kv系统,主要技术特点:综和运用一致性哈希,vector clock,最终一致性构建一个高可用的kv系统, 可应用于amazon购物车场景.新内容来自分布式存储必读论文 《Efficient Replica Maintenance for Distributed Storage Systems》介绍:分布式存储系统中的副本存储问题. 《PADS: A Policy Architecture for Distributed Storage Systems》介绍:分布式存储系统架构. 《The Chirp Distributed Filesystem》介绍:开源分布式文件系统Chirp,对于想深入研究的开发者可以阅读文章的相关Papers. 《Time, Clocks, and the Ordering of Events in a Distributed System》介绍:经典论文分布式时钟顺序的实现原理. 《Making reliable distributed systems in the presence of sodware errors》介绍:面向软件错误构建可靠的分布式系统,中文笔记. 《MapReduce: Simplified Data Processing on Large Clusters》介绍:MapReduce:超大集群的简单数据处理. 《Distributed Computer Systems Engineering》介绍:麻省理工的分布式计算课程主页,里面的ppt和阅读列表很多干货. 《The Styx Architecture for Distributed Systems》介绍:分布式系统Styx的架构剖析. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上面的一个问答:有哪些关于分布式计算学习的好资源. 《RebornDB: The Next Generation Distributed Key-Value Store》介绍:下一代分布式k-v存储数据库. 《Operating System Concepts Ninth Edition》介绍:分布式系统归根结底还是需要操作系统的知识,这是耶鲁大学的操作系统概念书籍首页,里面有提供了第8版的在线电子版和最新的学习操作系统指南,学习分布式最好先学习操作系统. 《The Log: What every software engineer should know about real-time data's unifying abstraction》介绍:分布式系统Log剖析,非常的详细与精彩. 中文翻译 | 中文版笔记. 《Operating Systems Study Guide》介绍:分布式系统基础之操作系统学习指南. 《分布式系统领域经典论文翻译集》介绍:分布式系统领域经典论文翻译集. 《Maintaining performance in distributed systems》介绍:分布式系统性能维护. 《Computer Science from the Bottom Up》介绍:计算机科学,自底向上,小到机器码,大到操作系统内部体系架构,学习操作系统的另一个在线好材料. 《Operating Systems: Three Easy Pieces》介绍:<操作系统:三部曲>在线电子书,虚拟、并发、持续. 《Database Systems: reading list》介绍:数据库系统经典论文阅读列,此外推送github上面的db reading. 《Unix System Administration》介绍:Unix System Administration ebook. 《The Amoeba Distributed Operating System》介绍:分布式系统经典论文. 《Principles of Computer Systems》介绍:计算机系统概念,以分布式为主.此外推荐Introduction to Operating Systems笔记 《Person page of EMİN GÜN SİRER》介绍:推荐康奈尔大学的教授EMİN GÜN SİRER的主页,他的研究项目有分布式,数据存储。例如HyperDex数据库就是他的其中一个项目之一. 《Scalable, Secure, and Highly Available Distributed File Access》介绍:来自卡内基梅隆如何构建可扩展的、安全、高可用性的分布式文件系统,其他papers. 《Distributed (Deep) Machine Learning Common》介绍:分布式机器学习常用库. 《The Datacenter as a Computer》介绍:介绍了如何构建仓储式数据中心,尤其是对于现在的云计算,分布式学习来说很有帮助.本书是Synthesis Lectures on Computer Architecture系列的书籍之一,这套丛书还有 《The Memory System》,《Automatic Parallelization》,《Computer Architecture Techniques for Power Efficiency》,《Performance Analysis and Tuning for General Purpose Graphics Processing Units》,《Introduction to Reconfigurable Supercomputing》,Memory Systems Cache, DRAM, Disk 等 《helsinki:Distributed Systems Course slider》介绍:来自芬兰赫尔辛基的分布式系统课程课件:什么是分布式,复制,一致性,容错,同步,通信. 《TiDB is a distributed SQL database》介绍:分布式数据库TiDB,Golang开发. 《S897: Large-Scale Systems》介绍:课程资料:大规模系统. 《Large-scale L-BFGS using MapReduce》介绍:使用MapReduce进行大规模分布式集群环境下并行L-BFGS. 《Twitter是如何构建高性能分布式日志的》介绍:Twitter是如何构建高性能分布式日志的. 《Distributed Systems: When Limping Hardware Is Worse Than Dead Hardware》介绍:在分布式系统中某个组件彻底死了影响很小,但半死不活(网络/磁盘),对整个系统却是毁灭性的. 《Tera - 高性能、可伸缩的结构化数据库》介绍:来自百度的分布式数据库. 《SequoiaDB is a distributed document-oriented NoSQL Database》介绍:SequoiaDB分布式文档数据库开源. 《Readings in distributed systems》介绍:这个网址里收集了一堆各TOP大学分布式相关的课程. 《Paxos vs Raft》介绍:这个网站是Raft算法的作者为教授Paxos和Raft算法做的,其中有两个视频链接,分别讲上述两个算法.参考阅读:关于Paxos的历史 《A Scalable Content-Addressable Network》介绍:A Scalable Content-Addressable Network. 《500 Lines or Less》介绍:这个项目其实是一本书( The Architecture of Open Source Applications)的源代码附录,是一堆大牛合写的. 《MIT 6.824 Distributed System》介绍:这只是一个课程主页,没有上课的视频,但是并不影响你跟着它上课:每一周读两篇课程指定的论文,读完之后看lecture-notes里对该论文内容的讨论,回答里面的问题来加深理解,最后在课程lab里把所看的论文实现。当你把这门课的作业刷完后,你会发现自己实现了一个分布式数据库. 《HDFS-alike in Go》介绍:使用go开发的分布式文件系统. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上关于学习分布式的资源问答. 《SeaweedFS is a simple and highly scalable distributed file system》介绍:SeaweedFS是使用go开发的分布式文件系统项目,代码简单,逻辑清晰. 《Codis - yet another fast distributed solution for Redis》介绍:Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没有明显的区别 《Paper: Coordination Avoidance In Distributed Databases By Peter Bailis》介绍:Coordination Avoidance In Distributed Databases. 《从零开始写分布式数据库》介绍:本文以TiDB 源码为例. 《what we talk about when we talk about distributed systems》介绍:分布式系统概念梳理,为分布式系统涉及的主要概念进行了梳理. 《Distributed locks with Redis》介绍:使用Redis实现分布式锁. 《CS244b: Distributed Systems》介绍: 斯坦福2014年秋季分布式课程. 《RAMP Made Easy》介绍: 分布式的“读原子性”. 《Strategies and Principles of Distributed Machine Learning on Big Data》介绍: 大数据分布式机器学习的策略与原理. 《Distributed Systems: What is the CAP theorem?》介绍: 分布式CAP法则. 《How should I start to learn distributed storage system as a beginner?》介绍: 新手如何步入分布式存储系统. 《Cassandra - A Decentralized Structured Storage System》介绍: 分布式存储系统Cassandra剖析,推荐白皮书Introduction to Apache Cassandra. 《What is the best resource to learn about distributed systems?》介绍: 分布式系统学习资源. 《What are some high performance TCP hacks?》介绍: 一些高性能TCP黑客技巧. 《Maintaining performance in distributed systems》介绍:分布式系统性能提升. 《A simple totally ordered broadcast protocol》介绍:Benjamin Reed 和 Flavio P.Junqueira 所著论文,对Zab算法进行了介绍,zab算法是Zookeeper保持数据一致性的核心,在国内有很多公司都使用zookeeper做为分布式的解决方案.推荐与此相关的一篇文章ZooKeeper’s atomic broadcast protocol: Theory and practice. 《zFS - A Scalable Distributed File System Using Object Disk》介绍:可扩展的分布式文件系统ZFS,The Zettabyte File System,End-to-end Data Integrity for File Systems: A ZFS Case Study. 《A Distributed Haskell for the Modern Web》介绍:分布式Haskell在当前web中的应用. 《Reasoning about Consistency Choices in Distributed Systems》介绍:POPL2016的论文,关于分布式系统一致性选择的论述,POPL所接受的论文,github上已经有人整理. 《Paxos Made Simple》介绍:Paxos让分布式更简单.译文.参考阅读:关于Paxos的历史,understanding Paxos part1,Understanding Paxos – Part 2.Quora: What is a simple explanation of the Paxos algorithm?,Tutorial Summary: Paxos Explained from Scratch,Paxos algorithm explained, part 1: The essentials,Paxos algorithm explained, part 2: Insights 《Consensus Protocols: Paxos》介绍:分布式系统一致性协议:Paxos.参考阅读:关于Paxos的历史 《Consensus on Transaction Commit》介绍:事务提交的一致性探讨. 《The Part-Time Parliaments》介绍:在《The Part-Time Parliament》中描述了基本协议的交互过程。在基本协议的基础上完善各种问题得到了最终的议会协议。 为了让人更容易理解《The Part-Time Parliament》中描述的Paxos算法,Lamport在2001发表了《Paxos Made Simple》,以更平直的口头语言描述了Paxos,而没有包含正式的证明和数学术语。《Paxos Made Simple》中,将算法的参与者更细致的划分成了几个角色:Proposer、Acceptor、Learner。另外还有Leader和Client.参考阅读:关于Paxos的历史 《Paxos Made Practical》介绍:看这篇论文时可以先看看理解Paxos Made Practical. 《PaxosLease: Diskless Paxos for Leases》介绍:PaxosLease:实现租约的无盘Paxos算法,译文. 《Paxos Made Moderately Complex》介绍:Paxos算法实现,译文,同时推荐42 Paxos Made Moderately Complex. 《Hadoop Reading List》介绍:Hadoop学习清单. 《Hadoop Reading List》介绍:Hadoop学习清单. 《2010 NoSQL Summer Reading List》介绍:NoSQL知识清单,里面不仅仅包含了数据库阅读清单还包含了分布式系统资料. 《Raft: Understandable Distributed Consensus》介绍:Raft可视化图帮助理解分布式一致性 《Etcd:Distributed reliable key-value store for the most critical data of a distributed system》介绍:Etcd分布式Key-Value存储引擎 《Understanding Availability》介绍:理解peer-to-peer系统中的可用性究竟是指什么.同时推荐基于 Peer-to-Peer 的分布式存储系统的设计 《Process structuring, synchronization, and recovery using atomic actions》介绍:经典论文 《Programming Languages for Parallel Processing》介绍:并行处理的编程语音 《Analysis of Six Distributed File Systems》介绍:此篇论文对HDFS,MooseFS,iRODS,Ceph,GlusterFS,Lustre六个存储系统做了详细分析.如果是自己研发对应的存储系统推荐先阅读此篇论文 《A Survey of Distributed File Systems》介绍:分布式文件系统综述 《Concepts of Concurrent Programming》介绍:并行编程的概念,同时推荐卡内基梅隆FTP 《Concurrency Control Performance Modeling:Alternatives and Implications》介绍:并发控制性能建模:选择与意义 《Distributed Systems - Concepts and Design 5th Edition》介绍:ebook分布式系统概念与设计 《分布式系统设计的形式方法》介绍:分布式系统设计的形式方法 《互斥和选举算法》介绍:互斥和选举算法 《Actors:A model Of Concurrent Cornputation In Distributed Systems》介绍:经典论文 《Security Engineering: A Guide to Building Dependable Distributed Systems》介绍:如何构建一个安全可靠的分布式系统,About the Author,Bibliography:文献资料,章节访问把链接最后的01换成01-27即可 《15-712 Advanced and Distributed Operating Systems》介绍:卡内基梅隆大学的分布式系统博士生课程主页,有很丰富的资料 《Dapper, Google's Large-Scale Distributed Systems Tracing Infrastructure》介绍:Dapper,大规模分布式系统的跟踪系统,译文,译文对照 《CS262a: Advanced Topics in Computer Systems》介绍:伯克利大学计算机系统进阶课程,内容有深度,涵盖分布式,数据库等内容 《Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System》介绍:PB级分布式系统构建/扩展经验 《CS162: Operating Systems and Systems Programming》介绍:伯克利大学计算机系统课程:操作系统与系统编程 《MDCC: Multi-Data Center Consistency》介绍:MDCC主要解决跨数据中心的一致性问题中间件,一种新的协议 《Research at Google:Distributed Systems and Parallel Computing》介绍:google公开对外发表的分布式系统与并行计算论文 《HDFS Architecture Guide》介绍:分布式文件系统HDFS架构 《ActorDB distributed SQL database》介绍:分布式 Key/Value数据库 《An efficient data location protocol for self-organizing storage clusters》介绍:是著名的Ceph的负载平衡策略,文中提出的几种策略都值得尝试,比较赞的一点是可以对照代码体会和实践,如果你还需要了解可以看看Ceph:一个 Linux PB 级分布式文件系统,除此以外,论文的引用部分也挺值得阅读的,同时推荐Ceph: A Scalable, High-Performance Distributed File System 《A Self-Organizing Storage Cluster for Parallel Data-Intensive Applications》介绍:Surrento的冷热平衡策略就采用了延迟写技术 《HBA: Distributed Metadata Management for Large Cluster-Based Storage Systems》介绍:对于分布式存储系统的元数据管理. 《Server-Side I/O Coordination for Parallel File Systems》介绍:服务器端的I/O协调并行文件系统处理,网络,文件存储等都会涉及到IO操作.不过里面涉及到很多技巧性的思路在实践时需要斟酌 《Distributed File Systems: Concepts and Examples》介绍:分布式文件系统概念与应用 《CSE 221: Graduate Operating Systems》介绍:加利福尼亚大学的研究生操作系统课程主页,论文很值得阅读 《S4: Distributed Stream Computing Platform》介绍:Yahoo出品的流式计算系统,目前最流行的两大流式计算系统之一(另一个是storm),Yahoo的主要广告计算平台 《Pregel: a system for large-scale graph processing》介绍:Google的大规模图计算系统,相当长一段时间是Google PageRank的主要计算系统,对开源的影响也很大(包括GraphLab和GraphChi) 《GraphLab: A New Framework for Parallel Machine Learning》介绍:CMU基于图计算的分布式机器学习框架,目前已经成立了专门的商业公司,在分布式机器学习上很有两把刷子,其单机版的GraphChi在百万维度的矩阵分解都只需要2~3分钟; 《F1: A Distributed SQL Database That Scales》介绍:这篇论文是Google 2013年发表的,介绍了F1的架构思路,13年时就开始支撑Google的AdWords业务,另外两篇介绍文章F1 - The Fault-Tolerant Distributed RDBMS Supporting Google's Ad Business .Google NewSQL之F1 《Cockroach DB:A Scalable, Survivable, Strongly-Consistent SQL Database》介绍:CockroachDB :一个可伸缩的、跨地域复制的,且支持事务的数据存储,InfoQ介绍,Design and Architecture of CockroachDb 《Multi-Paxos: An Implementation and Evaluation》介绍:Multi-Paxos实现与总结,此外推荐Paxos/Multi-paxos Algorithm,Multi-Paxos Example,地址:ftp://ftp.cs.washington.edu/tr/2009/09/UW-CSE-09-09-02.PDF 《Zab: High-performance broadcast for primary-backup systems》介绍:一致性协议zab分析 《A Distributed Hash Table》介绍:分布式哈希算法论文,扩展阅读Introduction to Distributed Hash Tables,Distributed Hash Tables 《Comparing the performance of distributed hash tables under churn》介绍:分布式hash表性能的Churn问题 《Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web》介绍:分布式系统的CAP问题,推荐Perspectives on the CAP Theorem.对CAP理论的解析文章,PODC ppt,A plain english introduction to CAP Theorem,IEEE Computer issue on the CAP Theorem 《F2FS: A New File System for Flash Storage》介绍:闪存存储文件系统F2FS 《Better I/O Through Byte-Addressable, Persistent Memory》介绍:微软发表的关于i/o访问优化论文 《tmpfs: A Virtual Memory File System》介绍:虚拟内存文件系统tmpfs 《BTRFS: The Linux B-tree Filesystem》介绍:Linux B-tree文件系统. 《Akamai technical publication》介绍:Akamai是全球最大的云计算机平台之一,承载了全球15-30%网络流量,如果你是做CDN或者是云服务,这个里面的论文会给你很有帮助.例如这几天看facebook开源的osquery。找到通过db的方式运维,找到Keeping Track of 70,000+ Servers: The Akamai Query System这篇论文,先看论文领会思想,然后再使用工具osquery实践 《BASE: An Acid Alternative》介绍:来自eBay 的解决方案,译文Base: 一种Acid的替代方案,应用案例参考保证分布式系统数据一致性的6种方案 《A Note on Distributed Computing》介绍:Jim Waldo和Sam Kendall等人共同撰写了一篇非常有名的论文“分布式计算备忘录”,这篇论文在Reddit上被人推荐为“每个程序员都应当至少读上两篇”的论文。在这篇论文中,作者表示“忽略本地计算与分布式计算之间的区别是一种危险的思想”,特别指出了Emerald、Argus、DCOM以及CORBA的设计问题。作者将这些设计问题归纳为“三个错误的原则”: “对于某个应用来说,无论它的部署环境如何,总有一种单一的、自然的面向对象设计可以符合其需求。” “故障与性能问题与某个应用的组件实现直接相关,在最初的设计中无需考虑这些问题。” “对象的接口与使用对象的上下文无关”. 《Distributed Systems Papers》介绍:分布式系统领域经典论文列表. 《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》介绍:Consistent Hashing算法描述. 《SIGMOD 2016: Accepted Research Papers》介绍:SIGMOD是世界上最有名的数据库会议之一,最具有权威性,收录论文审核非常严格.2016年的SIGMOD 会议照常进行,上面收录了今年SIGMOD收录的论文,把题目输入google中加上pdf就能找到,很多论文值得阅读,SIGMOD 2015 《Notes on CPSC 465/565: Theory of Distributed Systems》介绍:耶鲁大学的分布式系统理论课程笔记 《Distributed Operating System Doc PDF》介绍:分布式系统文档资源(可下载) 《Anatomy of a database system》介绍:数据库系统剖析,这本书是由伯克利大学的Joseph M. Hellerstein和M. Stonebraker合著的一篇论文.对数据库剖析很有深度.除此以外还有一篇文章Architecture of a Database System。数据库系统架构,厦门大学的数据库实验室教授林子雨组织过翻译 《A Relational Model of Data for Large Shared Data Banks》介绍:数据库关系模型论文 《RUC Innovative data systems reaserch lab recommand papers》介绍:中国人民大学数据研究实验室推荐的数据库领域论文 《A Scalable Distributed Information Management System》介绍:构建可扩展的分布式信息管理系统 《Distributed Systems in Haskell》介绍:Haskell中的分布式系统开发 《Large-scale cluster management at Google with Borg》介绍:Google使用Borg进行大规模集群的管理,伯克利大学ppt介绍,中文版 《Lock Free Programming Practice》介绍:并发编程(Concurrency Programming)资料,主要涵盖lock free数据结构实现、内存回收方法、memory model等备份链接 密码: xc5j 《Distributed Algorithms Lecture Notes for 6.852》介绍:Nancy Lynch's的分布式算法研究生课程讲义 《Distributed Algorithms for Topic Models》介绍:分布式算法主题模型. 《RecSys - ACM Recommender Systems》介绍:世界上非常有名的推荐系统会议,我比较推荐接收的PAPER 《All Things Distributed》介绍:推荐一个博客,博主是Amazon CTO Werner Vogels,这是一个关注分布式领域的博客.大部分博文是关于在工业界应用. 《programming, database, distributed system resource list》介绍:这个Git是由阿里(alibaba)的技术专家何登成维护,主要是分布式数据库. 《Making reliable distributed systems in the presence of sodware errors》介绍:Erlang的作者Joe Armstrong撰写的论文,面对软件错误构建可靠的分布式系统.中文译版 《CS 525: Advanced Distributed Systems[Spring 2016]》介绍:伊利诺伊大学的Advanced Distributed Systems 里把各个方向重要papers(updated Spring 2015)列举出来,可以参考一下 《Distributed Algorithms》介绍:这是一本分布式算法电子书,作者是Jukka Suomela.讲述了多个计算模型,一致性,唯一标示,并发等. 《TinyLFU: A Highly Efficient Cache Admission Policy》介绍:当时是在阅读如何设计一个缓存系统时看到的,然后通过Google找到了这一篇关于缓存策略的论文,它是LFU的改良版,中文介绍.如果有兴趣可以看看Golang实现版。结合起来可能会帮助你理解 《6.S897: Large-Scale Systems》介绍:斯坦福大学给研究生开的分布式系统课程。教师是 spark 作者 matei. 能把这些内容真正理解透,分布式系统的功力就很强了。 《学习分布式系统需要怎样的知识?》介绍:[怎么学系列]学习分布式系统需要怎样的知识? 《Distributed systems theory for the distributed systems engineer》介绍:分布式系统工程师的分布式系统理论 《A Distributed Systems Reading List》介绍:分布式系统论文阅读列表 《Distributed Systems Reading Group》介绍:麻省理工大学分布式系统小组,他们会把平时阅读到的优秀论文分享出来。虽然有些论文本页已经收录,但是里面的安排表schedule还是挺赞的 《Scalable Software Architecture》介绍:分布式系统、可扩展性与系统设计相关报告、论文与网络资源汇总. 《MapReduce&Hadoop resource》介绍:MapReduce&Hadoop相关论文,涉及分布式系统设计,性能分析,实践,优化等多个方面 《Distributed Systems: Principles and Paradigms(second edtion)》介绍:分布式系统原理与范型第二版,课后解答 《Distributed Systems Seminar's reading list for Spring 2017》介绍:分布式系统研讨会论文阅读列表 《A Critique of the CAP Theorem》介绍:这是一篇评论CAP定理的论文,学习CAP很有帮助,推荐阅读评论文章"A Critique of the CAP Theorem" 《Evolving Distributed Systems》介绍:推荐文章不断进化的分布式系统.

suonayi 2019-12-02 03:17:27 0 浏览量 回答数 0

回答

1.产品2.UI3.CSS4.JS5.后端(Java/php/python)6.DBA(mysql/oracle)7.运维(OP) 8.测试(QA)9.算法(分类/聚类/关系抽取/实体识别)10.搜索(Lucene/Solr/elasticSearch)11.大数据工程师(Hadoop)12.Android13.IOS14.运营 一.产品1 工作内容:了解用户需求,做竞品调研,画产品原型,写产品文档,讲解产品需求,测试产品Bug,收集用户反馈,苦练金刚罩以防止程序员拿刀砍。2 需要技能:PPT,Word, Axure,XP,MVP,行业知识,沟通。 二. UI1 工作内容:收到产品原型,给原型上色,偶尔会自作主张调整下原型的位置,出不同的风格给老板和客户选,然后听他们的意见给出一个自己极不喜欢的风格,最好给Android,IOS或者是CSS做好标注,还有的需要直接帮他们切好图,最后要练出来象素眼,看看这些不靠谱的程序员们有没有上错色或者是有偏差。2 需要技能:PS,Illustrator,Sketch,耐性,找素材。 三. CSS1 工作内容:产品设计好原型,UI做出来了效果图,剩下的就是CSS工程师用代码把静态文件写出来的。 2 需要技能:环境【IDE(WEBStorm,Sublime,EditPlus),源码管理(SVN/Git) ,WEB服务器(nginx)】基础【PS,域名,Html,Html5,CSS,CSS3】扩展【自适应,响应式,Bootstrap,Less,Flex】 四 .JS 1 工作内容:JS工程师其实分成两类,在之前讲CSS的时候已经提到过,一个是套页面的,一个是前后端分离的。对这两个概念还是分不太清的,可以回过头去看CSS的部分。 2 需要技能:环境【IDE(WEBStorm,Sublime,EditPlus),源码管理(SVN/Git) ,WEB服务器(nginx)】基础【Http,REST,跨域,语法,组件,F12,Json,Websocket】框架【JQuery,AngularJS,Bower,RequireJS,GruntJS,ReactJS,PhoneGap】业务【金融,教育,医疗,汽车,房产等等等等各种行业】 五 .后端(Java/python/go) 1 工作内容:大部分的后端工程师都停留在功能实现的层面上。这是现在国内二流或者是三流的公司的现状,甚至是在某些一流的公司。很多时候都是架构师出了架构设计,更多的外包公司根本就是有DBA来做设计,然后后端程序员从JS到CSS到Java全写,完全就是一个通道,所有的复杂逻辑全部交给DB来做,这也是几年前DBA很受重视的原因。 2 需要技能:环境【IDE(Idea/Eclipse,Maven,jenkins,Nexus,Jetty,Shell,Host),源码管理(SVN/Git) ,WEB服务器(nginx,tomcat,Resin)】基础【Http,REST,跨域,语法,Websocket,数据库,计算机网络,操作系统,算法,数据结构】框架【Spring,AOP,Quartz,Json TagLib,tiles,activeMQ,memcache,redis,mybatis,log4j,junit等等等等等】业务【金融,教育,医疗,汽车,房产等等等等各种行业】。 六 .DBA  1 工作内容:如果你做了一个DBA,基本上会遇到两种情况。一种是你的后端工程师懂架构,知道怎么合便使用DB,知道如何防止穿透DB,那么恭喜你,你只是需要当一个DB技术兜底的顾问就好,基本上没什么活可以做,做个监控,写个统计就好了。你可以花时间在MongoDB了,Hadoop了这些,随便玩玩儿。再按照我之前说的,做好数据备份。如果需求变动比较大,往往会牵涉到一些线上数据的更改,那么就在发布的时候安静的等着,等着他们出问题。。。。如果不出问题就可以回家睡觉了。 2 需要技能:环境【Linux,Mysql,Oracle,MongoDB,Hadoop】工具【各种DB的版本,工具,备份,日志等】。 七. 运维  1 工作内容:运维的工作大概分成几个部分,我对于修真院学习运维的少年们都这么说,大概是:A。基础环境的搭建和常用软件的安装和配置(兼网管的还有各种程控机),常用软件指的是SVN,Git,邮箱这种,更细节的内容请参考修真院对于运维职业的介绍。B。日常的发布和维护,如刚刚讲到的一样,测试环境和线上环境的发布和记录,原则上,对线上所有的变更都应该有记录。C。数据的备份和服务的监控&安全配置。各种数据,都要做好备份和回滚的手段,提前准备好各种紧急预案,服务的监制要做好。安全始终都是不怎么被重点考虑的问题,因为这个东西无底洞,你永远不知道做到什么程度算是比较安全了,所以大多数都是看着情况来。D。运维工具的编写。这一点在大的云服务器商里格外常见,大公司也是一样的。E。Hadoop相关的大数据体系架构的运维,确实有公司在用几百台机器做Hadoop,所以虽然不常见,我还是列出来吧。 2 需要技能:环境【Linux,Mysql,Oracle,MongoDB,Hadoop,nginx,apache,F5,lvs,vpn,iptable,svn,git,memcache,redis】工具【linux 常用工具,Mysql常用工具,Jenkins,zabbix,nagios】自动化运维【openstack,docker,ansible】语言【shell,python】 八 .QA  1 工作内容:QA需要了解需求,很多公司会要求QA写测试用例,我觉得是扯淡。完全是在浪费时间。通常开发三周,QA测试的时间只有一周到一周半。还有关于提前写测试用例的,都不靠谱。 2 需要技能:流程【Bug修复流程,版本发布流程】工具【禅道,BugZilla,Jira,Excel表格来统计Bug数,自动化测试】性格【严谨,耐心】 九. 算法工程师  1 工作内容:算法工程师的工作内容,大部分时间都是在调优。就是调各种参数和语料,寻找特征,验证结果,排除噪音。也会和Hadoop神马的打一些交道,mahout神马的,我那个时候还在用JavaML。现在并不知道有没有什么更好用的工具了。有的时候还要自己去标注语料---当然大部分人都不爱做这个事儿,会找漂亮的小编辑去做。2 需要技能:基础【机器学习,数据挖掘】工具【Mahout,JavaML等其他的算法工具集】 十. 搜索工程师  1 工作内容: 所以搜索现在其实分成两种。一种是传统的搜索。包括:A。抓取 B。解析C。去重D。处理E。索引F。查询另一种是做为架构的搜索。并不包括之前的抓取解析去重,只有索引和查询。A。索引B。查询 2 需要技能:环境【Linux】框架【Luence,Slor,ElasticSearch,Cassandra,MongoDB】算法【倒排索引,权重计算公式,去重算法,Facet搜索的原理,高亮算法,实时索引】 十一. 大数据工程师  1 工作内容:工作内容在前期会比较多一些,基础搭建还是一个挺讲究的事儿。系统搭建好之后呢,大概是两种,一种是向大数据部门提交任务,跑一圈给你。一种是持续的文本信息处理中增加新的处理模块,像我之前说的增加个分类啦,实体识别神马的。好吧第一种其实我也不记得是从哪得来的印象了,我是没有见到过的。架构稳定了之后,大数据部门的工作并不太多,常常会和算法工程师混到一起来。其他的应该就是大数据周边产品的开发工作了。再去解决一些Bug什么的。2 需要技能:环境【Linux】框架【Hadoo,spark,storm,pig,hive,mahout,zookeeper 】算法【mapreduce,hdfs,zookeeper】。 十二. Android工程师  1 工作内容:Android工程师的日常就是听产品经理讲需求,跟后端定接口,听QA反馈哪款机器不兼容,闹着申请各种测试机,以及悲催的用Android做IOS的控件。 2 需要技能:环境【Android Studio,Maven,Gradle】基础【数据结构,Java,计算机网络】组件【IM,地图,支付,拍照,视频,音频,统计,分享,手势密码】 十三. IOS工程师  1 工作内容:IOS工程师的工作内容真的挺简单的,听需求,定接口。做个适配,抛弃一下iphone4。还有啥。。马丹,以我为数不多的IOS知识来讲,真的不知道还有啥了。我知道的比较复杂的系统也是各种背景高斯模糊,各种渐变,各种图片滤镜处理,其他并没有什么。支付,地图,统计这些东西。 嗯。2 需要技能:环境【Xcode】基础【数据结构,Object,计算机网络】组件【IM,地图,支付,拍照,视频,音频,统计,分享,手势密码】

行者武松 2019-12-02 01:21:45 0 浏览量 回答数 0

回答

准备工作 登录控制台创建应用 手动在控制台根据实际业务需要创建对应表结构及其它相关配置,例如:索引,属性,数据源,过滤条件等。 下载此处我们提供的测试 应用结构模板,在创建应用结构时,选择“通过模板创建应用结构”,然后下一步,再选择左上角的“导入模板”,上传此处下载的应用结构模板,一直下一步直到完成。【此应用结构测试模板,可适用于标准版Java SDK文档中的搜索及推送数据Demo代码】 获取用户AccessKeyId和秘钥(secret) 用户可以使用阿里云的账号登录本系统,在登录完成后,点击“ACCESSKEY管理”可以查看您的Access Key ID(AccessKeyId)和 Access Key Secret(secret)。也可以在阿里云官网,点击“用户中心>我的服务>安全验证”即可到ACCESSKEY管理中心。 将SDK添加到项目中 使用OpenSearch SDK有两种方式: 1.下载SDK源码包,在下载中心下载最新版的JAVA SDK到本地,再下载此处的 slf4j-api-1.7.25 依赖 jar包,并将这2个jar包 import 到您的项目中,若项目中不包含此依赖jar包,会出现运行报错。 2.引入OpenSearch SDK依赖,通过maven二方库依赖的方式将opensearch的sdk加入到自己的项目中。 com.aliyun.opensearch aliyun-sdk-opensearch 3.1.3 创建client 通过控制台也可以完成创建应用的操作,这里介绍一下如何使用SDK实现。这里使用import SDK的方式,使用上面获取的AccessKey和Secret实例化一个SearcherClient(下面的操作里将继续使用如下的client),具体代码如下: import com.aliyun.opensearch.*; import com.aliyun.opensearch.sdk.dependencies.com.google.common.collect.Lists; import com.aliyun.opensearch.sdk.generated.OpenSearch; import com.aliyun.opensearch.sdk.generated.search.Config; import com.aliyun.opensearch.sdk.generated.search.SearchFormat; String appName = "应用名称"; String accesskey = "您的阿里云的Access Key ID"; String secret = "阿里云 Access Key ID 对应的 Access Key Secret"; String host = "这里的host需要根据访问应用基本信息页中提供的的API入口来确定"; //创建并构造OpenSearch对象 OpenSearch openSearch = new OpenSearch(accesskey, secret, host); //创建OpenSearchClient对象,并以OpenSearch对象作为构造参数 OpenSearchClient serviceClient = new OpenSearchClient(openSearch); 上传文档 OpenSearch的文档是一个json类型的字符串,结构如下: 打开控制台中的应用后,内部右上角也有 “上传文件” 功能,里面提供了类似下面的json格式测试数据,可下载下来直接上传使用,注意文件必须是utf8格式,且不能包含BOM头,否者上传会报错。 [ { “fields”:{...}, “cmd”:"..." } ... ] 一条文档是由fields字段和cmd字段构成的一个结构体,其中fields字段内包含文档的核心数据,cmd表示针对此条文档所做的操作,但标准版和高级版部分操作有所不同,标准版不支持update及部分字段更新,只支持全字段更新,因此对文档的添加,更新操作都是通过(add)方式实现,删除(delete)与原来相同。一段文档示例如下: [ { “fields”: { “id”: "0", “name”: "广大中小企业都有各种结构化的数据需要进行检索,目前一般采用数据库本身提供的搜索功能或者利用open source的搜索软件搭建,这样的做法不但会消耗网站本身的资源,性能也会很容易成为问题,而且相关性通常也不够好。我们的产品的目的是要利用阿里云先进的云计算和搜索技术向广大中小企业提供低成本,高质量,高性能,可定制的数据搜索解决方案。本项目和云搜索的通用解决方案目标略有不同,主要区别为本项目主要针对用户的结构化数据进行搜索,云搜索的通用解决方案则主要是针对网页型数据为处理对象。" }, “cmd”: "ADD" }, { “fields”: { “id”: "1", “name”: "云搜索( Cloud Search Engine),是运用云计算( Cloud Computing)技术的搜索引擎,可以绑定多个域名,定义搜索范围和性质,同时,不同域名可以有不同UI和流程,这个UI和流程由运行在云计算服务器上的个性化程序完成。作为新型搜索引擎,与传统搜索引擎需要输入多个关键字不同的是,用户可以告诉搜索引擎每个搜索关键字的比重,每个搜索关键字都被置于“搜索云”中,并用不同大小,粗细的字型区分。 " }, “cmd”: "ADD" } ] 将文档上传到应用的某个表中的代码如下: //定义DocumentClient对象添加json格式doc数据批量提交 DocumentClient documentClient = new DocumentClient(serviceClient); table_name = "要上传数据的表名"; data = "[{"cmd":"add", "fields":{"id":"0","name":"blabla..."}}]"; //执行推送操作 OpenSearchResult osr = documentClient.push(data, appName, table_name); 另外还可以通过DocumentClient类的提供的add、remove二个接口生成待上传的数据,最后在调用push方法将数据上传; 开始搜索 OpenSearch通过设置可以实现高度个性化的搜索需求,但通用的基本的搜索功能只需通过非常简单的设置即可实现: //创建SearcherClient对象,并以OpenSearchClient对象作为构造参数 SearcherClient searcherClient = new SearcherClient(serviceClient); //定义Config对象,用于设定config子句参数,指定应用名,分页,数据返回格式等等 Config config = new Config(Lists.newArrayList(appName)); config.setStart(0); config.setHits(5); //设置返回格式为fulljson格式 config.setSearchFormat(SearchFormat.JSON); // 创建参数对象 SearchParams searchParams = new SearchParams(config); // 指定搜索的关键词,这里要指定在哪个索引上搜索,如果不指定的话默认在使用“default”索引(索引字段名称是您在您的数据结构中的“索引字段列表”中对应字段。),若需多个索引组合查询,需要在setQuery处合并,否则若设置多个setQuery子句,则后面的子句会替换前面子句 searchParams.setQuery("name:'搜索'"); //设置查询过滤条件 searchParams.setFilter("id>0"); //创建sort对象,并设置二维排序 Sort sort = new Sort(); //设置id字段降序 sort.addToSortFields(new SortField("id", Order.DECREASE)); //若id相同则以RANK相关性算分升序 sort.addToSortFields(new SortField("RANK", Order.INCREASE)); //添加Sort对象参数 searchParams.setSort(sort); //执行查询语句返回数据对象 SearchResult searchResult = searcherClient.execute(searchParams); //以字符串返回查询数据 String result = searchResult.getResult(); 调试 通过上面的操作我们已经可以使用基本的搜索功能了,但是优化搜索、提高搜索结果相关性是一个漫长的的过程,需要我们不断试错和迭代来一点点改进。在这个过程中如果遇到问题或者发现结果与预期不一致时可以通过下面的接口获得请求的详细信息,您可以通过这些信息排查问题。特别是当您遇到问题,在旺旺群、钉钉群中寻求帮助的时候,根据您提供的调试信息我们可以迅速帮您定位到问题所在,主要向我们提供查询异常或不符合预期返回的,请求ID 或 查询http请求串等信息,进行查询分析定位原因。 部分用户有可能会有记录查询请求串的需求,例如打印上一次查询请求串信息,该信息中的部分查询子句可以直接截取出来放到控制台中的搜索测试框中运行调试,可参考如下代码 SearchResultDebug searchdebugrst = searcherClient.executeDebug(searchParams); System.out.println(searchdebugrst.getRequestUrl());

保持可爱mmm 2020-03-26 22:02:23 0 浏览量 回答数 0

问题

域名转入

yq传送门 2019-12-01 20:13:38 37209 浏览量 回答数 30

问题

程序员报错行为大赏-配置报错

问问小秘 2020-06-11 13:18:25 6 浏览量 回答数 1

问题

安卓与iOS百问,开发者系统指南

yq传送门 2019-12-01 20:14:48 27317 浏览量 回答数 26

回答

可信电子证照采用许可链作为区块链技术底层。许可链分为联盟链和私有链两种,为简单起见,本节将以私有链为例,讨论如何搭建并部署一条属于自己的以太坊私有链。 考虑到便捷性,我们提供私有链底层平台的部署脚本,基于该脚本可实现私有链的自动化快速部署。在环境准备方面,私有链平台部署在政府内网,区块链节点运行于若干PC Server,在IP层保证区块链节点间的互联互通。 □测试环境 :3台全节点服务器(虚拟机)。 □服务器系统:centos 6.8。 □服务器性能:4核,8GB内存。 □以太坊客户端:geth 搭建及部署以太坊私有链的具体步骤如下。 第一步:部署主节点,在该节点上生成创世区块。 首先,通过制定的参数配置,在控制台启动geth服务 过参数console启动一个带命令行的geth服务。接着,通过带有命令行的geth服务,注册一个新用户。 □personal.newAccount("test1234”):注册新用户的web3接口。 □0xfc3147e7d648b3513f3fbad853ddc242e7f003ba:注册成功后为新用户生成的地址address,对于以太坊来说也是公钥,记住这个地址,在配置创世节点的时候需要。 新用户创建成功后,输入命令 “exit” 退出服务,如果不退出,geth服务会自动同步公链区块,搭建私有链则不需要同步以太坊公链。 然后,通过创世节点配置配置文件(genesis.json),初始化创世节点。初始化配置文件内容如下: { "alloc": { }, "nonce": "0x0000000000000042”, //随机数,用于挖矿 "difficulty": "0x020000”, //设置区块挖矿复杂度,设置太高,产出区块的速度会比较慢,设置太低,产出垃圾区块(分叉)的概率会比较高 "mixHash": "0x0000000000000000000000000000000000000000000000000000000000000000”, // 与nonce一起配合用于挖矿,详细信息可以参考以太坊黄皮书 "coinbase": "0x0000000000000000000000000000000000000000”, // coninbase地址 "timestamp": "0x00”, //时间戳 "parentHash": "0x0000000000000000000000000000000000000000000000000000000000000000”, //创世区块父区块的地址,由于是创世区块,没有父区块,所以为0 "extraData": "0x11bbe8db4e347b4e8c937c1c8370e4b5ed33adb3db69cbdb7a38e1e50b1b82fa”, //备注信息 "gasLimit": “0x4c4b40” // 设置gas的消耗总量限制,用于限制区块能包含交易的信息综合,这里我们用于私链测试开发,所以填最大值 } 获取创世节点配置文件的参数以后,通过命令来初始化创世节点: geth --datadir data init genesis.json 至此,创世节点的初始化就完成了,现在我们来启动创世节点: geth --datadir data --mine --etherbase 0 --minerthreads 2 --port 30303 --rpc --rpcapi "db,eth,net,web3,personal" --rpcaddr 10..129. --rpccorsdomain “*” console 运行上述命令后会看到图1-16所示的界面。 后面需要在从节点添加监听地址来同步主节点的区块。 我们的创世区块的主节点已经启动了。可以查看创世节点的一些信息 指令含义分析如下所示。 eth.accounts :查看当前geth服务下的账户列表; eth.getBalacne(“0xfc3147e7d648b3513f3fbad853ddc242e7f003ba”) :查询指定账户的余额信息,单位为wei。 至此,我们的创世节点已经成功启动了。 第二步:部署从节点,并且同步主节点的区块信息。 首先,把主节点服务上的genesis.json复制到从节点服务器,并初始化节点: geth --datadir data init genesis.json 然后,启动从节点geth服务: geth --datadir data console 从服务启动成功,服务启动后的显示信息与主服务的类似。 接着,在从服务器上创建账户,与主服务创建账户相同: personal.newAccount(?234test?; “0xabc147e7d648b3513f3fbad853ddc242e7f00gjs” 为了从服务添加对主服务的监听,在从服务的geth服务控制台输入如下命令: admin.addPeer(“enode://707124b6dba10fad0ad776539038310aace4f73f7c906885e9064c943ab8e92e819cce40805919f6bc314492ef220ee2eb40b9c60e5b16361bc4a32e843dcd3b@10.37.129.2:30303”); 此时主从服务就可以互相同步区块了。 添加创世节点的监听端口有如下3种方式。 (1)在geth服务控制台使用如下命令: admin.addPeer(“enode://707124b6dba10fad0ad776539038310aace4f73f7c906885e9064c943ab8e92e819cce40805919f6bc314492ef220ee2eb40b9c60e5b16361bc4a32e843dcd3b@10.37.129.2:30303”); (2)在geth启动参数设置,使用参数--bootbodes: “enode://707124b6dba10fad0ad776539038310aace4f73f7c906885e9064c943ab8e92e819cce40805919f6bc314492ef220ee2eb40b9c60e5b16361bc4a32e843dcd3b@10.37.129.2:30303” (3)使用配置文件,添加文件/static-nodes.json : [ "enode://707124b6dba10fad0ad776539038310aace4f73f7c906885e9064c943ab8e92e819cce40805919f6bc314492ef220ee2eb40b9c60e5b16361bc4a32e843dcd3b@10.37.129.2:30303", ] 最后我们要让主从服务的矿工工作了,目前该私有链的以太币只能依靠矿工挖矿来产出。分别在主从节点的geth控制台输入以下命令: personal.unlockAccount(“0xabc147e7d648b3513f3fbad853ddc242e7f00gjs”); 分别在对应的服务器上填入对应的矿工用户地址,即刚注册的用户的地址。这时,控制台需要我们输入注册时地址对应的用户名(也就是注册新用户时设定的test1234)。 然后,使用miner.start(2) 命令开始挖矿,这里需要设置cpu使用的个数。之后可以使用miner.stop()命令来停止挖矿。 至此,我们已经搭建好两个全节点的区块链服务了。可以使用脚本来启动geth服务,而不需要在geth控制台中启动相关服务。 创建geth.sh脚本: geth --datadir /data/Ethereum/data --port 30303 --bootnodes "enode://b70d74575119486999877d08f07aa2e9cb4aa908 f78d3e58d91e19eb790a3723f8aedc25fd9823aa0e7cc2c4ca54c431ab785211cb111aa9c28461ca72adb67f@10.51.110.19:30303" --mine --minerthreads 2 --nat "extip:10.51.110.21" --rpc --rpcapi "db,eth,net,web3,personal" --rpcaddr 10.51.110.21 --rpc corsdomain “*” console 脚本启用服务以后,可以通过curl命令来调用geth服务的json-rpc接口(rpc服务的地址就是启动命令--rpcaddr设定的地址,服务端口默认为8545),例如: curl -X POST --data '{"jsonrpc":"2.0","method":"eth_getBalance","params": [“0xabc147e7d648b3513f3fbad853ddc242e7f00gjs", "latest"],"id":1}’ 10.51.110.21:8545

问问小秘 2019-12-02 03:10:06 0 浏览量 回答数 0

回答

 TTS</B>是Text To Speech的缩写,即“从文本到语音”。它是同时运用语言学和心理学的杰出之作,在内置芯片的支持之下,通过神经网络的设计,把文字智能地转化为自然语音流。TTS技术对文本文件进行实时转换,转换时间之短可以秒计算。在其特有智能语音控制器作用下,文本输出的语音音律流畅,使得听者在听取信息时感觉自然,毫无机器语音输出的冷漠与生涩感。TTS语音合成技术即将覆盖国标一、二级汉字,具有英文接口,自动识别中、英文,支持中英文混读。所有声音采用真人普通话为标准发音,实现了120-150个汉字/秒的快速语音合成,朗读速度达3-4个汉字/秒,使用户可以听到清晰悦耳的音质和连贯流畅的语调。现在有少部分MP3随身听具有了TTS功能。   TTS是语音合成应用的一种,它将储存于电脑中的文件,如帮助文件或者网页,转换成自然语音输出。TTS可以帮助有视觉障碍的人阅读计算机上的信息,或者只是简单的用来增加文本文档的可读性。现在的TTL应用包括语音驱动的邮件以及声音敏感系统。TTS经常与声音识别程序一起使用。现在有很多TTS的产品,包括Read Please 2000, Proverbe Speech Unit,以及Next Up Technology的TextAloud。朗讯、 Elan、以及 AT&T都有自己的语音合成产品。   除了TTS软件之外,很多商家还提供硬件产品,其中包括以色列WizCom Technologies公司的 Quick Link Pen,它是一个笔状的可以扫描也可以阅读文字的设备;还有Ostrich Software公司的Road Runner,一个手持的可以阅读ASCII文本的设备;另外还有美国DEC公司的DecTalk TTS,它是可以替代声卡的外部硬件设备,它包含一个内部软件设备,可以与个人电脑自己的声卡协同工作。 TTS文语转换用途很广,包括电子邮件的阅读、IVR系统的语音提示等等,目前IVR系统已广泛应用于各个行业(如电信、交通运输等)。   TTS所用的关键技术就是语音合成(SpeechSynthesis)。早期的TTS一般采用专用的芯片实现,如德州仪器公司的TMS50C10/TMS50C57、飞利浦的PH84H36等,但主要用在家用电器或儿童玩具中。   而基于微机应用的TTS一般用纯软件实现,主要包括以下几部分:   ●文本分析-对输入文本进行语言学分析,逐句进行词汇的、语法的和语义的分析,以确定句子的低层结构和每个字的音素的组成,包括文本的断句、字词切分、多音字的处理、数字的处理、缩略语的处理等。   ●语音合成-把处理好的文本所对应的单字或短语从语音合成库中提取,把语言学描述转化成言语波形。   ●韵律处理-合成音质(Qualityof Synthetic Speech)是指语音合成系统所输出的语音的质量,一般从清晰度(或可懂度)、自然度和连贯性等方面进行主观评价。清晰度是正确听辨有意义词语的百分率;自然度用来评价合成语音音质是否接近人说话的声音,合成词语的语调是否自然; 连贯性用来评价合成语句是否流畅。   要合成出高质量的语音,所采用的算法是极为复杂的,因此对机器的要求也非常高。算法的复杂度决定了目前微机并发进行多通道TTS的系统容量。 在一般的CTI应用系统中,都会有IVR(交互式语音应答系统)。IVR系统是呼叫中心的重要组成部分,通过IVR系统,用户可以利用音频按健电话输入信息,从系统中获得预先录制的数字或合成语音信息。具有TTS功能的IVR可以加快服务速度,节约服务成本,使IVR为呼叫者提供7*24小时的服务。   目前常见的IVR系统大都是通用的工控机平台上插入语音板卡组成,并支持中文语音合成TTS等技术。   一个典型的包含TTS服务的电话服务流程可分为:   用户电话拨入,系统IVR响应,获得用户按键等信息。   IVR根据用户的按键信息,向数据库服务器申请相关数据。   数据库服务器返回文本数据给IVR。   IVR通过其TCP通讯接口,将需要合成的文本信息发送给TTS服务器。   TTS服务器将用户文本合成的语音数据分段通过TCP通讯接口发送给IVR服务器。   IVR服务器把分段语音数据组装成为独立的语音文件。   IVR播放相应的语音文件给电话用户。   一般的公网接入(IVR)大都采用工控机+语音板卡,而合成的语音数据则通过局域网传给IVR。这种结构只适用于简单的应用场合。 包括中文语音处理和语音合成,利用中文韵律等相关知识对中文语句进行分词、词性判断、注音、数字符号转换,语音合成通过查询中文语音库得到语音。目前中文TTS系统,比较著名的有:IBM,Microsoft,Fujitsu,科大讯飞,捷通华声等研究的系统。目前比较关键的就是中文韵律处理、符号数字、多音字、构词方面有较多的问题,需要不断研究,使得中文语音合成的自然化程度较高。  CTI技术使电信和计算机相互融合,克服了传统电信和计算机服务相对单一的缺点,将两者完美结合了起来。其应用领域非常广泛,任何需要语音、数据通信,特别是那些希望把计算机网与通信网结合起来完成语音数据信息交换的系统都会用到CTI技术。   TTS即语音合成技术(Text To Speech),它涉及声学、语言学、数学信号处理技术、多媒体技术等多个学科技术,是中文信息处理领域的一项前沿技术,实现把计算机中任意出现的文字转换成自然流畅的语音输出。   TTS在CTI系统中可以应用在IVR(交互式语音应答)服务器上,以提供语音交互式平台,为用户电话来访提供语音提示,引导用户选择服务内容和输入电话事务所需的数据,并接受用户在电话拨号键盘上输入的信息,实现对计算机数据库等信息资料的交互式访问。   在IVR中应用TTS可以自动将文本信息转换为语音文件,或者实时地将文本信息合成语音并通过电话发布。实现文本与语音自动双向转换,以达到人与系统的自动交互,随时随地为客户服务。维护人员不必再人工录音,只须将电子文档引入系统中,系统可以自动将电子文档转换为语音信息播放给客户。数据库中存放的大量数据,无需事先进行录音,能够随时根据查询条件查出并合成语音进行播报,从而大大减少了座席人员的工作负担。   那么应如何将TTS功能附加到CTI应用中呢?某些比较先进的交换平台,已经在交换机的内部实现了TTS的功能,并作为标准接口的一部分对外提供,业务开发商只需要简单的调用他们即可以在业务中使用该功能。   对于未实现TTS功能的PBX,就需要业务开发商自己去选择合适的平台,在此基础上进行二次开发,即调用所选TTS平台提供的标准接口,实现语音合成功能。   目前CTI已经成为全球发展最为迅猛的产业之一,每年以50%的速度增长,CTI如同计算机产业一样是一个金字塔形的产业链,从上到下会以至少20倍的幅度增值。TTS作为一种诱人的新技术,如果能很好的嵌入到增值业务的应用中去,必将形成一个更好的应用前景。   杭州音通软件有限公司是由国家教育部和浙江省人民政府联办并依托浙江大学而成立的高新技术公司,音通公司主要致力于计算机语音技术的研发并逐步开拓语音识别、语音流媒体传输等其它语音领域的研究。其核心技术(Intone_TTS)是具有自主知识产权的中文语音合成技术,在由浙江省科技厅组织的鉴定中被专家一致鉴定为国内领先地位,并已申请多项国家专利。   Intone_TTS是一套把文本信息转换为语音信息的开发工具包,为系统集成商、软件开发商提供了完备的接口函数和编程示例,使用户能够灵活的进行调用,并集成到其它应用系统中。接口需要语音合成运行库的支持,适合多种开发环境。开发者可以根据具体的应用场合进行选择。   它能够对所有的汉字、英文、阿拉伯数字进行语音合成;   支持繁体字及多音字的编辑;   合成效果:自然、平滑;   规范的函数调用接口,同时支持微软SAPI的调用;支持同步调用和异步调用方式;   支持PCM Wave,uLaw/aLaw Wave,ADPCM,Dialogic Vox等多种语音格式;   支持GB2312码(简体中文)、BIG5码(繁体)、UNICODE码;   支持多路通道同时合成;   支持Dialogic、东进、三汇等主流语音板卡; TTS就是Text To Speech,文本转语音,文本朗读,差不多是一个意思。在语音系统开发中经常要用到。   目前市场上的TTS很多,实现方式也各式各样,有的很昂贵,如科大讯飞,据说当初得到863计划的资助,有很高的技术;有的相对便宜,如捷通华声, InfoTalk;也有免费的,如微软的TTS产品。   相对于ASR(Automatic Speech Recognition,自动语音识别)来说,实现一个TTS产品所需要的技术难度不算大,在我看来也就是个力气活。   要是让我们来做一个能够把汉语句子朗读出来的TTS,我们会怎么做呢?   有一种最简单的TTS,就是把每个字都念出来,你会问,岂不要录制6千多个汉字的语音?幸运的是,汉语的音节很少,很多同音字。我们最多只是需要录制: 声母数×韵母数×4,(其实不是每个读音都有4声),这样算来,最多只需要录制几百个语音就可以了。   在合成的时候需要一张汉字对应拼音的对照表,汉字拼音输入法也依赖这张表,可以在网上找到,不过通常没有4声音调,大不了自己加上,呵呵,要不怎么说是力气活呢。   这样做出来的TTS效果也还可以,特别是朗读一些没有特别含义的如姓名,家庭住址,股票代码等汉语句子,听起来足够清晰。这要归功于我们伟大的母语通常都是单音节,从古代的时候开始,每个汉字就有一个词,表达一个意思。而且汉字不同于英语,英语里面很多连读,音调节奏变化很大,汉字就简单多了。   当然,你仍然要处理一些细节,比如多音字,把“银行”读成“yin xing”就不对了;再比如,标点符号的处理,数字、字母的处理,这些问题对于写过很多程序的你,当然不难了。   国内的一些语音板卡带的TTS,不管是卖钱的还是免费的,大体都是这样做出来的,也就是这样的效果。   如果要把TTS的效果弄好一点,再来点力气活,把基本的词录制成语音,如常见的两字词,四字成语等,再做个词库和语音库的对照表,每次需要合成时到词库里面找。这样以词为单位,比以字为单位,效果自然是好多了。当然,这里面还是有个技术,就是分词的技术,要把复杂的句子断成合理的词序列,也有点技术。这也要怪新文化那些先驱们,当初倡导白话文,引进西文的横排格式、标点符号的时候,没有引进西文中的空格分词。不过即使分词算法那么不高效,不那么准确,也问题不大,如前面所说,汉字是单音节词,把声音合起来,大体上不会有错。   当然,科大讯飞的力气活又干的多了些,据说已经进化到以常用句子为单位来录音了,大家可以想像,这要耗费更多的力气,换来更好的效果。   至于增加一些衔接处的“词料”,弄一些修饰性的音调,我认为是无关紧要的,对整体的效果改进不是太大。   市面上商品化TTS一般还支持粤语,请个粤语播音员录音,把上面的力气活重做一遍就是了。   再说句题外话,很多人觉得录音最好找电台、电视台的播音员,其实找个你周围的女同事来录制,只要吐字清晰就可以了。在某种情况下,寻常声音比字正腔圆的新闻联播来得可爱。   再来说说文本的标识,对于复杂文本,某些内容程序没有办法处理,需要标识出来。比如,单纯的数字“128”,是应该念成“一百二十八”还是“一二八”?解决办法通常是加入XML标注,如微软的TTS:"<context ID = "number_cardinal">128</context>"念成“一百二十八”,"<context ID = "number_digit">128</context>"将念成“一二八”。TTS引擎可以去解释这些标注。遗憾的是,语音XML标注并没有形成大家都完全认可的标准,基本上是各自一套。   再说说TTS应用编程,微软的TTS编程接口叫SAPI,是COM接口,开发起来还是有点麻烦,还好MSDN的网站上资料很全面。微软的TTS虽然免费,但其中文角色目前是个男声,声音略嫌混浊,感觉不爽。   国内一般的厂家提供API调用接口,相对比较简单,可以方便地嵌入应用程序中去。   商品化的TTS还有个并发许可限制,就是限制同时合成的并发线程数,我觉得这个限制用处不大。无论哪种TTS,都可以将文本文件转换成语音文件,供语音卡播放。大部分应用句子比较短小,一般不会超过100个汉字,合成的时间是非常短的,弄个线程专门负责合成,其它应用向该线程请求就是了,万一句子很长,把它分解成多个短句子就是了,播放的速度总是比合成的速度慢。   也很多应用是脱机合成,没有实时性要求,就更不必买多个许可了。   更多情况下,我们甚至没有必要购买TTS,比如语音开发中常见的费用催缴,拨通后播放:“尊敬的客户,您本月的费用是:212元”,前面部分对所有客户都一样,录一个语音文件就是了,而数字的合成是很简单的,你只要录制好10个数字语音,再加上十,百,千,万,再加上金钱的单位“元”。   TTS(Training+Tool+Scheme)超越计划   针对目前成长型企业遇到的人力资源问题,立体化解决人力资源瓶颈、通过企业与专家共建、实现人才强企的人力资源方向的重大智业项目。为企业培养人力资源高级管理人才,提供先进人力资源管理工具,并协助企业建立现代人力资源战略规划。通过“培训(Training)+工具(Tool)+方案(Scheme)”的办法,为企业系统解决人力资源难点问题,进而搭建科学、完善的人力资源管理体系。   TTS TIANJIN TERMINAL SURCHARGE   天津港口附加费。09年从日韩经过的船所收的一个费用 答案来源网络,供参考,希望对您有帮助

问问小秘 2019-12-02 03:05:12 0 浏览量 回答数 0

问题

【教程免费下载】Redis开发与运维

知与谁同 2019-12-01 22:07:46 2741 浏览量 回答数 2

问题

【精品问答】大数据计算技术1000问

问问小秘 2019-12-01 21:57:13 6895 浏览量 回答数 2

回答

标题应该改一下呢?加上PostgreSQL吧。 有几篇更详细的讲PostgreSQL性能优化的http://yq.aliyun.com/articles/214http://yq.aliyun.com/articles/215还有专门讲参数优化的视频 PostgreSQL 性能优化视频(18集全) : 18. 性能优化培训 - 综合优化案例 http://www.tudou.com/programs/view/UeXudDhDaHU/ 17. 性能优化培训 - 性能分析工具3, pg_statsinfo的使用(与DBA培训同集) http://www.tudou.com/programs/view/5SUCgb7_hsY/ 16. 性能优化培训 - 性能分析工具2, pg_stat_statements http://www.tudou.com/listplay/JW66CCxpr-s/xkOD3u8kQkE.html (注意,里面有一些描述有问题。pg_stat_statements是在数据库启动时加载。 运行过程有write操作(和PG版本有个,以前的版本可以不持久化,没有write操作,现在的版本都有write操作),数据库关闭时fsync。) (在run到hook处时加载。) 15. 性能优化培训 - 性能分析工具1, sar http://www.tudou.com/listplay/JW66CCxpr-s/qX8HOgBZu2M.html 14. 性能优化培训 - PostgreSQL压力测试工具pgbench讲解 http://www.tudou.com/listplay/JW66CCxpr-s/OUl0DLhiJwg.html 13. 性能优化培训 - 如何让数据库输出好的执行计划, 访问开关, 指定表关联顺序, 遗传算法 http://www.tudou.com/listplay/JW66CCxpr-s/dS2x85nosBw.html 12. 性能优化培训 - PostgreSQL锁的详解 http://www.tudou.com/listplay/JW66CCxpr-s/OsRGPcGEL9M.html 11. 性能优化培训 - PostgreSQL事务隔离级别讲解 http://www.tudou.com/listplay/JW66CCxpr-s/2sqzjiuqKFY.html 10. 性能优化培训 - 函数的三种稳定性状态对优化器的影响分解讲解 http://www.tudou.com/programs/view/p6E3oQEsZv0/ 9. 性能优化培训 - PostgreSQL trace & debug (跟踪和调试) http://www.tudou.com/programs/view/SbglCp2T3t4/ 8. 性能优化培训 - 执行计划缓存管理, 绑定变量接口 http://www.tudou.com/programs/view/kwmilXD7JEw/ 7. 性能优化培训 - auto_explain插件, 索引扫描引发的heap page scan被放大的实例讲解 http://www.tudou.com/programs/view/LwMWC4ZpOhU/ 6. PostgreSQL 性能优化培训 - 执行计划成本因子(page scan cost, cpu cost)的校准方法实例讲解 http://www.tudou.com/programs/view/yQ0SzBqx_4w/ 5. PostgreSQL 性能优化培训 - 行评估算法讲解, 成本计算实例讲解 http://www.tudou.com/programs/view/3zgOuh7kbfs/ 4. PostgreSQL 性能优化培训 - explain 实例讲解 http://www.tudou.com/programs/view/QztOh_hCFKw 3. PostgreSQL 性能优化培训 - explain输出结构信息详解 http://www.tudou.com/programs/view/OZSUbOFZ0U4 2. PostgreSQL 性能优化培训 - 统计信息详解, 成本因子介绍 http://www.tudou.com/programs/view/oA1v5sDFq3Q/ 1. PostgreSQL 性能优化培训 - 授课环境搭建讲解 http://www.tudou.com/programs/view/AVCbdfl9rH8/ 建议的参数项 echo "----->>>---->>> 获取postgresql.conf配置: " grep '^\ *[a-z]' $PGDATA/postgresql.conf|awk -F "#" '{print $1}' echo "建议: " echo " 主备配置尽量保持一致, 配置合理的参数值." echo -e " 建议修改的参数列表如下 ( 假设操作系统内存为128GB, 数据库独占操作系统, 数据库版本9.4.x ) : echo "" listen_addresses = '0.0.0.0' # 监听所有IPV4地址 port = 1921 # 监听非默认端口 max_connections = 4000 # 最大允许连接数 superuser_reserved_connections = 20 # 为超级用户保留的连接 unix_socket_directories = '.' # unix socket文件目录最好放在$PGDATA中, 确保安全 unix_socket_permissions = 0700 # 确保权限安全 tcp_keepalives_idle = 30 # 间歇性发送TCP心跳包, 防止连接被网络设备中断. tcp_keepalives_interval = 10 tcp_keepalives_count = 10 shared_buffers = 16GB # 数据库自己管理的共享内存大小 huge_pages = try # 尽量使用大页, 需要操作系统支持, 配置vm.nr_hugepages*2MB大于shared_buffers. maintenance_work_mem = 512MB # 可以加速创建索引, 回收垃圾(假设没有设置autovacuum_work_mem) autovacuum_work_mem = 512MB # 可以加速回收垃圾 shared_preload_libraries = 'auth_delay,passwordcheck,pg_stat_statements,auto_explain' # 建议防止暴力破解, 密码复杂度检测, 开启pg_stat_statements, 开启auto_explain, 参考 http://blog.163.com/digoal@126/blog/static/16387704020149852941586 bgwriter_delay = 10ms # bgwriter process间隔多久调用write接口(注意不是fsync)将shared buffer中的dirty page写到文件系统. bgwriter_lru_maxpages = 1000 # 一个周期最多写多少脏页 max_worker_processes = 20 # 如果要使用worker process, 最多可以允许fork 多少个worker进程. wal_level = logical # 如果将来打算使用logical复制, 最后先配置好, 不需要停机再改. synchronous_commit = off # 如果磁盘的IOPS能力一般, 建议使用异步提交来提高性能, 但是数据库crash或操作系统crash时, 最多可能丢失2*wal_writer_delay时间段产生的事务日志(在wal buffer中). wal_sync_method = open_datasync # 使用pg_test_fsync测试wal所在磁盘的fsync接口, 使用性能好的. wal_buffers = 16MB wal_writer_delay = 10ms checkpoint_segments = 1024 # 等于shared_buffers除以单个wal segment的大小. checkpoint_timeout = 30min checkpoint_completion_target = 0.2 archive_mode = on # 最好先开启, 否则需要重启数据库来修改 archive_command = '/bin/date' # 最好先开启, 否则需要重启数据库来修改, 将来修改为正确的命令例如, test ! -f /home/postgres/archivedir/pg_root/%f && cp %p /home/postgres/archivedir/pg_root/%f max_wal_senders = 32 # 最多允许多少个wal sender进程. wal_keep_segments = 2048 # 在pg_xlog目录中保留的WAL文件数, 根据流复制业务的延迟情况和pg_xlog目录大小来预估. max_replication_slots = 32 # 最多允许多少个复制插槽 hot_standby = on max_standby_archive_delay = 300s # 如果备库要被用于只读, 有大的查询的情况下, 如果遇到conflicts, 可以考虑调整这个值来避免conflict造成cancel query. max_standby_streaming_delay = 300s # 如果备库要被用于只读, 有大的查询的情况下, 如果遇到conflicts, 可以考虑调整这个值来避免conflict造成cancel query. wal_receiver_status_interval = 1s hot_standby_feedback = on random_page_cost = 2 # 根据IO能力调整 effective_cache_size = 100GB # 调整为与内存一样大, 或者略小(减去shared_buffer). 用来评估OS PAGE CACHE可以用到的内存大小. log_destination = 'csvlog' logging_collector = on log_truncate_on_rotation = on log_rotation_size = 10MB log_min_duration_statement = 1s log_checkpoints = on log_connections = on log_disconnections = on log_error_verbosity = verbose # 在日志中输出代码位置 log_lock_waits = on log_statement = 'ddl' autovacuum = on log_autovacuum_min_duration = 0 autovacuum_max_workers = 10 autovacuum_naptime = 30s # 快速唤醒, 防止膨胀 autovacuum_vacuum_scale_factor = 0.02 # 当垃圾超过比例时, 启动垃圾回收工作进程 autovacuum_analyze_scale_factor = 0.1 auth_delay.milliseconds = 5000 # 认证失败, 延迟多少毫秒反馈 auto_explain.log_min_duration = 5000 # 记录超过多少毫秒的SQL当时的执行计划 auto_explain.log_analyze = true auto_explain.log_verbose = true auto_explain.log_buffers = true auto_explain.log_nested_statements = true pg_stat_statements.track_utility=off

德哥 2019-12-02 01:29:26 0 浏览量 回答数 0

回答

本文档主要介绍如何在文件存储HDFS上搭建及使用Presto。 背景信息 Presto是一个开源的分布式SQL查询引擎,适用于交互式分析查询,数据量支持GB到PB字节。Presto支持在线数据查询,包括Hive、Cassandra、关系数据库以及专有数据存储。 说明 在本文档中Presto是通过连接Hive的元数据服务来读取文件存储HDFS上的数据,在文件存储HDFS上使用Presto时需要额外配置一些依赖包,详细操作步骤请参见配置Presto。 准备工作 在文件存储HDFS上搭建和使用Presto,需要先完成以下准备工作。 开通文件存储HDFS服务并创建文件系统实例和挂载点,详情请参见HDFS快速入门。 在Hadoop集群所有节点上安装JDK。 版本不能低于1.8。 在Hadoop集群中配置文件存储HDFS实例,详情请参见挂载文件系统。 在Hadoop集群中安装Apache Hive,本文档中使用的Apache Hive版本为1.2.1。 下载Presto压缩包和presto-cli-xxx-executable.jar。 Presto下载地址:官方链接,在本文档使用Presto的版本为0.227。 配置Presto 您可以参见以下步骤配置Presto,Presto官方配置文档请参见Deploying Presto。 解压Presto压缩包到指定文件夹。 tar -zxvf presto-server-0.227.tar.gz -C /usr/local/ 在Presto解压目录下创建etc目录。 mkdir /usr/local/presto-server-0.227/etc 配置Node Properties。 创建etc/node.properties文件。 vim /usr/local/presto-server-0.227/etc/node.properties 在etc/node.properties文件中添加如下内容。 node.environment=production node.id=ffffffff-ffff-ffff-ffff-ffffffffffff node.data-dir=/var/presto/data 配置JVM Config。 创建etc/jvm.config文件。 vim /usr/local/presto-server-0.227/etc/jvm.config 在etc/jvm.config文件中添加如下内容。 -server -Xmx8G -XX:+UseG1GC -XX:G1HeapRegionSize=32M -XX:+UseGCOverheadLimit -XX:+ExplicitGCInvokesConcurrent -XX:+HeapDumpOnOutOfMemoryError -XX:+ExitOnOutOfMemoryError 配置Config Properties。 在本文档中将coordinator和worker配置在同一台机器上,您可以参见Presto官方文档将coordinator和worker配置到不同的机器。 创建etc/config.properties文件。 vim /usr/local/presto-server-0.227/etc/config.properties 在etc/config.properties中添加如下内容。 coordinator=true node-scheduler.include-coordinator=true http-server.http.port=8080 query.max-memory=5GB query.max-memory-per-node=1GB query.max-total-memory-per-node=2GB discovery-server.enabled=true discovery.uri=http://xx.xx.xx.xx:8080 #xx.xx.xx.xx为当前机器的IP地址 配置日志级别。 创建etc/log.properties文件。 vim /usr/local/presto-server-0.227/etc/log.properties 在etc/log.properties文件中添加如下内容。 com.facebook.presto=INFO 配置Catalog Properties。 创建etc/catalog文件夹。 mkdir /usr/local/presto-server-0.227/etc/catalog 创建etc/catalog/hive.properties文件。 vim /usr/local/presto-server-0.227/etc/catalog/hive.properties 在etc/catalog/hive.properties文件中添加如下内容。 connector.name=hive-hadoop2 hive.metastore.uri=thrift://xxxx:9083 #xxxx为启动hive元数据服务的IP地址 hive.config.resources=/usr/local/hadoop-2.7.6/etc/hadoop/core-site.xml #配置为您的Hadoop集群中core-site.xml文件的地址 编译并替换jar包。 Presto中以maven-shade-plugin的方式引入了Hadoop,使用relocation的方式对引入的Hadoop jar包地址进行重命名,因为文件存储HDFS的sdk与Hadoop共用了protobuf-xxx.jar包,在Presto通过hive metastore读取文件存储HDFS上的数据时,文件存储HDFS的sdk会获取不到Presto进行重命名地址的protobuf-xxx.jar包。为了避免兼容性问题,文件存储HDFS的sdk需要作为Presto的Hadoop的依赖项,并对Presto中引入的Hadoop的jar包hadoop-apache2-xxx.jar进行重新编译。 替换jar包_01替换jar包_02 查看您安装的Presto中的presto-hadoop-apache2版本。 在0.227版本的presto中对应的presto-hadoop-apache2版本为hadoop-apache2-2.7.4-5。 find /usr/local/presto-server-0.227/ -name hadoop-apache2* 下载presto-hadoop-apache2对应版本的源码,下载地址:官方链接。 git clone https://github.com/prestodb/presto-hadoop-apache2.git 打开源码中的/root/presto-hadoop-apache2-2.7.4-5/pom.xml文件。 vim /root/presto-hadoop-apache2-2.7.4-5/pom.xml 在/root/presto-hadoop-apache2-2.7.4-5/pom.xml文件中添加文件存储HDFS sdk的依赖项。本文档中使用的sdk的版本为 1.0.3。 com.aliyun.dfs aliyun-sdk-dfs 1.0.3 添加依赖项 编译presto-hadoop-apache2。 cd /root/presto-hadoop-apache2-2.7.4-5 mvn clean package -DskipTests 查看生成的hadoop-apache2-2.7.4-5.jar。 cd ~/presto-hadoop-apache2-2.7.4-5/target ll -h 查看 删除旧的hadoop-apache2-2.7.4-5.jar依赖包。 rm -f /usr/local/presto-server-0.227/plugin/raptor/hadoop-apache2-2.7.4-5.jar /usr/local/presto-server-0.227/plugin/accumulo/hadoop-apache2-2.7.4-5.jar /usr/local/presto-server-0.227/plugin/hive-hadoop2/hadoop-apache2-2.7.4-5.jar 将新的hadoop-apache2-2.7.4-5.jar依赖包拷贝到对应的目录下。 cp ~/presto-hadoop-apache2-2.7.4-5/target/hadoop-apache2-2.7.4-5.jar /usr/local/presto-server-0.227/plugin/raptor/ cp ~/presto-hadoop-apache2-2.7.4-5/target/hadoop-apache2-2.7.4-5.jar /usr/local/presto-server-0.227/plugin/accumulo/ cp ~/presto-hadoop-apache2-2.7.4-5/target/hadoop-apache2-2.7.4-5.jar /usr/local/presto-server-0.227/plugin/hive-hadoop2/ 将presto-cli-xxx-executable.jar复制到Presto安装的bin目录下重命名并赋予可执行权限。 cp ~/presto-cli-0.227-executable.jar /usr/local/presto-server-0.227/bin/ mv /usr/local/presto-server-0.227/bin/presto-cli-0.227-executable.jar /usr/local/presto-server-0.227/bin/presto chmod +x /usr/local/presto-server-0.227/bin/presto 验证Presto 启动Hive的元数据服务。 /usr/local/apache-hive-1.2.1-bin/bin/hive --service metastore 创建测试数据并加载到Hive中。 创建测试数据。 echo -e "test1\ntest2\ntest1\ntest2\ntest3\ntest4\ntest4\ntest5" > ~/test.txt 将测试数据上传到文件存储HDFS上。 hadoop fs -put ~/test.txt /presto 使用默认的数据创建test_data并加载数据。 hive> create external table test_data(word string) row format delimited fields terminated by '\n' stored as textfile location '/presto'; 查看数据是否加载成功。 hive> select * from test_data; 如果显示如下类似信息,则表示数据加载成功。 查看数据加载结果 使用Presto通过Hive读取文件存储HDFS上的数据并进行计算。 启动presto server。 /usr/local/presto-server-0.227/bin/launcher start 使用presto连接Hive。 /usr/local/presto-server-0.227/bin/presto --server localhost:8080 --catalog hive --schema default 读取文件存储HDFS上的数据。 presto:default> select * from test_data; 读取数据 进行word count计算。 presto:default> select word, count(*) from test_data group by word; word count计算

1934890530796658 2020-03-31 02:54:35 0 浏览量 回答数 0

问题

ECS的PostgreSQL 本地Slave如何搭建

boxti 2019-12-01 21:44:50 1306 浏览量 回答数 0

回答

本文以包含服务提供者 Provider 和服务消费者 Consumer 的 Dubbo 微服务应用为例,介绍如何在本地通过 XML 配置的方式,开发 Dubbo 微服务示例应用,并部署到 SAE。 为什么托管到 SAE 将 Dubbo 应用托管到 SAE,您仅需关注 Dubbo 应用自身的逻辑,无需再关注注册中心和配置中心搭建和维护,托管后还可以使用 SAE 提供的弹性伸缩、一键启停、监控等功能,大大降低开发和运维成本。 说明 如果您坚持使用自建 Nacos 为服务注册中心,请参见如何搭建 Nacos 为服务注册中心(不推荐)进行搭建。 准备工作 在开始开发前,请确保您已经完成以下工作: 下载 Maven 并设置环境变量。 下载最新版本的 Nacos Server。 按以下步骤启动 Nacos Server。 解压下载的 Nacos Server 压缩包 进入nacos/bin目录,启动 Nacos Server。 Linux/Unix/Mac 系统:执行命令sh startup.sh -m standalone。 Windows 系统:双击执行startup.cmd文件。 说明 在本地开发应用时,可以使用 Alibaba Cloud Toolkit 插件实现本地应用和部署在 EDAS 中的应用的相互调用,即端云互联,而无需搭建 VPN,帮助您提升开发效率。详情请参见为 EDAS 应用设置端云互联。 创建服务提供者 在本地创建一个提供者应用工程,添加依赖,配置服务注册与发现,并将注册中心指定为 Nacos。 创建 Maven 项目并引入依赖。 使用 IDE(如 IntelliJ IDEA 或 Eclipse)创建一个 Maven 项目。 在pom.xml文件中添加 dubbo、dubbo-registry-nacos 和 nacos-client 依赖。 <dependency> <groupId>org.apache.dubbo</groupId> <artifactId>dubbo</artifactId> <version>2.7.3</version> </dependency> <dependency> <groupId>org.apache.dubbo</groupId> <artifactId>dubbo-registry-nacos</artifactId> <version>2.7.3</version> </dependency> <dependency> <groupId>com.alibaba.nacos</groupId> <artifactId>nacos-client</artifactId> <version>1.1.1</version> </dependency> 开发 Dubbo 服务提供者。 Dubbo 中服务都是以接口的形式提供的。 在src/main/java路径下创建一个 package com.alibaba.edas。 在com.alibaba.edas下创建一个接口(interface) IHelloService,里面包含一个 SayHello 方法。 package com.alibaba.edas; public interface IHelloService { String sayHello(String str); } 在com.alibaba.edas下创建一个类IHelloServiceImpl,实现此接口。 package com.alibaba.edas; public class IHelloServiceImpl implements IHelloService { public String sayHello(String str) { return "hello " + str; } } 配置 Dubbo 服务。 在 src/main/resources路径下创建 provider.xml文件并打开。 在provider.xml中,添加 Spring 相关的 XML Namespace(xmlns) 和 XML Schema Instance(xmlns:xsi),以及 Dubbo 相关的 Namespace(xmlns:dubbo) 和 Scheme Instance(xsi:schemaLocation)。 在 provider.xml 中将接口和实现类暴露成 Dubbo 服务。 <dubbo:application name="demo-provider"/> <dubbo:protocol name="dubbo" port="28082"/> <dubbo:service interface="com.alibaba.edas.IHelloService" ref="helloService"/> 在provider.xml中将注册中心指定为本地启动的 Nacos Server。 <dubbo:registry address="nacos://127.0.0.1:8848" /> 127.0.0.1为 Nacos Server 的地址。如果您的 Nacos Server 部署在另外一台机器,则需要修改成对应的 IP 地址。当将应用部署到 EDAS 后,无需做任何修改,注册中心会替换成EDAS上的注册中心的地址。 8848为 Nacos Server 的端口号,不可修改。 启动服务。 在 com.alibaba.edas中创建类 Provider,并按下面的代码在 Provider 的 main 函数中加载 Spring Context,将配置好的 Dubbo 服务暴露。 package com.alibaba.edas; import org.springframework.context.support.ClassPathXmlApplicationContext; public class Provider { public static void main(String[] args) throws Exception { ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext(new String[] {"provider.xml"}); context.start(); System.in.read(); } } 执行 Provider 的 main 函数,启动服务。 登录 Nacos 控制台 http://127.0.0.1:8848,在左侧导航栏中单击服务列表 ,查看提供者列表。可以看到服务提供者里已经包含了 com.alibaba.edas.IHelloService,且可以查询该服务的服务分组和提供者 IP。 创建服务消费者 在本地创建一个消费者应用工程,添加依赖,添加订阅服务的配置。 创建 Maven 项目并引入依赖。 使用 IDE(如 IntelliJ IDEA 或 Eclipse)创建一个 Maven 项目。 在pom.xml文件中添加 dubbo、dubbo-registry-nacos 和 nacos-client 依赖。 <dependency> <groupId>org.apache.dubbo</groupId> <artifactId>dubbo</artifactId> <version>2.7.3</version> </dependency> <dependency> <groupId>org.apache.dubbo</groupId> <artifactId>dubbo-registry-nacos</artifactId> <version>2.7.3</version> </dependency> <dependency> <groupId>com.alibaba.nacos</groupId> <artifactId>nacos-client</artifactId> <version>1.1.1</version> </dependency> 开发 Dubbo 服务提供者。 Dubbo 中服务都是以接口的形式提供的。 在src/main/java路径下创建 package com.alibaba.edas。 在com.alibaba.edas下创建一个接口(interface) IHelloService,里面包含一个 SayHello 方法。 说明 通常是在一个单独的模块中定义接口,服务提供者和服务消费者都通过 Maven 依赖来引用此模块。本文档为了简便,服务提供者和服务消费者分别创建两个完全一模一样的接口,实际使用中不推荐这样使用。 package com.alibaba.edas; public interface IHelloService { String sayHello(String str); } 配置 Dubbo 服务。 在 src/main/resources路径下创建 consumer.xml文件并打开。 在consumer.xml中,添加 Spring 相关的 XML Namespace(xmlns) 和 XML Schema Instance(xmlns:xsi),以及 Dubbo 相关的 Namespace(xmlns:dubbo) 和 Scheme Instance(xsi:schemaLocation)。 在 consumer.xml 中添加如下配置,订阅 Dubbo 服务 <dubbo:application name="demo-consumer"/> <dubbo:registry address="nacos://127.0.0.1:8848"/> <dubbo:reference id="helloService" interface="com.alibaba.edas.IHelloService"/> 启动、验证服务。 在com.alibaba.edas下创建类 Consumer,并按下面的代码在 Consumer 的 main 函数中加载 Spring Context,订阅并消费 Dubbo 服务。 package com.alibaba.edas; import org.springframework.context.support.ClassPathXmlApplicationContext; import java.util.concurrent.TimeUnit; public class Consumer { public static void main(String[] args) throws Exception { ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext(new String[] {"consumer.xml"}); context.start(); while (true) { try { TimeUnit.SECONDS.sleep(5); IHelloService demoService = (IHelloService)context.getBean("helloService"); String result = demoService.sayHello("world"); System.out.println(result); } catch (Exception e) { e.printStackTrace(); } } } } 执行 Consumer 的 main 函数,启动服务。 验证创建结果。 启动后,可以看到控制台不断地输出 hello world,表明服务消费成功。 登录 Nacos 控制台 http://127.0.0.1:8848,在左侧导航栏中单击服务列表 ,再在服务列表页面选择调用者列表。 可以看到包含了 com.alibaba.edas.IHelloService,且可以查看该服务的服务分组和调用者 IP。 步骤四:部署到 SAE 分别在 Provider 和 Consumer 的 pom.xml 文件中添加如下配置,配置完成后执行 mvn clean package 将本地程序编译为可执行的 JAR 包。 Provider org.springframework.boot spring-boot-maven-plugin repackage spring-boot com.alibaba.sae.Provider Consumer org.springframework.boot spring-boot-maven-plugin repackage spring-boot com.alibaba.sae.Consumer 部署微服务应用到 SAE。 说明 使用自建Nacos时请确保SAE的网络与自建Nacos的网络互通。 使用自建Nacos为服务注册中心,在部署应用时建议使用镜像方式或者JAR包方式,并配置启动参数-Dnacos.use.endpoint.parsing.rule=false和-Dnacos.use.cloud.namespace.parsing=false。 如采用镜像方式,请将-Dnacos.use.endpoint.parsing.rule=false和-Dnacos.use.cloud.namespace.parsing=false配置在镜像文件中。 如果JAR包方式,请在部署时启动命令中设置。SAE自建Nacos部署应用之启动命令 如果您不熟悉如何制作Docker镜像,具体操作请参见制作应用容器Docker镜像。 更多信息 在SAE部署完成后,您可以对应用进行更新、扩缩容、启停、删除应用等生命周期管理操作,具体操作方式请参见管理应用生命周期。 在SAE部署完成后,您可以对应用进行自动弹性伸缩、SLB绑定和批量启停等提升应用性能的操作,具体操作方式请参见如下文档。 绑定SLB 配置弹性伸缩 一键启停应用 配置管理 变更实例规格 在SAE部署完成后,您还可以对应用进行日志管理、监控管理、应用事件查看和变更记录查看等聚焦应用运行状态的操作,具体操作方式请参见如下文档。 日志管理 监控管理 应用事件查看 变更记录查看 使用 Webshell 诊断应用

1934890530796658 2020-03-27 12:50:20 0 浏览量 回答数 0

回答

除了可以使用传统的 XML 配置方式开发 Dubbo 应用,还可以使用 Spring Boot 开发 Dubbo 应用,特别对于 Java 技术薄弱和 Maven 经验少,且又不熟悉 Dubbo 框架的开发者更为适合。本文以全新开发过程,向您展示如何使用 Spring Boot 开发 Dubbo 应用,并使用 SAE 服务注册中心实现服务注册与发现。 前提条件 下载 Maven并设置环境变量。 下载最新版本的 Nacos Server。 启动 Nacos Server。 解压下载的 Nacos Server 压缩包 进入nacos/bin目录,启动 Nacos Server。 Linux/Unix/Mac 系统:执行命令sh startup.sh -m standalone。 Windows 系统:双击执行startup.cmd文件。 在本地开发应用时,可以使用 Alibaba Cloud Toolkit 插件实现本地应用和部署在 EDAS 中的应用的相互调用,即端云互联,而无需搭建 VPN,帮助您提升开发效率。详情请参见为 EDAS 应用设置端云互联。 为什么使用 Spring Boot 开发 Dubbo 应用 Spring Boot 简化了微服务应用的配置和部署,同时 Nacos 又同时提供了服务注册发现和配置管理功能,两者结合的方式能够帮助您快速搭建基于 Spring 的 Dubbo 服务,相比 xml 的开发方式,大幅提升开发效率。 全新场景使用 Spring Boot 开发 Dubbo 应用有两种主要的方式: 使用 xml 开发。 使用 Spring Boot 的注解方式开发。 使用 xml 方式请参考将 Dubbo 应用托管到 SAE。文本档介绍如何使用 Spring Boot 的注解方式开发 Dubbo 服务。 视频教程 本视频仅介绍使用 Spring Boot 开发 Dubbo 应用,部署部分请参见在SAE控制台部署应用。 示例工程 您可以按照本文的逐步搭建工程,也可以选择直接下载本文对应的示例工程,或者使用 Git 来 clone: git clone https://github.com/aliyun/alibabacloud-microservice-demo.git 该项目包含了众多了示例工程,本文对应的示例工程位于 alibabacloud-microservice-demo/microservice-doc-demo/dubbo-samples-spring-boot。 创建服务提供者 创建命名为spring-boot-dubbo-provider的 Maven 工程。 在pom.xml文件中添加所需的依赖。 这里以 Spring Boot 2.0.6.RELEASE 为例。 org.springframework.boot spring-boot-dependencies 2.0.6.RELEASE pom import org.springframework.boot spring-boot-starter org.springframework.boot spring-boot-actuator org.apache.dubbo dubbo-spring-boot-starter 2.7.3 com.alibaba.nacos nacos-client 1.1.1 开发 Dubbo 服务提供者。 Dubbo 中服务都是以接口的形式提供的。 在src/main/java路径下创建一个 package com.alibaba.edas.boot。 在com.alibaba.edas.boot下创建一个接口(interface) IHelloService,里面包含一个 SayHello 方法。 package com.alibaba.edas.boot; public interface IHelloService { String sayHello(String str); } 在com.alibaba.edas.boot下创建一个类IHelloServiceImpl,实现此接口。 package com.alibaba.edas.boot; import com.alibaba.dubbo.config.annotation.Service; @Service public class IHelloServiceImpl implements IHelloService { public String sayHello(String name) { return "Hello, " + name + " (from Dubbo with Spring Boot)"; } } 说明 这里的 Service 注解是 Dubbo 提供的一个注解类,类的全名称为:com.alibaba.dubbo.config.annotation.Service 。 配置 Dubbo 服务。 在 src/main/resources路径下创建application.properties或application.yaml文件并打开。 在application.properties或application.yaml中添加如下配置。 Base packages to scan Dubbo Components (e.g @Service , @Reference) dubbo.scan.basePackages=com.alibaba.edas.boot dubbo.application.name=dubbo-provider-demo dubbo.registry.address=nacos://127.0.0.1:8848 说明 以上三个配置没有默认值,必须要给出具体的配置。 dubbo.scan.basePackages的值是开发的代码中含有com.alibaba.dubbo.config.annotation.Service和com.alibaba.dubbo.config.annotation.Reference注解所在的包。多个包之间用逗号隔开。 dubbo.registry.address的值前缀必须以 nacos:// 开头,后面的 IP 地址和端口指的是 Nacos Server 的地址。代码示例中为本地地址,如果您将 Nacos Server 部署在其它机器上,请修改为实际的 IP 地址。 开发并启动 Spring Boot 入口类DubboProvider。 package com.alibaba.edas.boot; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; @SpringBootApplication public class DubboProvider { public static void main(String[] args) { SpringApplication.run(DubboProvider.class, args); } } 登录 Nacos 控制台 http://127.0.0.1:8848,在左侧导航栏中单击服务列表 ,查看提供者列表。 可以看到服务提供者里已经包含了com.alibaba.edas.boot.IHelloService,且可以查询该服务的服务分组和提供者 IP。 创建服务消费者 创建一个 Maven 工程,命名为spring-boot-dubbo-consumer。 在pom.xml文件中添加相关依赖。 这里以 Spring Boot 2.0.6.RELEASE 为例。 org.springframework.boot spring-boot-dependencies 2.0.6.RELEASE pom import org.springframework.boot spring-boot-starter-web org.springframework.boot spring-boot-actuator org.apache.dubbo dubbo-spring-boot-starter 2.7.3 com.alibaba.nacos nacos-client 1.1.1 如果您需要选择使用 Spring Boot 1.x 的版本,请使用 Spring Boot 1.5.x 版本,对应的 com.alibaba.boot:dubbo-spring-boot-starter 版本为 0.1.0。 说明 Spring Boot 1.x 版本的生命周期即将在 2019 年 8 月 结束,推荐使用新版本开发您的应用。 开发 Dubbo 消费者。 在src/main/java路径下创建 package com.alibaba.edas.boot。 在com.alibaba.edas.boot下创建一个接口(interface) IHelloService,里面包含一个 SayHello 方法。 package com.alibaba.edas.boot; public interface IHelloService { String sayHello(String str); } 开发 Dubbo 服务调用。 例如需要在 Controller 中调用一次远程 Dubbo 服务,开发的代码如下所示。 package com.alibaba.edas.boot; import com.alibaba.dubbo.config.annotation.Reference; import org.springframework.web.bind.annotation.PathVariable; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController; @RestController public class DemoConsumerController { @Reference private IHelloService demoService; @RequestMapping("/sayHello/{name}") public String sayHello(@PathVariable String name) { return demoService.sayHello(name); } } 说明 这里的 Reference 注解是 com.alibaba.dubbo.config.annotation.Reference 。 在application.properties/application.yaml配置文件中新增以下配置。 dubbo.application.name=dubbo-consumer-demo dubbo.registry.address=nacos://127.0.0.1:8848 说明 以上两个配置没有默认值,必须要给出具体的配置。 dubbo.registry.address的值前缀必须以 nacos:// 开头,后面的 IP 地址和端口为 Nacos Server 的地址。代码示例中为本地地址,如果您将 Nacos Server 部署在其它机器上,请修改为实际的 IP 地址。 开发并启动 Spring Boot 入口类DubboConsumer。 package com.alibaba.edas.boot; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; @SpringBootApplication public class DubboConsumer { public static void main(String[] args) { SpringApplication.run(DubboConsumer.class, args); } } 登录 Nacos 控制台 http://127.0.0.1:8848,在左侧导航栏中单击服务列表,再在服务列表页面单击调用者列表页签,查看调用者列表。 可以看到包含了com.alibaba.edas.boot.IHelloService,且可以查看该服务的服务分组和调用者 IP。 结果验证 curl http://localhost:8080/sayHello/EDAS Hello, EDAS (from Dubbo with Spring Boot) 部署到 SAE 本地使用 Nacos 作为注册中心的应用,可以直接部署到 SAE 中,无需做任何修改,注册中心会被自动替换为 SAE上的注册中心。 您可以根据实际需求选择部署途径(控制台或工具),详情请参见应用部署概述。 使用控制台部署前,请参见如下操作将应用程序编译为可运行的JAR包、WAR包。 在pom.xml文件中添加以下打包插件的配置。 Provider org.springframework.boot spring-boot-maven-plugin repackage spring-boot com.alibaba.edas.boot.DubboProvider Consumer org.springframework.boot spring-boot-maven-plugin repackage spring-boot com.alibaba.edas.boot.DubboConsumer 执行 mvn clean package 将本地的程序打成 JAR 包。 更多信息 除 Spring Boot 外,还可以通过 XML 的方式开发 Dubbo 微服务应用,详情请参见将 Dubbo 应用托管到 SAE。 应用部署到 SAE 后,您可以对应用进行管理、绑定 SLB 等操作。 应用部署 应用管理 监控管理 日志管理

1934890530796658 2020-03-27 12:50:55 0 浏览量 回答数 0

问题

SSH面试题

琴瑟 2019-12-01 21:46:22 3489 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站