• 关于

    频率再用有什么用

    的搜索结果

问题

为什么阿里云邮箱的登陆验证码这么烦人??

doublez 2019-12-01 21:32:59 23304 浏览量 回答数 5

回答

Re阿里云运行Windows本地程序的问题 楼主这种计算使用云服务器的会比较贵。云服务器的运算能力比直接购买最新的较高配置家用电脑要贵,你不应该依靠硬件,就算是要优化,也要先优化软件。 不论你用什么机器,最关键的是你的软件的算法必须支持多CPU,要知道我们的程序都有支持CPU的上限,比如说音乐播放器这种也就是单核运算,就算你装个100个4核CPU,这个软件也只是使用一个cpu的1个核心。像星际争霸这个游戏用的是双核心,你就是装在多核心CPU,他也只跑满2个核心,他的性能取决于这两个核心最高速度,所以说我们玩星际的时候一些高频率的双核比低频率的4核更快。 再说你的这个软件,是否支持多核心呢,如果支持多核心是支持多少核心,不要以为安装了16个核心的机器,16个核心就全能用起来,根据这个核心数去组装你的pc机才是最大程度的性价比?对于复杂计算,我们应该改进软件采取分布式计算,比如我们得到一个需要计算的大数据,最常用是多台机器并行计算,我们应该先进性简单的数据计算任务分割,将不同的任务分割到不同的机器去,然后再将最后的计算结果进行合并,效率就能提升。

ayouny 2019-12-02 01:57:40 0 浏览量 回答数 0

回答

用户将openid与业务帐号绑定一次,如何实现用户一直处于登录状态?更换手机后?方法1:将微信号认证一下,使用OAuth接口,每次进入之前通过接口获取到用户的openid,然后再从你的数据库去读取关系,写入用户登录状态。方法2:用户点击菜单或者发送关键词是可以获取到用户的openid的,此时返回一个链接或图文消息,用户点击之后用get方式获取到openid,然后再从你的数据库去读取关系,写入用户登录状态。商业产品正式使用推荐方法1。个人做着玩玩的话推荐方法2。用于网页授权用户信息的access_token是怎么缓存和维护的?存储在seesion吗?用于网页授权用户信息的access_token是必须要进行缓存的,这个每日有接口频率限制,所以你必须缓存这个。存在Memcache或redis等缓存服务,或者……你存到某个文件也行。session一般是用来做用户会话,放到这里不保证可用,或者说这么做很奇怪。其他朋友补充下吧。微信中session会话什么时候会失效?(比如PC端关闭浏览器)微信的session和PC没关系啊。。session什么时候过期这个说不来,和你服务器设置和微信自己都有关系吧我觉得。cookie的话微信有一种很奇怪的过期方式,在很久以前的旧版本里很无厘头,经常是关了窗口就关了。

蛮大人123 2019-12-02 02:02:25 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

@邓凡平 @红猎人 ######这个得找厂家,问问售后。没有简单的办法去调节。###### 1.  连击的时候,点准不准? 2.  插着充电,会不会更明显? 应该是触摸屏有点问题,上报的UP和DOWN事件有问题。  找售后看看,应该是一个个体问题,rp差了点吧###### 引用来自“星土”的答案 1.  连击的时候,点准不准? 2.  插着充电,会不会更明显? 应该是触摸屏有点问题,上报的UP和DOWN事件有问题。  找售后看看,应该是一个个体问题,rp差了点吧 首先谢谢这位星土朋友的热心帮助! 1、只是单击操作时容易变成连击操作,并不是点不准。 例如:我点击返回键,按理是返回上一级,但有时变成了连击多次返回,把整个程序给退出了 2、充电时没有更明显 我不会编程,但对安卓系统还是有些了解的,个人觉的是固件某处代码存在问题导致的,并不是硬件故障。 恳请看看有没什么方案可解决,或者指出系统中可能那个文件的代码有问题,我自己再摆弄下试试了。 谢谢! ######要不你刷固件吧 ######国产平板的触摸屏质量很次的###### 家里人用平板? 这个让我想到了我家人用鼠标,我们理解的双击是快速两次单击,但往往家人因不懂操作,单机会变成长时间触按操作,再加上手指的轻微抖动,很大程度会造成双击的效果,你先确定是不是因为这个? 有这情况的话,可以在操作的时候用点力,这样可以避免手指抖动来缓解问题。###### 引用来自“xoHome”的答案 家里人用平板? 这个让我想到了我家人用鼠标,我们理解的双击是快速两次单击,但往往家人因不懂操作,单机会变成长时间触按操作,再加上手指的轻微抖动,很大程度会造成双击的效果,你先确定是不是因为这个? 有这情况的话,可以在操作的时候用点力,这样可以避免手指抖动来缓解问题。 xohome 你好!谢谢你提出的观点! 单击有时变成双击或连击操作,根据我的使用经验认为不是家人操作手势不对引起的。 我家里还有台ThinkPad Slate Tablet平板使用起来不会有这样的问题。 由于安卓4.0的返回键点击会发出提示音,我曾经实验在桌面状态时长按返回键,就听见发出的提示音频率非常高,大概每秒有3-4声,这样的反应速度,不是正常人可控制的。 所以我推测触摸屏太灵敏了,造成使用时一个不小心单击变双击或连击了。 固件代码里大概没有控制两次点击的最短时间或者灵敏度调整参数不对等等。 由于我不懂编程上面的说法也只是门外汉的推测而已,希望哪位高手能讲讲固件里可能那个文件不对造成的,告诉我文件名字,或者修改代码的方案。 我虽不会编程,但找其它硬件相同的平板固件里,提取文件来替换我的固件打包刷机还是会的:) ###### 引用来自“邓凡平”的答案 这个得找厂家,问问售后。没有简单的办法去调节。 哈。说了个大实话。屏不行,软件毛用没有。驱动芯片不行,android OS也没用。其实简单说一点,都是山寨低成本惹的祸。 ###### 引用来自“中山野鬼”的答案 引用来自“邓凡平”的答案 这个得找厂家,问问售后。没有简单的办法去调节。 哈。说了个大实话。屏不行,软件毛用没有。驱动芯片不行,android OS也没用。其实简单说一点,都是山寨低成本惹的祸。 东西都是一分价钱一分货的,比如光拿个GPS模块,进口的光个模块就好几百,国产的连机子一起卖才几百。虽然能用下,但稳定性差一大截。     图个便宜就不要要求那么多了,说实话买山寨还能期望个什么售后啊。

kun坤 2020-06-08 11:31:33 0 浏览量 回答数 0

问题

httpclient提交json到tomcat,接收到的json却是不完整的?报错

爱吃鱼的程序员 2020-06-07 22:10:20 0 浏览量 回答数 1

问题

架设你的CruiseControl 配置报错

huc_逆天 2020-05-28 09:23:11 1 浏览量 回答数 0

回答

"<a href=""http://my.oschina.net/innost"" class=""referer"" target=""_blank"">@邓凡平 <a href=""http://my.oschina.net/zengsai"" class=""referer"" target=""_blank"">@红猎人 ######这个得找厂家,问问售后。没有简单的办法去调节。###### 1.  连击的时候,点准不准? 2.  插着充电,会不会更明显? 应该是触摸屏有点问题,上报的UP和DOWN事件有问题。  找售后看看,应该是一个个体问题,rp差了点吧###### 引用来自“星土”的答案 1.  连击的时候,点准不准? 2.  插着充电,会不会更明显? 应该是触摸屏有点问题,上报的UP和DOWN事件有问题。  找售后看看,应该是一个个体问题,rp差了点吧 首先谢谢这位星土朋友的热心帮助! 1、只是单击操作时容易变成连击操作,并不是点不准。 例如:我点击返回键,按理是返回上一级,但有时变成了连击多次返回,把整个程序给退出了 2、充电时没有更明显 我不会编程,但对安卓系统还是有些了解的,个人觉的是固件某处代码存在问题导致的,并不是硬件故障。 恳请看看有没什么方案可解决,或者指出系统中可能那个文件的代码有问题,我自己再摆弄下试试了。 谢谢! ######要不你刷固件吧 ######国产平板的触摸屏质量很次的###### 家里人用平板? 这个让我想到了我家人用鼠标,我们理解的双击是快速两次单击,但往往家人因不懂操作,单机会变成长时间触按操作,再加上手指的轻微抖动,很大程度会造成双击的效果,你先确定是不是因为这个? 有这情况的话,可以在操作的时候用点力,这样可以避免手指抖动来缓解问题。###### 引用来自“xoHome”的答案 家里人用平板? 这个让我想到了我家人用鼠标,我们理解的双击是快速两次单击,但往往家人因不懂操作,单机会变成长时间触按操作,再加上手指的轻微抖动,很大程度会造成双击的效果,你先确定是不是因为这个? 有这情况的话,可以在操作的时候用点力,这样可以避免手指抖动来缓解问题。 xohome 你好!谢谢你提出的观点! 单击有时变成双击或连击操作,根据我的使用经验认为不是家人操作手势不对引起的。 我家里还有台ThinkPad Slate Tablet平板使用起来不会有这样的问题。 由于安卓4.0的返回键点击会发出提示音,我曾经实验在桌面状态时长按返回键,就听见发出的提示音频率非常高,大概每秒有3-4声,这样的反应速度,不是正常人可控制的。 所以我推测触摸屏太灵敏了,造成使用时一个不小心单击变双击或连击了。 固件代码里大概没有控制两次点击的最短时间或者灵敏度调整参数不对等等。 由于我不懂编程上面的说法也只是门外汉的推测而已,希望哪位高手能讲讲固件里可能那个文件不对造成的,告诉我文件名字,或者修改代码的方案。 我虽不会编程,但找其它硬件相同的平板固件里,提取文件来替换我的固件打包刷机还是会的:) ###### 引用来自“邓凡平”的答案 这个得找厂家,问问售后。没有简单的办法去调节。 哈。说了个大实话。屏不行,软件毛用没有。驱动芯片不行,android OS也没用。其实简单说一点,都是山寨低成本惹的祸。 ###### 引用来自“中山野鬼”的答案 引用来自“邓凡平”的答案 这个得找厂家,问问售后。没有简单的办法去调节。 哈。说了个大实话。屏不行,软件毛用没有。驱动芯片不行,android OS也没用。其实简单说一点,都是山寨低成本惹的祸。 东西都是一分价钱一分货的,比如光拿个GPS模块,进口的光个模块就好几百,国产的连机子一起卖才几百。虽然能用下,但稳定性差一大截。     图个便宜就不要要求那么多了,说实话买山寨还能期望个什么售后啊。 " ![image.png](https://ucc.alicdn.com/pic/developer-ecology/a14f1d004772429c97a62f3c07dde8f8.png)

montos 2020-05-31 13:06:55 0 浏览量 回答数 0

回答

点击后disabled掉,回调回来再重置回来######前端不限制?######我觉得这个还是前端做限制会比较合适,如果后端的 话  我暂时想到的就是ip过滤  每个IP在指定的时间内只能访问几次    不过感觉这样有点浪费资源###### 需要前后端一起限制 1.前端限制,点击后disabled掉,回调回来或者超时再重置回来 2.后端,限制用户只能在一定时间内访问该接口一次,可以借助redis的字符串的类型的SETNX 命令。 请求进入在redis中计数,后续请求直接返回,查询redis有值就返回失败,处理完毕删除redis的值 ######这个怎么限制在一定时间内哪?######你的问题有两种理解方式 第一种:用户点击N次 然后后台排队按照点击次数,一次一次的执行;第二种:用户点击n次,只执行第一次点击,其余的都不执行; 如果是第二种:你只需要在后台设置一个变量 用这个值做判断就行了  后台在执行点击指令时 把他的值修改  防止第二次点击命令进来,然后执行完成后将值恢复。至于第一种 我对java没什么了解 但是我觉得应该可以利用类似列队的方式来解决######1.后台加锁机制 2.点击之后设置为disable,等到请求结束返回信息再设置为disable, ######后端可以编码限定请求频率,例如Guava的RateLimiter。或者通过Ngnix限制###### 加一个过滤器,每次请求到的时候给 session 里面设置一个时间戳,返回的时候 removeSession 中这个值,如果第二个请求来了判断 session 里面时间戳是否满足了时间间隔,如果不满足,就直接返回一个提示,提交太频繁 ######刚看是 app,这样的话就直接记录针对设备或账号设置一个最后请求的时间戳,然后对比,一样的道理,完全可以放内存里面,每次只为一个账号保留一个时间戳就行了,也用不了多大内存######我遇到这种问题都是最简单的方法, 存session个值, 当然一个用户换个浏览器就不好用了, 或者缓存 用户名和状态, 主要还是要前台限制, 如果是定时操作, 可以用settimeout代替用户操作######突然想到  每次请求返回一个只能使用一次的随机值  处理请求前先比对该值  不知道行不行

kun坤 2020-05-30 17:26:57 0 浏览量 回答数 0

问题

为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?【Java问答】41期

剑曼红尘 2020-06-19 13:47:21 0 浏览量 回答数 0

回答

1.1、IoC是什么  Ioc—Inversion of Control,即“控制反转”,不是什么技术,而是一种设计思想。在Java开发中,Ioc意味着将你设计好的对象交给容器控制,而不是传统的在你的对象内部直接控制。如何理解好Ioc呢?理解好Ioc的关键是要明确“谁控制谁,控制什么,为何是反转(有反转就应该有正转了),哪些方面反转了”,那我们来深入分析一下:  ●谁控制谁,控制什么:传统Java SE程序设计,我们直接在对象内部通过new进行创建对象,是程序主动去创建依赖对象;而IoC是有专门一个容器来创建这些对象,即由Ioc容器来控制对 象的创建;谁控制谁?当然是IoC 容器控制了对象;控制什么?那就是主要控制了外部资源获取(不只是对象包括比如文件等)。  ●为何是反转,哪些方面反转了:有反转就有正转,传统应用程序是由我们自己在对象中主动控制去直接获取依赖对象,也就是正转;而反转则是由容器来帮忙创建及注入依赖对象;为何是反转?因为由容器帮我们查找及注入依赖对象,对象只是被动的接受依赖对象,所以是反转;哪些方面反转了?依赖对象的获取被反转了。  用图例说明一下,传统程序设计如图2-1,都是主动去创建相关对象然后再组合起来:图1-1 传统应用程序示意图  当有了IoC/DI的容器后,在客户端类中不再主动去创建这些对象了,如图2-2所示:图1-2有IoC/DI容器后程序结构示意图1.2、IoC能做什么  IoC 不是一种技术,只是一种思想,一个重要的面向对象编程的法则,它能指导我们如何设计出松耦合、更优良的程序。传统应用程序都是由我们在类内部主动创建依赖对象,从而导致类与类之间高耦合,难于测试;有了IoC容器后,把创建和查找依赖对象的控制权交给了容器,由容器进行注入组合对象,所以对象与对象之间是 松散耦合,这样也方便测试,利于功能复用,更重要的是使得程序的整个体系结构变得非常灵活。  其实IoC对编程带来的最大改变不是从代码上,而是从思想上,发生了“主从换位”的变化。应用程序原本是老大,要获取什么资源都是主动出击,但是在IoC/DI思想中,应用程序就变成被动的了,被动的等待IoC容器来创建并注入它所需要的资源了。  IoC很好的体现了面向对象设计法则之一—— 好莱坞法则:“别找我们,我们找你”;即由IoC容器帮对象找相应的依赖对象并注入,而不是由对象主动去找。1.3、IoC和DI  DI—Dependency Injection,即“依赖注入”:组件之间依赖关系由容器在运行期决定,形象的说,即由容器动态的将某个依赖关系注入到组件之中。依赖注入的目的并非为软件系统带来更多功能,而是为了提升组件重用的频率,并为系统搭建一个灵活、可扩展的平台。通过依赖注入机制,我们只需要通过简单的配置,而无需任何代码就可指定目标需要的资源,完成自身的业务逻辑,而不需要关心具体的资源来自何处,由谁实现。  理解DI的关键是:“谁依赖谁,为什么需要依赖,谁注入谁,注入了什么”,那我们来深入分析一下:  ●谁依赖于谁:当然是应用程序依赖于IoC容器;  ●为什么需要依赖:应用程序需要IoC容器来提供对象需要的外部资源;  ●谁注入谁:很明显是IoC容器注入应用程序某个对象,应用程序依赖的对象;  ●注入了什么:就是注入某个对象所需要的外部资源(包括对象、资源、常量数据)。  IoC和DI由什么关系呢?其实它们是同一个概念的不同角度描述,由于控制反转概念比较含糊(可能只是理解为容器控制对象这一个层面,很难让人想到谁来维护对象关系),所以2004年大师级人物Martin Fowler又给出了一个新的名字:“依赖注入”,相对IoC 而言,“依赖注入”明确描述了“被注入对象依赖IoC容器配置依赖对象”。  看过很多对Spring的Ioc理解的文章,好多人对Ioc和DI的解释都晦涩难懂,反正就是一种说不清,道不明的感觉,读完之后依然是一头雾水,感觉就是开涛这位技术牛人写得特别通俗易懂,他清楚地解释了IoC(控制反转) 和DI(依赖注入)中的每一个字,读完之后给人一种豁然开朗的感觉。我相信对于初学Spring框架的人对Ioc的理解应该是有很大帮助的。

wangccsy 2019-12-02 01:49:09 0 浏览量 回答数 0

问题

架设你的CruiseControl:报错

kun坤 2020-06-05 23:12:48 0 浏览量 回答数 1

问题

架设你的CruiseControl - 服务报错

montos 2020-05-29 21:17:46 0 浏览量 回答数 1

问题

如何保证缓存与数据库的双写一致性?【Java问答】38期

剑曼红尘 2020-06-16 12:58:57 36 浏览量 回答数 1

回答

虽然我不是Python高手,但我是零基础,之前会的都是软件PS,PPT之类。点击链接加入群【我爱python大神】:https://jq.qq.com/?_wv=1027&k=47zuLPd 如果目的是想成为程序员,参考教学大纲。 如果只是学程序,理解科技,解决工作问题,我的方式可以参考使用: 1,找到合适的入门书籍,大致读一次,循环啊判断啊,常用类啊,搞懂(太难的跳过) 2,做些简单习题,字符串比较,读取日期之类PythonCookbook不错(太难太无趣的,再次跳过,保持兴趣是最重要的,不会的以后可以再学) 3,加入Python讨论群,态度友好笑眯眯(很重要,这样高手才会耐心纠正你错误常识)。很多小问题,纠结许久,对方一句话点播思路,真的节约你很多时间。耐心指教我的好人,超级超级多谢。 4,解决自己电脑问题。比如下载美剧,零散下载了2,4,5,8集,而美剧共12集,怎样找出漏下的那几集?然后问题分解,1读取全部下载文件名,2提取集的数字,3数字排序和(1--12)对比,找出漏下的。点击链接加入群【我爱python大神】:https://jq.qq.com/?_wv=1027&k=47zuLPd 5,时刻记住目的,不是为了当程序员,是为了解决问题。比如,想偷懒抓网页内容,用urllib不行,用request也不行,才发现抓取内容涉及那么多方面(cookie,header,SSL,url,javascript等等),当然可以听人家劝,回去好好读书,从头读。 或者,不求效率,只求解决,用ie打开网页再另存为行不行?ie已经渲染过全部结果了。 问题变成:1--打开指定的10个网页(一行代码就行)。更复杂的想保存呢?利用已经存在的包,比如PAM30(我的是Python3),直接打开ie,用函数outHTML另存为文本,再用搜索函数(str搜索也行,re正则也行)找到数据。简单吧?而且代码超级短。 6,保持兴趣,用最简单的方式解决问题,什么底层驱动,各种交换,留给大牛去写吧。我们利用已经有的包完成。 7,耐心读文档,并且练习快速读文档。拿到新包,找到自己所需要的函数,是需要快速读一次的。这个不难,读函数名,大概能猜到是干嘛的,然后看看返回值,能判断是不是自己需要的。 8,写帮助文件和学习笔记,并发布共享。教别人的时候,其实你已经自己再次思考一次了。 我觉得学程序就像学英文,把高频率的词(循环,判断,常用包,常用函数)搞懂,就能拼装成自己想要的软件。 然后点点击链接加入群【我爱python大神】:https://jq.qq.com/?_wv=1027&k=47zuLPd是很好用的。 然后,坚持下去~ 6月10日补充------------------------------ 一定要保持兴趣,太复杂的跳过,就像小学数学,小学英语,都是由简入深。 网络很平面,无数国际大牛著作好书,关于Python,算法,电脑,网络,或者程序员思路,或者商业思维(浪潮之巅是本好书)等等,还有国际名校的网络公开课(中英文字幕翻译完毕,观看不是难事),讲计算机,网络,安全,或者安卓系统,什么都有,只要能持续保持兴趣,一点点学习下去,不是难事。 所有天才程序员,都曾是儿童,回到儿童思维来理解和学习。觉得什么有趣,先学,不懂的,先放着,遇到问题再来学,效果更好。 唯一建议是,不要太贪心,耐心学好一门优雅的语言,再学其它。虽然Javascript做特效很炫,或提某问题时,有大牛建议,用Ruby来写更好之类,不要改方向。就像老笑话:“要学习递归,必须首先理解递归。”然后死循环一直下去。坚持学好一门语言,再研究其他。 即使一门语言,跟网络,数据库等等相关的部分,若都能学好,再学其他语言,是很快的事情。 另外就是,用学英文的耐心来学计算机,英文遇到不懂的词,抄下,查询。 python里,看到Http,查查定义,看到outHtml,查查定义,跟初学英语时候一样,不要直接猜意思,因为精确描述性定义,跟含糊自然语有区别的。而新人瞎猜,很容易错误理解,wiki,google很有用。 我还在使劲啃Python的路上~~一起加油:) 2012年8月26日补充线------------------------------------------------------------------ QQ群:22507237陆续有些高手走了,也有新人加入。 另外10月20日,上海有Python开发者大会, 给出2个截图吧,我最近做的,真的很烂,但是能用:) 这个是上次Python测试题目“从电商网站的搜索页中抓取制作商品图片墙”。我选了最最容易的静态网站。当然京东的抓取,比这种难。 这个很方便我自己每天查询,用Python3+PyQt4,用“公司名字”关键词,在各个论坛,图片,视频,商场查询。每天看一次,很方便快速了解信息。 1.如果是因为兴趣,想做些比较漂亮的网页或者做些特别的、能帮到自己的小程序,可以直接买市面上的大部分Python教材,直接从Python学起,学实际的编程。Python并不难学,最初设计的时候就力图规避一些C、C++等等程序让入门者头大的内容,而且库函数也比较丰富,语法相对清晰直白,不会故意做一些高效率但是难弄懂的东西。而且相对语法要求(尤其是缩进==)比较严比较死,虽然你会觉得麻烦,不过确实易读而且省的粗心犯错。 2.如果是想从事编程的职业,建议还是循序渐进的来,单纯只学语言比较浅,还是从数据结构、离散数学、算法一步一步来比较好。这样学确实很枯燥,但是基础比较好,可塑性强些,再学其他算法和语言都方便不少,而且读好的源码理解的更透更深。真正专业性的学习和兴趣式的尝试差别还是很大的,要真的非常感兴趣肯吃苦才行,虽然经常看到有很多人在报考或者转入这方面的专业,不过说实话急着跳出去的一样不少。 实际上,要把一段代码编程直观的产品、工具,远远没有你想像的那么难,与其他东西的学习一样都是模仿加重复性练习,不过是非专业的人接触的少所以觉得编程特别难。现在编程语言和工具越来越多,发展很快,编程的门槛已经降低了很多了。只是相对来说,精通很难,非常难。。。 我的朋友问我怎么能快速地掌握Python。我想Python包含的内容很多,加上各种标准库,拓展库,乱花渐欲迷人眼,就想写一个快速的,类似于w3cschool风格的Python教程,一方面保持言语的简洁,另一方面循序渐进,尽量让没有背景的读者也可以从基础开始学习。另外,我在每一篇中专注于一个小的概念,希望可以让人在闲暇时很快读完。?  学好python你需要一个良好的环境,一个优质的开发交流群,群里都是那种相互帮助的人才是可以的,我有建立一个python学习交流群,在群里我们相互帮助,相互关心,相互分享内容,这样出问题帮助你的人就比较多,群号是304加上050最後799,这样就可以找到大神聚合的群,如果你只愿意别人帮助你,不愿意分享或者帮助别人,那就请不要加了,你把你会的告诉别人这是一种分享。 感觉写的好,对你有帮助,就点个赞呗,别光只收藏哈.~( ̄▽ ̄)~ ?

爱吃鱼的程序员 2020-06-08 17:59:21 0 浏览量 回答数 0

问题

ES 在数据量很大的情况下(数十亿级别)如何提高查询效率啊?【Java问答学堂】28期

剑曼红尘 2020-05-28 09:45:28 15 浏览量 回答数 1

回答

while没有问题吧,只是在b队列满的时候,能否挂起?? 这个是典型的生产者消费者问题吧。。 ######回复 @ItBoyWEI : 那你这样迟早会溢出的。。 要不就增加A的能力,比如增加一个处理A的进程或者实例。######是典型的生产者消费者问题,但是生产者过剩,消费者太慢!程序还不能挂起!######可以反过来做吧,不要A主动去放入b。由b去取######不要while循环 那样即使单线程 cpu也挂###### @ItBoyWEI 难道不用线程池?######回复 @iehyou : 就是是B队列到A队列中去取,也需要while循环实现呀!不然我们怎么源源不断从A中取数据呢!每次向服务器发送请求都会往A中添加数据!######回复 @iehyou : 这样呀!好我们测试下!看看内存能否下来!######回复 @ItBoyWEI : 。。 b到A取 ,根本不需要死循环######我们会让线程执行sleep方法######A放慢一点 B读快一点 不就ok了 ######A的速度没法放慢!###### 现在不停的往A中放对象 -- 谁不停放进去? 目前就是20个线程仍然不能处理过来 -- 你怎么知道处理不过来? cpu消耗在哪?队列有多长?20个线程平均每s能处理多少,减少线程或增加线程吞吐量会有变化么?多少个cpu,多少核,多少内存? -- 你什么统计数据都没有? 只是简单描述了现象而已,没有任何指导意义,都是白搭。 ######回复 @ItBoyWEI : 测试一下吞吐量是多少。如果吞吐量较大,尝试加大阻塞队列长度试试。 你用个无限队列,通常都是塞得比处理的快,内存岂不是越来越多,这不是很合理哦。######回复 @优雅先生 : 基本每次往服务器上发送请求都会进行添加操作!######回复 @ItBoyWEI : 确实。另外不停地往A中放对象,放的频率是多少呢?######因为目前我们做压力测试,就是由于不停的往A队列中添加数据。然后通过while循环再将A队列中的数据放到B队列中,20个线程去处理B队列。由于处理不过来,导致内存偏大。A用的是ConcurrentLinkedQueue,B用的是BlockingQueue,B限制的是50.######不知道是哪种语言,不过如果是golang,原生的channel就可以轻松解决######Java实现的######在多线程的问题处理上,可根据需要挂起程序,当承载量过大的时候也可通过延时处理的方式减缓cpu的压力######应为系统是实时的。所以无法挂起程序###### 处理对象是计算密集型吗,如果是的话,创建过多的线程并不会带来性能的提示,反而会下降。 b队列应该是一个blockingQueue吧 ######是的!######处理不过来是什么意思,处理不过来会造成什么影响?######回复 @ItBoyWEI : 那问题就出在那个无限制的队列,向里面投递过快才会导致内存过大,因为来不及处理。你要控制外部投递。 当然如果是因为你20个线程同时处理导致内存过大,那就要考虑设计问题。(比如不开20个线程就会处理过慢,而开了20个线程则内存占用过大)######导致内存过大!但是这些数据还是必须要处理的!######可否 直接 处理 A 队列 中 的 对象 么?  为什么 要把 对象从 A 队列 移入 B 队列 ?

kun坤 2020-06-07 13:46:51 0 浏览量 回答数 0

回答

燃财经(ID:rancaijing)原创 作者 | 唐亚华 编辑 | 魏佳 春节临近,一年一度人口大迁移又要来临。 虽然12306近日已经宣称屏蔽了部分抢票软件,并推出官方候补功能,但市面上提供抢票服务的仍然有智行火车票、 高铁管家、携程、美团、飞猪、同程艺龙等60多个软件。 不过,多名用户反馈称“这届抢票软件不行”,即便用了加速包、买了VIP会员还是抢不到票。技术专家告诉燃财经,从原理上来说,抢票软件只是将用户手动购买车票的链路照搬,用机器来操作,利用企业带宽和机器速度来当“代购”。购买了加速包或VIP的不同之处在于,刷新的频率可能会从30秒一次变成10秒一次或5秒一次,或者多个服务器同时抢票。但是,能不能抢到票仍然是概率问题。 即便如此,仍有众多抢票软件在加速包、VIP会员、优先出票权、安心抢等名目上“动脑筋”,燃财经测试发现,如果要一步一步升级到“抢票顶配”,在携程上需要花费138元,在美团上需要花费80元。这也让不少人诟病抢票软件有捆绑、诱导消费之嫌。 事实上,抢票难的根源在于春节这样短期的大规模迁徙带来的巨大需求缺口难以满足,消费者能做的就是谨慎选择、找准时机、注意捡漏及多种方式搭配。在巨大的需求之下,抢票软件和其商机也将长期存在,但套路不是长久之计,真正为用户提供价值才能让人继续买单。 抢票是一门玄学 自2019年12月12日进入春运以来,“我在XX抢票,快来帮我加速。皮皮虾,我们抢”、“为我回家助把力”、“你不点我不点,小X回家有危险”的文案又开始出现在各大微信群,为抢票助力和“砍一刀”都成了大家考验人缘的方式。 尽管不久前12306对外表示已经屏蔽了多个抢票软件,但燃财经了解到,智行火车票、高铁管家、携程、美团、飞猪、去哪儿、同城艺龙等60多家平台仍然推出了抢票功能。 不过,这一次,用户的反馈不同以往,结合论坛中网友的反馈和燃财经的采访情况,大家普遍反映“这届抢票软件不行”,即便用了加速包、买了VIP会员还是抢不到票,这也引发了大家对于春运抢票加速包是“真有用”还是“智商税”的讨论。 用户小黎告诉燃财经,他在智行火车票上预约了春节回家的火车票,放票时间一到,抢票软件一直显示“抢票中”但并没有成功。心急之下,他自己登上12306官网,发现显示还有余票,很顺利就买上了。“我怀疑不买加速包,抢票软件是不是根本就不给抢。” 另一位用户张宇在智行火车票、携程、美团都提交了抢票订单并购买了40元极速抢票服务,连续抢了三天仍然没有抢到北京到日照的车票。她表示,前几年用抢票软件都能挺顺利抢到,这一次有点失望。 “这两天我用飞猪抢票,加了30元手续费。从放票开始,我就一直守在手机、电脑前。结果飞猪软件里一直显示无票。我又去贴吧看,发现有人在12306官网买到票了,但飞猪还是显示无票。花了30元的VIP手续费,自始至终没看见显示有票,还不如免费抢票软件。”某网友感叹。 抢票软件套路多 尽管抢票软件的效果不能保证,但套路还不少。 燃财经体验了智行火车票、携程、美团、飞猪等平台的抢票后发现,各大平台的抢票方式大同小异,总体感受是不用加速包、不买VIP基本抢不到票,但买了也不承诺能抢到。因为各平台的规则不透明,没有一家承诺100%抢到票,只会提供预估成功率,而这个成功率到底是70%还是98%,在用户端感知不到差异。 总结来看,抢票软件大致有以下几种套路。 首先是用不明显的字体颜色诱使用户购买“加速包”或VIP会员。如下图携程和美团的购票页面上,要购买加速包的“极速购票”用红色字体,不用加钱的“低速抢票”则是不明显的浅灰色字体,不仔细看的用户有可能不小心勾选付费极速抢票的选项。燃财经在测试时,就差点没找到免费的抢票选项。 另外,在文案上制造焦虑也是常见的方式。“低速抢票难度很高,很可能失败”、“低速度抢票成功率52.2%,极速抢票成功率68.86”、“52%的加速用户选择光速抢票”等提示,很容易给用户制造出一种不用加速包、不花钱就抢不到票的焦虑。 第三,平台会不断提醒用户升级加速包,用上了抢票软件就开始一步一步走入它们的套路中。 抢票软件的抢票速度分为低速、快速、高速、极速、光速、VIP,如果你先选择了低速的免费抢票,系统会显示“邀请好友来助力,最高升至光速抢票”,此时,邀请好友点击助力、看广告就是平台的用意。 而当票没抢到时,页面上会有多个提示你升级的选项,燃财经尝试在各平台上都选择了40元极速抢票,本以为高枕无忧了,没想到这才是个开始。如携程还设置了“优先出票特权:发现余票将优先为你出票,10元/人”、“开通超级会员,免费升级VIP抢票,88元/年”,燃财经计算发现,如果直接开通超级会员需要88元,而一步一步升级到抢票顶配,预计需要加138元。 在美团上选择了40元极速抢票后,系统提醒还差10分加速包升至光速抢票,成功率59%,10元/人,VIP抢票成功率61%,30元/人,想升级到顶配需要80元。智行火车票显示从低速到中速、快速、高速、极速、VIP分别需要10元、20元、30元、40元、50元。 另外,去哪儿旅行上还有“安心抢”、“请朋友帮我挂机”、“购买抢票年卡,72元享3次VIP抢票”等选项,而邀请朋友助力时,软件会获取用户的位置、手机号等信息。 最后,尽管有一些抢票软件承诺抢不到票全额退款,但抢票软件会提示用户勾选更多车次、更多时间、跨站抢票以提升抢票成功概率,最终用户买到的并不是“最优选”,但也无法退费。 以上这些套路也是用户吐槽投诉的重灾区。黑猫投诉上有152条关于抢票软件的投诉,例如“智行火车票二次收费”、“同城艺龙购票98%的成功率却抢不到票”、“高铁管家强制套餐消费”等,多是抢票软件诱导消费、退费难的问题。 众多抢票软件的存在,事实上提高了所有人的抢票门槛。这些五花八门的加速选项,增加消费者的筛选成本,抢到了是运气,抢不到只好自认倒霉。 另外,不少APP存在个人信息泄露的风险。抢票软件作为一个工具类插件,技术开发上的门槛较低,用户输入12306的网站用户名、密码等个人信息被传到平台服务器后,如果安全保护性太低,个人信息很容易被泄露。 抢票软件等于外挂 能不能抢到是概率 抢票软件的加速包真的有效果吗,背后的技术原理又是什么呢? 径点科技首席架构师张英辉告诉燃财经:“我们去12306买票的时候要输入信息、查询、购买,所有的抢票软件都是基于同一种原理,将这些手动操作的步骤用程序来实现,然后不停重试。在用户手速和刷票频率的局限下,第三方抢票平台利用机器刷票、全自动化处理有其优势。” 他还提到,购买了加速包或VIP的不同之处在于,刷新的频率可能会从30秒一次变成10秒一次或5秒一次,或者多个服务器同时抢票。因为消费者大多使用的是普通4G以及20M光纤宽带,跟平台使用的企业级宽带的网速自然是不能相比的,在这个拼速度的模式里,抢票软件集合了企业宽带和机器速度的“代购”,就相当于打游戏的时候加了外挂。 整体来看,刷得越勤,用的服务器越多,抢中票的概率越大,但在实际操作中能不能刷中,可能要看那一秒的时间窗口。“因为市面上有60多个刷票软件,某一趟车从一个站到另外一个站的余票情况随时都在变,这种情况下,谁能刷中不一定,取决于刚好出票这一秒哪个软件在刷。”张英辉强调,抢票软件并不能增加车票,12306系统上没票的时候,再多的加速包都没用。 这个过程中还有12306和抢票软件之间的攻防博弈战。 张英辉指出,从技术上来说,12306后台能检测出刷票软件,如果刷票带来的负担超过网站的负荷,后台通常会限制这样的账号,同一IP地址刷票过于频繁或同一购买请求提交过于频繁,都有可能被拖入慢速或被屏蔽掉。但至于具体是什么限流规则,是由12306来制定、调整和实施。 当然,被屏蔽后的刷票软件可能会通过更换IP地址、使用多台服务器轮流操作等方式规避检测。刷票软件也在持续研究怎样绕过官方规则,双方在不停地博弈。所以用户用抢票软件没买到票,可能是因为没刷到,也可能是刷票软件被屏蔽了。 中国铁道科学研究院12306技术部主任单杏花在2019年接受媒体采访时表示,12306已经对第三方抢票软件的相关特征进行识别并实施了流量拦截,即使用户花钱购买了第三方抢票平台的加速服务,购票的成功率也会大打折扣。另外,12306已经推出了“官方抢票”的候补功能,如果遇到有旅客退签返回的车票,或者是铁路方面根据列车能力情况加挂而增加的车票,就可以优先配给已经排队等候的人。 “刷票软件本身的技术难度不大,市面上甚至有很多免费刷票程序或源代码,稍微懂点的人自己都能安装刷票,但要想把刷票功能做得强大很难。要支持大量用户的需求,又要避开12306的监管,可能就需要投入更多的服务器、人力。说白了,给一个人低速刷票很容易,给100万人快速刷票就会变得复杂。”另一位技术人士李元表示。 从理论上说,平台需要投入设备、人力,完成抢票工作后,收取额外的资源占用费是合理的。张英辉认为,问题在于抢票软件在提高概率的同时也提高了买票者的心理预期,一些花了钱没有达到目的的人就会有负面反馈。用户期望交了钱就买到票,但这明显是个概率模式,必然会出现有的刷得到、有的没刷到的情况。 抢票难题和抢票软件将长期存在 经常有人说,微信几亿人同时在用,双11的时候淘宝那么大的流量都能正常运转,12306为啥连个买票软件都做不好? 张英辉解释,12306的业务逻辑要远远比微信和淘宝复杂得多,比如一辆列车经过,中间是十几个站,不停地有人下有人上,还有人换乘,之间有几百种可能性,系统库存随时在变。如果微信有一条消息没发出去或者发了两次是小事,但一张票如果卖给了两个人,这是重大失误。 另外,12306的库存变化又受到网站、APP、售票厅、自动售票机等多方的实时变动影响,用户需求又有时间、车次、地点的无数种排列组合情况,且整个路程在短时间内就要完成,还要验证用户身份以排除同一车次同一人的重复购买,市面上的众多抢票软件还增加了12306的数据压力,系统无论从技术的完整性和资源调度上都远远比微信和淘宝的业务复杂得多。 他还指出,12306最开始采购的应用可能能够支撑平时1亿人访问,但是到了春节期间,有几亿人同时访问,后台需要采购的设备也不是一时就能实现的,购买、部署、调试等整个周期环节就很长,但春节以后又没有那么大的流量了,硬件折旧损耗,人力维护成本都会浪费,所以12306如果只是为了春运和几个大的节假日去加技术和硬件,实际上也是不可行的。 说到底,铁路总运力是一定的,春运这个非常态的需求是极其巨大的,抢票软件并不能增加供给,也不会提高整体买到票的概率,抢票难的根本原因是供求关系不平衡。 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答 阿里云开发者社区

茶什i 2020-01-08 11:53:49 0 浏览量 回答数 0

回答

Linux这么多命令,通常会让初学者望而生畏。下面是我结合日常工作,以及在公司的内部培训中,针对对Linux不是很熟悉的同学,精选的一批必须要搞懂的命令集合。 任何一个命令其实都是可以深入的,比如tail -f和tail -F的区别。我们不去关心,只使用最常见的示例来说明。本文不会教你具体的用法,那是抢man命令的饭碗。这只是个引导篇,力求简洁。 学习方式:多敲多打,用条件反射替代大脑记忆—如果你将来或者现在要用它来吃饭的话。其中,也有一些难啃的骨头,关注小姐姐味道微信公众号,我们一起用锋利的牙齿,来把它嚼碎。 内容: ✔ 目录操作 ✔ 文本处理 ✔ 压缩 ✔ 日常运维 ✔ 系统状态概览 ✔ 工作常用 目录操作 工作中,最常打交道的就是对目录和文件的操作。linux提供了相应的命令去操作他,并将这些命令抽象、缩写。 基本操作 可能是这些命令太常用了,多打一个字符都是罪过。所以它们都很短,不用阿拉伯数字,一个剪刀手就能数过来。 看命令。 mkdir 创建目录 make dir cp 拷贝文件 copy mv 移动文件 move rm 删除文件 remove 例子: # 创建目录和父目录a,b,c,d mkdir -p a/b/c/d # 拷贝文件夹a到/tmp目录 cp -rvf a/ /tmp/ # 移动文件a到/tmp目录,并重命名为b mv -vf a /tmp/b # 删除机器上的所有文件 rm -rvf / 漫游 linux上是黑漆漆的命令行,依然要面临人生三问:我是谁?我在哪?我要去何方? ls 命令能够看到当前目录的所有内容。ls -l能够看到更多信息,判断你是谁。 pwd 命令能够看到当前终端所在的目录。告诉你你在哪。 cd 假如你去错了地方,cd命令能够切换到对的目录。 find find命令通过筛选一些条件,能够找到已经被遗忘的文件。 至于要去何方,可能就是主宰者的意志了。 文本处理 这是是非常非常加分的技能。get到之后,也能节省更多时间来研究面向对象。 查看文件 cat 最常用的就是cat命令了,注意,如果文件很大的话,cat命令的输出结果会疯狂在终端上输出,可以多次按ctrl+c终止。 # 查看文件大小 du -h file # 查看文件内容 cat file less 既然cat有这个问题,针对比较大的文件,我们就可以使用less命令打开某个文件。 类似vim,less可以在输入/后进入查找模式,然后按n(N)向下(上)查找。 有许多操作,都和vim类似,你可以类比看下。 tail 大多数做服务端开发的同学,都了解这么命令。比如,查看nginx的滚动日志。 tail -f access.log tail命令可以静态的查看某个文件的最后n行,与之对应的,head命令查看文件头n行。但head没有滚动功能,就像尾巴是往外长的,不会反着往里长。 tail -n100 access.log head -n100 access.log 统计 sort和uniq经常配对使用。 sort可以使用-t指定分隔符,使用-k指定要排序的列。 下面这个命令输出nginx日志的ip和每个ip的pv,pv最高的前10 #2019-06-26T10:01:57+08:00|nginx001.server.ops.pro.dc|100.116.222.80|10.31.150.232:41021|0.014|0.011|0.000|200|200|273|-|/visit|sign=91CD1988CE8B313B8A0454A4BBE930DF|-|-|http|POST|112.4.238.213 awk -F"|" '{print $3}' access.log | sort | uniq -c | sort -nk1 -r | head -n10 其他 grep grep用来对内容进行过滤,带上--color参数,可以在支持的终端可以打印彩色,参数n则输出具体的行数,用来快速定位。 比如:查看nginx日志中的POST请求。 grep -rn --color POST access.log 推荐每次都使用这样的参数。 如果我想要看某个异常前后相关的内容,就可以使用ABC参数。它们是几个单词的缩写,经常被使用。 A after 内容后n行 B before 内容前n行 C count? 内容前后n行 就像是这样: grep -rn --color Exception -A10 -B2 error.log diff diff命令用来比较两个文件是否的差异。当然,在ide中都提供了这个功能,diff只是命令行下的原始折衷。对了,diff和patch还是一些平台源码的打补丁方式,你要是不用,就pass吧。 压缩 为了减小传输文件的大小,一般都开启压缩。linux下常见的压缩文件有tar、bzip2、zip、rar等,7z这种用的相对较少。 .tar 使用tar命令压缩或解压 .bz2 使用bzip2命令操作 .gz 使用gzip命令操作 .zip 使用unzip命令解压 .rar 使用unrar命令解压 最常用的就是.tar.gz文件格式了。其实是经过了tar打包后,再使用gzip压缩。 创建压缩文件 tar cvfz archive.tar.gz dir/ 解压 tar xvfz. archive.tar.gz 日常运维 开机是按一下启动按钮,关机总不至于是长按启动按钮吧。对了,是shutdown命令,不过一般也没权限-.-!。passwd命令可以用来修改密码,这个权限还是可以有的。 mount mount命令可以挂在一些外接设备,比如u盘,比如iso,比如刚申请的ssd。可以放心的看小电影了。 mount /dev/sdb1 /xiaodianying chown chown 用来改变文件的所属用户和所属组。 chmod 用来改变文件的访问权限。 这两个命令,都和linux的文件权限777有关。 示例: # 毁灭性的命令 chmod 000 -R / # 修改a目录的用户和组为 xjj chown -R xjj:xjj a # 给a.sh文件增加执行权限(这个太常用了) chmod a+x a.sh yum 假定你用的是centos,则包管理工具就是yum。如果你的系统没有wget命令,就可以使用如下命令进行安装。 yum install wget -y systemctl 当然,centos管理后台服务也有一些套路。service命令就是。systemctl兼容了service命令,我们看一下怎么重启mysql服务。 推荐用下面这个。 service mysql restart systemctl restart mysqld 对于普通的进程,就要使用kill命令进行更加详细的控制了。kill命令有很多信号,如果你在用kill -9,你一定想要了解kill -15以及kill -3的区别和用途。 su su用来切换用户。比如你现在是root,想要用xjj用户做一些勾当,就可以使用su切换。 su xjj su - xjj -可以让你干净纯洁的降临另一个账号,不出意外,推荐。 系统状态概览 登陆一台linux机器,有些命令能够帮助你快速找到问题。这些命令涵盖内存、cpu、网络、io、磁盘等。 uname uname命令可以输出当前的内核信息,让你了解到用的是什么机器。 uname -a ps ps命令能够看到进程/线程状态。和top有些内容重叠,常用。 找到java进程 ps -ef|grep java top 系统状态一览,主要查看。cpu load负载、cpu占用率。使用内存或者cpu最高的一些进程。下面这个命令可以查看某个进程中的线程状态。 top -H -p pid free top也能看内存,但不友好,free是专门用来查看内存的。包括物理内存和虚拟内存swap。 df df命令用来查看系统中磁盘的使用量,用来查看磁盘是否已经到达上限。参数h可以以友好的方式进行展示。 df -h ifconfig 查看ip地址,不啰嗦,替代品是ip addr命令。 ping 至于网络通不通,可以使用ping来探测。(不包括那些禁ping的网站) netstat 虽然ss命令可以替代netstat了,但现实中netstat仍然用的更广泛一些。比如,查看当前的所有tcp连接。 netstat -ant 此命令,在找一些本地起了什么端口之类的问题上,作用很大。 工作常用 还有一些在工作中经常会用到的命令,它们的出现频率是非常高的 ,都是些熟面孔。 export 很多安装了jdk的同学找不到java命令,export就可以帮你办到它。export用来设定一些环境变量,env命令能看到当前系统中所有的环境变量。比如,下面设置的就是jdk的。 export PATH=$PATH:/home/xjj/jdk/bin 有时候,你想要知道所执行命令的具体路径。那么就可以使用whereis命令,我是假定了你装了多个版本的jdk。 crontab 这就是linux本地的job工具。不是分布式的,你要不是运维,就不要用了。比如,每10分钟提醒喝茶上厕所。 */10 * * * * /home/xjj/wc10min date date命令用来输出当前的系统时间,可以使用-s参数指定输出格式。但设置时间涉及到设置硬件,所以有另外一个命令叫做hwclock。 xargs xargs读取输入源,然后逐行处理。这个命令非常有用。举个栗子,删除目录中的所有class文件。 find . | grep .class$ | xargs rm -rvf #把所有的rmvb文件拷贝到目录 ls *.rmvb | xargs -n1 -i cp {} /mount/xiaodianying 网络 linux是一个多作业的网络操作系统,所以网络命令有很多很多。工作中,最常和这些打交道。 ssh 这个,就不啰嗦了。你一定希望了解ssh隧道是什么。你要是想要详细的输出过程,记得加参数-v。 scp scp用来进行文件传输。也可以用来传输目录。也有更高级的sftp命令。 scp a.txt 192.168.0.12:/tmp/a.txt scp -r a_dir 192.168.0.12:/tmp/ wget 你想要在服务器上安装jdk,不会先在本地下载下来,然后使用scp传到服务器上吧(有时候不得不这样)。wget命令可以让你直接使用命令行下载文件,并支持断点续传。 wget -c http://oracle.fuck/jdk2019.bin mysql mysql应用广泛,并不是每个人都有条件用上navicat的。你需要了解mysql的连接方式和基本的操作,在异常情况下才能游刃有余。 mysql -u root -p -h 192.168.1.2

问问小秘 2020-04-01 10:52:50 0 浏览量 回答数 0

回答

面试官心理分析 这个问题是肯定要问的,说白了,就是看你有没有实际干过 es,因为啥?其实 es 性能并没有你想象中那么好的。很多时候数据量大了,特别是有几亿条数据的时候,可能你会懵逼的发现,跑个搜索怎么一下 5~10s,坑爹了。第一次搜索的时候,是 5~10s,后面反而就快了,可能就几百毫秒。 你就很懵,每个用户第一次访问都会比较慢,比较卡么?所以你要是没玩儿过 es,或者就是自己玩玩儿 demo,被问到这个问题容易懵逼,显示出你对 es 确实玩儿的不怎么样? 面试题剖析 说实话,es 性能优化是没有什么银弹的,啥意思呢?就是不要期待着随手调一个参数,就可以万能的应对所有的性能慢的场景。也许有的场景是你换个参数,或者调整一下语法,就可以搞定,但是绝对不是所有场景都可以这样。 性能优化的杀手锏——filesystem cache 你往 es 里写的数据,实际上都写到磁盘文件里去了,查询的时候,操作系统会将磁盘文件里的数据自动缓存到 filesystem cache 里面去。 es 的搜索引擎严重依赖于底层的 filesystem cache,你如果给 filesystem cache 更多的内存,尽量让内存可以容纳所有的 idx segment file 索引数据文件,那么你搜索的时候就基本都是走内存的,性能会非常高。 性能差距究竟可以有多大?我们之前很多的测试和压测,如果走磁盘一般肯定上秒,搜索性能绝对是秒级别的,1秒、5秒、10秒。但如果是走 filesystem cache,是走纯内存的,那么一般来说性能比走磁盘要高一个数量级,基本上就是毫秒级的,从几毫秒到几百毫秒不等。 这里有个真实的案例。某个公司 es 节点有 3 台机器,每台机器看起来内存很多,64G,总内存就是 64 * 3 = 192G。每台机器给 es jvm heap 是 32G,那么剩下来留给 filesystem cache 的就是每台机器才 32G,总共集群里给 filesystem cache 的就是 32 * 3 = 96G 内存。而此时,整个磁盘上索引数据文件,在 3 台机器上一共占用了 1T 的磁盘容量,es 数据量是 1T,那么每台机器的数据量是 300G。这样性能好吗? filesystem cache 的内存才 100G,十分之一的数据可以放内存,其他的都在磁盘,然后你执行搜索操作,大部分操作都是走磁盘,性能肯定差。 归根结底,你要让 es 性能要好,最佳的情况下,就是你的机器的内存,至少可以容纳你的总数据量的一半。 根据我们自己的生产环境实践经验,最佳的情况下,是仅仅在 es 中就存少量的数据,就是你要用来搜索的那些索引,如果内存留给 filesystem cache 的是 100G,那么你就将索引数据控制在 100G 以内,这样的话,你的数据几乎全部走内存来搜索,性能非常之高,一般可以在 1 秒以内。 比如说你现在有一行数据。id,name,age .... 30 个字段。但是你现在搜索,只需要根据 id,name,age 三个字段来搜索。如果你傻乎乎往 es 里写入一行数据所有的字段,就会导致说 90% 的数据是不用来搜索的,结果硬是占据了 es 机器上的 filesystem cache 的空间,单条数据的数据量越大,就会导致 filesystem cahce 能缓存的数据就越少。其实,仅仅写入 es 中要用来检索的少数几个字段就可以了,比如说就写入 es id,name,age 三个字段,然后你可以把其他的字段数据存在 mysql/hbase 里,我们一般是建议用 es + hbase 这么一个架构。 hbase 的特点是适用于海量数据的在线存储,就是对 hbase 可以写入海量数据,但是不要做复杂的搜索,做很简单的一些根据 id 或者范围进行查询的这么一个操作就可以了。从 es 中根据 name 和 age 去搜索,拿到的结果可能就 20 个 doc id,然后根据 doc id 到 hbase 里去查询每个 doc id 对应的完整的数据,给查出来,再返回给前端。 写入 es 的数据最好小于等于,或者是略微大于 es 的 filesystem cache 的内存容量。然后你从 es 检索可能就花费 20ms,然后再根据 es 返回的 id 去 hbase 里查询,查 20 条数据,可能也就耗费个 30ms,可能你原来那么玩儿,1T 数据都放 es,会每次查询都是 5~10s,现在可能性能就会很高,每次查询就是 50ms。 数据预热 假如说,哪怕是你就按照上述的方案去做了,es 集群中每个机器写入的数据量还是超过了 filesystem cache 一倍,比如说你写入一台机器 60G 数据,结果 filesystem cache 就 30G,还是有 30G 数据留在了磁盘上。 其实可以做数据预热。 举个例子,拿微博来说,你可以把一些大V,平时看的人很多的数据,你自己提前后台搞个系统,每隔一会儿,自己的后台系统去搜索一下热数据,刷到 filesystem cache 里去,后面用户实际上来看这个热数据的时候,他们就是直接从内存里搜索了,很快。 或者是电商,你可以将平时查看最多的一些商品,比如说 iphone 8,热数据提前后台搞个程序,每隔 1 分钟自己主动访问一次,刷到 filesystem cache 里去。 对于那些你觉得比较热的、经常会有人访问的数据,最好做一个专门的缓存预热子系统,就是对热数据每隔一段时间,就提前访问一下,让数据进入 filesystem cache 里面去。这样下次别人访问的时候,性能一定会好很多。 冷热分离 es 可以做类似于 mysql 的水平拆分,就是说将大量的访问很少、频率很低的数据,单独写一个索引,然后将访问很频繁的热数据单独写一个索引。最好是将冷数据写入一个索引中,然后热数据写入另外一个索引中,这样可以确保热数据在被预热之后,尽量都让他们留在 filesystem os cache 里,别让冷数据给冲刷掉。 你看,假设你有 6 台机器,2 个索引,一个放冷数据,一个放热数据,每个索引 3 个 shard。3 台机器放热数据 index,另外 3 台机器放冷数据 index。然后这样的话,你大量的时间是在访问热数据 index,热数据可能就占总数据量的 10%,此时数据量很少,几乎全都保留在 filesystem cache 里面了,就可以确保热数据的访问性能是很高的。但是对于冷数据而言,是在别的 index 里的,跟热数据 index 不在相同的机器上,大家互相之间都没什么联系了。如果有人访问冷数据,可能大量数据是在磁盘上的,此时性能差点,就 10% 的人去访问冷数据,90% 的人在访问热数据,也无所谓了。 document 模型设计 对于 MySQL,我们经常有一些复杂的关联查询。在 es 里该怎么玩儿,es 里面的复杂的关联查询尽量别用,一旦用了性能一般都不太好。 最好是先在 Java 系统里就完成关联,将关联好的数据直接写入 es 中。搜索的时候,就不需要利用 es 的搜索语法来完成 join 之类的关联搜索了。 document 模型设计是非常重要的,很多操作,不要在搜索的时候才想去执行各种复杂的乱七八糟的操作。es 能支持的操作就那么多,不要考虑用 es 做一些它不好操作的事情。如果真的有那种操作,尽量在 document 模型设计的时候,写入的时候就完成。另外对于一些太复杂的操作,比如 join/nested/parent-child 搜索都要尽量避免,性能都很差的。 分页性能优化 es 的分页是较坑的,为啥呢?举个例子吧,假如你每页是 10 条数据,你现在要查询第 100 页,实际上是会把每个 shard 上存储的前 1000 条数据都查到一个协调节点上,如果你有个 5 个 shard,那么就有 5000 条数据,接着协调节点对这 5000 条数据进行一些合并、处理,再获取到最终第 100 页的 10 条数据。 分布式的,你要查第 100 页的 10 条数据,不可能说从 5 个 shard,每个 shard 就查 2 条数据,最后到协调节点合并成 10 条数据吧?你必须得从每个 shard 都查 1000 条数据过来,然后根据你的需求进行排序、筛选等等操作,最后再次分页,拿到里面第 100 页的数据。你翻页的时候,翻的越深,每个 shard 返回的数据就越多,而且协调节点处理的时间越长,非常坑爹。所以用 es 做分页的时候,你会发现越翻到后面,就越是慢。 我们之前也是遇到过这个问题,用 es 作分页,前几页就几十毫秒,翻到 10 页或者几十页的时候,基本上就要 5~10 秒才能查出来一页数据了。 有什么解决方案吗? 不允许深度分页(默认深度分页性能很差) 跟产品经理说,你系统不允许翻那么深的页,默认翻的越深,性能就越差。 类似于 app 里的推荐商品不断下拉出来一页一页的 类似于微博中,下拉刷微博,刷出来一页一页的,你可以用 scroll api,关于如何使用,自行上网搜索。 scroll 会一次性给你生成所有数据的一个快照,然后每次滑动向后翻页就是通过游标 scroll_id 移动,获取下一页下一页这样子,性能会比上面说的那种分页性能要高很多很多,基本上都是毫秒级的。 但是,唯一的一点就是,这个适合于那种类似微博下拉翻页的,不能随意跳到任何一页的场景。也就是说,你不能先进入第 10 页,然后去第 120 页,然后又回到第 58 页,不能随意乱跳页。所以现在很多产品,都是不允许你随意翻页的,app,也有一些网站,做的就是你只能往下拉,一页一页的翻。 初始化时必须指定 scroll 参数,告诉 es 要保存此次搜索的上下文多长时间。你需要确保用户不会持续不断翻页翻几个小时,否则可能因为超时而失败。 除了用 scroll api,你也可以用 search_after 来做,search_after 的思想是使用前一页的结果来帮助检索下一页的数据,显然,这种方式也不允许你随意翻页,你只能一页页往后翻。初始化时,需要使用一个唯一值的字段作为 sort 字段。 往期回顾: 【Java问答学堂】1期 为什么使用消息队列?消息队列有什么优点和缺点?Kafka、ActiveMQ、RabbitMQ、RocketMQ 都有什么区别,以及适合哪些场景? 【Java问答学堂】2期 如何保证消息队列的高可用? 【Java问答学堂】3期 如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性? 【Java问答学堂】4期 如何保证消息的可靠性传输?(如何处理消息丢失的问题?) 【Java问答学堂】5期 如何保证消息的顺序性? 【Java问答学堂】6期 如何解决消息队列的延时以及过期失效问题? 【Java问答学堂】7期 如果让你写一个消息队列,该如何进行架构设计? 【Java问答学堂】8期 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)? 【Java问答学堂】9期 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊?

剑曼红尘 2020-04-28 14:17:05 0 浏览量 回答数 0

回答

回2楼ivmmff的帖子 工作太忙了 一口气写不完 。。。。。。。。。 在这里写完了 在移动过去 ------------------------- Re网站加速指南-GoogleAnalytics-BrowserInsight-YahooYSlow【连载】 多数站长遇到自己网站自己打开缓慢或者站长群里由人反馈说自己网站打开缓慢,时往往会做3件事情 1:谷歌搜索 网站速度测试工具,然后点击某一个连接看看,网站是不是很慢,或者是不是在全国很快. 2:谷歌搜索 网站慢的原因,然后脑补各种影响网站慢的原因,在自己网站上找一边,看看有没有原因 3:找累了观望一周,再感觉一下,网站到底慢不慢,是换网站安装程序,还是换web服务提供商,还是换cdn. 这网站性能优化与网站加速,就好比看病,得先找到问题出在那,准确定位到问题,对症下药. 不能靠猜测,也不能道听途说,要用工具一步一步的去监测. 一般都是通过3款工具接合使用:GoogleAnalytics-BrowserInsight-YahooYSlow GoogleAnalytics:分析用户在那些域名下或者网页下流失,并 定位是因为打开速度慢而流失,还是因为内容不感兴趣而流失 BrowserInsight:分析用户访问域名和页面pv与加载时间关系,根据 相关指标 定位用户群访问页面慢的原因和页面在那个阶段发生了缓慢 YahooYSlow:对拿到的 缓慢域名和页面进行分析,对拿到的 快的域名和页面进行分析, 对比差别,找到可能影响缓慢的指标 定位网站缓慢的原因:不能靠感觉,不能靠猜,不能靠蒙,也不要轻易换服务商和换应用程序, 流量大了的站点上马cdn也要有完整的实施策略  ,毕竟cdn这么奢侈的工具不是每个站长都玩得起的 ------------------------- Re网站加速指南-GoogleAnalytics-BrowserInsight-YahooYSlow【连载】 我们先看看 GoogleAnalytics 网站速度 做了那些功能 虽然这些功能伴随着谷歌统计推出中国市场和谷歌工具条市场份额的消亡变得没有意义的, 但谷歌强大的技术支撑还是做了很多对网站性能优化非常有用的功能点,BrowserInsight 师从谷歌,虽然在基于爬虫技术的网站建议上还在邯郸学步,暂却将用户计时功能发挥的淋漓尽致,成为GoogleAnalytics 网站速度模块最佳的替代产品 画不多说 上图 首先 基于 爬虫技术的网站测速 看 浏览器维度 国家维度 页面url 影响时间分布 地理分布 网站优化建议 基于谷歌工具条的网站速度测量,因为没有用户在用了,所以 没有数据 ------------------------- Re网站加速指南-GoogleAnalytics-BrowserInsight-YahooYSlow【连载】 收集用户访问页面时候真实的 页面加载速度,以前谷歌是通过 谷歌的浏览器插件做的,现在浏览器插件市场没有了,所以不启用了 BrowserInsight 之所以能通过js在浏览器端收集页面加载速度 相关指标,最重要的原因是浏览器html5接口新增了一个接口window.performance 其中 window.performance.timing   收集的是 页面加载时间相关的指标 例如dns 啊什么的 window.performance.getEntries() 收集的是 页面加载过程中加载了那些资源 当然window.performance 还有其他方法和属性用于用户自定义时间的收集,这些对精准测量页面交互非常有帮助 而且 window.performance.now 提供了更高精度的时间, 这就是为什么以前用浏览器工具条才能做的事情,现在用一行js代码就可以收集了,并不是js代码有多神器,而是浏览器越来越强大了 下面我们来一个一个解读 window.performance.timing 中各个属性是什么意思,代表了网页加载生命周期中的那个阶段,并和 oneapm BI 的指标 对上号 There are many measured events given in milliseconds that can be accessed through thePerformanceTiming interface. The list of events in order of occurrence are: navigationStartunloadEventStartunloadEventEndredirectStartredirectEndfetchStartdomainLookupStartdomainLookupEndconnectStartconnectEndsecureConnectionStartrequestStartresponseStartresponseEnddomLoadingdomInteractivedomContentLoadedEventStartdomContentLoadedEventEnddomCompleteloadEventStartloadEventEnd 官方解读 https://developer.mozilla.org/en-US/docs/Web/API/Navigation_timing_API [font=Consolas, 'Lucida Console', monospace] ------------------------- Re网站加速指南-GoogleAnalytics-BrowserInsight-YahooYSlow【连载】 这里的指标虽然由很多,但是重要的也就那么几个,其他的一般人都用不到 第一个指标 dns  例如你用了cdn网站加速而且是全站加速,那么你的页面载入也是cdn加速的,而cdn加速原理是dns动态解析,从而寻找距离用户最新的cdn节点,                                  那么,dns的耗时就表明了cdn 在智能解析这个环节是否稳定,看各个区域和运营商的dns解析耗时也可以看一个cdn提供商在某个区域是否稳定                      dns=window.performance.timing.domainLookupEnd-window.performance.timing.domainLookupStart                     如果dns 为0 则说明dns已经被客户端浏览器缓存起来了 第二个指标 tcp   这个是和你服务器连接耗时的性能指标,是最基本的网络可用性指标,如果tcp 耗时时间很长,那么后面的资源加载耗时更长                   tcp=  window.performance.timing.connectEnd-window.performance.timing.connectStart            如果tcp为0 则说明浏览器对tcp进行了复用 第三个指标 网页加载完成,也就是网页结构接在完成,这是一个非常重要的指标,因为很多js脚本的执行,例如给这个按奶绑定一个点击事件,一般都是在这个时候绑定了                     如果网页加载的很慢,导致页面加载完成的也很慢,则会出现点击页面上的按钮美柚反应,出去喝杯茶,点击又有反应了                     window.performance.timing.domContentLoadedEventStart-window.performance.timing.navigationStart 第3个指标   资源加载完成,这是页面上大多数资源加载完成的事件,用cdn加速,多数也是维拉对资源加载完成这个事件进行加速,减小资源加载的耗时,因为图片什么的加载慢了,影响很不好 BrowserInsight 会收集全部访客的window.performance.timing 信息,接合这几个指标可以及时发现网页加载存在的问题,从而采取相关措施 [font='dejavu sans mono', monospace] ------------------------- Re网站加速指南-GoogleAnalytics-BrowserInsight-YahooYSlow【连载】 基于真实用户的访问的性能数据的统计与分析是这类监控的亮点 因为 包含了大量的域名和url 信息 这些都是业务信息 同时页面加载时间 由快慢,当采集了大量的用户数据 响应时间分布是非常重要的,这可以看我们用户主要集中在那个时间段 ------------------------- Re网站加速指南-GoogleAnalytics-BrowserInsight-YahooYSlow【连载】 目前,很少由监控软件嫩采集成千上万次用户的访问信息 然后进行统计分析 对于1个每天访问量在10万pv左右的站点来讲,传统的基于谷歌爬虫的性能分析手段1分钟到底是频率太低还是太高? 很有可能这1分钟就是这个网站今天流量的最高峰,但是,却错过了, 因为基于爬虫的监控手段,会对网站造成额外的压力,而且一般很少见能够选择1万url 进行拨测的, 这点谷歌统计和oneapm 都做的非常好的,采集每次访问信息,在子集的服务器上做分析,对网站服务器和客户端的用户毫无影响 ,可惜 谷歌在墙外.............................................................. ------------------------- Re网站加速指南-GoogleAnalytics-BrowserInsight-YahooYSlow【连载】 现在我们已经可以定位  一些页面加载慢 发生的url 慢的原因由4中可能 1 页面结构不合理,导致页面加载慢 2 某些区域线路不好,导致页面加载慢 3 用户浏览器性能低下,导致页面加载慢 4 用户自身网络查导致,导致页面加载慢 对于这4点 都需要进行检查和判断 ------------------------- Re网站加速指南-GoogleAnalytics-BrowserInsight-YahooYSlow【连载】 页面 结构不合理  一般用页面静态分析工具做检查 Yslow 这个工具相信无论是搞前端的攻城师或者是搞网站的站长都了解,Yslow 可比谷歌的PageSpeed 有名多了;那个百分制下的评分数据总让国人着迷,看来应试教育造的孽太深了。Jeff 认为的话,Yslow 比较专业,但是因为是英文的,所以在个人分析结果上对某些人比较吃力,建议先使用PageSpeed Insights熟悉熟悉。 YSlow (解析为 why slow)是雅虎基于网站优化规则推出的工具,帮助你分析并优化网站性能。雅虎网站优化规则在十几个方面给你的网站提出优化建议,包括尽可能的减少 HTTP 的请求数 、使用 Gzip 压缩、将 CSS 样式放在页面的上方、将脚本移动到底部、减少 DNS 查询等十几条规则,YSlow 会根据这些规则分析你的网站,并给出评级。 园友文章 http://www.cnblogs.com/suchen1314/archive/2012/03/15/2398577.html 例如阿里云 首页 ------------------------- 区域性有问题 一 那个区域 有问题 是国家级别 省份级别 还是城市 级别 一般用 oneapm ------------------------- 不同网络类型下页面的表现 ------------------------- 还有不同的业务(url),看看页面加载时间的分布,看看页面是否由问题 ------------------------- 剩下的就吃一边修改影响页面性能的各个项目一边持续观测,看性能趋势和加载时间分布,不断优化整站加载时间【完结】

互联网fans 2019-12-02 00:09:52 0 浏览量 回答数 0

问题

【Java问答学堂】10期 es 在数据量很大的情况下(数十亿级别)如何提高查询效率啊?

剑曼红尘 2020-04-28 14:16:56 0 浏览量 回答数 1

问题

10天学会SEO:第二天SEO基础知识(二)

野狼seo团队 2019-12-01 21:58:14 8728 浏览量 回答数 7

回答

mysql的聚簇索引是指innodb引擎的特性,mysiam并没有,如果需要该索引,只要将索引指定为主键(primary key)就可以了。比如:create table blog_user( user_Name char(15) not null check(user_Name !=''), user_Password char(15) not null, user_emial varchar(20) not null unique, primary key(user_Name) )engine=innodb default charset=utf8 auto_increment=1;其中的 primary key(user_Name) 这个就是聚簇索引索引了;聚簇索引的叶节点就是数据节点,而非聚簇索引的叶节点仍然是索引节点,并保留一个链接指向对应数据块。聚簇索引主键的插入速度要比非聚簇索引主键的插入速度慢很多。相比之下,聚簇索引适合排序,非聚簇索引(也叫二级索引)不适合用在排序的场合。因为聚簇索引本身已经是按照物理顺序放置的,排序很快。非聚簇索引则没有按序存放,需要额外消耗资源来排序。当你需要取出一定范围内的数据时,用聚簇索引也比用非聚簇索引好。另外,二级索引需要两次索引查找,而不是一次才能取到数据,因为存储引擎第一次需要通过二级索引找到索引的叶子节点,从而找到数据的主键,然后在聚簇索引中用主键再次查找索引,再找到数据。innodb索引分类:聚簇索引(clustered index)    1)  有主键时,根据主键创建聚簇索引    2)  没有主键时,会用一个唯一且不为空的索引列做为主键,成为此表的聚簇索引    3) 如果以上两个都不满足那innodb自己创建一个虚拟的聚集索引辅助索引(secondary index)   非聚簇索引都是辅助索引,像复合索引、前缀索引、唯一索引 myisam索引:因为myisam的索引和数据是分开存储存储的,myisam通过key_buffer把索引先缓存到内存中,当需要访问数据时(通过索引访问数据),在内存中直接搜索                         索引,然后通过索引找到磁盘相应数据,这也就是为什么索引不在key buffer命中时,速度慢的原因     innodb索引:innodb的数据和索引放在一起,当找到索引也就找到了数据 自适应哈希索引:innodb会监控表上的索引使用情况,如果观察到建立哈希索引可以带来速度的提升,那就建立哈希索引,自 适应哈希索引通过缓冲池的B+树构造而来,                               因此建立的速度很快,不需要将整个表都建哈希索引,InnoDB 存储引擎会自动根据访问的频率和模式来为某些页建立哈希索引。自适应哈希索引不需要                               存储磁盘的,当停库内容会丢失,数据库起来会自己创建,慢慢维护索引。     聚簇索引:MySQL InnoDB一定会建立聚簇索引,把实际数据行和相关的键值保存在一块,这也决定了一个表只能有一个聚簇索引,即MySQL不会一次把数据行保存在二个地方。     1)  InnoDB通常根据主键值(primary key)进行聚簇     2) 如果没有创建主键,则会用一个唯一且不为空的索引列做为主键,成为此表的聚簇索引     3) 上面二个条件都不满足,InnoDB会自己创建一个虚拟的聚集索引 优点:聚簇索引的优点,就是提高数据访问性能。聚簇索引把索引和数据都保存到同一棵B+树数据结构中,并且同时将索引列与相关数据行保存在一起。这意味着,当你访问同一数据页不同行记录时,已经把页加载到了Buffer中,再次访问的时候,会在内存中完成访问,不必访问磁盘。不同于MyISAM引擎,它将索引和数据没有放在一块,放在不同的物理文件中,索引文件是缓存在key_buffer中,索引对应的是磁盘位置,不得不通过磁盘位置访问磁盘数据。  缺点:1) 维护索引很昂贵,特别是插入新行或者主键被更新导至要分页(page split)的时候。建议在大量插入新行后,选在负载较低的时间段,通过OPTIMIZE TABLE优化表,因为必须被移动的行数据可能造成碎片。使用独享表空间可以弱化碎片   2) 表因为使用UUId作为主键,使数据存储稀疏,这就会出现聚簇索引有可能有比全表扫面更慢,所以建议使用int的auto_increment作为主键 3) 如果主键比较大的话,那辅助索引将会变的更大,因为辅助索引的叶子存储的是主键值;过长的主键值,会导致非叶子节点占用占用更多的物理空间  辅助索引在聚簇索引之上创建的索引称之为辅助索引,辅助索引访问数据总是需要二次查找。辅助索引叶子节点存储的不再是行的物理位置,而是主键值。通过辅助索引首先找到的是主键值,再通过主键值找到数据行的数据叶,再通过数据叶中的Page Directory找到数据行。复合索引由多列创建的索引称为符合索引,在符合索引中的前导列必须出现在where条件中,索引才会被使用ALTER TABLE test.users ADD INDEX idx_users_id_name (name(10) ASC, id ASC) ; 前缀索引当索引的字符串列很大时,创建的索引也就变得很大,为了减小索引体积,提高索引的扫描速度,就用索引的前部分字串索引,这样索引占用的空间就会大大减少,并且索引的选择性也不会降低很多。而且是对BLOB和TEXT列进行索引,或者非常长的VARCHAR列,就必须使用前缀索引,因为MySQL不允许索引它们的全部长度。使用:列的前缀的长度选择很重要,又要节约索引空间,又要保证前缀索引的选择性要和索引全长度选择性接近。 唯一索引唯一索引比较好理解,就是索引值必须唯一,这样的索引选择性是最好的 主键索引主键索引就是唯一索引,不过主键索引是在创建表时就创建了,唯一索引可以随时创建。说明主键和唯一索引区别     1) 主键是主键约束+唯一索引     2) 主键一定包含一个唯一索引,但唯一索引不是主键     3) 唯一索引列允许空值,但主键列不允许空值     4) 一个表只能有一个主键,但可以有多个唯一索引 索引扫描方式:紧凑索引扫描(dense index):在最初,为了定位数据需要做权表扫描,为了提高扫描速度,把索引键值单独放在独立的数据的数据块里,并且每个键值都有个指向原数据块的指针,因为索引比较小,扫描索引的速度就比扫描全表快,这种需要扫描所有键值的方式就称为紧凑索引扫描 松散索引扫描(sparse index):为了提高紧凑索引扫描效率,通过把索引排序和查找算法(B+trre),发现只需要和每个数据块的第一行键值匹配,就可以判断下一个数据块的位置或方向,因此有效数据就是每个数据块的第一行数据,如果把每个数据块的第一行数据创建索引,这样在这个新创建的索引上折半查找,数据定位速度将更快。这种索引扫描方式就称为松散索引扫描。 覆盖索引扫描(covering index):包含所有满足查询需要的数据的索引称为覆盖索引,即利用索引返回select列表中的字段,而不必根据索引再次读取数据文件索引相关常用命令:1) 创建主键 CREATE TABLE pk_tab2 (  id int(11) NOT NULL AUTO_INCREMENT,  a1 varchar(45) DEFAULT NULL,  PRIMARY KEY (id)) ENGINE=InnoDB DEFAULT CHARSET=utf8; 2) 创建唯一索引create unique index indexname on tablename(columnname); alter table tablename add unique index indexname(columnname); 3) 创建单列一般索引create index indexname on tablename(columnname);alter table tablename add index indexname(columnname); 4) 创建单列前缀索引create index indexname on tablename(columnname(10));    //单列的前10个字符创建前缀索引alter table tablename add index indexname(columnname(10)); //单列的前10个字符创建前缀索引 5) 创建复合索引create index indexname on tablename(columnname1,columnname2);    //多列的复合索引create index indexname on tablename(columnname1,columnname2(10));    //多列的包含前缀的复合索引alter table tablename add index indexname(columnname1,columnname2); //多列的复合索引alter table tablename add index indexname(columnname1,columnname(10)); //多列的包含前缀的复合索引 6) 删除索引drop index indexname on tablename;;alter table tablename drop  index indexname; 7) 查看索引show index from tablename;show create table pk_tab2;作者:大树叶 来源:CSDN 原文:https://blog.csdn.net/bigtree_3721/article/details/51335479 版权声明:本文为博主原创文章,转载请附上博文链接!

孟志昂 2019-12-02 01:45:11 0 浏览量 回答数 0

回答

你这是几年工作经验(多少钱的岗位)问到这些问题的? Q1:如果对时效性要求不是太高的话,首先考虑静态化。静态资源请求处理耗系统资源少,不会请求数据库。数据库方面可以加个缓存,或者查询频率高的直接全部放redis。(再接着问的话再接着往深里回答) Q2:数据库性能问题?这题太抽象,反问一句具体场景,再具体问题具体分析。这块我也不熟。但是数据库一般就分表、表分区、分库、索引。 Q3:简单的实现可以是 nginx用upstream做负载(apache同样可以),静态资源直接urlrewrite到专门服务器上,对后端请求通过upstream配置分发到不同服务器上,这里主要做一些session复制或者自己实现一套无session的用户跟踪机制。或者更复杂的,在第一个server前搞个lvs。原理主要就是多服务器处理请求。其实负载这些都是专业的运维搞更好,术业有专攻。并且小公司的项目并发也不会高到哪里去,真高了也就有钱找专业的运维了。 ######我才两年多,回答的不错,赞!###### Q1就是扯淡,没有具体场景,方案完全不一样。 ######回答这种题目也没什么扯淡的吧,主要还是考你知不知道这方面的知识。你可以在交流过程中自己把场景限定下来,然后给出解决方案的思路,这种问题没有标准答案,面试官也会根据你的回答来深入探讨,看面试者的水平在什么level。###### 现在企业数据量庞大,应用越来越普及 所以性能问题很明显,重要性比较突出 ###### 现在普通的笔记本都安装64位,内存好大 不做集群自己试试那就等于浪费 ######不排除有的公司是为了拿这个来考验你的实力!也不排除它这个公司就有那么大的数据流量。######可以参考一下我的博客关于系统调优的###### 哈,我给楼主正确答案吧。问你问题的,最近正在考虑这些,而且自己琢磨出来一套方案了,想看看是否有共鸣,或者让别人说些更sb的方案好bs一下,然后乐乐,别无其他,答的有点上路子,但被bs,是最佳状态。如果你一不小心,呼呼呼,顺着他的思路,说了很多他暂时还没想到的,基本他会10分钟内容去找技术总监“来了个狠的,招架不住,大哥,帮一把吧。。。” 如果你遇到这种情况,就是技术总监,过了5分钟慢悠悠的来了,一般他不会如pm那样问直接问题,而是随意聊聊,大体套路就是”刚才我同事已经和你交流了不少,你的水平很不错“云云。随后会尽可能了解你的整体情况后,再下手做技术对答。 不过面试时,能把pm说晕,让技术总监出来的,基本上也就大家交个朋友了,因为暂需岗位和你的人力已经不匹配了。。就当喝下午茶。这种事情我干过。 补充说一点,pm这个级别出来面试,一般都会从自己的视角面来谈技术。所以通常会问自己正在琢磨的问题。你就是提出一个足以否定他们的更好多方案也不会改变他们已经实施的计划。 ######我顶######我刚毕业1年,也问我这些。问我集群,问我给数据库优化,问我hadoop###### 引用来自“张子游”的答案 我刚毕业1年,也问我这些。问我集群,问我给数据库优化,问我hadoop 确实,现在不少公司对应届生也问这样的问题(比如某刚被百度收购的p2p视频公司) ######我觉得就是看你有多少招数来应对这些问题,不能一点都没有啊,等真遇到这问题了你搞不定就麻烦了。

kun坤 2020-05-29 13:03:17 0 浏览量 回答数 0

问题

使用消息队列的 10 个理由

小柒2012 2019-12-01 21:20:11 6703 浏览量 回答数 1

回答

流处理,听起来很高大上啊,其实就是分块读取。有这么一些情况,有一个很大的几个G的文件,没办法一次处理,那么就分批次处理,一次处理1百万行,接着处理下1百万行,慢慢地总是能处理完的。 使用类似迭代器的方式 data=pd.read_csv(file, chunksize=1000000)for sub_df in data: print('do something in sub_df here') 1234索引 Series和DataFrame都是有索引的,索引的好处是快速定位,在涉及到两个Series或DataFrame时可以根据索引自动对齐,比如日期自动对齐,这样可以省去很多事。 缺失值 pd.isnull(obj)obj.isnull()12将字典转成数据框,并赋予列名,索引 DataFrame(data, columns=['col1','col2','col3'...], index = ['i1','i2','i3'...]) 12查看列名 DataFrame.columns 查看索引 DataFrame.index 重建索引 obj.reindex(['a','b','c','d','e'...], fill_value=0] 按给出的索引顺序重新排序,而不是替换索引。如果索引没有值,就用0填充 就地修改索引 data.index=data.index.map(str.upper)12345列顺序重排(也是重建索引) DataFrame.reindex[columns=['col1','col2','col3'...])` 也可以同时重建index和columns DataFrame.reindex[index=['a','b','c'...],columns=['col1','col2','col3'...])12345重建索引的快捷键 DataFrame.ix[['a','b','c'...],['col1','col2','col3'...]]1重命名轴索引 data.rename(index=str.title,columns=str.upper) 修改某个索引和列名,可以通过传入字典 data.rename(index={'old_index':'new_index'}, columns={'old_col':'new_col'}) 12345查看某一列 DataFrame['state'] 或 DataFrame.state1查看某一行 需要用到索引 DataFrame.ix['index_name']1添加或删除一列 DataFrame['new_col_name'] = 'char_or_number' 删除行 DataFrame.drop(['index1','index2'...]) 删除列 DataFrame.drop(['col1','col2'...],axis=1) 或 del DataFrame['col1']1234567DataFrame选择子集 类型 说明obj[val] 选择一列或多列obj.ix[val] 选择一行或多行obj.ix[:,val] 选择一列或多列obj.ix[val1,val2] 同时选择行和列reindx 对行和列重新索引icol,irow 根据整数位置选取单列或单行get_value,set_value 根据行标签和列标签选择单个值针对series obj[['a','b','c'...]]obj['b':'e']=512针对dataframe 选择多列 dataframe[['col1','col2'...]] 选择多行 dataframe[m:n] 条件筛选 dataframe[dataframe['col3'>5]] 选择子集 dataframe.ix[0:3,0:5]1234567891011dataframe和series的运算 会根据 index 和 columns 自动对齐然后进行运算,很方便啊 方法 说明add 加法sub 减法div 除法mul 乘法 没有数据的地方用0填充空值 df1.add(df2,fill_value=0) dataframe 与 series 的运算 dataframe - series 规则是: -------- v 指定轴方向 dataframe.sub(series,axis=0)规则是:-------- --- | | | | ----->| | | | | | | | | | | | -------- ---12345678910111213141516171819202122apply函数 f=lambda x:x.max()-x.min() 默认对每一列应用 dataframe.apply(f) 如果需要对每一行分组应用 dataframe.apply(f,axis=1)1234567排序和排名 默认根据index排序,axis = 1 则根据columns排序 dataframe.sort_index(axis=0, ascending=False) 根据值排序 dataframe.sort_index(by=['col1','col2'...]) 排名,给出的是rank值 series.rank(ascending=False) 如果出现重复值,则取平均秩次 在行或列上面的排名 dataframe.rank(axis=0)12345678910111213描述性统计 方法 说明count 计数describe 给出各列的常用统计量min,max 最大最小值argmin,argmax 最大最小值的索引位置(整数)idxmin,idxmax 最大最小值的索引值quantile 计算样本分位数sum,mean 对列求和,均值mediam 中位数mad 根据平均值计算平均绝对离差var,std 方差,标准差skew 偏度(三阶矩)Kurt 峰度(四阶矩)cumsum 累积和Cummins,cummax 累计组大致和累计最小值cumprod 累计积diff 一阶差分pct_change 计算百分数变化唯一值,值计数,成员资格 obj.unique()obj.value_count()obj.isin(['b','c'])123处理缺失值 过滤缺失值 只要有缺失值就丢弃这一行 dataframe.dropna() 要求全部为缺失才丢弃这一行 dataframe.dropna(how='all') 根据列来判断 dataframe.dropna(how='all',axis=1) 填充缺失值 1.用0填充 df.fillna(0) 2.不同的列用不同的值填充 df.fillna({1:0.5, 3:-1}) 3.用均值填充 df.fillna(df.mean()) 此时axis参数同前面, 123456789101112131415161718192021将列转成行索引 df.set_index(['col1','col2'...])1数据清洗,重塑 合并数据集 取 df1,df2 都有的部分,丢弃没有的 默认是inner的连接方式 pd.merge(df1,df2, how='inner') 如果df1,df2的连接字段名不同,则需要特别指定 pd.merge(df1,df2,left_on='l_key',right_on='r_key') 其他的连接方式有 left,right, outer等。 如果dataframe是多重索引,根据多个键进行合并 pd.merge(left, right, on=['key1','key2'],how = 'outer') 合并后如果有重复的列名,需要添加后缀 pd.merge(left, right, on='key1', suffixes=('_left','_right'))1234567891011121314索引上的合并 针对dataframe中的连接键不是列名,而是索引名的情况。 pd.merge(left, right, left_on = 'col_key', right_index=True) 即左边的key是列名,右边的key是index。 多重索引 pd.merge(left, right, left_on=['key1','key2'], right_index=True)123456dataframe的join方法 实现按索引合并。 其实这个join方法和数据库的join函数是以一样的理解 left.join(right, how='outer') 一次合并多个数据框 left.join([right1,right2],how='outer')123456轴向连接(更常用) 连接:concatenation 绑定:binding 堆叠:stacking列上的连接 np.concatenation([df1,df2],axis=1) #np包pd.concat([df1,df2], axis=1) #pd包 和R语言中的 cbind 是一样的 如果axis=0,则和 rbind 是一样的 索引对齐,没有的就为空 join='inner' 得到交集 pd.concat([df1,df2], axis=1, join='innner') keys 参数,还没看明白 ignore_index=True,如果只是简单的合并拼接而不考虑索引问题。 pd.concat([df1,df2],ignore_index=True)123456789101112131415合并重复数据 针对可能有索引全部或者部分重叠的两个数据集 填充因为合并时索引赵成的缺失值 where函数 where即if-else函数 np.where(isnull(a),b,a)12combine_first方法 如果a中值为空,就用b中的值填补 a[:-2].combine_first(b[2:]) combine_first函数即对数据打补丁,用df2的数据填充df1中的缺失值 df1.combine_first(df2)12345重塑层次化索引 stact:将数据转为长格式,即列旋转为行 unstack:转为宽格式,即将行旋转为列result=data.stack()result.unstack()12长格式转为宽格式 pivoted = data.pivot('date','item','value') 前两个参数分别是行和列的索引名,最后一个参数则是用来填充dataframe的数据列的列名。如果忽略最后一个参数,得到的dataframe会带有层次化的列。 123透视表 table = df.pivot_table(values=["Price","Quantity"], index=["Manager","Rep"], aggfunc=[np.sum,np.mean], margins=True)) values:需要对哪些字段应用函数 index:透视表的行索引(row) columns:透视表的列索引(column) aggfunc:应用什么函数 fill_value:空值填充 margins:添加汇总项 然后可以对透视表进行筛选 table.query('Manager == ["Debra Henley"]')table.query('Status == ["pending","won"]')123456789101112131415移除重复数据 判断是否重复 data.duplicated()` 移除重复数据 data.drop_duplicated() 对指定列判断是否存在重复值,然后删除重复数据 data.drop_duplicated(['key1'])123456789交叉表 是一种用于计算分组频率的特殊透视表. 注意,只对离散型的,分类型的,字符型的有用,连续型数据是不能计算频率这种东西的。 pd.crosstab(df.col1, df.col2, margins=True)1类似vlookup函数 利用函数或映射进行数据转换 1.首先定义一个字典 meat_to_animal={ 'bacon':'pig', 'pulled pork':'pig', 'honey ham':'cow' } 2.对某一列应用一个函数,或者字典,顺便根据这一列的结果创建新列 data['new_col']=data['food'].map(str.lower).map(meat_to_animal)123456789替换值 data.replace(-999,np.na) 多个值的替换 data.replace([-999,-1000],np.na) 对应替换 data.replace([-999,-1000],[np.na,0]) 对应替换也可以传入一个字典 data.replace({-999:np.na,-1000:0})123456789离散化 定义分割点 简单分割(等宽分箱) s=pd.Series(range(100))pd.cut(s, bins=10, labels=range(10)) bins=[20,40,60,80,100] 切割 cats = pd.cut(series,bins) 查看标签 cats.labels 查看水平(因子) cats.levels 区间计数 pd.value_count(cats) 自定义分区的标签 group_names=['youth','youngAdult','MiddleAge','Senior']pd.cut(ages,bins,labels=group_names)1234567891011121314151617181920212223分位数分割 data=np.random.randn(1000)pd.qcut(data,4) #四分位数 自定义分位数,包含端点 pd.qcut(data,[0,0.3,0.5,0.9,1])12345异常值 查看各个统计量 data.describe() 对某一列 col=data[3]col[np.abs(col)>3] 选出全部含有“超过3或-3的值的行 data[(np.abs(data)>3).any(1)] 异常值替换 data[np.abs(data)>3]=np.sign(data)*312345678910111213抽样 随机抽取k行 df.take(np.random.permutation(len(df))[:k]) 随机抽取k行,但是k可能大于df的行数 可以理解为过抽样了 df.take(np.random.randint(0,len(df),size=k))1234567数据摊平处理 相当于将类别属性转成因子类型,比如是否有车,这个字段有3个不同的值,有,没有,过段时间买,那么将会被编码成3个字段,有车,没车,过段时间买车,每个字段用0-1二值填充变成数值型。 对摊平的数据列增加前缀 dummies = pd.get_dummies(df['key'],prefix='key') 将摊平产生的数据列拼接回去 df[['data1']].join(dummies)12345字符串操作 拆分 strings.split(',') 根据正则表达式切分 re.split('s+',strings) 连接 'a'+'b'+'c'...或者'+'.join(series) 判断是否存在 's' in strings`strings.find('s') 计数 strings.count(',') 替换 strings.replace('old','new') 去除空白字符 s.strip()12345678910111213141516171819202122232425正则表达式 正则表达式需要先编译匹配模式,然后才去匹配查找,这样能节省大量的CPU时间。 re.complie:编译 findall:匹配所有 search:只返回第一个匹配项的起始和结束地址 match:值匹配字符串的首部 sub:匹配替换,如果找到就替换 原始字符串 strings = 'sdf@153.com,dste@qq.com,sor@gmail.com' 编译匹配模式,IGNORECASE可以在使用的时候对大小写不敏感 pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}'regex = re.compile(pattern,flags=re.IGNORECASE) 匹配所有 regex.findall(strings) 使用search m = regex.search(strings) #获取匹配的地址strings[m.start():m.end()] 匹配替换 regex.sub('new_string', strings)12345678910111213141516根据模式再切分 将模式切分,也就是将匹配到的进一步切分,通过pattern中的括号实现. pattern = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})'regex = re.compile(pattern)regex.findall(strings) 如果使用match m=regex.match(string)m.groups() 效果是这样的 suzyu123@163.com --> [(suzyu123, 163, com)] 获取 list-tuple 其中的某一列 matches.get(i)12345678910111213分组聚合,计算 group_by技术 根据多个索引分组,然后计算均值 means = df['data1'].groupby([df['index1'],df['index2']).mean() 展开成透视表格式 means.unstack()12345分组后价将片段做成一个字典 pieces = dict(list(df.groupby('index1'))) pieces['b']123groupby默认是对列(axis=0)分组,也可以在行(axis=1)上分组 语法糖,groupby的快捷函数 df.groupby('index1')['col_names']df.groupby('index1')[['col_names']] 是下面代码的语法糖 df['col_names'].groupby(df['index1']) df.groupby(['index1','index2'])['col_names'].mean()1234567通过字典或series进行分组 people = DataFrame(np.random.randn(5, 5), columns=['a', 'b', 'c', 'd', 'e'], index=['Joe', 'Steve', 'Wes', 'Jim','Travis']) 选择部分设为na people.ix[2:3,['b','c']]=np.na mapping = {'a': 'red', 'b': 'red', 'c': 'blue', 'd': 'blue', 'e': 'red', 'f' : 'orange'} people.groupby(mapping,axis=1).sum()1234567891011通过函数进行分组 根据索引的长度进行分组 people.groupby(len).sum()12数据聚合 使用自定义函数 对所有的数据列使用自定义函数 df.groupby('index1').agg(myfunc) 使用系统函数 df.groupby('index1')['data1']describe()12345根据列分组应用多个函数 分组 grouped = df.groupby(['col1','col2']) 选择多列,对每一列应用多个函数 grouped['data1','data2'...].agg(['mean','std','myfunc'])12345对不同列使用不同的函数 grouped = df.groupby(['col1','col2']) 传入一个字典,对不同的列使用不同的函数 不同的列可以应用不同数量的函数 grouped.agg({'data1':['min','max','mean','std'], 'data2':'sum'}) 123456分组计算后重命名列名 grouped = df.groupby(['col1','col2']) grouped.agg({'data1':[('min','max','mean','std'),('d_min','d_max','d_mean','d_std')], 'data2':'sum'}) 1234返回的聚合数据不要索引 df.groupby(['sex','smoker'], as_index=False).mean()1分组计算结果添加前缀 对计算后的列名添加前缀 df.groupby('index1').mean().add_prefix('mean_')12将分组计算后的值替换到原数据框 将函数应用到各分组,再将分组计算的结果代换原数据框的值 也可以使用自定义函数 df.groupby(['index1','index2'...]).transform(np.mean)123更一般化的apply函数 df.groupby(['col1','col2'...]).apply(myfunc) df.groupby(['col1','col2'...]).apply(['min','max','mean','std'])123禁用分组键 分组键会跟原始对象的索引共同构成结果对象中的层次化索引 df.groupby('smoker', group_keys=False).apply(mean)1分组索引转成df的列 某些情况下,groupby的as_index=False参数并没有什么用,得到的还是一个series,这种情况一般是尽管分组了,但是计算需要涉及几列,最后得到的还是series,series的index是层次化索引。这里将series转成dataframe,series的层次化索引转成dataframe的列。 def fmean(df): """需要用两列才能计算最后的结果""" skus=len(df['sku'].unique()) sums=df['salecount'].sum() return sums/skus 尽管禁用分组键,得到的还是series salemean=data.groupby(by=['season','syear','smonth'],as_index=False).apply(fmean) 将series转成dataframe,顺便设置索引 sub_df = pd.DataFrame(salemean.index.tolist(),columns=salemean.index.names,index=salemean.index) 将groupby的结果和sub_df合并 sub_df['salemean']=salemean12345678910111213桶分析与分位数 对数据切分段,然后对每一分段应用函数 frame = DataFrame({'col1':np.random.randn(1000), 'col2':np.random.randn(1000)}) 数据分段,创建分段用的因子 返回每一元素是属于哪一分割区间 factor = pd.cut(frame.col1, 4) 分组计算,然后转成数据框形式 grouped = frame.col2.groupby(factor)grouped.apply(myfunc).unstack()12345678910用分组的均值填充缺失值 自定义函数 fill_mean= lambda x:x.fillna(x.mean()) 分组填充 df.groupby(group_key).apply(fill_mean)12345分组后不同的数据替换不同的值 定义字典 fill_value = {'east':0.5, 'west':-1} 定义函数 fill_func = lambda x:x.fillna(fill_value(x.name)) 分组填充 df.groupby(['index1','index2'...]).apply(fill_func)12345678sql操作 有时候觉得pandas很方便,但是有时候却很麻烦,不如SQL方便。因此pandas中也有一些例子,用pandas实现SQL的功能,简单的就不说了,下面说些复杂点的操作。 之所以说这个复杂的语句,是因为不想将这些数据操作分写在不同的语句中,而是从头到尾连续编码实现一个功能。 SQL复杂操作用到的主要函数是assign,简单说其实和join的功能是一样的,根据df1,df2的索引值来将df2拼接到df1上。 两个函数是query,也听方便的。 有一批销量数据,筛选出那些有2个月以上的销量产品的数据,说白了就是剔除那些新上市产品的数据 方法是先统计每个产品的数据量,然后选出那些数据量>2的产品,再在数据表中选择这些产品 sku smonth a 1 a 2 a 3 a 4 b 5 b 6 b 7 b 8 c 9 c 10 按sku分组,统计smonth的次数,拼接到salecount中,然后查询cnt>2的 salecount.assign(cnt=salecount.groupby(['sku'])['smonth'].count()).query('cnt>2')

xuning715 2019-12-02 01:10:39 0 浏览量 回答数 0

回答

2014年12月第2周 1)SLB植入cookie和SLB重写cookie有什么区别? cookie植入,表示直接由SLB系统来分配和管理对客户端进行的cookie植入操作,用户在进行配置时 需要指定会话保持的超时时间; cookie重写,表示SLB系统会根据用户自定义cookie名称来分配和管理对客户端进行的cookie植入操 作,便于用户识别和区分自定义的cookie名称 http://help.aliyun.com/doc/view/13510025.html?spm=0.0.0.0.vwbsGF 2)SLB有没有对外提供API接口,因为我想做到用程序自动去控制SLB的操作? SLB api您可以参考http://help.aliyun.com/view/13621674.html? spm=5176.7114037.1996646101.1.9RoTFM&pos=1 3)使用slb怎么实现数据的单向同步和双向同步? 单向同步可以使用rsync,双向同步的话rsync需要借用别的服务来实现,如unison+inotify。 4)slb的vip是否可以实现远程登录? slb 的vip无法实现远程登录。 5)slb的带宽是所有后端ECS服务器的带宽总和吗? 不是,使您购买的slb实例带宽。 6)slb健康检查机制是什么? 用户开启健康检查功能后,当后端某个ECS健康检查出现问题时会将请求转发到其他健康检查正常的 ECS上,而当该ECS恢复正常运行时,SLB会将其自动恢复到对外或对内的服务中。 针对7层(HTTP协议)服务,SLB系统的健康检查机制为:默认通过SLB的后端系统来向该ECS应用服务 器配置的缺省首页发起http head请求(缺省通过在服务监听配置中指定的后端ECS端口进行访问), 返回200 OK后将视为后端ECS运行正常,否则视为后端ECS运行异常。如果用户用来进行健康检查的页 面并不是应用服务器的缺省首页,那么需要用户指定相应的URI。如果用户对http head请求限定了 host字段的参数,那么需要用户指定相应的URL。用户也可以通过设定健康检查的频率、健康阈值和 不健康阈值来更好的控制健康检查功能。 针对4层(TCP协议)服务,SLB系统的健康检查机制为:默认通过在服务监听配置中指定的后端ECS端 口发起访问请求,如果端口访问正常则视为后端ECS运行正常,否则视为后端ECS运行异常。 当用户后端ECS健康检查异常后,SLB系统会将该ECS的转发权重设置为0,从而确保新的连接不会再被 转发到该ECS上,而已经建立的连接的请求却不会被直接断掉。 针对可能引起健康检查异常的排查思路点击这里查看。 关于健康检查的参数配置,提供如下参考建议: 响应超时时间:5秒 健康检查间隔:2秒 不健康阈值:3 健康阈值:3 7)权重设置为0怎么办? 权重为0的服务器将无法提供服务。 8)健康检查异常的排查思路? 参考http://help.aliyun.com/doc/view/13510029.html?spm=0.0.0.0.Oa9Ezv ------------------------- 12月份第3周1)轮询与最小连接数方式的区别是什么?当前SLB支持轮询和最小连接数2种模式的转发规则。“轮询模式”会将外部和内部的访问请求依序分发给后端ECS进行处理,而“最小连接数模式”会将外部和内部的访问请求分发给当前连接数最小的一台后端ECS进行处理。2)SLB支持redis的主备?目前我们的SLB不支持主备模式(冷备),只支持"轮询"和"最小连接数"两种负载模式。关于SLB的原理您可以参阅如下博文:http://blog.aliyun.com/149 基于ECS的redis搭建,您可以参阅论坛中其它用户的分享案例:http://bbs.aliyun.com/read/161389.html3)负载均衡的多台服务器之间文件会不会自动同步?slb是不会自动同步的,需要您自行配置。4)四层和七层检查的区别是什么?如果是4层(TCP)配置,健康检查只是简单的TCP握手,不会真正去访问您的业务。但对于7层(HTTP)配置,会发HTTP请求(类似于正常访问),并根据返回状态码判断服务状态(2XX表示服务正常)。5)我有多个slb,之前一个slb由于被攻击被黑洞给屏蔽了外部请求,是否可以在slb 并屏蔽后 能够自动将请求分发到另外的slb?由于攻击导致屏蔽外部请求的话,slb没有自动切换的方法的。6)目前slb是否可以设置黑名单?暂不支持。7)我的slb实例控制台显示是停止,为什么?需要给监听的端口设置带宽才能正常。  8)我使用了 SLB那么ESC 需要购买带宽吗?不需要的。但如需要管理ECS,则可购买少些的带宽如1M来管理。9)slb变更计费方式需要多久才能生效?变更和计费将在第二日零点后生效。10)私网SLB的使用,是如何收费的呢?私网slb是不收取费用的。 ------------------------- 12月第4周1)最近用slb后打开网页老出现503 和504错误?一般都是从ECS获取站点信息等异常导致的。您首先先确保源站都可以正常的访问。2)slb检查时突然发现SLB监听错误,怎么回事?配置的健康检查的域名为空,检查的路径是/index.html,目前查看服务器中只有站点c绑定了空主机头,且站点目录下有index.html,而此站点是停止状态,现已帮您启用,查看服务器的健康检查状态已经正常。3)我想使用slb搭建一个负载均衡,后端使用windows服务器,想咨询一下后端服务器是否需要进行什么特别配置呢?另外使用了slb后,后端还能否得到用户的真实IP地址呢,要不要进行什么特殊配置才可以得到后端用户的真实IP。后端服务器的操作系统和web环境最好保持一致,硬件配置上没有什么特别的,4层tcp是可以直接获得前端用户访问的真实地址的,7层http需要在后端web服务端设置一下,参考http://help.aliyun.com/view/13502961.html?spm=5176.7114037.1996646101.1.oRpnOM&pos=14)slb支持https吗?slb您可以通过TCP协议配置443端口的方式来实现,但是安全证书需要保存在您的后端ECS上。5)健康检查后续是否提供多个域名?健康检查只支持一个域名。6)我想关闭负载均衡的健康检查,请问如何配置?4层tcp是无法关闭健康检查的,7层http可以在控制台关闭。健康检查是不会消耗您服务器的资源的,因为slb都是通过内网ip来进行健康检查。7)如何在BLS上 限制单个IP 禁止访问 我的网站呢?SLB暂时不支持设置屏蔽用户端IP。 ------------------------- Re:Re负载均衡SLB常见咨询问题(持续连载) 引用第2楼517449116于2014-12-17 15:54发表的 Re负载均衡SLB常见咨询问题(持续连载) : 如果开启健康检查,健康检查异常的话,是不是就不会给这个异常的ECS分发? [url=http://bbs.aliyun.com/job.php?action=topost&tid=188736&pid=596806][/url] 异常的话不会在分发。 ------------------------- 2015年1月第1周1)有2台ECS起名叫A和B做SLB,A权重设的100 B权重设的0.请问.当A死机时,SLB是否会转到权重是0的B上?如果有一台设置为0,永远都不会有请求转发到此服务器上,即使权重100的宕机也不会转发到0权重的。2)会话保持的选择?开启会话保持功能后,SLB会把来自同一客户端的访问请求分发到同一台后端ECS上进行处理。针对7层(HTTP协议)服务,SLB系统是基于cookie的会话保持。针对4层(TCP协议)服务,SLB系统是基于IP地址的会话保持。3)用nagios或zabbix监控网络带宽,是否可以监控 slb的流量?nagios或zabbix,cacti是要要被监控端安装snmp或者相关agent ,slb不支持安装这些,所以无法通过这条监控软件进行监控。您可以在slb的控制台里面进行查看流量等相关信息。4)用了负载均衡后升级带宽,是不是只用在负载上面升级就可以了,ECS是不是不用在升级了?SLB与后端服务器是经过内网通信,所以如果业务量增加,您对SLB的带宽调整就行,不需要对服务器ECS进行带宽的升级。 ------------------------- 2015年1月第2周 1)SLB到期之后,会对SLB有关联的云主机怎么处理?云主机还没到期的前提下  我想把网站域名解析到SLB上 如果SLB到期了 会影响到我的网站服务么? 云服务器是不会有什么影响的,会自动又变成单独的云服务器可以供您使用的。但是如果您的域名是解析到SLB上,那么会影响到您的站点访问的。服务器上不会有其他的问题感谢您的支持。 2)当SLB 状态为停止的时候 还计算费用吗?停止后公网slb会收取实例费用。SLB价格总览参考:http://help.aliyun.com/view/11108234_13502923.html?spm=0.0.0.0.kBLsVA 3)做了SLB负载均衡,四层和7层负载均衡是否都走slb带宽? 都走slb带宽。 4)我想 移除 slb下的ecs(用作其他用途),请问在移除的时候是否会影响被负载到这台 ecs上的服务的使用 ,也是说slb这是是怎么处理的? 您可以将要移除的主机的权重更改为0 ,这样默认就不会在分发到权重为0的主机上,这个时候您可以移除该主机。但要确保您的另外一台服务器可以承受所有的访问。 5)SLB实例如何释放? 您需要登录管理控制台点击负载均衡。查询您之前创建的实例在哪个节点下,然后释放您的实例。 6)SLB按照小时的带宽计费, 是否需要每小时调整?比如我可否按照一个比较高的上限, 比如3G,然后每个小时按照该小时的峰值进行独立计费呢?   在一个自然日内,限制用户变更计费方式的次数为1次,变更计费方式将在第二日零点后生效;比如用户在今天5月5日的10:00提交了变更计费方式,那么该变配申请将在明天5月6日00:00后生效。http://help.aliyun.com/view/13502923.html?spm=5176.7114037.1996646101.3.67L5dm&pos=2;SLB目前最大带宽是1000Mbps 7)SLB可以限制每个ip的访问频率吗?(工单1F684MN)slb不支持这样配置的。 8)为什么我设置SLB健康检查间隔为5S,但却每秒都有很多请求?因为用于健康检查的服务ip不止一个,每秒中都会有不同的内网ip进行健康检查,健康检查是通过内网方式,不会消耗您后端服务器的资源,您可以将健康检查间隔阈值跳大些,这样监测频率会降低很多。 ------------------------- Re:负载均衡SLB常见咨询问题(持续连载至2015年1月第3周) 2015年1月第3周 1.发现很多100.97.0.0/16 的ip段扫描,给我服务器带来很大压力,怎么办? 100.97.0.0/16 是我们slb的健康检查服务ip段,如果给服务器带来较大压力,请调整健康检查的设置;健康检查的话 1)调低检查频率 2)设置检查静态文件,而不是默认首页或者动态文件 3)设置一个不记录日志的virtualhost,专门用于健康检查。 2)SLB里的带宽 和后面对应服务器的带宽有什么关联关系?比如SLB我设置了带宽为10M, 但是我后 面2台服务器购买的带宽都只有2M, 这种情况带宽以哪个为准? 如果您设置的是常规7层slb负载均衡,那么网站访问所使用的带宽,都将通过slb而不需要消耗云服 务器的带宽,但是云服务器本身的系统更新,以及您更新网站等等也是需要带宽的,因此您保留2M 即可。 3)采用流量计费方式的话带宽是否没有限制? SLB按流量计费最大的带宽是1G。 4)请问我如何获得一个外网SLB期所对应的内网IP呢?比如现在我有一个外网SLB下挂了一个ECS, 而ECS的iptables里我想做一些配置,针对来自于这个SLB的请求做一个判断,我需要知道这个外网 SLB的内网IP。 目前SLB与后端通过如下地址段进行交互: 10.158.0.0/16 10.159.0.0/16 100.97.0.0/16 您可以针对上述地址段做相关配置。 5)如何确保SLB后端的多台ECS之间的数据同步呢? 目前,有很多类似的工具可以实现服务器之间的数据同步,比如:rsync。具体使用及选择,还请通 过其他途径获得更多的介绍资料及指导信息。您也可以将您的ECS配置成无状态的应用服务器,而数 据和文件统一存放在RDS和OSS服务上。 ------------------------- 2015年1月第4周1.为什么我的SLB实例突然消失了?请检查您的SLB服务是否设置了自动释放时间导致。2.我想关掉负载均衡,怎么操作?您直接登录到阿里云管理控制台——slb负载均衡——实例中查询创建的slb服务,后方有“释放”的按钮,您直接释放即可。3. 我现在有两个阿里账号里面都有ECS,我能不能在一个slb里面配置不同阿里云账户下的ECS?目前只能将同一账户下的服务器添加到SLB中,无法跨账户添加。4.ECS做负载均衡需要用户做额外的配置吗?可以参考http://help.aliyun.com/knowledge_detail.htm?knowledgeId=5973987。5. 云服务器上做数据库负载均衡如何实现,需要购买什么产品 ?文件服务器能否做负载均衡,比如10台文件服务器,包括读写这种的  ?1)数据库集群,用slb理论上是可以做的,但是如果您需要集群级别的数据库,建议使用我们的RDS。2)文件服务器也可以负载均衡,使用slb在均衡,保持会话,但是有一个问题是后端文件同步的,需要您自行同步,如 rsync。6.看SLB的说明是支持ddos的防护的,请问下,SLB的防护的峰值是多少,超过峰值黑洞时间是多少?这个与slb所在地区有关,和ecs的防御阀值是一样的,黑洞时间也是2.5小时。7. slb第七层是基于haproxy还是nginx还是tengine实现的?使用tengine实现的。8.7层和4层 SLB的超时时间是多少?7层超时时间是60s,4层超时时间是900s。9.负载均衡健康检查请求数量太多,怎么回事?因为slb前端机器是一组机器,所以健康检查请求较多,请您不要担心,集群内的每台服务都会对您的健康按照您设定的频率去做健康检查:您可以按照上述方法去优化您的健康检查项,看似请求量很大,但是对您资源消耗很少的,有2个建议给您:1)扩大健康检查的频率2)将检查页面配置为静态页面。这样请求消耗的资源会节省。10. SLB配置中的最小连接数是基于什么样判断?SLB会自动判断 当前ECS 的established 来判断是否转发。 ------------------------- 2015年2月第1周1)我想了解下SLB按流量计费是不是每小时需要扣0.02元?按量付费,国内节点配置费用是按照0.02/小时。流量单独计费。按带宽计费:采取按小时计费,以日结算(运行未满一日,按照当日实际使用小时数*当日开通的最高带宽的天价格/24)。如果您使用SLB实例的时间不足一小时,按一小时收费。2)请问健康检查发的什么请求? head 还是 get?head请求。3)SLB最大连接数如何来设置?目前暂不支持设置最大连接数限制。4)SLB 后端有两个服务器HA1和HA2,为什么我将HA1的权重设置成0,SLB的健康检查就有告警呢?slb四层的话,只要权重设置为0,那么健康检查就是显示异常。 ------------------------- 2015年2月第3周1)负载均衡SLB的实例防攻击防御是多少?我们有云盾的防御黑洞策略,比如以杭州节点的slb,其最高防御的流量阈值为5G,当最大流量超过5G,您的slb vip则会被加入到黑洞中,触发黑洞会使ecs或者slb正常使用中断2.5小时,这个您可以通过云盾管理控制台查看到这个说明。2) 我其他机房的服务器能添加到你们的负载均衡SLB中吗?不可以的,slb使用的是内网和后端的ECS互联,无法直接添加非阿里云主机的服务器,且slb后端的ecs需要使用同一节点的主机。3)负载均衡服务支持的最大负载均衡实例数目多少?总体峰值可支持每秒新建链接数大约多少?SLB对于后端服务器的数目是没有限制的。对于总体峰值每秒新建连接数是没有限制的。但是因为SLB前端是云盾服务,所以最大值取决于云盾中您配置的请求数。您可以查看云盾看到具体的值。4)SLB按量计费为什么需要设置带宽峰值?如果不设置带宽峰值,遇到攻击等情况,可能流量打的非常高的,带宽流量峰值您可以在slb控制台设置。5)在SLB控制面板看到的流入流量,要比后端服务器的eth0的income流量小很多, 请问slb的流入流量是否应该等于后端服务器的内网网卡入流量吗?不等于的,后端的eth0包括了slb的流量,还有其他的流量,包括ecs直接的内网通信等。slb只做转发,不处理请求的,slb通过内网转发到ecs。6)SLB中的月账单 是指我们拥有所有的 SLB 实例的计费呢,还是单独的某个 SLB 的计费?月账单是指您不同类型产品,截止当前日期内月内消费计费额度的,是所有SLB产品的。您也可以通过账单明细进行查询具体信息的。 ------------------------- 2014年2月第4周1)10.159.63.55,这个内网ip,总是恶意访问我们网站?SLB系统除了会通过系统服务器的内网IP将来自外部的访问请求转到后端ECS上之外,还会对ECS进行健康检查(前提是您已经开启了这一功能)和对您的SLB服务进行可用性监控,这些访问的来源都是由SLB系统发起的,具体包含的IP地址段是:杭州、青岛、北京、深圳节点SLB系统IP地址段:10.159.0.0/16,10.158.0.0/16和100.97.0.0/16,为了确保您对外服务的可用性,请确保对上述地址的访问配置放行规则。2)slb计费方式变更需要多久,业务会受到影响么?变更计费方式与变更配置说明1、支持用户在按使用流量和按公网带宽2种计费方式间切换;2、支持按固定带宽方式计费的用户灵活变更带宽配置;3、在一个自然日内,限制用户变更计费方式的次数为1次,变更计费方式将在第二日零点后生效;比如:用户在今天5月5日的10:00提交了变更计费方式,那么该变配申请将在明天5月6日00:00后生效。4、按固定带宽方式计费变更带宽配置即时生效,带宽计费取自然日内用户开通的最高带宽。5、对客户业务不会造成影响;3)负载均衡能将我的外部非阿里云服务器和ECS服务器放到一块?目前负载均衡SLB仅支持阿里云ECS,无法支持外部非阿里云服务器。4)slb是否有连接数限制,需要大量终端一直与平台保持长连接,阿里云能提多少长连接?SLB没有并发连接数限制的,slb是转发请求不做处理,实际连接数还要跟您后端的处理能力有关。 ------------------------- 2015年3月第1周1)调整权重会对SLB已经有的正常连接有影响吗?目前调整权重会对调整权重的这台主机已有的连接产生影响,会有连接卡主,卡住时间由健康检查配置的时间决定。2)slb是否支持UDP协议?目前SLB暂不支持UDP协议。3)现在TCP四层负载均衡的出口带宽受ECS机器的出口带宽限制吗?slb和ECS之间走的是内网流量,带宽是不受限制的。4)如果没有外网ip, 是否可以用slb的4层转发 ?没有带宽4层SLB也是可以使用的。 ------------------------- Re:负载均衡SLB常见咨询问题(持续连载至2015年3月第1周) 2015年3月第2周 1)SLB变更计费方式并支付成功后无法添加配置? SLB在一个自然日内,限制用户变更计费方式的次数为1次,变更计费方式将在第二日零点后生效查看您今天变更过一 次计费方式,开始时间:2015-03-09 00:00:00。原按使用流量计费,在2015-03-09 00:00:00后变更为按固定带宽计 费,带宽峰值: 2Mbps。同时在您新的计费方式生效之前,您是无法对该SLB进行修改配置的。 2)我的账户怎么欠费¥7.88,这是怎么回事? 查看您有使用负载均衡slb业务,在slb产品的账单欠费,请您登陆用户中心-消费记录-账单明细中查看 记录。 3)如何屏蔽健康检查探测的日志记录? 关闭或者屏蔽对test.php访问日志的方式: 在站点配置文件中添加内容: location ~ /test.php { access_log off; fastcgi_pass 127.0.0.1:9000; fastcgi_index index.php; include fastcgi.conf; } 注: 1、对test.php的location必须要放置在对php|php5处理前,否则会因为先被进行全局匹配导致无法生效。 2、还可以用另一种方案实现: a、在后端服务器中单独为用于健康检查的页面建立一个站点; b、关闭这个站点的日志记录: location ~ .*\.(php|php5)?$ { access_log off; fastcgi_pass 127.0.0.1:9000; fastcgi_index index.php; include fastcgi.conf; } 3、如果检查页面是其他格式,比如test.html,可以采用如下方式进行屏蔽: location ~ /test.html { access_log off; } 4.我想问下SLB的固定带宽,10M是不是上行和下行最大都能达到10M? 固定带宽指的是下行带宽最大达到10M,上行带宽没有限制。上行带宽指的是SLB的入流量(上行),就是进入SLB的 流量。带宽指的是SLB的出流量(下行),就是SLB对外发生给客户端的流量。 5.一般配置SLB的时候有个权重0到100,是如何选择数值的? 权重需要您根据后端机器的配置进行选择比如AB两台机器性能一致就分别设置50,这样请求就会在这两台机器上轮询 ,不同权重决定请求分发的分配。 ------------------------- 2015年3月第3周1)公网的SLB和ECS之间的流量是否收费?不收费。2) 想做SLB+两台ECS,附件OSS,程序Discuz。但是不知道如何实现?slb要求后端的两台ecs数据是一致的,为了保持数据的一致性,建议共享存数和数据,静态文件放置到oss里,数据库文件走自己搭建的主从或者,连接同一台rds。3)按流量计算是否需要设置峰值?按流量计费不需要设置峰值的。4)如何建一个子帐号来管理负载均衡SLB?子账户无法管理负载均衡服务。

qilu 2019-12-02 01:15:34 0 浏览量 回答数 0

问题

通过配置nginx 抵御不合法请求

kideny 2019-12-01 21:59:17 7953 浏览量 回答数 2

回答

回1楼服务器之家的帖子 求问该服务有无必须默认开启的必要性? ------------------------- Re求问centos下开的ntpd服务有什么用处 一直以为ntpd是充当时钟服务器让其他服务器同步时间的 ntpdate是同步时间的客户端服务 刚百度了下两者的区别,果断很是景仰阿里云的技术人员: 在Linux操作系统设置与上级NTP时钟源同步是很基本的操作,Linux提供了ntpd和ntpdate两种方式来实现时间同步,但它们在同步原理上则有着本质的区别:ntpd在实际同步时间时是一点点的校准时间的,也可以理解为ntpd是平滑同步;而ntpdate不会考虑其他程序是否会阵痛,就立即同步。因此在生产环境中慎用ntpdate。 我们可以结合一个应用场景来加强对ntpd和ntpdate的理解: 网站限制用户注册1小时后才能发帖。 数据库服务器在 10:00分接受了我的注册邀请; 10:03分,ntpdate将数据库时间强行改成9:35分; 然后10:05分(9:37分)我尝试发帖,系统判断我注册时间是否满一小时会使用:9:37 – 10:00 最后电脑就逻辑混乱了。。。 类似的案例在网上也有很详细的说明,贴出来给大家看看: 时钟的跃变,有时候会导致很严重的问题。许多应用程序依赖连续的时钟。毕竟,这是一项常见的假定,即:取得的时间是线性的,一些操作,例如数据库事务,通常会地依赖这样的事实:时间不会往回“跳跃”。 不幸的是,ntpdate调整时间的方式就是我们所说的“跃变”,这就导致了几个非常明显的问题: 1. 这样做不安全。ntpdate的设置依赖于ntp服务器的安全性,攻击者可以利用一些软件设计上的缺陷,拿下ntp服务器并令与其同步的服务器执行某些消耗性的任务。由于ntpdate采用的方式是跳变,跟随它的服务器无法知道是否发生了异常(时间不一样的时候,唯一的办法是以服务器为准)。 2. 这样做不精确。一旦ntp服务器宕机,跟随它的服务器也就会无法同步时间。与此不同,ntpd不仅能够校准计算机的时间,而且能够校准计算机的时钟。 3. 这样做不够优雅。由于是跳变,而不是使时间变快或变慢,依赖时序的程序会出错(例如,如果ntpdate发现你的时间快了,则可能会经历两个相同的时刻,对某些应用而言,这是致命的)。 因而,唯一可以令时间发生跳变的点,是计算机刚刚启动,但还没有启动很多服务的那个时候。其余的时候,理想的做法是使用ntpd来校准时钟,而不是调整计算机时钟上的时间。 NTPD 在和时间服务器的同步过程中,会把 BIOS 计时器的振荡频率偏差,或者说 Local Clock 的自然漂移(drift)记录下来。这样即使网络有问题,本机仍然能维持一个相当精确的走时。 所以最后的建议是:如果首次安装操作系统还未启动业务之前,建议先ntpdate,然后再开启ntpd服务与时间服务器进行实时平滑同步。

srnpr 2019-12-02 03:11:39 0 浏览量 回答数 0

回答

你这个问题可以抽象一下。令每个用户和每个IP存在一个以时间轴为基础的登陆数组(一维,下标是历史时间到现在的时间差,值是对应时间片比如分钟内的总登陆次数)。需要有以下基准动作。 每个时间,比如分钟,对整个数组进行移动。 当有新登陆上来,检测整个时间窗内的登陆总次数,比如你的时间窗是30分钟。如果总次数超过你设定的K(30),则对其禁止T(30)。如果没有超过K(30),你对时间窗最后的数据,进行较窄窗口(例如10分钟)再判断。如果总次数超过 K(10) 则对其禁止T(10)。如果小于 K(10),则对最小窗口进行判断,例如10分钟,如果总次数超过K(1),则对其禁止 T(10)。 禁止过程中,该IP,该用户被直接否定,但是上述对应数组的内容,仍然根据时间进行移动修正。将较老的数据刷掉。 当然这个是原理算法。如果这个算法思路符合你的目标。则后续会需要有优化的简化算法。基本思路是压缩上述所谓“数组”的存储空间,以及压缩上述刷新和移动,判断的计算步骤。 上述具备IP和用户对应的数组是动态的。每分钟,刷新时,需要将即便下一分钟产生一次登陆但不存在禁止的数组给删除掉。 而所谓数组,是通过bit来描述,比如每4个bit表示当前的分钟内的登录次数,如果是15次以上,假设你一定会禁止他,则仍然等于15次。类似这样。 而在刷新左移时,对每个分钟的登陆次数,修正加权值,并反馈到最新存储空间内,此时所有的判断都集中在最新存储空间判断,而不用任意判断都要累加操作。这种近似的优化算法,只要能达到目的就可以了。没有必要考虑因为精度问题导致结果的不完全一致性。######回复 @waney : 其实很简单。但是我难得搞公式编辑器了。######好复杂 听不懂,谢谢你。###### 登陆验证码, 登陆验证问题, 同用户名访问失败多次直接封用户一段时间, 如果还是继续尝试失败,直接封IP。 以上为个人意见。######回复 @JustForFly : 因为discuz有这些,根本起不到作用。######那我就不知道你还想要什么了######discuz 这些都有的###### 增加验证码,可避免一些简单的模拟登录; 增加登录失败次数检查,超过N次后禁用用户或IP若干时间; ######discuz 都有的######直接把用户隐射到MAP,不用查数据库,直接查询MAP ######先把数据库的用户查出来,引射到一个map对象,然后用户登录就直接去map对象里面匹配,比如5分钟或者10分钟把在把map里面的用户和数据库同步一次,呵呵,这个办法有点傻。######这个怎讲?听不懂。######这个事情很麻烦,一楼的方法是有效的。但是是针对用户存在IP绑定信息的情况下。当然大多数时刻也是如此。如果抽象来看,楼主也说了,模拟提交,或者从不同IP上大量测试用户名的方式,回避一楼的方案。这个问题但抽象的来看,几乎无解,因为问题和设计目标是矛盾的。还要看楼主其他方面的需求。最终想防止什么。 ######回复 @waney : 延迟,如果发现不匹配,SERVER等待2到3秒后在告知客户端。但客户端会采用无论是否回复,仍然发送新用户方式。######回复 @中山野鬼 : ip是变化的,验证那些都没有用,如果拒绝这类特定请求的频率过高的。######回复 @waney : 两个方案。延迟,绑定IP的锁定。前者方法很多,那些图片内部字符识别本身就是个延迟目的。不是考智商用的。######有人模拟大量提交,匹配然后获得匹配正确的用户名和密码。###### 既然是字典匹配 那肯定会出现大量 同一账号使用不同的错误密码登陆的记录了.. 可以从这方面下手...我的方案是:当检测到某一账号在一段时间内连续输错密码达到一定次数 则帐号进入内部锁定状态.当该帐号成功登陆之后,将无法进行任何操作.而是会进入一个锁定页面. 系统会要求该帐号进行解锁操作.解锁成功后,才能继续操作. 至于解锁操作的话最简单就是发一封邮件给用户注册邮箱,用户根据邮件提示解锁. 这样即使别人凭字典匹配到了密码也没用.而且一旦用户登陆之后发现自己的帐号被锁定就知道肯定有人尝试破解自己帐号的密码.那么此时也可以提示用户修改密码.这样最大限度的可以保证帐号安全了。######而且我没说要禁止...只是帐号置为 内部锁定状态. 你只需要检测用户是否登陆的时候检测是否处于锁定状态就可以了. 基本上只需要加一个字段和一小段代码的######呵呵 如果别人第一次就匹配到了密码 你怎么能知道这个人是不是帐号的拥有者呢. 不可能有100% 完美解决的方案的.######你不能保证别人不会第一次就匹配到正确的啊。而且全都加入禁止,那量不是一般的大啊,所以 我想寻求一个彻底的办法就是如何设置条件抛弃这个请求。###### 当然 上述方法也有缺陷.如果有人恶意用错误的密码尝试登陆某一账号将导致该帐号的用户每次登陆都要进行解锁操作. 那么就还需要一些其他的补充措施来进行完善了.例如:可设置一段时间内 帐号禁止进入锁定状态。###### 楼主,你这个是个博弈的过程。主要策略是延缓对方或者将对方行为区别于正常用户。如果是绑定IP比如3,4次登陆就锁定1分钟,对方可以替换IP,只要IP数量N足够多。上限仍然由他的IP数量决定。 如果你认为1分钟内如果登陆4次以上,就锁定这个IP30分钟。他完全可以每个IP每分钟就登陆4次,则没分钟也达到了4万次的用户访问检测。 但攻击者的IP数量如果不是非常多时,你可以尝试累计对IP进行长时间累计滤波观测。如果一个IP在1分钟内登录4次,在5分钟内登陆 10次,在30分钟内登陆 20次,则均对其锁定。 这样的目的是降低攻击者独立IP的使用价值。以和传统用户行为区别开来。 我先吃饭。回头给你个算法描述,解决这种问题。动态时间窗内的信号检测。######谢谢。

kun坤 2020-06-08 11:25:44 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站