• 关于

    签名算法可以做什么

    的搜索结果

回答

HTTPS基本原理 一、http为什么不安全。 http协议没有任何的加密以及身份验证的机制,非常容易遭遇窃听、劫持、篡改,因此会造成个人隐私泄露,恶意的流量劫持等严重的安全问题。 国外很多网站都支持了全站https,国内方面目前百度已经在年初完成了搜索的全站https,其他大型的网站也在跟进中,百度最先完成全站https的最大原因就是百度作为国内最大的流量入口,劫持也必然是首当其冲的,造成的有形的和无形的损失也就越大。关于流量劫持问题,我在另一篇文章中也有提到,基本上是互联网企业的共同难题,https也是目前公认的比较好的解决方法。但是https也会带来很多性能以及访问速度上的牺牲,很多互联网公司在做大的时候都会遇到这个问题:https成本高,速度又慢,规模小的时候在涉及到登录和交易用上就够了,做大以后遇到信息泄露和劫持,想整体换,代价又很高。 2、https如何保证安全 要解决上面的问题,就要引入加密以及身份验证的机制。 这时我们引入了非对称加密的概念,我们知道非对称加密如果是公钥加密的数据私钥才能解密,所以我只要把公钥发给你,你就可以用这个公钥来加密未来我们进行数据交换的秘钥,发给我时,即使中间的人截取了信息,也无法解密,因为私钥在我这里,只有我才能解密,我拿到你的信息后用私钥解密后拿到加密数据用的对称秘钥,通过这个对称密钥来进行后续的数据加密。除此之外,非对称加密可以很好的管理秘钥,保证每次数据加密的对称密钥都是不相同的。 但是这样似乎还不够,如果中间人在收到我的给你公钥后并没有发给你,而是自己伪造了一个公钥发给你,这是你把对称密钥用这个公钥加密发回经过中间人,他可以用私钥解密并拿到对称密钥,此时他在把此对称密钥用我的公钥加密发回给我,这样中间人就拿到了对称密钥,可以解密传输的数据了。为了解决此问题,我们引入了数字证书的概念。我首先生成公私钥,将公钥提供给相关机构(CA),CA将公钥放入数字证书并将数字证书颁布给我,此时我就不是简单的把公钥给你,而是给你一个数字证书,数字证书中加入了一些数字签名的机制,保证了数字证书一定是我给你的。 所以综合以上三点: 非对称加密算法(公钥和私钥)交换秘钥 + 数字证书验证身份(验证公钥是否是伪造的) + 利用秘钥对称加密算法加密数据 = 安全 3、https协议简介 为什么是协议简介呢。因为https涉及的东西实在太多了,尤其是一些加密算法,非常的复杂,对于这些算法面的东西就不去深入研究了,这部分仅仅是梳理一下一些关于https最基本的原理,为后面分解https的连接建立以及https优化等内容打下理论基础。 3.1 对称加密算法 对称加密是指加密和解密使用相同密钥的加密算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信至关重要。 对称加密又分为两种模式:流加密和分组加密。 流加密是将消息作为位流对待,并且使用数学函数分别作用在每一个位上,使用流加密时,每加密一次,相同的明文位会转换成不同的密文位。流加密使用了密钥流生成器,它生成的位流与明文位进行异或,从而生成密文。现在常用的就是RC4,不过RC4已经不再安全,微软也建议网络尽量不要使用RC4流加密。 分组加密是将消息划分为若干位分组,这些分组随后会通过数学函数进行处理,每次一个分组。假设需要加密发生给对端的消息,并且使用的是64位的分组密码,此时如果消息长度为640位,就会被划分成10个64位的分组,每个分组都用一系列数学公式公式进行处理,最后得到10个加密文本分组。然后,将这条密文消息发送给对端。对端必须拥有相同的分组密码,以相反的顺序对10个密文分组使用前面的算法解密,最终得到明文的消息。比较常用的分组加密算法有DES、3DES、AES。其中DES是比较老的加密算法,现在已经被证明不安全。而3DES是一个过渡的加密算法,相当于在DES基础上进行三重运算来提高安全性,但其本质上还是和DES算法一致。而AES是DES算法的替代算法,是现在最安全的对称加密算法之一。分组加密算法除了算法本身外还存在很多种不同的运算方式,比如ECB、CBC、CFB、OFB、CTR等,这些不同的模式可能只针对特定功能的环境中有效,所以要了解各种不同的模式以及每种模式的用途。这个部分后面的文章中会详细讲。 对称加密算法的优、缺点: 优点:算法公开、计算量小、加密速度快、加密效率高。 缺点:(1)交易双方都使用同样钥匙,安全性得不到保证; (2)每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量呈几何级数增长,密钥管理成为用户的负担。 (3)能提供机密性,但是不能提供验证和不可否认性。 3.2 非对称加密算法 在非对称密钥交换算法出现以前,对称加密一个很大的问题就是不知道如何安全生成和保管密钥。非对称密钥交换过程主要就是为了解决这个问题,使得对称密钥的生成和使用更加安全。 密钥交换算法本身非常复杂,密钥交换过程涉及到随机数生成,模指数运算,空白补齐,加密,签名等操作。 常见的密钥交换算法有RSA,ECDHE,DH,DHE等算法。涉及到比较复杂的数学问题,下面就简单介绍下最经典的RSA算法。RSA:算法实现简单,诞生于1977年,历史悠久,经过了长时间的破解测试,安全性高。缺点就是需要比较大的素数也就是质数(目前常用的是2048位)来保证安全强度,很消耗CPU运算资源。RSA是目前唯一一个既能用于密钥交换又能用于证书签名的算法。我觉得RSA可以算是最经典的非对称加密算法了,虽然算法本身都是数学的东西,但是作为最经典的算法,我自己也花了点时间对算法进行了研究,后面会详细介绍。 非对称加密相比对称加密更加安全,但也存在两个明显缺点: 1,CPU计算资源消耗非常大。一次完全TLS握手,密钥交换时的非对称解密计算量占整个握手过程的90%以上。而对称加密的计算量只相当于非对称加密的0.1%,如果应用层数据也使用非对称加解密,性能开销太大,无法承受。 2,非对称加密算法对加密内容的长度有限制,不能超过公钥长度。比如现在常用的公钥长度是2048位,意味着待加密内容不能超过256个字节。 所以公钥加密(极端消耗CPU资源)目前只能用来作密钥交换或者内容签名,不适合用来做应用层传输内容的加解密。 3.3 身份认证 https协议中身份认证的部分是由数字证书来完成的,证书由公钥、证书主体、数字签名等内容组成,在客户端发起SSL请求后,服务端会将数字证书发给客户端,客户端会对证书进行验证(验证查看这张证书是否是伪造的。也就是公钥是否是伪造的),并获取用于秘钥交换的非对称密钥(获取公钥)。 数字证书有两个作用: 1,身份授权。确保浏览器访问的网站是经过CA验证的可信任的网站。 2,分发公钥。每个数字证书都包含了注册者生成的公钥(验证确保是合法的,非伪造的公钥)。在SSL握手时会通过certificate消息传输给客户端。 申请一个受信任的数字证书通常有如下流程: 1,终端实体(可以是一个终端硬件或者网站)生成公私钥和证书请求。 2,RA(证书注册及审核机构)检查实体的合法性。如果个人或者小网站,这一步不是必须的。 3,CA(证书签发机构)签发证书,发送给申请者。 4,证书更新到repository(负责数字证书及CRL内容存储和分发),终端后续从repository更新证书,查询证书状态等。 数字证书验证: 申请者拿到CA的证书并部署在网站服务器端,那浏览器发起握手接收到证书后,如何确认这个证书就是CA签发的呢。怎样避免第三方伪造这个证书。答案就是数字签名(digital signature)。数字签名是证书的防伪标签,目前使用最广泛的SHA-RSA(SHA用于哈希算法,RSA用于非对称加密算法)数字签名的制作和验证过程如下: 1,数字签名的签发。首先是使用哈希函数对待签名内容进行安全哈希,生成消息摘要,然后使用CA自己的私钥对消息摘要进行加密。 2,数字签名的校验。使用CA的公钥解密签名,然后使用相同的签名函数对待签名证书内容进行签名并和服务端数字签名里的签名内容进行比较,如果相同就认为校验成功。 需要注意的是: 1)数字签名签发和校验使用的密钥对是CA自己的公私密钥,跟证书申请者提交的公钥没有关系。 2)数字签名的签发过程跟公钥加密的过程刚好相反,即是用私钥加密,公钥解密。 3)现在大的CA都会有证书链,证书链的好处一是安全,保持根CA的私钥离线使用。第二个好处是方便部署和撤销,即如果证书出现问题,只需要撤销相应级别的证书,根证书依然安全。 4)根CA证书都是自签名,即用自己的公钥和私钥完成了签名的制作和验证。而证书链上的证书签名都是使用上一级证书的密钥对完成签名和验证的。 5)怎样获取根CA和多级CA的密钥对。它们是否可信。当然可信,因为这些厂商跟浏览器和操作系统都有合作,它们的公钥都默认装到了浏览器或者操作系统环境里。 3.4 数据完整性验证 数据传输过程中的完整性使用MAC算法来保证。为了避免网络中传输的数据被非法篡改,SSL利用基于MD5或SHA的MAC算法来保证消息的完整性。 MAC算法是在密钥参与下的数据摘要算法,能将密钥和任意长度的数据转换为固定长度的数据。发送者在密钥的参与下,利用MAC算法计算出消息的MAC值,并将其加在消息之后发送给接收者。接收者利用同样的密钥和MAC算法计算出消息的MAC值,并与接收到的MAC值比较。如果二者相同,则报文没有改变;否则,报文在传输过程中被修改,接收者将丢弃该报文。 由于MD5在实际应用中存在冲突的可能性比较大,所以尽量别采用MD5来验证内容一致性。SHA也不能使用SHA0和SHA1,中国山东大学的王小云教授在2005年就宣布破解了 SHA-1完整版算法。微软和google都已经宣布16年及17年之后不再支持sha1签名证书。MAC算法涉及到很多复杂的数学问题,这里就不多讲细节了。 专题二--【实际抓包分析】 抓包结果: fiddler: wireshark: 可以看到,百度和我们公司一样,也采用以下策略: (1)对于高版本浏览器,如果支持 https,且加解密算法在TLS1.0 以上的,都将所有 http请求重定向到 https请求 (2)对于https请求,则不变。 【以下只解读https请求】 1、TCP三次握手 可以看到,我们访问的是 http://www.baidu.com/ , 在初次建立 三次握手的时候, 用户是去 连接 8080端口的(因为公司办公网做了代理,因此,我们实际和代理机做的三次握手,公司代理机再帮我们去连接百度服务器的80端口) 2、CONNECT 建立 由于公司办公网访问非腾讯域名,会做代理,因此,在进行https访问的时候,我们的电脑需要和公司代理机做 " CONNECT " 连接(关于 " CONNECT " 连接, 可以理解为虽然后续的https请求都是公司代理机和百度服务器进行公私钥连接和对称秘钥通信,但是,有了 " CONNECT " 连接之后,可以认为我们也在直接和百度服务器进行公私钥连接和对称秘钥通信。 ) fiddler抓包结果: CONNECT之后, 后面所有的通信过程,可以看做是我们的机器和百度服务器在直接通信 3、 client hello 整个 Secure Socket Layer只包含了: TLS1.2 Record Layer内容 (1)随机数 在客户端问候中,有四个字节以Unix时间格式记录了客户端的协调世界时间(UTC)。协调世界时间是从1970年1月1日开始到当前时刻所经历的秒数。在这个例子中,0x2516b84b就是协调世界时间。在他后面有28字节的随机数( random_C ),在后面的过程中我们会用到这个随机数。 (2)SID(Session ID) 如果出于某种原因,对话中断,就需要重新握手。为了避免重新握手而造成的访问效率低下,这时候引入了session ID的概念, session ID的思想很简单,就是每一次对话都有一个编号(session ID)。如果对话中断,下次重连的时候,只要客户端给出这个编号,且服务器有这个编号的记录,双方就可以重新使用已有的"对话密钥",而不必重新生成一把。 因为我们抓包的时候,是几个小时内第一次访问 https://www.baodu.com 首页,因此,这里并没有 Session ID. (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) session ID是目前所有浏览器都支持的方法,但是它的缺点在于session ID往往只保留在一台服务器上。所以,如果客户端的请求发到另一台服务器,就无法恢复对话。session ticket就是为了解决这个问题而诞生的,目前只有Firefox和Chrome浏览器支持。 (3) 密文族(Cipher Suites): RFC2246中建议了很多中组合,一般写法是"密钥交换算法-对称加密算法-哈希算法,以“TLS_RSA_WITH_AES_256_CBC_SHA”为例: (a) TLS为协议,RSA为密钥交换的算法; (b) AES_256_CBC是对称加密算法(其中256是密钥长度,CBC是分组方式); (c) SHA是哈希的算法。 浏览器支持的加密算法一般会比较多,而服务端会根据自身的业务情况选择比较适合的加密组合发给客户端。(比如综合安全性以及速度、性能等因素) (4) Server_name扩展:( 一般浏览器也支持 SNI(Server Name Indication)) 当我们去访问一个站点时,一定是先通过DNS解析出站点对应的ip地址,通过ip地址来访问站点,由于很多时候一个ip地址是给很多的站点公用,因此如果没有server_name这个字段,server是无法给与客户端相应的数字证书的,Server_name扩展则允许服务器对浏览器的请求授予相对应的证书。 还有一个很好的功能: SNI(Server Name Indication)。这个的功能比较好,为了解决一个服务器使用多个域名和证书的SSL/TLS扩展。一句话简述它的工作原理就是,在连接到服务器建立SSL连接之前先发送要访问站点的域名(Hostname),这样服务器根据这个域名返回一个合适的CA证书。目前,大多数操作系统和浏览器都已经很好地支持SNI扩展,OpenSSL 0.9.8已经内置这一功能,据说新版的nginx也支持SNI。) 4、 服务器回复(包括 Server Hello, Certificate, Certificate Status) 服务器在收到client hello后,会回复三个数据包,下面分别看一下: 1)Server Hello 1、我们得到了服务器的以Unix时间格式记录的UTC和28字节的随机数 (random_S)。 2、Seesion ID,服务端对于session ID一般会有三种选择 (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) : 1)恢复的session ID:我们之前在client hello里面已经提到,如果client hello里面的session ID在服务端有缓存,服务端会尝试恢复这个session; 2)新的session ID:这里又分两种情况,第一种是client hello里面的session ID是空值,此时服务端会给客户端一个新的session ID,第二种是client hello里面的session ID此服务器并没有找到对应的缓存,此时也会回一个新的session ID给客户端; 3)NULL:服务端不希望此session被恢复,因此session ID为空。 3、我们记得在client hello里面,客户端给出了21种加密族,而在我们所提供的21个加密族中,服务端挑选了“TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256”。 (a) TLS为协议,RSA为密钥交换的算法; (b) AES_256_CBC是对称加密算法(其中256是密钥长度,CBC是分组方式); (c) SHA是哈希的算法。 这就意味着服务端会使用ECDHE-RSA算法进行密钥交换,通过AES_128_GCM对称加密算法来加密数据,利用SHA256哈希算法来确保数据完整性。这是百度综合了安全、性能、访问速度等多方面后选取的加密组合。 2)Certificate 在前面的https原理研究中,我们知道为了安全的将公钥发给客户端,服务端会把公钥放入数字证书中并发给客户端(数字证书可以自签发,但是一般为了保证安全会有一个专门的CA机构签发),所以这个报文就是数字证书,4097 bytes就是证书的长度。 我们打开这个证书,可以看到证书的具体信息,这个具体信息通过抓包报文的方式不是太直观,可以在浏览器上直接看。 (点击 chrome 浏览器 左上方的 绿色 锁型按钮) 3)Server Hello Done 我们抓的包是将 Server Hello Done 和 server key exchage 合并的包: 4)客户端验证证书真伪性 客户端验证证书的合法性,如果验证通过才会进行后续通信,否则根据错误情况不同做出提示和操作,合法性验证包括如下: 证书链的可信性trusted certificate path,方法如前文所述; 证书是否吊销revocation,有两类方式离线CRL与在线OCSP,不同的客户端行为会不同; 有效期expiry date,证书是否在有效时间范围; 域名domain,核查证书域名是否与当前的访问域名匹配,匹配规则后续分析; 5)秘钥交换 这个过程非常复杂,大概总结一下: (1)首先,其利用非对称加密实现身份认证和密钥协商,利用非对称加密,协商好加解密数据的 对称秘钥(外加CA认证,防止中间人窃取 对称秘钥) (2)然后,对称加密算法采用协商的密钥对数据加密,客户端和服务器利用 对称秘钥 进行通信; (3)最后,基于散列函数验证信息的完整性,确保通信数据不会被中间人恶意篡改。 此时客户端已经获取全部的计算协商密钥需要的信息:两个明文随机数random_C和random_S与自己计算产生的Pre-master(由客户端和服务器的 pubkey生成的一串随机数),计算得到协商对称密钥; enc_key=Fuc(random_C, random_S, Pre-Master) 6)生成 session ticket 如果出于某种原因,对话中断,就需要重新握手。为了避免重新握手而造成的访问效率低下,这时候引入了session ID的概念, session ID的思想很简单,就是每一次对话都有一个编号(session ID)。如果对话中断,下次重连的时候,只要客户端给出这个编号,且服务器有这个编号的记录,双方就可以重新使用已有的"对话密钥",而不必重新生成一把。 因为我们抓包的时候,是几个小时内第一次访问 https://www.baodu.com 首页,因此,这里并没有 Session ID. (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) session ID是目前所有浏览器都支持的方法,但是它的缺点在于session ID往往只保留在一台服务器上。所以,如果客户端的请求发到另一台服务器,就无法恢复对话。session ticket就是为了解决这个问题而诞生的,目前只有Firefox和Chrome浏览器支持。 后续建立新的https会话,就可以利用 session ID 或者 session Tickets , 对称秘钥可以再次使用,从而免去了 https 公私钥交换、CA认证等等过程,极大地缩短 https 会话连接时间。 7) 利用对称秘钥传输数据 【半分钟后,再次访问百度】: 有这些大的不同: 由于服务器和浏览器缓存了 Session ID 和 Session Tickets,不需要再进行 公钥证书传递,CA认证,生成 对称秘钥等过程,直接利用半分钟前的 对称秘钥 加解密数据进行会话。 1)Client Hello 2)Server Hello
玄学酱 2019-12-02 01:27:08 0 浏览量 回答数 0

回答

1.如果是一般的话只有32&162.本来在理论上不可破解,但好像被人破解了,你可以看下参考 目前网上的dm5破解都是通过建立数据库进行查询的方法进行破解的 好像还没有直接破解的工具,网上的都属于类似穷举的方法MD5简介MD5的全称是Message-digest Algorithm 5(信息-摘要算法),用于确保信息传输完整一致。在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc,的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密钥前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和c语言源代码在Internet RFC 1321中有详细的描述( ,这是一份最权威的文档,由Ronald L. Rivest在1992年8月向IETF提交。 Rivest在1989年开发出MD2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,Rogier和Chauvaud发现如果忽略了检验和将产生MD2冲突。MD2算法的加密后结果是唯一的--即没有重复。 为了加强算法的安全性,Rivest在1990年又开发出MD4算法。MD4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。Den boer和Bosselaers以及其他人很快的发现了攻击MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到MD4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,MD4就此被淘汰掉了。 尽管MD4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了MD5以外,其中比较有名的还有sha-1、RIPEMD以及Haval等。 一年以后,即1991年,Rivest开发出技术上更为趋近成熟的md5算法。它在MD4的基础上增加了"安全-带子"(safety-belts)的概念。虽然MD5比MD4稍微慢一些,但却更为安全。这个算法很明显的由四个和MD4设计有少许不同的步骤组成。在MD5算法中,信息-摘要的大小和填充的必要条件与MD5完全相同。Den boer和Bosselaers曾发现MD5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。 Van oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。 2004年8月17日的美国加州圣巴巴拉的国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做了破译MD5、HAVAL-128、 MD4和RIPEMD算法的报告,公布了MD系列算法的破解结果。宣告了固若金汤的世界通行密码标准MD5的堡垒轰然倒塌,引发了密码学界的轩然大波。 令世界顶尖密码学家想象不到的是,破解MD5之后,2005年2月,王小云教授又破解了另一国际密码SHA-1。因为SHA-1在美国等国际社会有更加广泛的应用,密码被破的消息一出,在国际社会的反响可谓石破天惊。换句话说,王小云的研究成果表明了从理论上讲电子签名可以伪造,必须及时添加限制条件,或者重新选用更为安全的密码标准,以保证电子商务的安全。MD5破解工程权威网站 是为了公开征集专门针对MD5的攻击而设立的,网站于2004年8月17日宣布:“中国研究人员发现了完整MD5算法的碰撞;Wang, Feng, Lai与Yu公布了MD5、MD4、HAVAL-128、RIPEMD-128几个 Hash函数的碰撞。这是近年来密码学领域最具实质性的研究进展。使用他们的技术,在数个小时内就可以找到MD5碰撞。……由于这个里程碑式的发现,MD5CRK项目将在随后48小时内结束”。 MD5用的是哈希函数,在计算机网络中应用较多的不可逆加密算法有RSA公司发明的MD5算法和由美国国家技术标准研究所建议的安全散列算法SHA.[编辑本段]算法的应用 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。为了让读者朋友对MD5的应用有个直观的认识,笔者以一个比方和一个实例来简要描述一下其工作过程: 大家都知道,地球上任何人都有自己独一无二的指纹,这常常成为公安机关鉴别罪犯身份最值得信赖的方法;与之类似,MD5就可以为任何文件(不管其大小、格式、数量)产生一个同样独一无二的“数字指纹”,如果任何人对文件做了任何改动,其MD5值也就是对应的“数字指纹”都会发生变化。 我们常常在某些软件下载站点的某软件信息中看到其MD5值,它的作用就在于我们可以在下载该软件后,对下载回来的文件用专门的软件(如Windows MD5 Check等)做一次MD5校验,以确保我们获得的文件与该站点提供的文件为同一文件。利用MD5算法来进行文件校验的方案被大量应用到软件下载站、论坛数据库、系统文件安全等方面。 MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫 readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现(两个MD5值不相同)。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。 所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码覆盖原来的就行了。 MD5还广泛用于操作系统的登陆认证上,如Unix、各类BSD系统登录密码、数字签名等诸多方。如在UNIX系统中用户的密码是以MD5(或其它类似的算法)经Hash运算后存储在文件系统中。当用户登录的时候,系统把用户输入的密码进行MD5 Hash运算,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这可以避免用户的密码被具有系统管理员权限的用户知道。MD5将任意长度的“字节串”映射为一个128bit的大整数,并且是通过该128bit反推原始字符串是困难的,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码的Hash值覆盖原来的Hash值就行了。 正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。
祁同伟 2019-12-02 01:27:09 0 浏览量 回答数 0

回答

1.如果是一般的话只有32&162.本来在理论上不可破解,但好像被人破解了,你可以看下参考 目前网上的dm5破解都是通过建立数据库进行查询的方法进行破解的 好像还没有直接破解的工具,网上的都属于类似穷举的方法MD5简介MD5的全称是Message-digest Algorithm 5(信息-摘要算法),用于确保信息传输完整一致。在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc,的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密钥前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和c语言源代码在Internet RFC 1321中有详细的描述( ,这是一份最权威的文档,由Ronald L. Rivest在1992年8月向IETF提交。 Rivest在1989年开发出MD2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,Rogier和Chauvaud发现如果忽略了检验和将产生MD2冲突。MD2算法的加密后结果是唯一的--即没有重复。 为了加强算法的安全性,Rivest在1990年又开发出MD4算法。MD4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。Den boer和Bosselaers以及其他人很快的发现了攻击MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到MD4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,MD4就此被淘汰掉了。 尽管MD4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了MD5以外,其中比较有名的还有sha-1、RIPEMD以及Haval等。 一年以后,即1991年,Rivest开发出技术上更为趋近成熟的md5算法。它在MD4的基础上增加了"安全-带子"(safety-belts)的概念。虽然MD5比MD4稍微慢一些,但却更为安全。这个算法很明显的由四个和MD4设计有少许不同的步骤组成。在MD5算法中,信息-摘要的大小和填充的必要条件与MD5完全相同。Den boer和Bosselaers曾发现MD5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。 Van oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。 2004年8月17日的美国加州圣巴巴拉的国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做了破译MD5、HAVAL-128、 MD4和RIPEMD算法的报告,公布了MD系列算法的破解结果。宣告了固若金汤的世界通行密码标准MD5的堡垒轰然倒塌,引发了密码学界的轩然大波。 令世界顶尖密码学家想象不到的是,破解MD5之后,2005年2月,王小云教授又破解了另一国际密码SHA-1。因为SHA-1在美国等国际社会有更加广泛的应用,密码被破的消息一出,在国际社会的反响可谓石破天惊。换句话说,王小云的研究成果表明了从理论上讲电子签名可以伪造,必须及时添加限制条件,或者重新选用更为安全的密码标准,以保证电子商务的安全。MD5破解工程权威网站 是为了公开征集专门针对MD5的攻击而设立的,网站于2004年8月17日宣布:“中国研究人员发现了完整MD5算法的碰撞;Wang, Feng, Lai与Yu公布了MD5、MD4、HAVAL-128、RIPEMD-128几个 Hash函数的碰撞。这是近年来密码学领域最具实质性的研究进展。使用他们的技术,在数个小时内就可以找到MD5碰撞。……由于这个里程碑式的发现,MD5CRK项目将在随后48小时内结束”。 MD5用的是哈希函数,在计算机网络中应用较多的不可逆加密算法有RSA公司发明的MD5算法和由美国国家技术标准研究所建议的安全散列算法SHA.[编辑本段]算法的应用 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。为了让读者朋友对MD5的应用有个直观的认识,笔者以一个比方和一个实例来简要描述一下其工作过程: 大家都知道,地球上任何人都有自己独一无二的指纹,这常常成为公安机关鉴别罪犯身份最值得信赖的方法;与之类似,MD5就可以为任何文件(不管其大小、格式、数量)产生一个同样独一无二的“数字指纹”,如果任何人对文件做了任何改动,其MD5值也就是对应的“数字指纹”都会发生变化。 我们常常在某些软件下载站点的某软件信息中看到其MD5值,它的作用就在于我们可以在下载该软件后,对下载回来的文件用专门的软件(如Windows MD5 Check等)做一次MD5校验,以确保我们获得的文件与该站点提供的文件为同一文件。利用MD5算法来进行文件校验的方案被大量应用到软件下载站、论坛数据库、系统文件安全等方面。 MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫 readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现(两个MD5值不相同)。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。 所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码覆盖原来的就行了。 MD5还广泛用于操作系统的登陆认证上,如Unix、各类BSD系统登录密码、数字签名等诸多方。如在UNIX系统中用户的密码是以MD5(或其它类似的算法)经Hash运算后存储在文件系统中。当用户登录的时候,系统把用户输入的密码进行MD5 Hash运算,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这可以避免用户的密码被具有系统管理员权限的用户知道。MD5将任意长度的“字节串”映射为一个128bit的大整数,并且是通过该128bit反推原始字符串是困难的,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码的Hash值覆盖原来的Hash值就行了。 正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。
青衫无名 2019-12-02 01:27:08 0 浏览量 回答数 0

回答

1.如果是一般的话只有32&162.本来在理论上不可破解,但好像被人破解了,你可以看下参考 目前网上的dm5破解都是通过建立数据库进行查询的方法进行破解的 好像还没有直接破解的工具,网上的都属于类似穷举的方法MD5简介MD5的全称是Message-digest Algorithm 5(信息-摘要算法),用于确保信息传输完整一致。在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc,的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密钥前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和c语言源代码在Internet RFC 1321中有详细的描述( ,这是一份最权威的文档,由Ronald L. Rivest在1992年8月向IETF提交。 Rivest在1989年开发出MD2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,Rogier和Chauvaud发现如果忽略了检验和将产生MD2冲突。MD2算法的加密后结果是唯一的--即没有重复。 为了加强算法的安全性,Rivest在1990年又开发出MD4算法。MD4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。Den boer和Bosselaers以及其他人很快的发现了攻击MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到MD4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,MD4就此被淘汰掉了。 尽管MD4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了MD5以外,其中比较有名的还有sha-1、RIPEMD以及Haval等。 一年以后,即1991年,Rivest开发出技术上更为趋近成熟的md5算法。它在MD4的基础上增加了"安全-带子"(safety-belts)的概念。虽然MD5比MD4稍微慢一些,但却更为安全。这个算法很明显的由四个和MD4设计有少许不同的步骤组成。在MD5算法中,信息-摘要的大小和填充的必要条件与MD5完全相同。Den boer和Bosselaers曾发现MD5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。 Van oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。 2004年8月17日的美国加州圣巴巴拉的国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做了破译MD5、HAVAL-128、 MD4和RIPEMD算法的报告,公布了MD系列算法的破解结果。宣告了固若金汤的世界通行密码标准MD5的堡垒轰然倒塌,引发了密码学界的轩然大波。 令世界顶尖密码学家想象不到的是,破解MD5之后,2005年2月,王小云教授又破解了另一国际密码SHA-1。因为SHA-1在美国等国际社会有更加广泛的应用,密码被破的消息一出,在国际社会的反响可谓石破天惊。换句话说,王小云的研究成果表明了从理论上讲电子签名可以伪造,必须及时添加限制条件,或者重新选用更为安全的密码标准,以保证电子商务的安全。MD5破解工程权威网站 是为了公开征集专门针对MD5的攻击而设立的,网站于2004年8月17日宣布:“中国研究人员发现了完整MD5算法的碰撞;Wang, Feng, Lai与Yu公布了MD5、MD4、HAVAL-128、RIPEMD-128几个 Hash函数的碰撞。这是近年来密码学领域最具实质性的研究进展。使用他们的技术,在数个小时内就可以找到MD5碰撞。……由于这个里程碑式的发现,MD5CRK项目将在随后48小时内结束”。 MD5用的是哈希函数,在计算机网络中应用较多的不可逆加密算法有RSA公司发明的MD5算法和由美国国家技术标准研究所建议的安全散列算法SHA.[编辑本段]算法的应用 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。为了让读者朋友对MD5的应用有个直观的认识,笔者以一个比方和一个实例来简要描述一下其工作过程: 大家都知道,地球上任何人都有自己独一无二的指纹,这常常成为公安机关鉴别罪犯身份最值得信赖的方法;与之类似,MD5就可以为任何文件(不管其大小、格式、数量)产生一个同样独一无二的“数字指纹”,如果任何人对文件做了任何改动,其MD5值也就是对应的“数字指纹”都会发生变化。 我们常常在某些软件下载站点的某软件信息中看到其MD5值,它的作用就在于我们可以在下载该软件后,对下载回来的文件用专门的软件(如Windows MD5 Check等)做一次MD5校验,以确保我们获得的文件与该站点提供的文件为同一文件。利用MD5算法来进行文件校验的方案被大量应用到软件下载站、论坛数据库、系统文件安全等方面。 MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫 readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现(两个MD5值不相同)。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。 所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码覆盖原来的就行了。 MD5还广泛用于操作系统的登陆认证上,如Unix、各类BSD系统登录密码、数字签名等诸多方。如在UNIX系统中用户的密码是以MD5(或其它类似的算法)经Hash运算后存储在文件系统中。当用户登录的时候,系统把用户输入的密码进行MD5 Hash运算,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这可以避免用户的密码被具有系统管理员权限的用户知道。MD5将任意长度的“字节串”映射为一个128bit的大整数,并且是通过该128bit反推原始字符串是困难的,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码的Hash值覆盖原来的Hash值就行了。 正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。-------------------------就低频来说我认为是EX71好,如果你没有太高的要求EX71 吧 EX71是目前最好的 价钱也便宜 。最重要的是性价比超高。。。我就买了部
行者武松 2019-12-02 01:27:09 0 浏览量 回答数 0

回答

Renet jsapi 授权验证 没有大神 来吗?我已经检查过 url agentID ,并且用 生成签名的测试 已经比对过签名生成等 都是正常的!!!请求,而且我记得我在第一次试验的时候有成功过!! ------------------------- Renet jsapi 授权验证 一直返回的是 code:52013 一开始看有的人说是 配置的url 和你 加入签名算法里的url 不一致。我去查过 是一致的 ------------------------- Renet jsapi 授权验证 我有针对这个 做了多次对比验证,绝对没有问题,我发现 是时间的问题 你们是不是在接受验证的时候时间有位数限制的?我还有一个问题,就是返回的时候 钉钉平台不可以向 UC 或是其他浏览器一样 回到列表指定的位置吗?比如我有个列表加载了 几页 然后进到详情 点击返回 又回到了第一条了。有没有什么办法解决? ------------------------- Renet jsapi 授权验证 现在还有一个问题,就是我只给一个页面配置了授权dd.config 并且改了返回事件,可以这样导致其他没有配置的页面的返回按钮事件 都失效了。。这是为什么??求大神帮助!!!靖山大神 快出来 解答下。。。
恋媛 2019-12-02 01:27:11 0 浏览量 回答数 0

回答

介绍了Amazon S3 使用的认证: http://dodomail.iteye.com/blog/1744389 ######这个很简单啊,把所有参数都做一次加密就是,秘钥你来生成授权给你的下游就是了,后台再做记录ip的的功能,这样谁请求你的API了就都知道了,自己实现也很快的######tokening,或者id这些加密,获取后再解密,密钥自己生成。就是加个验证的key值就可以吧,每次提交数据验证key的正确性###### 做一个认证服务,提供一个认证的webapi,用户先访问它获取token,然后拿着token去访问所有的webapi。每次接收到请求就拿着token找认证服务寻求验证。验证通过则papapa,不然就404。 你要说的是这种么?还是对访问做验证限制? ######回复 @devilsitan : 也是啊,那你再看看刚刚问的第二个问题######@liujiduo tomcat只是个web服务器。。不明白为什么和它要有关呢。。webapi又不是在tomcat上跑的。######回复 @devilsitan : 还有就是这种给webapi加token认证的方式,应该是我事先给某些指定的APP(比如我的iOS客户端或安卓客户端)发放私钥,然后它们根据私钥获取token。那如果我的网站前端通过ajax访问这些api是不是也需要通过token认证呢?如果是的话那不就会暴露出私钥了吗?先谢谢啦^_^######回复 @devilsitan : 那另一种 基于HTTP Digest认证的方式也是只用代码实现,不需要修改tomcat的配置吗?######@liujiduo 那这种和服务器就没多大关系了啥。。只要你有webapi服务在就行,什么访问都是通过HTTP来请求的。接口也很简单一个认证,一个验证。认证服务内部看你怎么设计,要么是简单的用户-权限,要么是用户-角色-权限,要么是带约束的用户-角色-权限,还有更加灵活的二者皆有,采取优先拒绝。###### 引用来自“devilsitan”的评论 做一个认证服务,提供一个认证的webapi,用户先访问它获取token,然后拿着token去访问所有的webapi。每次接收到请求就拿着token找认证服务寻求验证。验证通过则papapa,不然就404。 你要说的是这种么?还是对访问做验证限制? 肯定是要带Token的,访问还是用户名密码,认证通过cookie里存的就是用户名和token,token是有有效期的,过了有效期你就需要重新分配一个token。这个暴露问题,我也不知道肿么办,不过人家要存心搞你,这些还有用么。你看Digest还不是私钥放在cookie里,虽然用算法加密一次和服务器比对,人家只需要截下你的包,把加密后的验证字符拿去验证就是了。我没看出什么区别######回复 @liujiduo : 可以参考上面的那位给的亚马逊s3的rest api认证。也可以看下openstack的keystone的验证模式。都是一个令牌,就看你怎么用和。简单的就是我前面说的那样,复杂的更安全的就是他们那样。######明白了,谢谢!###### 顶 ######ajax的时候检测客户端用户权限不可以吗?###### Http Digest认证也就是防止重放攻击,如果是局域网项目感觉对认证的要求不用太高,主要还是网络安全和访问的监控和预警,要是互联网的觉得还是非对称签名比较安全,存粹算法决定。###### 引用来自“HandMU”的评论ajax的时候检测客户端用户权限不可以吗? 用户权限是跟用户绑定的,而客户端访问接口可能没有用户的概念,这样就不合适了啊######回复 @HandMU : 你没明白他意思,webapi,可能是非本系统用户######可参考open auth######回复 @liujiduo : 都会有基于用户权限检测的。你钻到死角了。######回复 @HandMU : 是啊,难道对于webapi的安全认证就没有一个好的办法么?不知道淘宝这些网站是怎么做的######ajax理论上还是post、get,依然带上所有你能使用的用户信息。###### 引用来自“刘敬伟”的评论 Http Digest认证也就是防止重放攻击,如果是局域网项目感觉对认证的要求不用太高,主要还是网络安全和访问的监控和预警,要是互联网的觉得还是非对称签名比较安全,存粹算法决定。 不是局域网项目,我是想让某些数据敏感的接口只能被已授权的客户端访问,而不是让别人只要知道了url就能恶意请求和操纵我的接口,我查了Http Basic和Http Digest的认证流程,但就是不清楚怎么应用到项目中来。######我觉得你的思路有点混乱,没搞清楚到底认证什么,怎么认证,认证力度如何。这些都要根据你的网络环境、服务器系统、还有你处理的数据类型有关系。如果不想用第三方安全策略,我建议采用非对称的安全算法,针对用户信息最签名和验证。在这个基础上对你接口接收的用户请求进行监控,如果有必要的话你接收的数据要进行过滤,就像支付宝也不是实时到账,中间肯定有一个审核数据的再次分发的缓冲处理机制。
kun坤 2020-06-02 15:55:28 0 浏览量 回答数 0

回答

" 介绍了Amazon S3 使用的认证: http://dodomail.iteye.com/blog/1744389 ######这个很简单啊,把所有参数都做一次加密就是,秘钥你来生成授权给你的下游就是了,后台再做记录ip的的功能,这样谁请求你的API了就都知道了,自己实现也很快的######tokening,或者id这些加密,获取后再解密,密钥自己生成。就是加个验证的key值就可以吧,每次提交数据验证key的正确性###### 做一个认证服务,提供一个认证的webapi,用户先访问它获取token,然后拿着token去访问所有的webapi。每次接收到请求就拿着token找认证服务寻求验证。验证通过则papapa,不然就404。 你要说的是这种么?还是对访问做验证限制? ######回复 @devilsitan : 也是啊,那你再看看刚刚问的第二个问题###### @liujiduo tomcat只是个web服务器。。不明白为什么和它要有关呢。。webapi又不是在tomcat上跑的。######回复 @devilsitan : 还有就是这种给webapi加token认证的方式,应该是我事先给某些指定的APP(比如我的iOS客户端或安卓客户端)发放私钥,然后它们根据私钥获取token。那如果我的网站前端通过ajax访问这些api是不是也需要通过token认证呢?如果是的话那不就会暴露出私钥了吗?先谢谢啦^_^######回复 @devilsitan : 那另一种 基于HTTP Digest认证的方式也是只用代码实现,不需要修改tomcat的配置吗?###### @liujiduo 那这种和服务器就没多大关系了啥。。只要你有webapi服务在就行,什么访问都是通过HTTP来请求的。接口也很简单一个认证,一个验证。认证服务内部看你怎么设计,要么是简单的用户-权限,要么是用户-角色-权限,要么是带约束的用户-角色-权限,还有更加灵活的二者皆有,采取优先拒绝。###### 引用来自“devilsitan”的评论 做一个认证服务,提供一个认证的webapi,用户先访问它获取token,然后拿着token去访问所有的webapi。每次接收到请求就拿着token找认证服务寻求验证。验证通过则papapa,不然就404。 你要说的是这种么?还是对访问做验证限制? 肯定是要带Token的,访问还是用户名密码,认证通过cookie里存的就是用户名和token,token是有有效期的,过了有效期你就需要重新分配一个token。这个暴露问题,我也不知道肿么办,不过人家要存心搞你,这些还有用么。你看Digest还不是私钥放在cookie里,虽然用算法加密一次和服务器比对,人家只需要截下你的包,把加密后的验证字符拿去验证就是了。我没看出什么区别######回复 @liujiduo : 可以参考上面的那位给的亚马逊s3的rest api认证。也可以看下openstack的keystone的验证模式。都是一个令牌,就看你怎么用和。简单的就是我前面说的那样,复杂的更安全的就是他们那样。######明白了,谢谢!###### 顶 ######ajax的时候检测客户端用户权限不可以吗?###### Http Digest认证也就是防止重放攻击,如果是局域网项目感觉对认证的要求不用太高,主要还是网络安全和访问的监控和预警,要是互联网的觉得还是非对称签名比较安全,存粹算法决定。###### 引用来自“HandMU”的评论ajax的时候检测客户端用户权限不可以吗? 用户权限是跟用户绑定的,而客户端访问接口可能没有用户的概念,这样就不合适了啊######回复 @HandMU : 你没明白他意思,webapi,可能是非本系统用户######可参考open auth######回复 @liujiduo : 都会有基于用户权限检测的。你钻到死角了。######回复 @HandMU : 是啊,难道对于webapi的安全认证就没有一个好的办法么?不知道淘宝这些网站是怎么做的######ajax理论上还是post、get,依然带上所有你能使用的用户信息。###### 引用来自“刘敬伟”的评论 Http Digest认证也就是防止重放攻击,如果是局域网项目感觉对认证的要求不用太高,主要还是网络安全和访问的监控和预警,要是互联网的觉得还是非对称签名比较安全,存粹算法决定。 不是局域网项目,我是想让某些数据敏感的接口只能被已授权的客户端访问,而不是让别人只要知道了url就能恶意请求和操纵我的接口,我查了Http Basic和Http Digest的认证流程,但就是不清楚怎么应用到项目中来。######我觉得你的思路有点混乱,没搞清楚到底认证什么,怎么认证,认证力度如何。这些都要根据你的网络环境、服务器系统、还有你处理的数据类型有关系。如果不想用第三方安全策略,我建议采用非对称的安全算法,针对用户信息最签名和验证。在这个基础上对你接口接收的用户请求进行监控,如果有必要的话你接收的数据要进行过滤,就像支付宝也不是实时到账,中间肯定有一个审核数据的再次分发的缓冲处理机制。"
montos 2020-06-03 22:34:05 0 浏览量 回答数 0

回答

我想了下,其实应该这样。比如现在有A(私钥A、公钥A),B(私钥B、公钥B) ,A向B发送消息,用私钥A加签、用公钥B加密,发送给B,B用私钥B解密,然后用公钥A验签。这样就可以解决上述2个问题。如果单纯的使用RSA只进行加密不签名的话,我认为是不安全的。######你这样的说法也是对的,这种叫双向认证。 A拥有A私钥、B公钥;B拥有A公钥、B私钥,这种一般用在最高级别的时候,一般很少这么用。######私钥加密用于数字签名,你对内容私钥加密,表示这内容版权归你 公钥加密用于防止信息被别人看到,只有持有私钥的人才能解密,如邮件加密发送给对方######回复 @开源中国总书记 : 老哥你这个脑瓜子真的是,A用C的公钥加密发送给C,B也用C公钥加密伪装成A发送C,你的意思是如何判断A是不是真正的A吧?首先A和C直接的通信内容只有A和C知道,A在加密的内容里面定义一串只有两个人知道的内容不就好了,例如123,C解密报文以后只要看内容中是否有123就知道是不是真正的A发的内容,B即使有C的公钥,但是不知道A和C之间通信的内容。######私钥加密的话,因为公钥是公开的,别人有可能拿到,也就是说,可以解密你的报文。 公钥加密的话,确实是只有拥有私钥的人才能解密,但是不能保证请求就是指定系统的。######私钥加密公钥解密防止发送信息中途呗篡改,公钥加密私钥解密防止信息中途被截获泄露。######还是不能解决我说的上边的2个问题###### 你举的例子 1,是用于身份验证的,你说它不能用于加密通讯。 你举的例子 2,是用于加密通讯的,你说它不能用于身份验证。 这其中的逻辑就好比,筷子不能用来喝汤,吸管不能用来吃饭,所以人发明这两种工具都没有意义吗?######回复 @开源中国总书记 : 公钥加密私钥解密,你怎么模拟我的报文,每个人公钥的拥有者都会有自己的身份ID,比如https的session之类的,你既不能获取我的身份Id,也不能获取我发送的报文内容,你怎么模拟,你自己用公钥生成的报文那不叫模拟,那是你用自己的身份做的事。 私钥加密公钥解密,这种主要是用于签名,信息是公开的,谁都可以看到,但是签名的作是为了让你知道这个信自己确定是我给你的######我的意思是,如果单纯用RSA加密的话不安全。###### "1、如果是私钥加密,公钥解密的话,因为公钥是公开出来的,所以拿到公钥的人 ,是可以解密报文的,我认为这种加密方式没意义。"   你理解有误. 这种场景是用作签名的, 就是校验信息发送者身份. 只有通过特定私钥的的信息才能被公开出来的公钥解密. 这就唯一确定了信息发送者, 达到签名(不可抵赖)的目的.  "2、如果是公钥加密,私钥解密的话,因为公钥是公开出来的,所以系统是无法识别请求就是指定系统发送的,也就是别人是可以模拟你的报文,请求你的系统。"   这种场景是做信息加密用. 发送者A通过公钥加密信息, 只有持有私钥的人C才能解密. 保证了被发送的信息不会被第三方知晓. 而B通过模拟报文的攻击方式并不是修改了A的信息, 而是B"假扮"A向系统发信息. 这种情况并不是A的密文被破解, 而是B在欺骗C, 所以不属于RSA算法漏洞.  同时, 要预防这类欺骗只需利用场景1的方式, 由A使用另外一套RSA密钥对信息签名即可. 此时B即使知晓了A要发送的原文, 由于没有A的密钥 C也无法使用公钥解密出数据. 达到了既不可篡改, 又不可抵赖的目的.  ######回复 @开源中国总书记 : 即便第三者知道报文格式, 通过公钥仿制一个报文请求系统, 这种情况也不是RSA的问题. RSA还是很好的保护了通信者之间的信息. 第三方如无密钥, 无法得知通信内容. 签名只是对RSA的活用,相当于对密文的再次加密. 要解决这种欺骗问题, 还可以通过诸如约定token来实现. 因为通信内容不可被第三方获取, 故可在报文中加入身份验证信息token来实现防骗.######回复 @开源中国总书记 : 所以需要签名啊. 使用场景1 的方式签名就可以防止这种欺骗了. 一共有两套密钥. 第一套做签名, 第二套做加密. 这样无论第三者是否知道报文格式, 都无法欺骗到系统了.######我的意思是:如果我知道你的报文结构,因为公钥是公开的,我可以使用公钥加密模拟报文请求你的系统,并不是说要篡改数据###### 加密是为了加密内容,防止别人窃据你的信息 你说的2是权限控制应该做的东西###### 发送方用接收方的公钥加密,然后用自己的私钥进行签名,然后发送消息 接收方用发送方的公钥验证发送方身份,然后用自己的私钥解密######因为发送方和接收方的公钥都公开了,还是不能解决上述2个问题###### 1上面有人说了是用来证明代码/软件所有权的,比如有人做了个木马,试图伪装成微软的程序骗过杀毒软件,可是他没有微软的私钥,无法对木马程序进行签名,也就没办法伪装成微软的程序 2既然是加密的信息别人都不知道你的报文内容怎么伪造呢,就算邪恶第三方知道你的报文格式,只要你在报文里加上一个双方提前商量好的口令就可以阻止第三方伪造报文,因为第三方不可能知道口令是什么######1、签名是可以的,这个没问题 2、你说的口令,这个口令怎么保证安全?###### 1.用于签名认证 2.并不是用于身份认证的,参考HTTPS客户端发送数据###### 两个都是有意义的。 1.私钥加密,公钥解密;用于数字签名方向。私钥-公钥是一对一的关系,使用私钥加密的值,只能用对应的公钥解开,可以验证持有者身份(即私钥表示一个身份)。 2.公钥加密,私钥解密;用于数字信封方向。对方使用公钥加密的结果,只能用对应的私钥解开,可以发送给特定持有者一些私密的消息。 你说的模拟报文,进行请求;是可以进行的。 如果要验证对方身份信息,建议使用SSL的双向验证功能######签名是没问题的。如果单纯的公钥加密,私钥解密,是不能保证请求是别人模拟的。 我想了下,其实应该这样。比如现在有A(私钥A、公钥A),B(私钥B、公钥B) ,A向B发送消息,用私钥A加签、用公钥B加密,发送给B,B用私钥B解密,然后用公钥A验签。这样就可以解决上述2个问题。
爱吃鱼的程序员 2020-06-01 11:29:18 0 浏览量 回答数 0

回答

什么是MD5???---MD5的全称是Message-Digest Algorithm 5 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。如果在以后传播这个文件的过程中,无论文件的内容发生了任何形式的改变(包括人为修改或者下载过程中线路不稳定引起的传输错误等),只要你对这个文件重新计算MD5时就会发现信息摘要不相同,由此可以确定你得到的只是一个不正确的文件。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的 "抵赖",这就是所谓的数字签名应用。 MD5还广泛用于加密和解密技术上。比如在UNIX系统中用户的密码就是以MD5(或其它类似的算法)经加密后存储在文件系统中。当用户登录的时候,系统把用户输入的密码计算成MD5值,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这不但可以避免用户的密码被具有系统管理员权限的用e799bee5baa6e997aee7ad94e58685e5aeb931333332643862户知道,而且还在一定程度上增加了密码被破解的难度。 正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5 值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P (62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。
剑曼红尘 2020-05-03 16:00:27 0 浏览量 回答数 0

回答

说到区块链,我们必然会谈及它的共识机制。不了解区块链的共识机制,就无法理解区块链的真正意义。那么,今日份的区块链的共识机制了解一下? 共识机制是什么? 什么是共识?直取它的字面意思,就是"共同的认识". 人与人是不同的,这种不同不仅体现在身材、长相、能力,更体现在文化、观点、想法、利益诉求等等方面。 共识,简而言之,就是一个群体的成员在某一方面达成的一致意见。 我们了解到,信任是社会运转中的一大痛点,银行有自己的信用体系,过去的金融体系服务于只服务于极少的企业家,因为建立信用体系耗资巨大。后来支付宝有了芝麻信用,信用已经关系到生活的很多方面,信用卡额度、花呗额度,芝麻信用高出国还可以免签。我们正享受着信用给我们带来的便捷。 区块链本质是去中心化,去中心化的核心是共识机制,区块链上的共识机制主要解决由谁来构造区块,以及如何维护区块链统一的问题。 区块链共识机制的目标是使所有的诚实节点保存一致的区块链视图,同时满足两个性质: 1)一致性:所有诚实节点保存的区块链的前缀部分完全相同。 2)有效性:由某诚实节点发布的信息终将被其他所有诚实节点记录在自己的区块链中。 区块链的自信任主要体现于分布于区块链中的用户无须信任交易的另一方,也无须信任一个中心化的机构,只需要信任区块链协议下的软件系统即可实现交易。 共识机制是什么?PoW 、PoS 、DPOW都是什么意思? 共识机制的必要性? 分布式系统中,多个主机通过异步通信方式组成网络集群。在这样的一个异步系统中,需要主机之间进行状态复制,以保证每个主机达成一致的状态共识。错误信息可能出现在异步系统内并不断传播,因此需要在默认不可靠的异步网络中定义容错协议,以确保各主机达成安全可靠的状态共识,这就是共识机制诞生的必要性。 这种自信任的前提是区块链的共识机制(consensus),即在一个互不信任的市场中,要想使各节点达成一致的充分必要条件是每个节点出于对自身利益最大化的考虑,都会自发、诚实地遵守协议中预先设定的规则,判断每一笔记录的真实性,最终将判断为真的记录记入区块链之中。attachments-2018-08-9yY7VRHa5b738e3d96021.jpg 换句话说,如果各节点具有各自独立的利益并互相竞争,则这些节点几乎不可能合谋欺骗你,而当节点们在网络中拥有公共信誉时,这一点体现得尤为明显。区块链技术正是运用一套基于共识的数学算法,在机器之间建立"信任"网络,从而通过技术背书而非中心化信用机构来进行全新的信用创造。 当今区块链的几种共识机制介绍 区块链上的共识机制有多种,但任何一种都不是完美无缺,或者说适用于所有应用场景的。 PoW 工作量证明 整个系统中每个节点为整个系统提供计算能力(简称算力),通过一个竞争机制,让计算工作完成最出色的节点获得系统的奖励,即完成新生成货币的分配,简单理解就是多劳多得,bitcoin、LTC等货币型区块链就应用POW机制。 优点 完全去中心化节点自由进出,算法简单,容易实现破坏系统花费的成本巨大,只要网络破坏者的算力不超过网络总算力的50%,网络的交易状态就能达成一致 缺点 浪费能源,这是最大的缺点区块的确认时间难以缩短,如bitcoin每秒只能做7笔交易,不适合商业应用新的区块链必须找到一种不同的散列算法,否则就会面临bitcoin的算力攻击对节点的性能网络环境要求高容易产生分叉,需要等待多个确认无法达成最终一致性 PoS 权益证明 也称股权证明,类似于你把财产存在银行,这种模式会根据你持有加密货币的数量和时间,分配给你相应的利息。 优点 对节点性能要求低,达成共识时间短 缺点 没有最终一致性,需要检查点机制来弥补最终性 DPOW 委托股权证明 DPOW是 PoS 的进化方案,在常规 PoW和 PoS 中,任何一个新加入的区块,都需要被整个网络所有节点做确认,非常影响效率。 DPoS则类似于现代董事会的投票机制,通过选举代表来进行投票和决策。被选举出的n个记账节点来做新区块的创建、验证、签名和相互监督,这样就极大地减少了区块创建和确认所需要消耗的时间和算力成本。 优点 大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证 缺点 牺牲了去中心化的概念,不适合公有链 PBFT 实用拜占庭容错 实用拜占庭容错机制是一种采用"许可投票、少数服从多数"来选举领导者并进行记账的共识机制,该共识机制允许拜占庭容错,允许强监督节点参与,具备权限分级能力,性能更高,耗能更低,而且每轮记账都会由全网节点共同选举领导者,允许33%的节点作恶,容错率为33%.实用拜占庭容错特别适合联盟链的应用场景。 优点 会背离中心化,加密货币的存在及奖励机制会产生马太效应,让社区中的穷者更穷,富者更富共识效率高,可实现高频交易 缺点 当系统只剩下33%的节点运行时,系统会停止运行 dBFT 授权拜占庭容错 这种机制是用权益来选出记账人,然后记账人之间通过拜占庭容错算法达成共识。授权拜占庭容错机制最核心的一点,就是最大限度地确保系统的最终性,使区块链能够适用于真正的金融应用场景。 优点 专业化的记账人可以容忍任何类型的错误记账由多人协同完成,每一个区块都有最终性,不会分叉算法的可靠性有严格的数学证明 缺点 当三分之一或以上记账人停止工作后,系统将无法提供服务当三分之一或以上记账人联合作恶,可能会使系统出现分叉 Pool 验证池 基于传统的分布式一致性技术,加上数据验证机制。 优点 不需要加密货币也可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础上,实现秒级共识验证。 缺点 去中心化程度不如bitcoin,更适合多方参与的多中心商业模式。 Paxos 这是一种传统的分布式一致性算法,是一种基于选举领导者的共识机制。领导者节点拥有绝对权限,并允许强监督节点参与,其性能高,资源消耗低。所有节点一般有线下准入机制,但选举过程中不允许有作恶节点,不具备容错性。 Paxos算法中将节点分为三种类型: proposer:提出一个提案,等待大家批准为结案。往往是客户端担任该角色 acceptor:负责对提案进行投票。往往是服务端担任该角色 learner:被告知结案结果,并与之统一,不参与投票过程。可能为客户端或服务端 Paxos 能保证在超过50%的正常节点存在时,系统能达成共识。 瑞波共识机制 瑞波共识算法使一组节点能够基于特殊节点列表形成共识,初始特殊节点列表就像一个俱乐部,要接纳一个新成员,必须由该俱乐部51%的会员投票通过。共识遵循这些核心成员的"51%权利",外部人员则没有影响力。由于该俱乐部由中心化开始,它将一直是中心化的,而如果它开始腐化,股东们什么也做不了。与bitcoin及Peercoin一样,瑞波系统将股东们与其投票权隔开,因此,它比其他系统更中心化。 Peercoin Peercoin(点点币,PPC),混合了POW工作量证明及POS权益证明方式,其中POW主要用于发行货币,未来预计随着挖矿难度上升,产量降低,系统安全主要由POS维护。 在区块链网络中,由于应用场景的不同,所设计的目标各异,不同的区块链系统采用了不同的共识算法。每种共识算法都不是完美的,都有其优点和局限性。 区块链解决了在不可信信道上传输可信信息、价值转移的问题,而共识机制解决了区块链如何分布式场景下达成一致性的问题。 虽然区块链目前还处于发展的早期,行业发展还面临着一些阻碍,但社会已经足够多地认识到区块链的价值,区块链发展的脚步绝不会停滞不前,行业发展也定会找到突破阻碍的方法。
问问小秘 2019-12-02 03:07:12 0 浏览量 回答数 0

回答

基础类 常见十大算法 优劣术语稳定性 原本a在b前,a=b,排序之后位置任然不变。不稳定性则相反内排序 所有排序都在内存中完成。外排序数据放磁盘,排序通过磁盘内存的数据传输事件复杂度 算法执行耗费的时间 空间复杂度 算法执行耗费的内存 In/out-place: 不占/占额外内存 冒泡排序: 选择排序: 插入排序: 希尔排序: 归并排序: 快速排序: 堆排序: 计数排序: 桶排序: 基数排序: 提高类 常见算法面试题 Problem 1 : Is it a loop ? (判断链表是否有环?) Assume that wehave a head pointer to alink-list. Also assumethat we know the list is single-linked. Can you come upan algorithm to checkwhether this link list includes a loop by using O(n) timeand O(1) space wheren is the length of the list? Furthermore, can you do sowith O(n) time and onlyone register? 方法:使用两个指针,从头开始,一个一次前进一个节点,一个前进2个节点,则最多2N,后两个指针可以重合;如果无环,则正常停止。 同样的,可以找到链表的中间节点。同上。 Problem 2:设计一个复杂度为n的算法找到链表倒数第m个元素。最后一个元素假定是倒数第0个。 提示:双指针查找 Problem 3:用最简单的方法判断一个LONG整形的数A是2^n(2的n次方) 提示:x&(x-1) Problem 4:两个烧杯,一个放糖一个放盐,用勺子舀一勺糖到盐,搅拌均匀,然后舀一勺混合物会放糖的烧杯,问你两个烧杯哪个杂质多? 提示:相同。假设杂质不等,那么将杂质放回原杯中,则杯中物体重量必变化,不合理。 Problem 5:给你a、b两个文件,各存放50亿条url,每条url各占用64字节,内存限制是4G,让你找出a、b文件共同的url。 法1:使用hash表。使用a中元素创建hash表,hash控制在适当规模。在hash中查找b的元素,找不到的url先存在新文件中,下次查找。如果找到,则将相应的hash表项删除,当hash表项少于某个阈值时,将a中新元素重新hash。再次循环。 法2:对于hash表项增加一项记录属于的文件a,b。只要不存在的表项即放入hash表中,一致的项则删除。注意:可能存在很多重复项,引起插入,删除频繁。 Problem 6:给你一个单词a,如果通过交换单词中字母的顺序可以得到另外的单词b,那么定义b是a的兄弟单词。现在给你一个字典,用户输入一个单词,让你根据字典找出这个单词有多少个兄弟单词。 提示:将每个的单词按照字母排序,则兄弟单词拥有一致的字母排序(作为单词签名)。使用单词签名来查找兄弟单词。 Problem 7:五桶球,一桶不正常,不知道球的重量和轻重关系,用天平称一次找出那桶不正常的球。 Problem 8:给两个烧杯,容积分别是m和n升(m!=n),还有用不完的水,用这两个烧杯能量出什么容积的水? m, n, m+n, m-n以及线性叠加的组合 Problem 9:写出一个算法,对给定的n个数的序列,返回序列中的最大和最小的数。 Problem 10:你能设计出一个算法,只需要执行1.5n次比较就能找到序列中最大和最小的数吗?能否再少? 提示:先通过两两比较,区分大小放入“大”,“小”两个数组中。从而最大数在“大”数组中,最小数在“小”数组中。 Problem 11:给你一个由n-1个整数组成的未排序的序列,其元素都是1到n中的不同的整数。请写出一个寻找序列中缺失整数的线性-时间算法。 提示:累加求和 Problem 12:void strton(constchar* src, const char*token) 假设src是一长串字符,token存有若干分隔符,只要src的字符是token中的任何一个,就进行分割,最终将src按照token分割成若干单词。找出一种O(n)算法? 提示:查表的方法,将所有的字符串存储在长度为128的数组中,并将作为分隔符的字符位置1,这样即可用常数时间判断字符是否为分隔符,通过n次扫描,将src分割成单词。 Problem 13:一个排好序的数组A,长度为n,现在将数组A从位置m(m<n,m未知)分开,并将两部分互换位置,假设新数组记为B,找到时间复杂度为O(lgn)的算法查找给定的数x是否存在数组B中? 提示:同样采用二分查找。核心思想就是确定所查找数所在的范围。通过比较3个数(头,尾,中间)和所查找数之间的关系,可以确定下次查找的范围。 Problem 14:一个排好序的数组A,长度为n,现在将数组A从位置m(m<n,m已知)分开,并将两部分互换位置,设计一个O(n)的算法实现这样的倒置,只允许使用一个额外空间。(循环移位的效率不高) 提示:(A’B’)’ =BA Problem 15:给出Vector的一个更好实现。(STL的vector内存的倍增的,但是每次倍增需要拷贝已存元素,平均每个元素需要拷贝一次,效率不高) 提示:可使用2^n的固定长度作为每次分配的最小单位,并有序的记录每个块的首地址。这中结构同样可以实现线性查找,并且拷贝代价很低(仅有指针) Problem 16:给出已排序数组A,B,长度分别为n,m,请找出一个时间复杂度为(lgn)的算法,找到排在第k位置的数。 提示:二分查找。 Problem 17:给出任意数组A,B,长度分别为n,m,请找出一个时间复杂度为(lgn)的算法,找到排在第k位置的数。 提示:通过最小堆记录k个数,不断更新,扫描一次完毕。 这个提示有问题,求最优算法! Problem 18:假设数组A有n个元素,元素取值范围是1~n,判定数组是否存在重复元素?要求复杂度为O(n)。 法1:使用n的数组,记录元素,存在记为1,两次出现1,即重复。 法2:使用m的数组,分别记录大小:n/m, 2n/m …..的元素个数。桶方法 法3:累加求和。可用于求仅有一个元素重复的方法。 Problem 19:给定排好序的数组A,大小为n,现给定数X,判断A中是否存在两数之和等于X。给出一个O(n)的算法。 提示:从中间向两边查找。利用有序的条件 Problem 20:给定排好序的数组A,大小为n,请给出一个O(n)的算法,删除重复元素,且不能使用额外空间。 提示,既然有重复,必有冗余空间。将元素放入数组的前面,并记录下次可放位置,不断向后扫描即可。 Problem 21:给定两个排好序的数组A,B,大小分别为n,m。给出一个高效算法查找A中的哪些元素存在B数组中。 注意:一般在大数组中执行二分查找,将小数组的元素作为需查找的对象。 更优算法(轩辕刃提供):可以使用两个指针遍历AB,比较当前大小就可以了...时间复杂度o(n+m) Problem 22:问:有1000桶酒,其中1桶有毒。而一旦吃了,毒性会在1周后发作。现在我们用小老鼠做实验,要在1周内找出那桶毒酒,问最少需要多少老鼠。 答案:10只。将酒编号为1~1000 将老鼠分别编号为1 2 4 8 16 32 64 128 256 512 喂酒时 让酒的编号等于老鼠编号的加和如:17号酒喂给1号和16号老鼠 76号酒喂给4号、8号和64号老鼠 七天后将死掉的老鼠编号加起来 得到的编号就是有毒的那桶酒 因为2的10次方等于1024 所以10只老鼠最多可以测1024桶酒 证明如下:使用二进制表示:01, 10, 100, 1000,… , 1,000,000,000。对于任何一个小于1024的数,均可以采用前面的唯一一组二进制数来表示。故成立。 Problem 23:设计一组最少个数砝码,使得天平能够称量1~1000的重量。 如果砝码只能放单边,1,2 ,4 , 512最好。(只能单加) 如果允许砝码双边放,1, 3, 9, 27…. 最好。(可加可减)已知1,3,如何计算下一个数。现可称重量1,2,3,4。设下个数为x,可称重量为, x-4, x-3, x-2, x-1, x, x+1,x+2, x+3, x+4。为使砝码最好,所称重量应该不重复(浪费)。故x=9。同理,可得后面。 图形算法题 Problem 24:如何判断一个点是否在一个多边形内? 提示:对多边形进行分割,成为一个个三角形,判断点是否在三角形内。 一个非常有用的解析几何结论:如果P2(x1,y1),P2(x2,y2),P3(x3,y3)是平面上的3个点,那么三角形P1P2P3的面积等于下面绝对值的二分之一: | x1 y1 1 | | x2 y2 1 | = x1y2 + x3y1 + x2y3 –x3y2 – x2y1 – x1y3 | x3 y3 1 | 当且仅当点P3位于直线P1P2(有向直线P1->P2)的右侧时,该表达式的符号为正。这个公式可以在固定的时间内,检查一个点位于两点确定直线的哪侧,以及点到直线的距离(面积=底*高/2)。 这个结论:可以用来判断点是否在点是否在三角形内。法1:判断点和三角形三边所行程的3个三角形的面积之和是否等于原来三角形的面积。(用了三次上面的公式)。 法2:判断是否都在三条边的同一边,相同则满足,否则不在三角形内。 Problem 25:给出两个n为向量与0点形成角的角平分线。 提示:对两条边进行归一化,得到长度为1的两点,取两个的中点即可。 实战类型 1,确定函数名字与原型 2,严进宽出 3,边界考虑 4,出错处理 5,性能优化(时间复杂度,空间复杂度) 6,循环的掌握 7,递归的应用 8,2个指针跑步 9, Hash算法
happycc 2019-12-02 02:11:37 0 浏览量 回答数 0

回答

回 2楼(阿king) 的帖子 文档这块我们正在尝试改进。如果在查看文档时有任何的疑问,非常欢迎在文档中心填写意见反馈,或者直接在工单中指出问题,我们会及时对文档中的问题进行修正。希望有大家的帮助,让OSS更加方便简单。 ------------------------- Re:ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) 引用第6楼真的小白于2015-03-23 11:12发表的 ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) : 我一直没搞懂那个 跨域资源共享  貌似在控制台叫cros设置   这个功能是干嘛的啊 ? 跨域资源共享(Cors)是Html5协议解决ajax跨域资源调用问题的功能。如您的程序为Web站点或基于Html5开发的APP应用可以通过跨域资源共享解决这个问题,其他使用场景用不到这个功能。   由于ajax等的同源策略 ,会禁止获取其他域名的资源。 比如,这样的操作是被禁止的。 xhr.open("GET", "http://www.taobao.com/pic.jpg", true);   以前要实现跨域访问,可以通过JSONP、Flash或者服务器中转的方式来实现,但是现在我们有了CORS。 现在大部分浏览器都可通过名为Cross-Origin Resource Sharing(CORS)的协议支持ajax跨域调用。 ------------------------- Re:ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) 引用第5楼宝宝助手于2015-03-23 11:11发表的 ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) : 我最近上传的时候都返回地址了。但是用地址访问内容时却是 0KB 没有上传成功? 用的php SDKV2          pubObject 的时候偶尔就会这样! 到底怎么回事!!我都想转到七牛去了。前几天七牛的人才来拿服务比较 人家还上传下载双向CDN    如果上传后返回了200,表示这次上传是成功的。并且可以在上传时带入数据的MD5值,服务器端会帮用户做校验,防止网络传输中出现数据丢失。 有其他的可能的类似问题,可以提交工单,客服同学会帮你仔细排查问题。 同时,建议使用php sdk v1版本。v2版本已不再维护增加新功能。 如果使用OSS中任何困扰,欢迎使用工单,论坛等方式告知我们,我们需要你的声音。 ------------------------- Re:ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) 引用第14楼我是菜鸟2于2015-03-23 12:32发表的 ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) : oss-example.oss-cn-hangzhou.aliyuncs.com/oss-api.pdf?OSSAccessKeyId=xxx&Expires=xxx&Signature=xxx 问题1  【Signature代表什么 】 问题2 【如何向这个地址(oss-example.oss-cn-hangzhou.aliyuncs.com/oss-api.pdf?OSSAccessKeyId=xxx&Expires=xxx&Signature=xxx)上传文件】 ....... 这段url表示使用url签名的方式来直接访问OSS资源,主要针对 【客户端/服务器端】 这样的用户场景: Access key 存储在服务器端,客户端想访问一个OSS资源没有权限,需要先向服务器端发送操作信息(包括操作哪个资源,完成什么操作等)。服务器端根据信息与Access key生成Signature(签名信息),并以一个url的形式传给客户端。客户端使用该url完成之前约定的操作。 问题1  【Signature代表什么 】 签名(Signature)信息是用户的服务器端生成的身份签名,用户的客户端使用该签名来完成操作。OSS根据这个签名来判断操作是否合法。 问题2 【如何向这个地址(oss-example.oss-cn-hangzhou.aliyuncs.com/oss-api.pdf?OSSAccessKeyId=xxx&Expires=xxx&Signature=xxx)上传文件】 该url只能完成特定的操作,比如控制台上生成的签名url是用于用户发送get请求,获取object。用户如果要生成put操作的签名url,可以参考JAVA SDK中的实现: 点击这里 。 对于想参考实现签名算法,这里给一些建议: 1. OSS api 接口基于标准的http协议规范,签名是通过对请求的方法,资源位置,请求头等以AccessKeySecret为秘钥按照统一方法加密生成的。具体方法可以参考API文档: 点击这里 2. 论坛中提供了一个可视化签名demo,希望能对你有所帮助: 点击这里 3. 各个SDK版本都已开源的,可以尝试参考一下。后续也会推出更多语言的SDK。 4. 如果对签名还有疑惑与困难,告知我们,后续会考虑推出更多帮助文档以及demo来帮助用户 ------------------------- Re:ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) 引用第19楼老陈小安于2015-03-24 13:19发表的 ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) : 我想问几个问题: 1、OSS选定存储区域后,在这个区域里有什么数据可靠性措施?比如一般的存3份? 2、OSS选定存储区域后,可以跨区域存储吗?比如我觉得只存在杭州一个区域不安全,我希望在北京存储区域再放一份,可以实现吗? 3、OSS能提版本控制功能吗?一个文件,我在下载到本地修改后,再上传,能提供上一次的版本控制吗? 4、OSS只有官方推荐第三方管理软件,有没有官方自己的管理软件? ....... 【问题】 OSS选定存储区域后,可以跨区域存储吗?比如我觉得只存在杭州一个区域不安全,我希望在北京存储区域再放一份,可以实现吗? 暂时不支持此功能,因为OSS底层已经实现了3分数据备份,所以您大可以放心您的数据安全。且如果您的数据很多,多存一份也会增加您的存储成本。 【问题】 OSS能提版本控制功能吗?一个文件,我在下载到本地修改后,再上传,能提供上一次的版本控制吗? 不支持版本控制 上传相同名的object在OSS端是覆盖原有信息。 OSS只有官方推荐第三方管理软件,有没有官方自己的管理软件? 官方推出过命令行工具,OSSCMD。 官方推荐的客户端工具是经过我们安全部门认证审核的,保证安全性与质量。 同时我们会推动我们的合作伙伴服务商推出更多工具。 【问题】 OSS的API与其他厂商的兼容吗?比如和X牛? 不支持 【问题】 OSS后续有什么新功能设计?比如音视频转码? 新功能的上线尽请期待我们的官网公告。 音视频转码服务主要通过阿里云其他云产品支持,比如可以使用MTS做视频转码。 【问题】 OSS存储计费,是用阶梯方式计费吗?还是按传统的,我用了600G,就按600G范围的单价计算?,如果是按阶梯计费方式,这有什么优势呢? 存储和流量都是按照阶梯计费的。采用的是类似计税使用的超额累进的方式,将你使用的资源量切分成不同段,按不同价格计费。 比如600T的存储费用=(50-0)*价格1+(500-50)*价格2+(600-500)*价格3 采用这样的方式,对用户来说使用资源量越大,价格会越便宜。 【问题】 最后,能说说OSS的定位是什么?面向服务商的,还是面向最终客户的? OSS的最终面向用户是开发者用户,为有存储需求的用户提供海量,安全,高可靠,支持高并发的企业级云存储服务。 ------------------------- Re:ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) 引用第29楼fds-em于2015-03-25 20:45发表的 ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) : 域名绑定。CNAME跟我网站的A记录冲突怎么解决啊?而且子域名先认证文件然后把A记录删除后。然后再用CNAME。那么访问也是没用啊 参考下这个教程 http://docs.aliyun.com/#/oss/getting-started/bucket-attributes&cname 注意核对您的区域(您的Bucket所在区域不同cname地址也不同) ------------------------- Re:ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) 引用第38楼金龟于2015-03-26 13:01发表的 ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) : 为什么没有 批量转移目录,全选等功能 您可以使用这个客户端工具解决您的需求 http://bbs.aliyun.com/read/231195.html   ------------------------- 回 18楼(渴望更高) 的帖子 您可以使用移动端的SDK,直接通过手机上传图片到OSS, SDK文档: android-sdk http://docs.aliyun.com/#/oss/sdk/android-sdk ios-sdk http://docs.aliyun.com/#/oss/sdk/ios-sdk ------------------------- 回 17楼(寂寞先生) 的帖子 您可以参考下这个帖子 http://bbs.aliyun.com/read/233791.html
ossbaymax 2019-12-02 01:54:17 0 浏览量 回答数 0

问题

从一道面试题谈谈一线大厂码农应该具备的基本能力 7月16日 【今日算法】

##关于一线码农的面试,我想说 求职面试在绝大部分人来说都是必不可少的,自己作为求职者也参与了不少面试(无论成功或者失败),作为技术面试官参与面试也有四五年的经验&#x...
游客ih62co2qqq5ww 2020-07-22 13:45:47 118 浏览量 回答数 1

问题

【算法】五分钟算法小知识:动态规划详解

动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不过在计算机问题上应用比较多,比如说让你求最长递增子序列呀,最小编辑距离呀等等。 既然是要求最值,核心问题是...
游客ih62co2qqq5ww 2020-05-07 14:48:09 25 浏览量 回答数 1

问题

用 Git 来讲讲二叉树最近公共祖先 6月9日 【今日算法】

如果说笔试的时候喜欢靠各种动归回溯的骚操作,面试其实最喜欢考比较经典的问题,难度不算太大,而且也比较实用。 上篇文章 我用四个命令,总结了 Git 的所有套路 写了Git最常用的命令...
游客ih62co2qqq5ww 2020-06-09 15:15:00 12 浏览量 回答数 1

问题

SEO外链优化

  外链优化   1前言   外链优化只关于运用在高权重网站上的连接,即指的是其他网站的反向连接,运用domain:指令就能够查到。对于网站在百度的排名适当的重要,如果说网站的内容...
梦醒丶呆子 2019-12-01 21:33:37 9245 浏览量 回答数 3

问题

一个函数秒杀 2Sum 3Sum 4Sum 问题 7月9日 【今日算法】

经常刷 LeetCode 的读者肯定知道鼎鼎有名的 twoSum 问题,我们的旧文Two Sum 问题的核心思想对 twoSum 的几个变种做了解析。 但是除了 twoSum 问题,LeetCode 上面还有 ...
游客ih62co2qqq5ww 2020-07-10 07:34:19 5 浏览量 回答数 1

回答

区块链(blockchian)技术是随比特币等数字加密货币兴起的一种新型分布式数据组织方法及运算方式,通过去中心化来集体维护一个可靠数据库的技术。该技术将一段时间内的两两配对数据(比特币中指交易)打包成数据块(block),然后利用具有激励性质的共识算法让点对点对等网(p2p网络)中的所有节点产生的数据块保持一致,并生成数据指纹验证其有效性然后链接(chain)下一个数据块。在这个过程中,所有节点的地位都是对等的,没有所谓的服务器和客户端之分,因此被称为去中心化的方式,这很好地解决了数据在存储和共享环节中存在的安全和信任问题。通过区块链技术,在数据共享过程中可明确数据的来源、所有权和使用权,达到数据在存储上不可篡改、在流通上路径可追溯、在数据管理上可审计的目的,保证数据在存储、共享、审计等环节中的安全,实现真正意义上的数据全流程管理,进一步拓展数据的流通渠道、促进数据的共享共用、激发数据的价值挖掘、增强数据在流通中的信任。同时,基于区块链的分布式共享“总账”这一特点,在平台安全方面,可达到有效消除单点故障、抵御网络攻击的目的。这些特点使得区块链技术特别适合应用于具有保密要求的大数据运算领域。 近年来,国外已有一些研究机构和企业将区块链应用在电子证件认证和身份认证领域(见图1-1)。2015年7月,区块链初创公司ShoCard获150万美元投资,将实体身份证件的数据指纹保存在区块链上。用户用手机扫描自己的身份证件,ShoCard应用会把证件信息加密后保存在用户本地,把数据指纹保存到区块链。区块链上的数据指纹受一个私钥控制,只有持有私钥的用户自己才有权修改,ShoCard本身无权修改。同时,为了防范用户盗用他人身份证件扫描上传,ShoCard还允许银行等机构对用户的身份进行背书,确保真实性。2015年9月,去中心化的管理项目比特国(Bitnation)在区块链上实施“电子公民”(e-Residents)计划。用户在其官网上通过区块链登记成为Bitnation的“公民”,并获得Bitnation“世界公民身份证”。2015年12月,Bitnation与爱沙尼亚政府签署协议,将为“电子公民”项目提供公证服务,无论他们身居何处,在何处做生意,都可以在区块链上享受结婚证明、出生证明、商务合同和其他服务。区块链是一个公共账本,全世界数以千万计的计算机都存储着其副本,具备公开公证的可复制性与不可更改性,比目前各国使用的传统公证方法更安全。2016年6月,美国国安局向区块链初创公司Factom拨款19.9万美元用于物联网设备数字身份安全性开发,利用区块链技术来验证物联网设备,阻止因设备欺骗而导致的非授权访问,以此来确保数据完整性;美国区块链公司Certchain为文档建立数据指纹,提供去中心化的文件所有权证明;OneName公司则提供了另一种身份服务,即任何比特币的用户都可以把自己的比特币地址和自己的姓名、Twitter、Facebook等账号绑定起来,相当于为每个社交账户提供了一个公开的比特币地址和进行数字签名的能力。 在国内,有一些研究机构也在开展区块链在电子政务方面的应用研究。闵旭蓉等人[6]设计了一种电子证照共享平台,利用区块链技术的去中心化、不可篡改、分布式共同记账、非对称加密和数据安全存储等特点,实现电子证照的安全可信共享,实现各地、各部门和各层级间政务数据的互联互通,支撑政府高效施政。黄步添等人[7]明确了电子证照参与者的权利和义务,基于联盟链思想和轮值机制,设计区块链平台的系统架构、数据结构和业务流程,提供电子证照的颁发、存储、更新、验证等功能,实现多中心、协同式电子证照管理,从而为电子证照拥有者以及相关应用系统提供便捷的电子证照服务。蒋海等人[8]提供了一种区块链身份构建及验证方法,有效缓解了因个别认证机构的问题影响用户身份信息准确性的情况,然而其原始数据来源为第三方认证机构,未能解决数据的真实性问题,且其只进行身份验证,未与其他证件锚定,扩展性不强,发挥的作用有限。 此外,有一些教育和科研机构将区块链技术应用于教育证书领域。2015 年,麻省理工学院的媒体实验室(The MIT MediaLab)应用区块链技术研发了学习证书平台,并发布了一个类似“比特币钱包”的手机App[9]。学习者可以利用该App存储和分享自己的学习证书,随身携带、随时展示,且拥有重申成绩的权力。学习者不能擅自更改学习证书的内容,但能自主决定将什么证书展示给哪个访问者。在查询时,将数字证书的密钥点对点地发送给用人单位或学生等有关需求方,确保证书不会被恶意查询。无独有偶,位于旧金山的软件培训机构—Holberton School从2017年开始利用区块链技术记录学历,并在区块链上共享学生的学历证书信息。同样,学分也可以通过这项技术认证和交换。对于学生来说,这一应用拓宽了他们获得教育评价的途径,方便了学习记录和学历信息的保存。从更长远的眼光来看,利用区块链记录跨地区、跨院校甚至跨国学习者的信息,可以使在不同环境中学习的学习者获得同样有效的学习记录。区块链技术在教育证书方面可能的应用方式包括:为在线教育提供有公信力和低成本的证书系统;作为智能合约,完成教育契约和存证;作为分布式的学习记录存储,记录学习轨迹,共享学习学分。从应用规模和范围来看,区块链在教育领域的应用范围可以小到单个教育机构、学校联盟,大到全国甚至全球性的教育互认互通联盟。
问问小秘 2019-12-02 03:10:04 0 浏览量 回答数 0

问题

Android USB host 外接HID设备应用开发?报错

Android USB host 外接HID设备驱动开发: 我的设备是Android主板外挂签名加密模块,该模块是 USB HID接口。所以要开发一个android usb host 到HID device之间的...
爱吃鱼的程序员 2020-06-10 14:15:12 0 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板