• 关于

    算法分类什么意思

    的搜索结果

问题

【百问百答】《5G+AI 智慧文娱前沿技术解读》

注:问题中对回答答案及问题有疑问欢迎指出,我会尽快修改!!!——————————————————————————— 如何用技术带给用户更加流畅且个性化的体验,...
Pony马 2021-03-12 18:06:04 101 浏览量 回答数 0

问题

【精品问答】大数据计算技术1000问

为了方便大数据开发者快速找到相关技术问题和答案,开发者社区策划了大数据计算技术1000问内容,包含Flink、Spark等流式计算(实时计算)、离线计算、Hbase等实践中遇到的技术问...
问问小秘 2019-12-01 21:57:13 6895 浏览量 回答数 2

回答

图解是什么意思呀。 这个算法 那么简单没必要搞得那么复杂吧。 an = an-1 + 1; 你明白这个等式的意义吗。 这个等式已经包含了递归算法的全部含义。 an 表示 n个数的和,an-1 表示n-1个数的和 ,an = an-1 + 1;表示n个数的和可以通过n-1个数的和来求的。 上述说明哪些情况可以使用递归呢。 那就是:已知前一个步骤可以求得后一个步骤的结果的情况,并且前一个步骤和后一个步骤是有规律过度的。 比如汉诺塔问题: 移n个盘是已移n-1个盘为条件的,两者的共同点是移盘。所以可以用f(n)表示移n个盘,f(n-1)表示移n-1个盘,那么移n个盘和移n-1个盘有什么关系呢。 这就需要预先分析问题才能得出具体的关系 在这个问题中,把n个盘从a移到c需要三个步骤来完成。 1.n-1个盘从a移到b 2 1个盘从a移到c 3 n-1个盘从b移到c 已知n-1个盘从a移到b是可行的,为什么。 因为移1个盘是可行,那么移2个盘也是可行,移 3个盘是已移2个盘为条件的,所以移3个盘也是可行的,所以移n个 盘是可行的。 所以根据已知条件可以解得: 设f(n, a, b,c) 表示 把n个盘从a移到c 借助b --------------------------这里很关键,这是搞懂递归的关键关键。 那么把n-1个盘从a移到b 借助c 怎样表示呢。 很明显是:f(n-1, a, c,b) 那么把1个盘从a移到c怎样表示呢? 很明显是:f(1, a, b,c) 那么把n-1个盘从b移到c 借助a 怎样表示呢。 很明显是:f(n-1, b, a,c) 所以f(n, a, b,c) = ( f(n-1, a,c,b) , f(1, a, b,c), f(n-1, b,a,c)) 这和等差等比数列一个原理。 没有什么 特别的。 记住是问题有这样递推关系才可以使用这种方法。 如果要你计算1+2+8+22 的结果 你就不能使用递归。 因为该问题的后一步骤与前一步骤不具有规律性,所以已知前一个步骤并不能求的后一个步骤的值 1+2+3+4 ...+ 111111111111111111111111111111 这个问题就可以使用递归 原因你懂了吧。 至于爬楼梯问题,无限级分类 问题等一些递归问题,那不过时小菜一碟。 一句话:后一步骤依赖前一步骤并且二者联系具有规律性,运用递归必然成功。
管理贝贝 2019-12-02 01:24:43 0 浏览量 回答数 0

回答

LZ混淆了Doctype定义下分类各个标签的块级、内联概念和CSS的块级、内联概念。Doctype定义中的inline/block第一个跟Doctype定义有关,你看到的这个规则,是XHTML Strict中定义的。那么这个语境下的inline和block是什么意思呢,它们是对html标签进行的分类(比如p、div、form都属于block,而span、a则属于inline),而和它们最终的CSS属性一点关系都没有(你可以把p的display改为inline,浏览器不会打死你,但是接替你的页面重构可能会)。这个在Doctype里定义的规则直接导致了浏览器parse整个文档的时候构建成的树是什么样子的。这里有一篇非常棒的关于元素嵌套规则及其对文档结构影响的说明,你可以读一下。总结:Doctype这个语境下面,inline和block指的是一种分类各个标签的方法,这个方法由各个标签的语义和默认的展现形式得来,区分它们主要是因为它们在不同的doctype里面会有不一样的嵌套约束,会影响到浏览器生成的文档结构。CSS的block和inlineLZ第二个代码规范的建议和CSS中高宽计算模式有关系:1.块级只包含块级的时候,进入的模式是块级∈块级模式,相关计算规则大致是 内层宽自适应于外层的content-box的宽; 外层的content-box自适应于内部所有块级容器的高; 等等等等。2.块级只包含内联元素的时候,进入的模式是内联∈块级模式,相关的规则大致是: 内联构成line-box,line-box的高由内联元素的高、line-height和vertical-align决定; 通过断行算法,内联元素组成N个line-box,line-box的宽由块级元素的content-box的宽决定; 各个line-box撑高块级; 等等等等。3.块级元素同时包含块级元素和内联元素的时候,会为每个内联元素创建匿名块,从而拆解问题为块级/匿名块∈块级模式和内联∈块级/匿名块模式,回到规则1,2去计算各个元素的最终宽、高。LZ第二个代码规范可以这样解释:由于第三个规则的存在,所以为了能够在所有时候都能完美的控制块级元素的高和宽,内联元素和块级元素并列时,在内联元素外包裹一层块级元素。总结:在CSS属性这个语境下面,inline和block指的是元素最终的display属性,区分它们主要是因为它们会导致不一样的高宽计算模式。
杨冬芳 2019-12-02 02:47:45 0 浏览量 回答数 0

问题

【精品问答】130+大数据面试汇总

Hadoop 相关试题 Hive 相关试题 hive表关联查询,如何解决数据倾斜的问题? hive内部表和外部表的区别 Spark 相关试题 Spark Core面试篇01 随着Spark技术在企业中应用越来越广泛...
问问小秘 2019-12-01 21:52:42 1644 浏览量 回答数 2

问题

【精品问答】python技术1000问(2)

为了方便python开发者快速找到相关技术问题和答案,开发者社区策划了python技术1000问内容,包含最基础的如何学python、实践中遇到的技术问题、python面试等维度内容。 我们会以每天至少50条的...
问问小秘 2019-12-01 22:03:02 3129 浏览量 回答数 1

回答

对于算法的学习,我也是从一个小白一步步走来,当然,现在仍然很菜,,,不过,鉴于我觉得还有一些人比我更菜了,我决定谈谈我算法学习过程走过的坑,以及自己总结的一些经验。 切勿盲目刷题:刷题前的知识积累 说实话,想要提高自己的算法,真的没啥捷径,我觉得最好的捷径就是脚踏实地着多动手去刷题,多刷题。 但是,我必须提醒的是,如果你是小白,也就是说,你连常见的数据结构,如链表、树以及常见的算法思想,如递归、枚举、动态规划这些都没学过,那么,我不建议你盲目疯狂着去刷题的。而是先去找本书先去学习这些必要的知识,然后再去刷题。 因为,如果这些基础都不懂的话,估计一道题做了几个小时,然后看答案都看不懂,做题没有任何思路,这是很难受的。久而久之,估计没啥动力了,我刚开始就是这样,一道题答案看一天,然而还是不大懂,什么回溯啊,暴力啊,还不知道是啥意思。 也就是说,假如你要去诸如leetcode这些网站刷题,那么,你要先具备一定的基础,这些基础包括: 1、常见数据结构:链表、树(如二叉树)。(是的,链表和二叉树是重点,图这些可以先放着) 2、常见算法思想:贪婪法、分治法、穷举法、动态规划,回溯法。(贪婪、穷举、分治是基础,动态规划有难度,可以先放着) 以上列出来的算是最基本的吧。就是说你刷题之前,要把这些过一遍再去刷题。如果你连这些最基本的都不知道的话,那么你再刷题的过程中,会很难受的,思路也会相对比较少。 总之,千万不要急,先把这些基本的过一遍,力求理解,再去刷题。 在这里,我推荐基本我大一时看过的书籍吧,感觉还是非常不错的,如果对于数据结构时零基础的话,那么我建议你可以看《数据结构与算法分析:C语言描述版》这本书,这本书自认为真的很 nice,当时我把这本书里面的全部都看了,并且 coding 了一遍,感觉整个人有了质的飞跃。 后面我时在一些学校的OJ刷题,当时看的一本书叫做《挑战程序设计大赛》,日本作家写的,我觉得这本书也很nice,里面有分初级,中级和高级三个模块,基础比较差的可以从初级开始看起。 当然,这两本书,你可以在这个Github上找到:https://github.com/iamshuaidi/CS-Book 总结下: 提高数据结构与算法没啥捷径,最好的捷径就是多刷题。但是,刷题的前提是你要先学会一些基本的数据结构与算法思想。 AC不是目的,我们要追求完美 如何刷题?如何对待一道算法题? 我觉得,在做题的时候,一定要追求完美,千万不要把一道题做出来之后,提交通过,然后就赶紧下一道。我认为这意义不大,因为一道题的解法太多了,有些解法态粗糙了,我们应该要寻找最优的方法。 算法能力的提升和做题的数量是有一定的关系,但并不是线性关系。也就是说,在做题的时候,要力求一题多解,如果自己实在想不出来其他办法了,可以去看看别人是怎么做的,千万不要觉得模仿别人的做法是件丢人的事。 我做题的时候,我一看到一道题,可能第一想法就是用很粗糙的方式做,因为很多题采用暴力法都会很容易做,就是时间复杂度很高。之后,我就会慢慢思考,看看有没其他方法来降低时间复杂度或空间复杂度。最后,我会去看一下别人的做法,当然,并不是每道题都会这样执行。 衡量一道算法题的好坏无非就是时间复杂度和空间复杂度,所以我们要力求完美,就要把这两个降到最低,令他们相辅相成。 我举道例题吧: 问题: 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法? 这道题我在以前的分章分析过,不懂的可以先看下之前写的:递归与动态规划—基础篇1 方法1::暴力递归 这道题不难,或许你会采取下面的做法: public int solve(int n){ if(n <= 2){ return n; }else{ return solve(n-1) + solve(n-2); } } 这种做法的时间复杂度很高,指数级别了。但是如果你提交之后侥幸通过了,然后你就接着下一道题了,那么你就要好好想想了。 方法二:空间换时间 力求完美,我们可以考虑用空间换时间:这道题如何你去仔细想一想,会发现有很多是重复执行了。不行你可以画个图 所以可以采取下面的方法: //用一个HashMap来保存已经计算过的状态 static Map<Integer,Integer> map = new HashMap(); public static int solve(int n){ if(n <= 2){ return n; }else{//是否计算过 if(map.containsKey(n)){ return map.get(n); }else{ int m = solve(n-1) + solve(n-2); map.put(n, m); return m; } } } 这样,可以大大缩短时间。也就是说,当一道题你做了之后,发现时间复杂度很高,那么可以考虑下,是否有更好的方法,是否可以用空间换时间。 **方法三:**斐波那契数列 实际上,我们可以把空间复杂度弄的更小,不需要HashMap来保存状态: public static int solve(int n){ if(n <= 2){ return n; } int f1 = 0; int f2 = 1; int sum = 0; for(int i = 1; i<= n; i++){ sum = f1 + f2; f1 = f2; f2 = sum; } return sum; } 我弄这道题给你们看,并不是在教你们这道题怎么做,而是有以下目的: 1、在刷题的时候,我们要力求完美。 2、我想不到这些方法啊,怎么办?那么你就可以去看别人的做法,之后,遇到类似的题,你就会更有思路,更知道往哪个方向想。 3、可以从简单暴力入手做一道题,在考虑空间与时间之间的衡量,一点点去优化。 挑战自己,跳出舒适区 什么叫舒适区?在刷题的时候,可能有一类题是你比较懂的,你每次一看就有思路,然后半个小时就撸好代码,提交代码,然后通过了,然后,哇,又多刷了一道题,心里很舒服。 但是,记住,前期你可以多刷这种题练手,提升自己的乐趣,但,我还是建议你慢慢跳出舒适区,去做一些自己不擅长的题,并且找段时间一直刷这种题。例如,我觉得我在递归方面的题还是挺强的, 但是,我对动态规划的题,很菜,每次都要想好久,每次遇到这种题都有点害怕,没什么信心。不过有段时间我觉得只刷动态规划的题,直接在 leetcode 选定专题,连续做了四五十道,刚开始很难受,后来就慢慢知道了套路了,一道题从两三个小时最后缩到半小时,简单的十几分钟就搞定。感觉自己对这类型的题也不惧怕的。 当然,对于动态规划的学习,大家也可以看我这篇广受好评的文章:为什么你学不过动态规划?告别动态规划,谈谈我的经验 所以,建议你,一定要学好跳出自己的舒适区。 一定要学会分类总结 有些人以为 leetcode 的题刷的越多,就一定能越厉害,其实不然,leetcode 虽然有 1000 多道题,但题型就那么几类,我们前期在刷的时候,我是建议按照题型分类刷题的,例如我这整理刷二叉树相关,然后刷链表相关,然后二分法,然后递归等等,每刷一种题型,都要研究他们的套路,如果你愿意去总结,那么 leetcode 的题,其实你刷几百道,有目的、挑选的刷,我觉得就差不多了。 我看过一本书,叫做《程序员代码面试指南:IT 名企算法与数据结构题目最优解》,这本书就非常不错,里面按照栈,队列,链表,二叉树,字符串等一个专题一个专题来刷的,并且每道题都给出了最优解,而且里面的题有一定的难度,感兴趣的,真心不错,如果你把这本书的题全部搞定,并且总结相关套路,那么你的算法一定有很大的提升。 推荐一些刷题网站 我一般是在leetcode和牛客网刷题,感觉挺不错,题目难度不是很大。 在牛客网那里,我主要刷剑指Offer,不过那里也有个在线刷leetcode,不过里面的题量比较少。牛客网刷题有个非常方便的地方就是有个讨论区,那里会有很多大佬分享他们的解题方法,不用我们去百度找题解。所以你做完后,实在想不出,可以很方便着去看别人是怎么做的。 至于leetcode,也是大部分题目官方都有给出答案,也是个不错的刷题网站。你们可以两个挑选一个,或者两个都刷。 当然,还有其他刷题的网站,不过,其他网站没刷过,不大清除如何。 至于leetcode,有中文版和英文版 leetcode有中文版 英文版 根据自己的兴趣选。 学习一些解题技巧 说实话,有些题在你没看别人的解法前,你好不知道有这么美妙优雅的解法,看了之后,卧槽,居然还可以这样。而我们在刷题的过程中,就要不断累积这些技巧,当你累计多了,你就会形成一种 神经反应,一下子就想到了某种方法。解题技巧很多,例如数组下标法、位图法、双指针等等,我自己也分享过一篇总结一些算法技巧的文章 再说数据结构发重要性 前面我主要是说了我平时都是怎么学习算法的。在数据结构方法,我只是列举了你们一定要学习链表和树(二叉堆),但这是最基本的,刷题之前要掌握的,对于数据结构,我列举下一些比较重要的: 1、链表(如单向链表、双向链表)。 2、树(如二叉树、平衡树、红黑树)。 3、图(如最短路径的几种算法)。 4、队列、栈、矩阵。 对于这些,自己一定要动手实现一遍。你可以看书,也可以看视频,新手可以先看视频,不过前期可以看视频,之后我建议是一定要看书。 例如对于平衡树,可能你跟着书本的代码实现之后,过阵子你就忘记,不过这不要紧,虽然你忘记了,但是如果你之前用代码实现过,理解过,那么当你再次看到的时候,会很快就记起来,很快就知道思路,而且你的抽象能力等等会在不知不觉中提升起来。之后再学习红黑树啊,什么数据结构啊,都会学的很快。 对于有哪些值得学习的算法,我之前也总结过,这里推荐给大家程序员必须掌握的核心算法有哪些?,这篇文章居然 40多万阅读量了,有点受宠若惊。 最最重要 动手去做,动手去做,动手去做。重要的话说三遍。 千万不要找了一堆资源,订好了学习计划,我要留到某某天就来去做… 千万不要这样,而是当你激情来的时候,就马上去干,千万不要留到某个放假日啊什么鬼了,很多这种想法的人,最后会啥也没做的。 也不要觉得要学习的有好多啊,不知道从哪学习起。我上面说了,可以先学习最基本的,然后刷题,刷题是一个需要长期坚持的事情,一年,两年。在刷题的过程中,可以穿插和学习其他数据结构。 总结一下吧 所以我给大家的建议就是,先学习基本的数据结构以及算法思想,不要盲目刷题,接着刷题的过程中,不能得过且过,尽量追求最优解,还有就是要跳出舒适区,逼自己成长,刷题的过程中,要学会分类总结。 当然,最重要的,就是你去动手了,不然,一切免谈! 看在熬夜写过的份上,送我个赞呗,嘻嘻。 1、老铁们,关注我的原创微信公众号「帅地玩编程」,专注于写算法 + 计算机基础知识(计算机网络+ 操作系统+数据库+Linux)。 2、给俺点个赞呗,可以让更多的人看到这篇文章,顺便激励下我,嘻嘻。 原文链接:https://blog.csdn.net/m0_37907797/article/details/104765116
剑曼红尘 2020-03-11 22:24:48 0 浏览量 回答数 0

问题

十大经典排序算法最强总结(内含代码实现)

1、算法分类 十种常见排序算法可以分为两大类: 比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。 非比较类排...
游客pklijor6gytpx 2020-01-09 14:44:55 1240 浏览量 回答数 2

回答

这周我们将学习神经网络的基础知识,其中需要注意的是,当实现一个神经网络的时候,我们需要知道一些非常重要的技术和技巧。例如有一个包含个样本的训练集,你很可能习惯于用一个for循环来遍历训练集中的每个样本,但是当实现一个神经网络的时候,我们通常不直接使用for循环来遍历整个训练集,所以在这周的课程中你将学会如何处理训练集。 另外在神经网络的计算中,通常先有一个叫做前向暂停(forward pause)或叫做前向传播(foward propagation)的步骤,接着有一个叫做反向暂停(backward pause) 或叫做反向传播(backward propagation)的步骤。所以这周我也会向你介绍为什么神经网络的训练过程可以分为前向传播和反向传播两个独立的部分。 在课程中我将使用逻辑回归(logistic regression)来传达这些想法,以使大家能够更加容易地理解这些概念。即使你之前了解过逻辑回归,我认为这里还是有些新的、有趣的东西等着你去发现和了解,所以现在开始进入正题。 逻辑回归是一个用于二分类(binary classification)的算法。首先我们从一个问题开始说起,这里有一个二分类问题的例子,假如你有一张图片作为输入,比如这只猫,如果识别这张图片为猫,则输出标签1作为结果;如果识别出不是猫,那么输出标签0作为结果。现在我们可以用字母 来 表示输出的结果标签,如下图所示: 我们来看看一张图片在计算机中是如何表示的,为了保存一张图片,需要保存三个矩阵,它们分别对应图片中的红、绿、蓝三种颜色通道,如果你的图片大小为64x64像素,那么你就有三个规模为64x64的矩阵,分别对应图片中红、绿、蓝三种像素的强度值。为了便于表示,这里我画了三个很小的矩阵,注意它们的规模为5x4 而不是64x64,如下图所示: 为了把这些像素值放到一个特征向量中,我们需要把这些像素值提取出来,然后放入一个特征向量。为了把这些像素值转换为特征向量 ,我们需要像下面这样定义一个特征向量 来表示这张图片,我们把所有的像素都取出来,例如255、231等等,直到取完所有的红色像素,接着最后是255、134、…、255、134等等,直到得到一个特征向量,把图片中所有的红、绿、蓝像素值都列出来。如果图片的大小为64x64像素,那么向量 的总维度,将是64乘以64乘以3,这是三个像素矩阵中像素的总量。在这个例子中结果为12,288。现在我们用,来表示输入特征向量的维度,有时候为了简洁,我会直接用小写的来表示输入特征向量的维度。所以在二分类问题中,我们的目标就是习得一个分类器,它以图片的特征向量作为输入,然后预测输出结果为1还是0,也就是预测图片中是否有猫: 最后为了能把训练集表示得更紧凑一点,我们会定义一个矩阵用大写的表示,它由输入向量、等组成,如下图放在矩阵的列中,所以现在我们把作为第一列放在矩阵中,作为第二列,放到第列,然后我们就得到了训练集矩阵。所以这个矩阵有列,是训练集的样本数量,然后这个矩阵的高度记为,注意有时候可能因为其他某些原因,矩阵会由训练样本按照行堆叠起来而不是列,如下图所示:的转置直到的转置,但是在实现神经网络的时候,使用左边的这种形式,会让整个实现的过程变得更加简单: 现在来简单温习一下:是一个规模为乘以的矩阵,当你用Python实现的时候,你会看到X.shape,这是一条Python命令,用于显示矩阵的规模,即X.shape等于,是一个规模为乘以的矩阵。所以综上所述,这就是如何将训练样本(输入向量的集合)表示为一个矩阵。 那么输出标签呢?同样的道理,为了能更加容易地实现一个神经网络,将标签放在列中将会使得后续计算非常方便,所以我们定义大写的等于,所以在这里是一个规模为1乘以的矩阵,同样地使用Python将表示为Y.shape等于,表示这是一个规模为1乘以的矩阵。 当你在后面的课程中实现神经网络的时候,你会发现,一个好的符号约定能够将不同训练样本的数据很好地组织起来。而我所说的数据不仅包括 或者 还包括之后你会看到的其他的量。将不同的训练样本的数据提取出来,然后就像刚刚我们对 或者 所做的那样,将他们堆叠在矩阵的列中,形成我们之后会在逻辑回归和神经网络上要用到的符号表示。如果有时候你忘了这些符号的意思,比如什么是 ,或者什么是 ,或者忘了其他一些东西,我们也会在课程的网站上放上符号说明,然后你可以快速地查阅每个具体的符号代表什么意思,好了,我们接着到下一个视频,在下个视频中,我们将以逻辑回归作为开始。 备注:附录里也写了符号说明。
因为相信,所以看见。 2020-05-20 12:39:45 0 浏览量 回答数 0

回答

回 1楼(绍成) 的帖子 汗,刚刚直接粘贴的,不知道为什么格式乱了,现在改好了。 ------------------------- 回 7楼(零基础) 的帖子 12-19的具体规模等提交了就知道了,现在的话我也不清楚。 ------------------------- 回 7楼(零基础) 的帖子 你可以都试试,看看怎么弄效果比较好。 ------------------------- 回 13楼(猴衙内) 的帖子 这里只是建议只考虑已交互的,用来测试成绩的数据里是不会做特殊处理的。 ------------------------- 回 17楼(muscle_boy) 的帖子 →_→ 正负样本不均衡有很多论文的,你可以去找找 ------------------------- 回 18楼(付) 的帖子 你再想想这里标记样本的目的是什么 ------------------------- 回 25楼(付) 的帖子   你再会过头去看看《入门》。 ------------------------- 回 27楼(chelseayuan) 的帖子 不是,只考虑已交互只是个人建议。 ------------------------- 回 29楼(猴衙内) 的帖子 数据没错,因为同一个item确实可能有多个地址,比如万达影城的电影票 ------------------------- 回 25楼(付) 的帖子 标记本身这个动作就是人工分类,但它在整个建模过程的目的不是为了分类,而是为了给模型提供训练。所以,你再想想。 ------------------------- 回 32楼(byy) 的帖子 点击是可能丢失的。 至于购物车丢失,去手机淘宝看看? ------------------------- 回 34楼(luckycallor) 的帖子 换好机器,或者优化算法。 ------------------------- 回 36楼(小杨单打) 的帖子 《入门》里应该说清楚了吧? ------------------------- 回 38楼(小杨单打) 的帖子 你前面没理解错,后面不知道你想问什么。如果你是没有数据挖掘的基础,建议看看《数据挖掘导论》 ------------------------- 回 40楼(melodyclr) 的帖子 1,需不需要特殊处理,可以自己做实验对比。 2,你再看看《入门》 ------------------------- Re:比赛_快速入门_《入门》仅供参考,大家思维不要受局限哈   自己顶一下,更新了一些。 ------------------------- 回 43楼(飞天111) 的帖子 好像是算错了,不过你懂意思就好 ------------------------- ------------------------- 回 47楼(白小兔) 的帖子 显然不需要。 ------------------------- 回 51楼(程序员小许) 的帖子 再读几遍吧,实在不行问问身边的同学,我在帖子里也很难说清楚。
小斯never 2019-12-02 01:55:01 0 浏览量 回答数 0

回答

作为一个研发工程师,无论你是否喜爱阅读,相信你都一定读过不少关于计算机技术的书籍。这其中不乏《21 天学会 JAVA》这样的语言入门书籍,也有《算法导论》这样的专题书籍,也有《人月神话》这样关于软件管理学的实用性的书籍。 也许你已经读过他们中的大部分,也许你现在还在不断地购入新的书籍来补充你的知识库。但请稍等一下,你是否思考过这样的问题,面对大量的计算机科学书籍,你是否都真正读懂了它们呢。有多少本书,当你将他放在书架上之后,就再也没有重新打开过。有多少知识是真正被存储在你的大脑中,并随时可以提供调用。拿到一本书后,高效阅读的正确姿势的什么。 如果你有以上的疑惑,那么接下来,我们将一起探讨一个问题,如何阅读一本计算机科学类书籍。 阅读的四种层次 首先,我们先要学会如何阅读。你可能会觉得不可思议,我已经接受过高等教育,怎么可能还不会阅读。然而可悲的是,现代教育体系中,恰恰忽略了对阅读能力的训练。我们在初中之后,阅读水平就几乎没有机会再得到提升。总体来说,阅读分为四种层次,分别是: 基础阅读 检视阅读 分析阅读 主题阅读 这其中的概念来源于莫提默·J·艾德勒和查尔斯·范多伦的著作《如何阅读一本书(How To Read A Book)》,这里我必须对其中的概念做简单的总结,以便在后续的篇幅中,我们能统一对阅读名词的理解。 当我们完成中学学业后,我们中的绝大部分人,都已经掌握了基础阅读的能力。在这个层次中,我们关心的是,书里的每句话是什么意思。这是一个最基础的层次。 检视阅读,我们也可以称之为快速阅读。快速浏览全书,了解书的主题,架构全书,提出核心问题。这并不是很新鲜的概念,但很多人可能并没有思考过,为什么要做检视阅读。检视阅读作用是为了帮助我们筛选这本书是否值得阅读,同时为接下来的分析阅读打下基础。在这个层次中,我们关心的是,这本书在讲什么。 分析阅读是一个更为高级的阅读层次,目标让我们能充分理解本书,与作者对话。其中包含了多个阶段,这里不再详述,有兴趣的同学可以研读原著。 当我们跨越过分析阅读后,这本书已经被我们掌握。此时,我们会就相同的主题,阅读不同的书籍,找出其中关联与矛盾,倾听不同的作者的不同声音,从而对某个主题产生更加深刻的认识。这个阶段,我们关注的不再是某一本书,而是一个具体的问题。 计算机科学书籍的特征 原著中针对不同类型的书籍,给予了不同的阅读建议。但由于所著时间很早,就计算机科学类图书的阅读建议,在书中并没有专门设计章节阐述。根据我的阅读经历,深感计算机科学类书籍,较其他类型图书有着其独特性: 单本书籍的信息量大 相较其他学科,绝大多数计算机科学类书籍并不是以得出结论并且论证结论为核心,而偏重于阐述方法和解释原理。有很多计算机书籍旨在剖析某个系统。这里的系统不仅仅指代诸如操作系统这样的实体系统,还包括一门语言或者一套管理方法论这样的理论系统。而系统通常是由多个部分组成的综合体,这其中势必包含不同组成部分的不同细节,信息量之大可见一斑。 注重实践 计算机科学是一门实用性的学科。这里的实用性可以理解为,计算机科学诞生的目的就是为了解决实际问题。因此,几乎所有的计算机科学书籍,都是以指导实践为目标而作。 更新速度快 计算机科学的更迭速度可以准确地被描述为日新月异。有些技术很快地火爆起来,又很快地消亡,所以有些书也就跟着很快地淹没在时代的进程中。 分类细致但同质度高 计算机科学对自己有着过分清晰的划分,不同的技术之间往往边界清晰。我们很少见操作系统和数据库系统在同一本书中论述,也不常见集不同语言之成的大作。由于领域划分细致,相同领域的书籍,多数时候往往论述的是同样的主题。 阅读计算机科学书籍的误区 绝大多数读者的错误意识在于把所有的书籍都认为是层层推进的论述过程。这样的阅读经验一旦沿用在计算机科学类书籍中,就会感觉举步维艰。前文说过,大多数的计算机书籍都是在剖析系统,一个系统又是由许多相互关联的部分组成。解读这类书籍,如同拆解一个机械,我们在拆解的过程,常常会犯下这些错误。
青衫无名 2019-12-02 01:20:38 0 浏览量 回答数 0

回答

关于神经网络也有很多的种类,考虑到它们的使用效果,有些使用起来恰到好处,但事实表明,到目前几乎所有由神经网络创造的经济价值,本质上都离不开一种叫做监督学习的机器学习类别,让我们举例看看。 在监督学习中你有一些输入,你想学习到一个函数来映射到一些输出,比如我们之前提到的房价预测的例子,你只要输入有关房屋的一些特征,试着去输出或者估计价格。我们举一些其它的例子,来说明神经 如今应用深度学习获利最多的一个领域,就是在线广告。这也许不是最鼓舞人心的,但真的很赚钱。具体就是通过在网站上输入一个广告的相关信息,因为也输入了用户的信息,于是网站就会考虑是否向你展示广告。 神经网络已经非常擅长预测你是否会点开这个广告,通过向用户展示最有可能点开的广告,这就是神经网络在很多家公司难以置信地提高获利的一种应用。因为有了这种向你展示你最有可能点击的广告的能力,而这一点击的行为的改变会直接影响到一些大型的在线广告公司的收入。 计算机视觉在过去的几年里也取得了长足的进步,这也多亏了深度学习。你可以输入一个图像,然后想输出一个索引,范围从1到1000来试着告诉你这张照片,它可能是,比方说,1000个不同的图像中的任何一个,所以你可能会选择用它来给照片打标签。 深度学习最近在语音识别方面的进步也是非常令人兴奋的,你现在可以将音频片段输入神经网络,然后让它输出文本记录。得益于深度学习,机器翻译也有很大的发展。你可以利用神经网络输入英语句子,接着输出一个中文句子。 在自动驾驶技术中,你可以输入一幅图像,就好像一个信息雷达展示汽车前方有什么,据此,你可以训练一个神经网络,来告诉汽车在马路上面具体的位置,这就是神经网络在自动驾驶系统中的一个关键成分。 那么深度学习系统已经可以创造如此多的价值,通过智能的选择,哪些作为哪些作为,来针对于你当前的问题,然后拟合监督学习部分,往往是一个更大的系统,比如自动驾驶。这表明神经网络类型的轻微不同,也可以产生不同的应用,比如说,应用到我们在上一个视频提到的房地产领域,我们不就使用了一个普遍标准神经网络架构吗? 也许对于房地产和在线广告来说可能是相对的标准一些的神经网络,正如我们之前见到的。对于图像应用,我们经常在神经网络上使用卷积(Convolutional Neural Network),通常缩写为CNN。对于序列数据,例如音频,有一个时间组件,随着时间的推移,音频被播放出来,所以音频是最自然的表现。作为一维时间序列(两种英文说法one-dimensional time series / temporal sequence).对于序列数据,经常使用RNN,一种递归神经网络(Recurrent Neural Network),语言,英语和汉语字母表或单词都是逐个出现的,所以语言也是最自然的序列数据,因此更复杂的RNNs版本经常用于这些应用。 对于更复杂的应用比如自动驾驶,你有一张图片,可能会显示更多的CNN卷积神经网络结构,其中的雷达信息是完全不同的,你可能会有一个更定制的,或者一些更复杂的混合的神经网络结构。所以为了更具体地说明什么是标准的CNN和RNN结构,在文献中你可能见过这样的图片,这是一个标准的神经网络。 我们会在后面的课程了解这幅图的原理和实现,卷积网络(CNN)通常用于图像数据。 你可能也会看到这样的图片,而且你将在以后的课程中学习如何实现它。 递归神经网络(RNN)非常适合这种一维序列,数据可能是一个时间组成部分。 你可能也听说过机器学习对于结构化数据和非结构化数据的应用,结构化数据意味着数据的基本数据库。例如在房价预测中,你可能有一个数据库,有专门的几列数据告诉你卧室的大小和数量,这就是结构化数据。或预测用户是否会点击广告,你可能会得到关于用户的信息,比如年龄以及关于广告的一些信息,然后对你的预测分类标注,这就是结构化数据,意思是每个特征,比如说房屋大小卧室数量,或者是一个用户的年龄,都有一个很好的定义。 相反非结构化数据是指比如音频,原始音频或者你想要识别的图像或文本中的内容。这里的特征可能是图像中的像素值或文本中的单个单词。 从历史经验上看,处理非结构化数据是很难的,与结构化数据比较,让计算机理解非结构化数据很难,而人类进化得非常善于理解音频信号和图像,文本是一个更近代的发明,但是人们真的很擅长解读非结构化数据。 神经网络的兴起就是这样最令人兴奋的事情之一,多亏了深度学习和神经网络,计算机现在能更好地解释非结构化数据,这是与几年前相比的结果,这为我们创造了机会。许多新的令人兴奋的应用被使用,语音识别、图像识别、自然语言文字处理,甚至可能比两三年前的还要多。因为人们天生就有本领去理解非结构化数据,你可能听说了神经网络更多在媒体非结构化数据的成功,当神经网络识别了一只猫时那真的很酷,我们都知道那意味着什么。 但结果也表明,神经网络在许多短期经济价值的创造,也是基于结构化数据的。比如更好的广告系统、更好的利润建议,还有更好的处理大数据的能力。许多公司不得不根据神经网络做出准确的预测。 因此在这门课中,我们将要讨论的许多技术都将适用,不论是对结构化数据还是非结构化数据。为了解释算法,我们将在使用非结构化数据的示例中多画一点图片,但正如你所想的,你自己团队里通过运用神经网络,我希望你能发现,神经网络算法对于结构化和非结构化数据都有用处。 神经网络已经改变了监督学习,正创造着巨大的经济价值,事实证明,基本的神经网络背后的技术理念大部分都离我们不遥远,有的是几十年,那么为什么他们现在才刚刚起步,效果那么好,下一集视频中我们将讨论为什么最近的神经网络已经成为你可以使用的强大工具。网络已经被高效应用到其它地方。
因为相信,所以看见。 2020-05-19 20:32:55 0 浏览量 回答数 0

回答

链表啊,结构体里放一个char来记录字母,一个int来计数,遍历字符串后排序输出。 ######谢谢额 我猜自己发现了错误,又改写了一下,现在已经成功了。######我尝试去这样做了,但是结果还是出错。有思路,但是还是比较复杂,代码写出来了出错。也不知道是哪里有问题.######有人能帮帮忙吗?######定义个数组c=int[26][2],c[0][0]='a',c[0][1]=次数,然后排序,然后输出,如果次数为0,则不输出,选个排序算法就行了######回复 @水晶之夜 : 输出的时候类型强制转换下,(char)c[0][0]。估计用指针数组也行,或者也可以用typedef定义一个struct,但这些具体怎么写语句我也不会,没怎么好好用过C,反正大体上应该是这么个意思。######这里有一个问题,你定义的数组是整形的还是字符型?你不可能一个放字符,一个放次数,它们是不同的数据类型。######Hash Table完美解决 ######什么是Hash Table?###### 引用来自“猎户座”的答案 链表啊,结构体里放一个char来记录字母,一个int来计数,遍历字符串后排序输出。 我自己又重新调试了一下,把代码稍稍改了一下。现在基本上可以了。 #define N 1024 void f12() { //输入一串字符以?结束 char str[N]; gets(str); //全部字母小写化 int i; for(i=0;str[i]!='\0';i++) { str[i]=tolower(str[i]); } //定义一个结构体来记录字符和次数 Info a[26]; for(i=0;i<26;i++) { a[i].letter=i+97; a[i].count=0; } //统计字符 for(i=0;str[i]!='\0';i++) { if(str[i]>='a'&&str[i]<='z') { a[str[i]-'a'].count++; } } //排序 int j; for(i=0;i<26;i++) { int k=i; for(j=0;j<25;j++) { if(a[j].count<a[j+1].count) { //交换 int t=a[j].count; a[j].count=a[j+1].count; a[j+1].count=t; char c = a[j].letter; a[j].letter=a[j+1].letter; a[j+1].letter=c; } } } //输出 for(i=0;i<26;i++) { if(a[i].count==0) continue; printf("%c %d\n",a[i].letter,a[i].count); } } ###### 引用来自“NealFeng”的答案 定义个数组c=int[26][2],c[0][0]='a',c[0][1]=次数,然后排序,然后输出,如果次数为0,则不输出,选个排序算法就行了 哈,你这个貌似多做事情了。题目是针对字母,没针对其他分类方法。那么就可以直接 int alpha[26]; void init_alpha(void){ int i; for (i = 0 ; i < 26 ; i ++ ) alpha[i] = 0; } #define _CHK_SET(a,min,max) do {if((a >= (min))&&(a <= (max))){alpha[a-min] += 1;}while (0) void set_alpha(char a){ _CHK_SET(a ,'A','Z'); _CHK_SET(a,'a','z'); } int max_num(void){ int re = alpha[0]; int i; for (i = 1 ; i< 26 ; i++) { if (alpha[i] > re) re = alpha[i]; } return re; } int print_max(void){ int i; int flag = 0; i = max_num(); if (alpha[i] == 0){ return 0; } printf(....); alpha[i] = 0; return 1; } 余下,就是初始化。然后读一个字符如果不是结束符,就掉用一次set_alpha,全部处理完就不停的调用print_max 直到返回为0. 哈, 原型设计不要考虑优化问题。逻辑清楚是关键。有什么好排序的。你排序的价值在于降低不必要的逻辑处理,但和目标逻辑没有关系。 ######有一点挺有意思的,确实,要求是打印出来,干嘛排序呢?###### 引用来自“中山野鬼”的答案 引用来自“NealFeng”的答案 定义个数组c=int[26][2],c[0][0]='a',c[0][1]=次数,然后排序,然后输出,如果次数为0,则不输出,选个排序算法就行了 哈,你这个貌似多做事情了。题目是针对字母,没针对其他分类方法。那么就可以直接 int alpha[26]; void init_alpha(void){ int i; for (i = 0 ; i < 26 ; i ++ ) alpha[i] = 0; } #define _CHK_SET(a,min,max) do {if((a >= (min))&&(a <= (max))){alpha[a-min] += 1;}while (0) void set_alpha(char a){ _CHK_SET(a ,'A','Z'); _CHK_SET(a,'a','z'); } int max_num(void){ int re = alpha[0]; int i; for (i = 1 ; i< 26 ; i++) { if (alpha[i] > re) re = alpha[i]; } return re; } int print_max(void){ int i; int flag = 0; i = max_num(); if (alpha[i] == 0){ return 0; } printf(....); alpha[i] = 0; return 1; } 余下,就是初始化。然后读一个字符如果不是结束符,就掉用一次set_alpha,全部处理完就不停的调用print_max 直到返回为0. 哈, 原型设计不要考虑优化问题。逻辑清楚是关键。有什么好排序的。你排序的价值在于降低不必要的逻辑处理,但和目标逻辑没有关系。 我测试了你一下你这个代码,还有5个错误。不太理解。。 --------------------Configuration: temp - Win32 Debug-------------------- Compiling... temp.cpp d:\my files\c program\wow\temp\temp.cpp(25) : error C2062: type 'int' unexpected d:\my files\c program\wow\temp\temp.cpp(26) : error C2143: syntax error : missing ';' before '{' d:\my files\c program\wow\temp\temp.cpp(33) : error C2562: 'set_alpha' : 'void' function returning a value d:\my files\c program\wow\temp\temp.cpp(21) : see declaration of 'set_alpha' d:\my files\c program\wow\temp\temp.cpp(35) : error C2601: 'print_max' : local function definitions are illegal d:\my files\c program\wow\temp\temp.cpp(46) : fatal error C1004: unexpected end of file found Error executing cl.exe. temp.obj - 5 error(s), 0 warning(s) ###### 引用来自“中山野鬼”的答案 引用来自“NealFeng”的答案 定义个数组c=int[26][2],c[0][0]='a',c[0][1]=次数,然后排序,然后输出,如果次数为0,则不输出,选个排序算法就行了 哈,你这个貌似多做事情了。题目是针对字母,没针对其他分类方法。那么就可以直接 int alpha[26]; void init_alpha(void){ int i; for (i = 0 ; i < 26 ; i ++ ) alpha[i] = 0; } #define _CHK_SET(a,min,max) do {if((a >= (min))&&(a <= (max))){alpha[a-min] += 1;}while (0) void set_alpha(char a){ _CHK_SET(a ,'A','Z'); _CHK_SET(a,'a','z'); } int max_num(void){ int re = alpha[0]; int i; for (i = 1 ; i< 26 ; i++) { if (alpha[i] > re) re = alpha[i]; } return re; } int print_max(void){ int i; int flag = 0; i = max_num(); if (alpha[i] == 0){ return 0; } printf(....); alpha[i] = 0; return 1; } 余下,就是初始化。然后读一个字符如果不是结束符,就掉用一次set_alpha,全部处理完就不停的调用print_max 直到返回为0. 哈, 原型设计不要考虑优化问题。逻辑清楚是关键。有什么好排序的。你排序的价值在于降低不必要的逻辑处理,但和目标逻辑没有关系。 简洁、明了 ###### 引用来自“水晶之夜”的答案 引用来自“中山野鬼”的答案 引用来自“NealFeng”的答案 定义个数组c=int[26][2],c[0][0]='a',c[0][1]=次数,然后排序,然后输出,如果次数为0,则不输出,选个排序算法就行了 哈,你这个貌似多做事情了。题目是针对字母,没针对其他分类方法。那么就可以直接 int alpha[26]; void init_alpha(void){ int i; for (i = 0 ; i < 26 ; i ++ ) alpha[i] = 0; } #define _CHK_SET(a,min,max) do {if((a >= (min))&&(a <= (max))){alpha[a-min] += 1;}while (0) void set_alpha(char a){ _CHK_SET(a ,'A','Z'); _CHK_SET(a,'a','z'); } int max_num(void){ int re = alpha[0]; int i; for (i = 1 ; i< 26 ; i++) { if (alpha[i] > re) re = alpha[i]; } return re; } int print_max(void){ int i; int flag = 0; i = max_num(); if (alpha[i] == 0){ return 0; } printf(....); alpha[i] = 0; return 1; } 余下,就是初始化。然后读一个字符如果不是结束符,就掉用一次set_alpha,全部处理完就不停的调用print_max 直到返回为0. 哈, 原型设计不要考虑优化问题。逻辑清楚是关键。有什么好排序的。你排序的价值在于降低不必要的逻辑处理,但和目标逻辑没有关系。 我测试了你一下你这个代码,还有5个错误。不太理解。。 --------------------Configuration: temp - Win32 Debug-------------------- Compiling... temp.cpp d:\my files\c program\wow\temp\temp.cpp(25) : error C2062: type 'int' unexpected d:\my files\c program\wow\temp\temp.cpp(26) : error C2143: syntax error : missing ';' before '{' d:\my files\c program\wow\temp\temp.cpp(33) : error C2562: 'set_alpha' : 'void' function returning a value d:\my files\c program\wow\temp\temp.cpp(21) : see declaration of 'set_alpha' d:\my files\c program\wow\temp\temp.cpp(35) : error C2601: 'print_max' : local function definitions are illegal d:\my files\c program\wow\temp\temp.cpp(46) : fatal error C1004: unexpected end of file found Error executing cl.exe. temp.obj - 5 error(s), 0 warning(s) 他这个是 C语言写的,得用 C语言编译器。 把 .cpp 改成 .c 再试试。 还有 27 行 printf 里面加上你要输出的东西。 ###### 引用来自“水晶之夜”的答案 引用来自“中山野鬼”的答案 引用来自“NealFeng”的答案 定义个数组c=int[26][2],c[0][0]='a',c[0][1]=次数,然后排序,然后输出,如果次数为0,则不输出,选个排序算法就行了 哈,你这个貌似多做事情了。题目是针对字母,没针对其他分类方法。那么就可以直接 int alpha[26]; void init_alpha(void){ int i; for (i = 0 ; i < 26 ; i ++ ) alpha[i] = 0; } #define _CHK_SET(a,min,max) do {if((a >= (min))&&(a <= (max))){alpha[a-min] += 1;}while (0) void set_alpha(char a){ _CHK_SET(a ,'A','Z'); _CHK_SET(a,'a','z'); } int max_num(void){ int re = alpha[0]; int i; for (i = 1 ; i< 26 ; i++) { if (alpha[i] > re) re = alpha[i]; } return re; } int print_max(void){ int i; int flag = 0; i = max_num(); if (alpha[i] == 0){ return 0; } printf(....); alpha[i] = 0; return 1; } 余下,就是初始化。然后读一个字符如果不是结束符,就掉用一次set_alpha,全部处理完就不停的调用print_max 直到返回为0. 哈, 原型设计不要考虑优化问题。逻辑清楚是关键。有什么好排序的。你排序的价值在于降低不必要的逻辑处理,但和目标逻辑没有关系。 我测试了你一下你这个代码,还有5个错误。不太理解。。 --------------------Configuration: temp - Win32 Debug-------------------- Compiling... temp.cpp d:\my files\c program\wow\temp\temp.cpp(25) : error C2062: type 'int' unexpected d:\my files\c program\wow\temp\temp.cpp(26) : error C2143: syntax error : missing ';' before '{' d:\my files\c program\wow\temp\temp.cpp(33) : error C2562: 'set_alpha' : 'void' function returning a value d:\my files\c program\wow\temp\temp.cpp(21) : see declaration of 'set_alpha' d:\my files\c program\wow\temp\temp.cpp(35) : error C2601: 'print_max' : local function definitions are illegal d:\my files\c program\wow\temp\temp.cpp(46) : fatal error C1004: unexpected end of file found Error executing cl.exe. temp.obj - 5 error(s), 0 warning(s) 这个也算代码?我的老天啊。。。无非是我想说明逻辑,用了语言来描述。。。。不能这么省事。又不是我的作业。哈。
爱吃鱼的程序员 2020-06-03 17:27:32 0 浏览量 回答数 0

回答

希望对你有帮助。 一、为何要学编程。 每个人的动机不一样。大致有: 1、为了找个好工作;或为了有更好的机会和更好的发展。 2、看到别人超厉害,所以也想学。 3、实际工作中很多场合需要。 4、从小就立志做个程序员,做软件工程师。 5、振兴中国的软件事业。 。。。。。。 ================================================ 二、如何学编程。 1、多看好书。 差书误人子弟,不但浪费时间和精力,而且打击人的信心,差书使人很久都不会,让会让人怀疑自已的学习能力。 现在的书很多,但好书很少,特别是被大家公认很有价值的好书,更是少之又少。历经多年时间考验和市场风雨不残酷洗礼而仅存的巨著,更是极其稀少。中国历史上文学小说类书本多如牛毛,但仅存的巨著,也只不过<<红楼梦>>等四本名著而已,编程方面也是如此。 2、多动手。 这一点很重要。而且特别重要。“纸上得来终觉浅,绝知此事要躬行。”陆游的千古名句说的就是这个道理,并且同样适合于编程方面。 ================================================ 三、用什么语言最好。 这主要取决于应用领域,每种语言都有自已的长处和不足。 1、汇编语言和C语言在单片机及工控领域用较多。另外C语言也是一种通用语言,是学C++/c#的起点。 2、C++系统编程等多个方面,最常用的编译器是VC。 3、C#/java网络编程方面新兴的。 4、VB通用。 5、还有Delphi等。。。。。。 个人建议:从未编过程的,就从学vb开始。有基础的可直接学c++/VC。 =================================================== 四、有什么好书。 几年前,台湾著名技术作家侯捷先生曾经写过一篇影响很大的书评文章,叫做《MFC四大天王》。文章的意思是说在MFC的浩瀚书海中,只要认真研读和学习其中四本,就可以“五岳归来不看山”。侯先生虽以MFC为例,但是这个道理却同样适合于MFC之外的很多具体技术领域,这不能不说是一个有趣的统计现象。 通常在某一个具体细分的技术领域,会自然而然地出现3-5本顶级著作,它们彼此互相配合,形成一个完整的体系。对于学习者来说,只需要认真研读这几本书,就足以升堂入室。我乐于将这种现称为“四书五经现象”。对于读者来说,如果能够找到该领域中的“四书五经”,则无论在时间上还是金钱上都是最经济的选择。好书几本,胜过烂书几捆,这个体会想必大家都有。在此,帮助大家遴选各个技术领域里的“四书五经”。 编程的书可谓汗牛充栋,其中经典也是不泛其数,但绝大多数的过来人,都一致认为,要想很快的入门并尽快的投入到编程实践中,只要其中的四到五本也就够了,即只看经典中的经典,圣经级的书就可以了。 所谓活到老学到老,程序员是个终身学习的职业,要不断的看书,直到放弃编程的那一天。所以,您要读的好书也绝非以下推荐的这些书哟,呵呵。 一句话,由于我们的时间、精力、金钱都是有限的,如何以最小的代价换得最大的收获。 ================================================================ 五、经典好书分类热销榜 1、java java编程语言(第三版)---java四大名著----James Gosling(java之父) java编程思想(第2版)----java四大名著----Bruce Eckel java编程思想(第3版)----java四大名著----------------Bruce Eckel java 2核心技术 卷I:基础知识(原书第7版)---java四大名著-----Cay Horstmann java 2核心技术 卷II:高级特性(原书第7版)----java四大名著-----Cay Horstmann Effective java中文版------java四大名著--------Joshua Bloch 精通Struts:基于MVC的java Web设计与开发---孙卫琴 精通Hibernate:java对象持久化技术详解---孙卫琴 Tomcat与java Web开发技术详解------------孙卫琴 java与模式------------------------------阎宏 2、c# C#程序设计-------Charles Petzold“windows编程泰山北斗”---C#语言“倚天屠龙双剑” C# Primer中文版--------Stanley B.Lippman---C#语言“倚天屠龙双剑” .NET框架程序设计(修订版)--------Jeffrey Richter“windows编程泰山北斗”---.NET平台四大天王 C# Windows程序设计----------Charles Petzold“windows编程泰山北斗”------.NET平台四大天王 .NET程序设计技术内幕-------------Jeff Prosise---.NET平台四大天王 .NET本质论--第1卷:公共语言运行库(中文版)--------Chris Sells---.NET平台四大天王 3、C++ C++程序设计语言(特别版)---c++八大金刚----Bjarne Stroustrup“C++之父” C++ Primer (第3版)中文版----c++八大金刚---Stanley B.Lippman C++ Primer (第4版)中文版----c++八大金刚---Stanley B.Lippman C++标准程序库—自修教程与参考手册--c++八大金刚--Nicolai M.Josuttis C++语言的设计和演化-----c++八大金刚----Bjarne Stroustrup“C++之父” 深度探索C++对象模型---c++八大金刚----Stanley B.Lippman Essential C++中文版---c++八大金刚---Stanley B.Lippman Effective C++中文版 2nd Edition-----c++八大金刚------Scott Meyers More Effective C++中文版----c++八大金刚------Scott Meyers C++编程思想(第2版) 第1卷:标准C++导引--------Bruce Eckel C++编程思想(第2版)第2卷:实用编程技术 --------Bruce Eckel C++程序设计--------------------------谭浩强 C++ 程序设计教程(第2版)--------------钱能 C++ Primer Plus(第五版)中文版---Stephen Prata 广博如四库全书The c++ programming language、c++ Primer 深奥如山重水复Inside the c++ object model 程序库大全The c++ standard libray 工程经验之积累Effective c++、More Effective c++、Exceptional c++ c++八大金刚: 1、Essentital c++---lippman---C++之父,旁枝暂略,主攻核心,轻薄短小,初学者 2、The c++ programming language----C++之父,技术权威,用词深峻,思想深远,c++百科全书代表,圣经。 3、c++ Primer----lippman---纵横书市十数年,c++最佳教本,c++百科全书代表。 4、Inside the c++ object model-----lippman----揭示c++底层,非常好,非常难。 5、Effective c++-----通过50个编程实例,展示专家经验,行文有趣,深处浅出。 6、More Effective c++----通过35个编程实例,展示专家经验,行文有趣,深处浅出。 7、The c++ standard libray---c++标准库的百科全书。 8、设计模式:可复用面向对象软件的基础------good! 4、c C程序设计语言(第2版·新版)---C语言“倚天屠龙双剑”---Brian W.Kernighan“C语言之父” C Primer Plus中文版(第五版)--------C语言“倚天屠龙双剑”---Stephen Prata C程序设计(第三版)---------------------------谭浩强 C语言大全(第四版)---------------------------HERBERT SCHILDT C语言接口与实现:创建可重用软件的技术-------------DAVID R.HANSON C语言参考手册(原书第5版)--------------------------Samuel P.Harbison C程序设计教程---------------------------------H.M.Deitel/P.J.Deitel C陷阱与缺陷-----------------------------------Andrew Koenig 5、VB Visual Basic .NET技术内幕-----VB编程三剑客-----------Francesco Balena“vb首席大师” Windows程序设计-Visual Basic.NET语言描述--VB编程三剑客-----Charles Petzold“windows编程泰山北斗”--- .NET框架程序设计:Visual Basic.NET语言描述--VB编程三剑客--Jeffrey Richter“windows编程泰山北斗”--- Visual Basic 6编程技术大全------------------------Francesco Balena“vb首席大师” Visual Basic.NET 从入门到精通-------------------------Petroutsos,E. 高级VISUAL BASIC编程-----------------------------------MATTHEW CURLAND 6、Delphi Inside VCL(深入核心——VCL架构剖析)----------李维 Delphi 7高效数据库程序设计--------------李维 面向对象开发实践之路(Delphi版)----------李维 7、VC Windows 程序设计(第5版)-----Charles Petzold“windows编程泰山北斗”--- Windows核心编程----------Jeffrey Richter“windows编程泰山北斗”--- Windows高级编程指南---------Jeffrey Richter“windows编程泰山北斗”--- 深入浅出MFC(第二版)-----“MFC四大天王”-------侯捷 MFC Windows程序设计(第2版)---MFC四大天王”---------Jeff Prosise Visual C++ 技术内幕(第4版)--MFC四大天王”--------David Kruglinski 深入解析MFC-------------MFC四大天王”-----------George Shepherd Visual C++.NET 技术内幕(第6版)-MFC四大天王”------------David Kruglinski 8、vf Visual Foxpro程序设计参考手册-------------------张洪举 专家门诊——Visual FoxPro开发答疑160问-------------------张洪举 Visual FoxPro 6.0/9.0解决方案与范例大全-------------------张洪举 Visual FoxPro软件开发模式与应用案例-------------------张洪举 9、黑客 应用密码学(协议算法与C源程序-----------Bruce Schneier 网络信息安全的真相-----------Bruce Schneier 黑客大曝光:网络安全机密与解决方案(第5版)--------STUART MCCLURE 软件加密技术内幕------------看雪学院 加密与解密——软件保护技术与完全解决方案------------看雪学院 加密与解密(第二版)--------段钢 10、汇编 Intel微处理器结构、编程与接口(第六版)---------Barry B. Brey 80*86、奔腾机汇编语言程序设计---------Barry B. Brey Windows环境下32位汇编语言程序设计(第2版)-----------罗云彬 IBM-PC汇编语言程序设计(第2版) 本书是国内优秀教材--------沈美明 温冬婵 IBM PC汇编语言程序设计(第五版) 这本书籍是国外优秀教材-------PETER ABEL著,沈美明 温冬蝉译 11、驱动开发 Windows WDM设备驱动程序开发指南------------------------------------ Chris Cant Windows 2000/XP WDM设备驱动程序开发(第2版)--------------------------武安河 WINDOWS 2000/XP WDM设备驱动程序开发-------------------------------- 武安河 12、网络 计算机网络第四版中文版----网络编程三剑客--------------Andrew S.Tanenbaum TCP/IP详解3卷本--------------------Richard Stevens----网络编程三剑客 UNIX网络编程2卷本--------------------Richard Stevens----网络编程三剑客 用TCP/IP进行网际互联-----------Douglas E. Comer 高级TCP/IP编程-------------------Jon C. Snader C++网络编程-----------------------Douglas Schmidt UNIX环境高级编程(第2版)--------------------Richard Stevens 13、算法 计算机程序设计艺术-------Donald.E.Knuth----------算法“倚天屠龙”双剑 算法导论-----------------Thomas H. Cormen--------算法“倚天屠龙”双剑 离散数学及其应用----------Kenneth H.Rosen 具体数学—计算机科学基础--------Donald.E.Knuth 14、图形编程 Windows 图形编程----------------FENG YUAN --图形编程界的Charles Petzold之书 15、数据结构 数据结构 C++语言描述》58.00(Data Structures C++) William Ford,William Topp 刘卫东 沈官林 数据结构算法与应用-C++语言描述》49.00Sartej Sahni 汪诗林 孙晓东等机械工业出版社 16、软件工程 设计模式--可复用面向对象软件的基础 重构—改善既有代码的设计 17、操作系统 深入理解计算机系统(修订版)-------RANDAL E.BRYANT 18、Unix UNIX 网络编程 卷I 套接字联网API(英文版 第三版 UNIX 编程艺术 UNIX环境高级编程(英文影印第2版-----UNIX编程“圣经 UNIX环境高级编程(英文影印版)(第2版) UNIX环境高级编程(第2版) UNIX环境高级编程(第2版)---UNIX编程“圣经 UNIX网络编程 第1卷:套接口API(第3版) UNIX网络编程卷2:进程间通信(第2版)(英文影印版) UNIX 网络编程(第二版)第2卷:进程间通信 UNIX编程环境 UNIX 网络编程 卷I 套接字联网API(英文版 第三版 UNIX系统编程 UNIX环境高级编程 UNIX 网络编程 卷I 套接字联网API(英文版 第三版) UNIX网络编程 第1卷:套接口API(第3版) UNIX 网络编程(第二版)第2卷:进程间通信 UNIX网络编程卷2:进程间通信(第2版)(英文影印版) UNIX 网络编程(第2版)第1卷:套接口API和X/Open 传输接口API UNIX网络编程(卷1):连网的APLS:套接字与XTI(第二版)(英文影印版) UNIX环境高级编程 Unix技术手册 19、Linux Linux内核设计与实现 Linux内核完全注释 LINUX内核分析及编程 GNU/Linux 编程指南(第二版) Linux设备驱动程序(第三版) 嵌入式设计及Linux驱动开发指南——基于ARM 9处理器 Linux设备驱动程序 第三版(英文影印版) Linux内核设计与实现(第2版) Linux内核设计与实现(英文影印版)(第2版) linux技术手册 20、游戏编程 Windows游戏编程大师技巧(第二版 游戏之旅--我的编程感悟 OpenGL超级宝典:第三版 OpenGL编程指南(第四版) java 游戏高级编程 J2ME手机游戏编程入门 游戏之旅——我的编程感悟 游戏开发中的人工智能(英文影印版) 3D游戏:卷2 动画与高级实时渲染技术 面向对象的游戏开发 java 游戏高级编程 3D游戏编程大师技巧 游戏编程精粹 面向对象的游戏开发 3D游戏 卷1:实时渲染与软件技术 3D游戏:卷2 动画与高级实时渲染技… J2ME手机游戏编程入门 Direct3D游戏编程入门教程(第二版… 21、移动开发 Windows Mobile手机应用开发 SYMBIAN OS C++手机应用开发 Windows Mobile手机应用开发--傅曦 齐宇 徐骏 SYMBIAN OS C++手机应用开发 (第2卷)------------------RICHARD HARRISON著,周良忠 王伯欣译 SYMBIAN OS C++手机应用开发---------------RICHARD HARRISON著,周良忠译 Windows CE.net内核定制及应用程序开发---------周毓林 宁杨 陆贵强 付林林 嵌入式系统Windows CE 开发技巧与实例--傅曦 Palm OS编程实践---绝版 22、单片机 单片机轻松入门----------------------------------周坚(平凡老师) 单片机典型模块设计实例导航-----------------------求是科技 例说8051----------------------------------------张义和 陈敌北 KEIL CX51 V7.0单片机高级语言编程与ΜVISION2应用实践-----徐爱钧 单片机应用程序设计技术(修订版)--------------------周航慈 8051单片机实践与应用-------------------------------吴金戎 MCS-51系列单片机实用接口技术---------------------李华 23、串并口通讯 Visual C++/Turbo C串口通信编程实践------------------龚建伟 VISUAL BASIC与RS-232串行通信控制(最新版)----------范逸之 24、电子 无线电识图与电路故障分析轻松入门(第二版) -------------------胡斌 无线电元器件检测与修理技术轻松入门(第二版) -------------------胡斌 图表细说电子技术识图-------------------胡斌 图表细说电子元器件-------------------胡斌 图表细说元器件及实用电路-------------------胡斌 ================================================================ 六、怎样成为一名程序员 通过以下4个阶段的训练, 没有任何编程基础人就可以成为一名普通的程序员。 第一阶段:掌握一种编程语言 学习内容:学习任意一种主流的编程语言。例如C++语言。 学习目标:熟练掌握一种语言的语法和基本的编程技巧。 学习时间:3个月左右 注意事项:编程语言和编程工具是两回事情,编程语言是指C++、Basic、Object Pascal等程序设计语言,它们是像汉语、英语一样的抽象的语法规则,编程工具是指Visual C++ 6.0、Visual Basic 6.0、Delphi 7.0等包括了源代码编辑器、程序编译器在内的集成化、可视化的软件开发工具。C++源程序可以在Visual C++ 6.0里编写,也可以在记事本里编写,而同一个C++源程序可以用Visual C++ 6.0编译、执行,也可以用C++ Builder 5.0 编译、执行,所以: C++ 不等于 Visual C++ 6.0 第二阶段:掌握一种编程工具 学习内容:学习任意一种主流的编程工具。注意编程工具要和第一阶段学习的编程语言一致,例如你学习的编程语言是C++,那么编程工具要选Visual C++ 6.0或者C++ Builder 5.0。 学习目标:熟练掌握这种编程工具基本用法,例如:菜单、组件、程序跟踪调试、编写Windows程序等。 学习时间:3个月左右 注意事项:这个阶段侧重编程工具的使用,同时进一步熟习编程语言,最后达到能熟练编写各种基本的Windows程序。 第三阶段:掌握“算法与数据结构”这门课程 学习内容:算法与数据结构,推荐许卓群的《数据结构》,高等教育出版社出版。 学习目标:熟练掌握各种常用的算法与数据结构 学习时间:4个月左右 注意事项:这是一门不可或缺的软件开发课程,曾经有一本经典计算机专业书籍叫做《数据结构+算法=程序》,这说明了数据结构和算法的重要性。它能帮我们建立良好的程序分析与设计能力。 第四阶段:实现一个模拟的小型软件项目 学习内容:软件项目的开发过程 学习目标:掌握软件项目的基本开发过程和方法 学习时间:4个月左右 注意事项:自己完成一个模拟的小型软件项目,强烈推荐做一个MIS(管理信息系统)软件,参考用书推荐“中小型信息管理系统开发实例系列丛书”,人民邮电出版社,它的例子详实有效,以它为基础再加以扩展,就可以做出实用的MIS软件来。此丛书包括多种开发工具,大家可以选择适合自己的:《VISUAL FOXPRO6.0 数据库系统开发实例导航》 《java数据库系统开发实例导航》 《VISUAL BASIC数据库系统开发实例导航》《VISUAL C++6.0数据库系统开发实例导航》 《ASP.NET数据库管理系统开发实例导航》 《DELPHI数据库系统开发实例导航》《POWERBUILDER 8.0数据库系统开发实例导航》。 最后将完成的模拟软件刻成光盘,作为自己的作品去面试,以此踏上自己光辉的职业程序员之路。
青衫无名 2019-12-02 01:20:33 0 浏览量 回答数 0

问题

【精品问答】python技术1000问(1)

为了方便python开发者快速找到相关技术问题和答案,开发者社区策划了python技术1000问内容,包含最基础的如何学python、实践中遇到的技术问题、python面试等维度内容。 我们会以每天至少50条的...
问问小秘 2019-12-01 21:57:48 456417 浏览量 回答数 22

回答

在PaaS层中一个复杂的通用应用就是大数据平台。大数据是如何一步一步融入云计算的呢?首先我们来看一下大数据里面的数据,就分三种类型,一种叫结构化的数据,一种叫非结构化的数据,还有一种叫半结构化的数据。 大数据拥抱云计算 在PaaS层中一个复杂的通用应用就是大数据平台。大数据是如何一步一步融入云计算的呢? 1 数据不大也包含智慧 一开始这个大数据并不大。原来才有多少数据?现在大家都去看电子书,上网看新闻了,在我们80后小时候,信息量没有那么大,也就看看书、看看报,一个星期的报纸加起来才有多少字?如果你不在一个大城市,一个普通的学校的图书馆加起来也没几个书架,是后来随着信息化的到来,信息才会越来越多。 首先我们来看一下大数据里面的数据,就分三种类型,一种叫结构化的数据,一种叫非结构化的数据,还有一种叫半结构化的数据。 结构化的数据:即有固定格式和有限长度的数据。例如填的表格就是结构化的数据,国籍:中华人民共和国,民族:汉,性别:男,这都叫结构化数据。 非结构化的数据:现在非结构化的数据越来越多,就是不定长、无固定格式的数据,例如网页,有时候非常长,有时候几句话就没了;例如语音,视频都是非结构化的数据。 半结构化数据:是一些XML或者HTML的格式的,不从事技术的可能不了解,但也没有关系。 其实数据本身不是有用的,必须要经过一定的处理。例如你每天跑步带个手环收集的也是数据,网上这么多网页也是数据,我们称为Data。数据本身没有什么用处,但数据里面包含一个很重要的东西,叫做信息(Information)。 数据十分杂乱,经过梳理和清洗,才能够称为信息。信息会包含很多规律,我们需要从信息中将规律总结出来,称为知识(Knowledge),而知识改变命运。信息是很多的,但有人看到了信息相当于白看,但有人就从信息中看到了电商的未来,有人看到了直播的未来,所以人家就牛了。如果你没有从信息中提取出知识,天天看朋友圈也只能在互联网滚滚大潮中做个看客。 所以数据的应用分这四个步骤:数据、信息、知识、智慧。 最终的阶段是很多商家都想要的。你看我收集了这么多的数据,能不能基于这些数据来帮我做下一步的决策,改善我的产品。例如让用户看视频的时候旁边弹出广告,正好是他想买的东西;再如让用户听音乐时,另外推荐一些他非常想听的其他音乐。 用户在我的应用或者网站上随便点点鼠标,输入文字对我来说都是数据,我就是要将其中某些东西提取出来、指导实践、形成智慧,让用户陷入到我的应用里面不可自拔,上了我的网就不想离开,手不停地点、不停地买。 很多人说双十一我都想断网了,我老婆在上面不断地买买买,买了A又推荐B,老婆大人说,“哎呀,B也是我喜欢的啊,老公我要买”。你说这个程序怎么这么牛,这么有智慧,比我还了解我老婆,这件事情是怎么做到的呢? 2 数据如何升华为智慧 数据的处理分几个步骤,完成了才最后会有智慧。 第一个步骤叫数据的收集。首先得有数据,数据的收集有两个方式: 第一个方式是拿,专业点的说法叫抓取或者爬取。例如搜索引擎就是这么做的:它把网上的所有的信息都下载到它的数据中心,然后你一搜才能搜出来。比如你去搜索的时候,结果会是一个列表,这个列表为什么会在搜索引擎的公司里面?就是因为他把数据都拿下来了,但是你一点链接,点出来这个网站就不在搜索引擎它们公司了。比如说新浪有个新闻,你拿百度搜出来,你不点的时候,那一页在百度数据中心,一点出来的网页就是在新浪的数据中心了。 第二个方式是推送,有很多终端可以帮我收集数据。比如说小米手环,可以将你每天跑步的数据,心跳的数据,睡眠的数据都上传到数据中心里面。 第二个步骤是数据的传输。一般会通过队列方式进行,因为数据量实在是太大了,数据必须经过处理才会有用。可系统处理不过来,只好排好队,慢慢处理。 第三个步骤是数据的存储。现在数据就是金钱,掌握了数据就相当于掌握了钱。要不然网站怎么知道你想买什么?就是因为它有你历史的交易的数据,这个信息可不能给别人,十分宝贵,所以需要存储下来。 第四个步骤是数据的处理和分析。上面存储的数据是原始数据,原始数据多是杂乱无章的,有很多垃圾数据在里面,因而需要清洗和过滤,得到一些高质量的数据。对于高质量的数据,就可以进行分析,从而对数据进行分类,或者发现数据之间的相互关系,得到知识。 比如盛传的沃尔玛超市的啤酒和尿布的故事,就是通过对人们的购买数据进行分析,发现了男人一般买尿布的时候,会同时购买啤酒,这样就发现了啤酒和尿布之间的相互关系,获得知识,然后应用到实践中,将啤酒和尿布的柜台弄的很近,就获得了智慧。 第五个步骤是对于数据的检索和挖掘。检索就是搜索,所谓外事不决问Google,内事不决问百度。内外两大搜索引擎都是将分析后的数据放入搜索引擎,因此人们想寻找信息的时候,一搜就有了。 另外就是挖掘,仅仅搜索出来已经不能满足人们的要求了,还需要从信息中挖掘出相互的关系。比如财经搜索,当搜索某个公司股票的时候,该公司的高管是不是也应该被挖掘出来呢?如果仅仅搜索出这个公司的股票发现涨的特别好,于是你就去买了,其实其高管发了一个声明,对股票十分不利,第二天就跌了,这不坑害广大股民么?所以通过各种算法挖掘数据中的关系,形成知识库,十分重要。 3 大数据时代,众人拾柴火焰高 当数据量很小时,很少的几台机器就能解决。慢慢的,当数据量越来越大,最牛的服务器都解决不了问题时,怎么办呢?这时就要聚合多台机器的力量,大家齐心协力一起把这个事搞定,众人拾柴火焰高。 对于数据的收集:就IoT来讲,外面部署这成千上万的检测设备,将大量的温度、湿度、监控、电力等数据统统收集上来;就互联网网页的搜索引擎来讲,需要将整个互联网所有的网页都下载下来。这显然一台机器做不到,需要多台机器组成网络爬虫系统,每台机器下载一部分,同时工作,才能在有限的时间内,将海量的网页下载完毕。 对于数据的传输:一个内存里面的队列肯定会被大量的数据挤爆掉,于是就产生了基于硬盘的分布式队列,这样队列可以多台机器同时传输,随你数据量多大,只要我的队列足够多,管道足够粗,就能够撑得住。 对于数据的存储:一台机器的文件系统肯定是放不下的,所以需要一个很大的分布 式文件系统来做这件事情,把多台机器的硬盘打成一块大的文件系统。 对于数据的分析:可能需要对大量的数据做分解、统计、汇总,一台机器肯定搞不定,处理到猴年马月也分析不完。于是就有分布式计算的方法,将大量的数据分成小份,每台机器处理一小份,多台机器并行处理,很快就能算完。例如著名的Terasort对1个TB的数据排序,相当于1000G,如果单机处理,怎么也要几个小时,但并行处理209秒就完成了。 所以说什么叫做大数据?说白了就是一台机器干不完,大家一起干。可是随着数据量越来越大,很多不大的公司都需要处理相当多的数据,这些小公司没有这么多机器可怎么办呢? 4 大数据需要云计算,云计算需要大数据 说到这里,大家想起云计算了吧。当想要干这些活时,需要很多的机器一块做,真的是想什么时候要就什么时候要,想要多少就要多少。 例如大数据分析公司的财务情况,可能一周分析一次,如果要把这一百台机器或者一千台机器都在那放着,一周用一次非常浪费。那能不能需要计算的时候,把这一千台机器拿出来;不算的时候,让这一千台机器去干别的事情? 谁能做这个事儿呢?只有云计算,可以为大数据的运算提供资源层的灵活性。而云计算也会部署大数据放到它的PaaS平台上,作为一个非常非常重要的通用应用。因为大数据平台能够使得多台机器一起干一个事儿,这个东西不是一般人能开发出来的,也不是一般人玩得转的,怎么也得雇个几十上百号人才能把这个玩起来。 所以说就像数据库一样,其实还是需要有一帮专业的人来玩这个东西。现在公有云上基本上都会有大数据的解决方案了,一个小公司需要大数据平台的时候,不需要采购一千台机器,只要到公有云上一点,这一千台机器都出来了,并且上面已经部署好了的大数据平台,只要把数据放进去算就可以了。 云计算需要大数据,大数据需要云计算,二者就这样结合了。 人工智能拥抱大数据 机器什么时候才能懂人心 虽说有了大数据,人的欲望却不能够满足。虽说在大数据平台里面有搜索引擎这个东西,想要什么东西一搜就出来了。但也存在这样的情况:我想要的东西不会搜,表达不出来,搜索出来的又不是我想要的。 例如音乐软件推荐了一首歌,这首歌我没听过,当然不知道名字,也没法搜。但是软件推荐给我,我的确喜欢,这就是搜索做不到的事情。当人们使用这种应用时,会发现机器知道我想要什么,而不是说当我想要时,去机器里面搜索。这个机器真像我的朋友一样懂我,这就有点人工智能的意思了。 人们很早就在想这个事情了。最早的时候,人们想象,要是有一堵墙,墙后面是个机器,我给它说话,它就给我回应。如果我感觉不出它那边是人还是机器,那它就真的是一个人工智能的东西了。 让机器学会推理 怎么才能做到这一点呢?人们就想:我首先要告诉计算机人类的推理的能力。你看人重要的是什么?人和动物的区别在什么?就是能推理。要是把我这个推理的能力告诉机器,让机器根据你的提问,推理出相应的回答,这样多好? 其实目前人们慢慢地让机器能够做到一些推理了,例如证明数学公式。这是一个非常让人惊喜的一个过程,机器竟然能够证明数学公式。但慢慢又发现其实这个结果也没有那么令人惊喜。因为大家发现了一个问题:数学公式非常严谨,推理过程也非常严谨,而且数学公式很容易拿机器来进行表达,程序也相对容易表达。 教给机器知识 因此,仅仅告诉机器严格的推理是不够的,还要告诉机器一些知识。但告诉机器知识这个事情,一般人可能就做不来了。可能专家可以,比如语言领域的专家或者财经领域的专家。 语言领域和财经领域知识能不能表示成像数学公式一样稍微严格点呢?例如语言专家可能会总结出主谓宾定状补这些语法规则,主语后面一定是谓语,谓语后面一定是宾语,将这些总结出来,并严格表达出来不就行了吗?后来发现这个不行,太难总结了,语言表达千变万化。 人工智能这个阶段叫做专家系统。专家系统不易成功,一方面是知识比较难总结,另一方面总结出来的知识难以交给计算机。因为你自己还迷迷糊糊,觉得似乎有规律,就是说不出来,又怎么能够通过编程教给计算机呢? 算了,教不会你自己学吧 于是人们想到:机器是和人完全不一样的物种,干脆让机器自己学习好了。
茶什i 2019-12-31 13:13:50 0 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT