• 关于 传递特性不可用 的搜索结果

回答

设计微服务五个建议:1.它不会与其他服务共享数据库表2.它拥有最少量的数据库表3.它设计为有状态的或无状态的4.其数据可用性需求5.这是真相的唯一来源避免任意规则在设计和创建微服务时,不要陷入使用任意规则的陷阱。如果你阅读了足够多的建议,你会遇到下面的一些规则。虽然吸引人,但这些并不都是划分微服务边界的正确方法。如下:1.“微服务应该有X行代码”让我们弄清楚一件事。对于微服务中有多少行代码没有限制。微服务不会因为你写了几行额外的代码而突然变成单体巨石。关键是确保服务中的代码具有很高的凝聚力(稍后会详细介绍)。2.“将每个函数变成微服务”如果一个函数是根据三个输入值计算出某些东西,并返回一个结果,那么这个函数就是一个微服务吗?这个函数是否是一个可单独部署的应用程序吗?其实真的取决于函数是什么以及它如何服务于整个系统。其他任意规则包括那些不考虑整个上下文的规则,例如团队的经验,DevOps容量,服务在做什么以及数据的可用性需求等。精心设计的服务的特点如果您已阅读过有关微服务的文章,毫无疑问,您会发现有关设计良好的服务的建议。简而言之:高凝聚力和松散耦合。如果你不熟悉这些概念,有很多关于这些概念的文章。虽然合理的建议,但这些概念是相当抽象的。 我已经和数十位CTO就这个话题进行了交流,向他们学习他们如何划分微服务界限,下面为你们提供了一些潜在的特性。特性#1:它不会与其他服务共享数据库表当设计一个微服务时,如果你有多个引用同一个表的服务,这是一个红色警告,因为它可能意味着你的数据库是耦合的来源。“每个服务都应该有自己的表[并且]不应共享数据库表。” - Darby Frey,Lead Honestly共同创始人这实际上是关于服务与数据的关系,这正是Elastic Swiftype SRE的负责人Oleksiy Kovrin告诉我的:“我们在开发新服务时使用的主要基本原则之一是它们不应该跨越数据库边界。每项服务都应该依靠自己的一套底层数据存储。这使我们能够集中访问控制,审计日志记录,缓存逻辑等等,“他说。Kovyrin继续解释说,如果数据库表的一部分“与数据集的其余部分没有或很少有关系,这是一个强烈的信号,即组件可能可以被隔离到一个单独的API或单独的服务中。”特性#2:它具有最少量的数据库表正如第1章所提到的,微服务的理想尺寸应该足够小,但不能过小一点。每个服务的数据库表的数量也是一样。Scaylr工程负责人Steven Czerwinski在接受采访时向我解释说,Scaylr的甜蜜点是“一个服务 + 一个或两个数据库表”。特点#3:它有设计为有状态或无状态在设计微服务时,您需要问自己是否需要访问数据库,或者它是否将成为处理TB数据(如电子邮件或日志)的无状态服务。“我们通过定义服务的输入和输出来定义服务的边界。有时服务是网络API,但它也可能是一个处理输入文件并在数据库中生成记录的过程(这是我们的日志处理服务的情况)“ - Julien Lemoine要清楚这个前沿,它会导致更好的设计服务。特点#4:它的数据可用性需求被考虑在内在设计微服务时,您需要记住哪些服务将依赖于这项新服务,以及如果数据不可用,对系统的影响是什么。考虑到这一点,您可以为此服务正确设计数据备份和恢复系统。 当与Steven Czerwinski谈话时,他提到他们的关键客户行空间映射数据由于其重要性而以不同方式复制和分离到不同分区。“而每个分片信息,都是在自己的小分区中。 如果所在分区宕机,那么就没有备份可用,但它只影响5%的客户,而不是100%的客户,“Czerwinski解释说。特点#5:这是一个真理的单一来源要牢记的最后一个特点是设计一个服务,使其成为系统中某件事情的唯一真理来源。举例来说,当您从电子商务网站订购某物品时,会生成订单ID。此订单ID可供其他服务用于查询订单服务以获取有关订单的完整信息。使用pub / sub概念,在服务之间传递的数据应该是订单ID,而不是订单本身的属性/信息。只有订单服务具有完整的信息,并且是给定订单的唯一真实来源。考虑更大的团队对于大型系统而言,在确定服务边界时,组织架构考虑将发挥作用。有两点需要注意:独立发布时间表和不同的上线时间的重要性。Cloud66首席执行官Khash Sajadi表示:“我们所见过的最成功的微服务实施要么基于软件设计原则,例如基于领域驱动设计、面向服务架构SOA或反映组织方式的架构。“所以对于支付团队来说,”Sajadi继续说道,“他们有支付服务或信用卡验证服务,这是他们向外界提供的服务。这主要是关于向外界提供更多服务的业务部门。““[亚马逊CEO:杰夫贝佐斯]提出了'两个比萨饼'的规则 - 一个团队不能多到两个披萨饼还不够他们吃的地步。” - Iron.io首席技术官Travis Reeder亚马逊是拥有多个团队的大型组织的完美典范。正如在API推荐人发表的一篇文章中提到的,杰夫贝佐斯向所有员工发布了一份授权通知他们,公司内的每个团队都必须通过API进行沟通。任何不会的人将被解雇。这样,所有的数据和功能都通过接口暴露出来。贝佐斯还设法让每个团队解耦,定义他们的资源,并通过API使其可用。亚马逊总是自底而上从头开始建立一个系统。这可以让公司内的每个团队成为彼此的合作伙伴。我与Iron.io的首席技术官Travis Reeder谈到了贝佐斯的内部计划。“杰夫贝佐斯强制所有team都必须建立API来与其他team进行沟通,他也提出了'两个披萨'规则,一个团队不能多到两个披萨饼还不够他们吃的地步。”他说。“我认为这同样适用于这样情况:当一个小团队在开发、管理和生产方面开始变得笨拙或开始变慢,这说明这个团队可能已经太大了,“Reeder告诉我。如何判断服务是否太小,或许没有正确定义在微服务系统的测试和实施阶段,需要牢记下面两条出现现象。要注意的第一个现象是服务之间的任何过度依赖。如果两个服务不断地互相调用,那么这已经是一个强烈的耦合信号,他们如果并成一个服务可能更好。第二个现象:建立服务的开销超过了让其独立的好处。在这种情况下不如合并成一个服务。Darby Frey解释说:“每个应用程序需要将其日志汇总到某处并需要进行监控。您需要设置报警。然后需要有标准的响应操作程序,并在事情中断时运行。你必须管理SSH的访问权限。为了让应用程序正常运行,必须准备大量基础设施支持。“

wangccsy 2019-12-02 01:46:40 0 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构,然后从网络、资源管理、存储、服务发现、负载均衡、高可用、rollingupgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。  当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。  1.Kubernetes的一些理念:  用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。  保证系统总是按照用户指定的状态去运行。  不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。  那些需要担心和不需要担心的事情。  更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。  对于Kubernetes的架构,可以参考官方文档。  大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。  看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在Kubernetes的未来版本中解决。  2.Kubernetes的主要特性  会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性->由于时间有限,只能简单一些了。  另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。  1)网络  Kubernetes的网络方式主要解决以下几个问题:  a.紧耦合的容器之间通信,通过Pod和localhost访问解决。  b.Pod之间通信,建立通信子网,比如隧道、路由,Flannel、OpenvSwitch、Weave。  c.Pod和Service,以及外部系统和Service的通信,引入Service解决。  Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。  注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖PodIP;通过Service环境变量或者DNS解决。  2)服务发现及负载均衡  kube-proxy和DNS,在v1之前,Service含有字段portalip和publicIPs,分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp,而在serviceport定义列表里,增加了nodePort项,即对应node上映射的服务端口。  DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取KubernetesAPI获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain,“tenx.domain”是提前设置的主域名。  注意:kube-proxy在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service的endpints或者Pods上。Kubernetes官方也在修复这个问题。  3)资源管理  有3个层次的资源限制方式,分别在Container、Pod、Namespace层次。Container层次主要利用容器本身的支持,比如Docker对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。  资源管理模型-》简单、通用、准确,并可扩展  目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的schedulerplugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。  4)高可用  主要是指Master节点的HA方式官方推荐利用etcd实现master选举,从多个Master中得到一个kube-apiserver保证至少有一个master可用,实现highavailability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。  一张图帮助大家理解:  也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver同一时间只能有一套运行。  5)rollingupgrade  RC在开始的设计就是让rollingupgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。  通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback当前正在执行的upgrade操作。  同样,Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。  6)存储  大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes的Volume就是主要来解决上面两个基础问题的。  Docker也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。  创建一个带Volume的Pod:  spec.volumes指定这个Pod需要的volume信息spec.containers.volumeMounts指定哪些container需要用到这个VolumeKubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。  emptyDir随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持RAM-backedfilesystemhostPath类似于Docker的本地Volume用于访问一些本地资源(比如本地Docker)。  gcePersistentDiskGCEdisk-只有在GoogleCloudEngine平台上可用。  awsElasticBlockStore类似于GCEdisk节点必须是AWSEC2的实例nfs-支持网络文件系统。  rbd-RadosBlockDevice-Ceph  secret用来通过KubernetesAPI向Pod传递敏感信息,使用tmpfs(aRAM-backedfilesystem)  persistentVolumeClaim-从抽象的PV中申请资源,而无需关心存储的提供方  glusterfs  iscsi  gitRepo  根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的:)  7)安全  一些主要原则:  基础设施模块应该通过APIserver交换数据、修改系统状态,而且只有APIserver可以访问后端存储(etcd)。  把用户分为不同的角色:Developers/ProjectAdmins/Administrators。  允许Developers定义secrets对象,并在pod启动时关联到相关容器。  以secret为例,如果kubelet要去pull私有镜像,那么Kubernetes支持以下方式:  通过dockerlogin生成.dockercfg文件,进行全局授权。  通过在每个namespace上创建用户的secret对象,在创建Pod时指定imagePullSecrets属性(也可以统一设置在serviceAcouunt上),进行授权。  认证(Authentication)  APIserver支持证书、token、和基本信息三种认证方式。  授权(Authorization)  通过apiserver的安全端口,authorization会应用到所有http的请求上  AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。  8)监控  比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的containermetrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。  Kubernetes集群范围内的监控主要由kubelet、heapster和storagebackend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。  注意:heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 答案来源网络,供您参考

问问小秘 2019-12-02 02:13:31 0 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构,然后从网络、资源管理、存储、服务发现、负载均衡、高可用、rollingupgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。  当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。  1.Kubernetes的一些理念:  用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。  保证系统总是按照用户指定的状态去运行。  不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。  那些需要担心和不需要担心的事情。  更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。  对于Kubernetes的架构,可以参考官方文档。  大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。  看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在Kubernetes的未来版本中解决。  2.Kubernetes的主要特性  会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性->由于时间有限,只能简单一些了。  另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。  1)网络  Kubernetes的网络方式主要解决以下几个问题:  a.紧耦合的容器之间通信,通过Pod和localhost访问解决。  b.Pod之间通信,建立通信子网,比如隧道、路由,Flannel、OpenvSwitch、Weave。  c.Pod和Service,以及外部系统和Service的通信,引入Service解决。  Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。  注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖PodIP;通过Service环境变量或者DNS解决。  2)服务发现及负载均衡  kube-proxy和DNS,在v1之前,Service含有字段portalip和publicIPs,分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp,而在serviceport定义列表里,增加了nodePort项,即对应node上映射的服务端口。  DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取KubernetesAPI获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain,“tenx.domain”是提前设置的主域名。  注意:kube-proxy在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service的endpints或者Pods上。Kubernetes官方也在修复这个问题。  3)资源管理  有3个层次的资源限制方式,分别在Container、Pod、Namespace层次。Container层次主要利用容器本身的支持,比如Docker对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。  资源管理模型-》简单、通用、准确,并可扩展  目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的schedulerplugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。  4)高可用  主要是指Master节点的HA方式官方推荐利用etcd实现master选举,从多个Master中得到一个kube-apiserver保证至少有一个master可用,实现highavailability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。  一张图帮助大家理解:  也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver同一时间只能有一套运行。  5)rollingupgrade  RC在开始的设计就是让rollingupgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。  通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback当前正在执行的upgrade操作。  同样,Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。  6)存储  大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes的Volume就是主要来解决上面两个基础问题的。  Docker也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。  创建一个带Volume的Pod:  spec.volumes指定这个Pod需要的volume信息spec.containers.volumeMounts指定哪些container需要用到这个VolumeKubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。  emptyDir随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持RAM-backedfilesystemhostPath类似于Docker的本地Volume用于访问一些本地资源(比如本地Docker)。  gcePersistentDiskGCEdisk-只有在GoogleCloudEngine平台上可用。  awsElasticBlockStore类似于GCEdisk节点必须是AWSEC2的实例nfs-支持网络文件系统。  rbd-RadosBlockDevice-Ceph  secret用来通过KubernetesAPI向Pod传递敏感信息,使用tmpfs(aRAM-backedfilesystem)  persistentVolumeClaim-从抽象的PV中申请资源,而无需关心存储的提供方  glusterfs  iscsi  gitRepo  根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的:)  7)安全  一些主要原则:  基础设施模块应该通过APIserver交换数据、修改系统状态,而且只有APIserver可以访问后端存储(etcd)。  把用户分为不同的角色:Developers/ProjectAdmins/Administrators。  允许Developers定义secrets对象,并在pod启动时关联到相关容器。  以secret为例,如果kubelet要去pull私有镜像,那么Kubernetes支持以下方式:  通过dockerlogin生成.dockercfg文件,进行全局授权。  通过在每个namespace上创建用户的secret对象,在创建Pod时指定imagePullSecrets属性(也可以统一设置在serviceAcouunt上),进行授权。  认证(Authentication)  APIserver支持证书、token、和基本信息三种认证方式。  授权(Authorization)  通过apiserver的安全端口,authorization会应用到所有http的请求上  AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。  8)监控  比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的containermetrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。  Kubernetes集群范围内的监控主要由kubelet、heapster和storagebackend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。  注意:heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:16:53 0 浏览量 回答数 0

新用户福利专场,云服务器ECS低至102元/年

新用户专场,1核2G 102元/年起,2核4G 699.8元/年起

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构, 然后从网络、 资源管理、存储、服务发现、负载均衡、高可用、rolling upgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。 当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解 Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。 1.Kubernetes的一些理念: 用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。 保证系统总是按照用户指定的状态去运行。 不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。 那些需要担心和不需要担心的事情。 更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。 对于Kubernetes的架构,可以参考官方文档。 大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。 看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在 Kubernetes 的未来版本中解决。 2.Kubernetes的主要特性 会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性 -> 由于时间有限,只能简单一些了。 另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。 1)网络 Kubernetes的网络方式主要解决以下几个问题: a. 紧耦合的容器之间通信,通过 Pod 和 localhost 访问解决。 b. Pod之间通信,建立通信子网,比如隧道、路由,Flannel、Open vSwitch、Weave。 c. Pod和Service,以及外部系统和Service的通信,引入Service解决。 Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。 注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖Pod IP;通过Service环境变量或者DNS解决。 2) 服务发现及负载均衡 kube-proxy和DNS, 在v1之前,Service含有字段portalip 和publicIPs, 分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp 通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp, 而在service port 定义列表里,增加了nodePort项,即对应node上映射的服务端口。 DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取Kubernetes API获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain, "tenx.domain"是提前设置的主域名。 注意:kube-proxy 在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service 的endpints 或者 Pods上。Kubernetes官方也在修复这个问题。 3)资源管理 有3 个层次的资源限制方式,分别在Container、Pod、Namespace 层次。Container层次主要利用容器本身的支持,比如Docker 对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。 资源管理模型 -》 简单、通用、准确,并可扩展 目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的scheduler plugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。 4)高可用 主要是指Master节点的 HA方式 官方推荐 利用etcd实现master 选举,从多个Master中得到一个kube-apiserver 保证至少有一个master可用,实现high availability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。 一张图帮助大家理解: 也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver 同一时间只能有一套运行。 5) rolling upgrade RC 在开始的设计就是让rolling upgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。 通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback 当前正在执行的upgrade操作。 同样, Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。 6)存储 大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes 的 Volume就是主要来解决上面两个基础问题的。 Docker 也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。 创建一个带Volume的Pod: spec.volumes 指定这个Pod需要的volume信息 spec.containers.volumeMounts 指定哪些container需要用到这个Volume Kubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。 emptyDir 随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持 RAM-backed filesystemhostPath 类似于Docker的本地Volume 用于访问一些本地资源(比如本地Docker)。 gcePersistentDisk GCE disk - 只有在 Google Cloud Engine 平台上可用。 awsElasticBlockStore 类似于GCE disk 节点必须是 AWS EC2的实例 nfs - 支持网络文件系统。 rbd - Rados Block Device - Ceph secret 用来通过Kubernetes API 向Pod 传递敏感信息,使用 tmpfs (a RAM-backed filesystem) persistentVolumeClaim - 从抽象的PV中申请资源,而无需关心存储的提供方 glusterfs iscsi gitRepo 根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的 :) 7)安全 一些主要原则: 基础设施模块应该通过API server交换数据、修改系统状态,而且只有API server可以访问后端存储(etcd)。 把用户分为不同的角色:Developers/Project Admins/Administrators。 允许Developers定义secrets 对象,并在pod启动时关联到相关容器。 以secret 为例,如果kubelet要去pull 私有镜像,那么Kubernetes支持以下方式: 通过docker login 生成 .dockercfg 文件,进行全局授权。 通过在每个namespace上创建用户的secret对象,在创建Pod时指定 imagePullSecrets 属性(也可以统一设置在serviceAcouunt 上),进行授权。 认证 (Authentication) API server 支持证书、token、和基本信息三种认证方式。 授权 (Authorization) 通过apiserver的安全端口,authorization会应用到所有http的请求上 AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。 8)监控 比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的container metrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。 Kubernetes集群范围内的监控主要由kubelet、heapster和storage backend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。 注意: heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 此答案来源于网络,希望对你有所帮助。

养狐狸的猫 2019-12-02 02:13:33 0 浏览量 回答数 0

问题

如何使用SLB实现持续性高并发访问?

仟与仟寻 2019-12-01 21:44:21 2783 浏览量 回答数 3

回答

MQTT协议 MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)最早是IBM开发的一个即时通讯协议,MQTT协议是为大量计算能力有限且工作在低带宽、不可靠网络的远程传感器和控制设备通讯而设计的一种协议。 MQTT协议的优势是可以支持所有平台,它几乎可以把所有的联网物品和互联网连接起来。 它具有以下主要的几项特性:1、使用发布/订阅消息模式,提供一对多的消息发布和应用程序之间的解耦;2、消息传输不需要知道负载内容;3、使用 TCP/IP 提供网络连接;4、有三种消息发布的服务质量:QoS 0:“最多一次”,消息发布完全依赖底层 TCP/IP 网络。分发的消息可能丢失或重复。例如,这个等级可用于环境传感器数据,单次的数据丢失没关系,因为不久后还会有第二次发送。QoS 1:“至少一次”,确保消息可以到达,但消息可能会重复。QoS 2:“只有一次”,确保消息只到达一次。例如,这个等级可用在一个计费系统中,这里如果消息重复或丢失会导致不正确的收费。5、小型传输,开销很小(固定长度的头部是 2 字节),协议交换最小化,以降低网络流量;6、使用 Last Will 和 Testament 特性通知有关各方客户端异常中断的机制;在MQTT协议中,一个MQTT数据包由:固定头(Fixed header)、 可变头(Variable header)、 消息体(payload)三部分构成。MQTT的传输格式非常精小,最小的数据包只有2个bit,且无应用消息头。下图是MQTT为可靠传递消息的三种消息发布服务质量 发布/订阅模型允许MQTT客户端以一对一、一对多和多对一方式进行通讯。 下图是MQTT的发布/订阅消息模式 CoAP协议 CoAP是受限制的应用协议(Constrained Application Protocol)的代名词。由于目前物联网中的很多设备都是资源受限型的,所以只有少量的内存空间和有限的计算能力,传统的HTTP协议在物联网应用中就会显得过于庞大而不适用。因此,IETF的CoRE工作组提出了一种基于REST架构、传输层为UDP、网络层为6LowPAN(面向低功耗无线局域网的IPv6)的CoAP协议。 CoAP采用与HTTP协议相同的请求响应工作模式。CoAP协议共有4中不同的消息类型。CON——需要被确认的请求,如果CON请求被发送,那么对方必须做出响应。NON——不需要被确认的请求,如果NON请求被发送,那么对方不必做出回应。ACK——应答消息,接受到CON消息的响应。RST——复位消息,当接收者接受到的消息包含一个错误,接受者解析消息或者不再关心发送者发送的内容,那么复位消息将会被发送。 CoAP消息格式使用简单的二进制格式,最小为4个字节。 一个消息=固定长度的头部header + 可选个数的option + 负载payload。Payload的长度根据数据报长度来计算。 主要是一对一的协议 举个例子: 比如某个设备需要从服务器端查询当前温度信息。 请求消息(CON): GET /temperature , 请求内容会被包在CON消息里面响应消息 (ACK): 2.05 Content “22.5 C” ,响应内容会被放在ACK消息里面 CoAP与MQTT的区别 MQTT和CoAP都是行之有效的物联网协议,但两者还是有很大区别的,比如MQTT协议是基于TCP,而CoAP协议是基于UDP。从应用方向来分析,主要区别有以下几点: 1、MQTT协议不支持带有类型或者其它帮助Clients理解的标签信息,也就是说所有MQTT Clients必须要知道消息格式。而CoAP协议则相反,因为CoAP内置发现支持和内容协商,这样便能允许设备相互窥测以找到数据交换的方式。 2、MQTT是长连接而CoAP是无连接。MQTT Clients与Broker之间保持TCP长连接,这种情形在NAT环境中也不会产生问题。如果在NAT环境下使用CoAP的话,那就需要采取一些NAT穿透性手段。 3、MQTT是多个客户端通过中央代理进行消息传递的多对多协议。它主要通过让客户端发布消息、代理决定消息路由和复制来解耦消费者和生产者。MQTT就是相当于消息传递的实时通讯总线。CoAP基本上就是一个在Server和Client之间传递状态信息的单对单协议。 HTTP协议http的全称是HyperText Transfer Protocol,超文本传输协议,这个协议的提出就是为了提供和接收HTML界面,通过这个协议在互联网上面传出web的界面信息。 HTTP协议的两个过程,Request和Response,两个都有各自的语言格式,我们看下是什么。请求报文格式:(注意这里有个换行) 响应报文格式:(注意这里有个换行) 方法method:       这个很重要,比如说GET和POST方法,这两个是很常用的,GET就是获取什么内容,而POST就是向服务器发送什么数据。当然还有其他的,比如HTTP 1.1中还有:DELETE、PUT、CONNECT、HEAD、OPTIONS、TRACE等一共8个方法(HTTP Method历史:HTTP 0.9 只有GET方法;HTTP 1.0 有GET、POST、HEAD三个方法)。请求URL:       这里填写的URL是不包含IP地址或者域名的,是主机本地文件对应的目录地址,所以我们一般看到的就是“/”。版本version:       格式是HTTP/.这样的格式,比如说HTTP/1.1.这个版本代表的就是我们使用的HTTP协议的版本,现在使用的一般是HTTP/1.1状态码status:       状态码是三个数字,代表的是请求过程中所发生的情况,比如说200代表的是成功,404代表的是找不到文件。原因短语reason-phrase:       是状态码的可读版本,状态码就是一个数字,如果你事先不知道这个数字什么意思,可以先查看一下原因短语。首部header:       注意这里的header我们不是叫做头,而是叫做首部。可能有零个首部也可能有多个首部,每个首部包含一个名字后面跟着一个冒号,然后是一个可选的空格,接着是一个值,然后换行。实体的主体部分entity-body:       实体的主体部分包含一个任意数据组成的数据块,并不是所有的报文都包含实体的主体部分,有时候只是一个空行加换行就结束了。 下面我们举个简单的例子: 请求报文:GET /index.html HTTP/1.1    Accept: text/*Host: www.myweb.com 响应报文:HTTP/1.1 200 OKContent-type: text/plainContent-length: 3  HTTP与CoAP的区别 CoAP是6LowPAN协议栈中的应用层协议,基于REST(表述性状态传递)架构风格,支持与REST进行交互。通常用户可以像使用HTTP协议一样用CoAP协议来访问物联网设备。而且CoAP消息格式使用简单的二进制格式,最小为4个字节。HTTP使用报文格式对于嵌入式设备来说需要传输数据太多,太重,不够灵活。 XMPP协议 XMPP(可扩展通讯和表示协议)是一种基于可扩展标记语言(XML)的协议, 它继承了在XML环境中灵活的发展性。可用于服务类实时通讯、表示和需求响应服务中的XML数据元流式传输。XMPP以Jabber协议为基础,而Jabber是即时通讯中常用的开放式协议。   基本网络结构 XMPP中定义了三个角色,客户端,服务器,网关。通信能够在这三者的任意两个之间双向发生。 服务器同时承担了客户端信息记录,连接管理和信息的路由功能。网关承担着与异构即时通信系统 的互联互通,异构系统可以包括SMS(短信),MSN,ICQ等。基本的网络形式是单客户端通过 TCP/IP连接到单服务器,然后在之上传输XML。 功能 传输的是与即时通讯相关的指令。在以前这些命令要么用2进制的形式发送(比如QQ),要么用纯文本指令加空格加参数加换行符的方式发送(比如MSN)。而XMPP传输的即时通讯指令的逻辑与以往相仿,只是协议的形式变成了XML格式的纯文本。举个例子看看所谓的XML(标准通用标记语言的子集)流是什么样子的?客户端:123456<?xmlversion='1.0'?>to='example_com'xmlns='jabber:client'xmlns:stream='http_etherx_jabber_org/streams'version='1.0'>服务器:1234567<?xmlversion='1.0'?>from='example_com'id='someid'xmlns='jabber:client'xmlns:stream='http_etherx_jabber_org/streams'version='1.0'>工作原理XMPP核心协议通信的基本模式就是先建立一个stream,然后协商一堆安全之类的东西, 中间通信过程就是客户端发送XML Stanza,一个接一个的。服务器根据客户端发送的信息 以及程序的逻辑,发送XML Stanza给客户端。但是这个过程并不是一问一答的,任何时候 都有可能从一方发信给另外一方。通信的最后阶段是关闭流,关闭TCP/IP连接。  网络通信过程中数据冗余率非常高,网络流量中70% 都消耗在 XMPP 协议层了。对于物联网来说,大量计算能力有限且工作在低带宽、不可靠网络的远程传感器和控制设备,省电、省流量是所有底层服务的一个关键技术指标,XMPP协议看起来已经落后了。 SoAP协议 SoAP(简单对象访问协议)是交换数据的一种协议规范,是一种轻量的、简单的、 基于可扩展标记语言(XML)的协议,它被设计成在WEB上交换结构化的和固化的信息。  SOAP 可以和现存的许多因特网协议和格式结合使用,包括超文本传输协议(HTTP), 简单邮件传输协议(SMTP),多用途网际邮件扩充协议(MIME)。它还支持从消息系统到 远程过程调用(RPC)等大量的应用程序。SOAP使用基于XML的数据结构和超文本传输协议 (HTTP)的组合定义了一个标准的方法来使用Internet上各种不同操作环境中的分布式对象。 总结: 从当前物联网应用发展趋势来分析,MQTT协议具有一定的优势。因为目前国内外主要的云计算服务商,比如阿里云、AWS、百度云、Azure以及腾讯云都一概支持MQTT协议。还有一个原因就是MQTT协议比CoAP成熟的要早,所以MQTT具有一定的先发优势。但随着物联网的智能化和多变化的发展,后续物联网应用平台肯定会兼容更多的物联网应用层协议。 作者:HFK_Frank 来源:CSDN 原文:https://blog.csdn.net/acongge2010/article/details/79142380 版权声明:本文为博主原创文章,转载请附上博文链接!

auto_answer 2019-12-02 01:55:21 0 浏览量 回答数 0

回答

Kotlin的简介 Kotlin是由JetBrains公司(IDEA开发者)所开发的编程语言,其名称来自于开发团队附近的科特林岛。 多平台开发 JVM :Android; Server-Side Javascript:前端 Native(beta) :开发原生应用 windows、macos、linux Swift与Kotlin非常像 http://nilhcem.com/swift-is-like-kotlin/ kotlin发展历程 image.png java发展历程 image.png JVM语言的原理 image.png JVM规范与java规范是相互独立的 只要生成的编译文件匹配JVM字节码规范,任何语言都可以由JVM编译运行. Kotlin也是一种JVM语言,完全兼容java,可以与java相互调用;Kotlin语言的设计受到Java、C#、JavaScript、Scala、Groovy等语言的启发 kotlin的特性 下面不会罗列kotlin中具体的语法,会介绍我认为比较重要的特性,以及特性背后的东西。 类型推断 空类型设计 函数式编程 类型推断 image.png 类型推断是指编程语言中在编译期自动推导出值的数据类型。推断类型的能力让很多编程任务变得容易,让程序员可以忽略类型标注的同时仍然允许类型检查。 在开发环境中,我们往往写出表达式,然后可以用快捷键来生成变量声明,往往都是很准的,这说明了编译器其实是可以很准确的推断出来类型的。编程语言所具备的类型推断能力可以把类型声明的任务由开发者转到了编译器. java中声明变量的方式是类型写在最前面,后面跟着变量名,这就迫使开发者在声明变量时就要先思考变量的类型要定义成什么,而在一些情况下比如使用集合、泛型类型的变量,定义类型就会变得比较繁琐。 Kotlin中声明变量,类型可以省略,或者放到变量名后面,这可以降低类型的权重,从必选变为可选,降低开发者思维负担。java10中也引入了类型推断。 Javascript中声明变量也是用关键字var,但是还是有本质区别的,Kotlin中的类型推断并不是变成动态类型、弱类型,类型仍然是在编译期就已经决定了的,Kotlin仍然是静态类型、强类型的编程语言。javascript由于是弱类型语言,同一个变量可以不经过强制类型转换就被赋不同数据类型的值, 编程语言的一个趋势就是抽象程度越来越高,编译器做更多的事情。 空类型设计 空类型的由来 image.png 托尼·霍尔(Tony Hoare),图灵奖得主 托尼·霍尔是ALGOL语言的设计者,该语言在编程语言发展历史上非常重要,对其他编程语言产生重大影响,大多数近代编程语言(包括C语言)皆使用类似ALGOL的语法。他在一次大会上讨论了null应用的设计: “我把 null 引用称为自己的十亿美元错误。它的发明是在1965 年,那时我用一个面向对象语言( ALGOL W )设计了第一个全面的引用类型系统。我加入了null引用设计,仅仅是因为实现起来非常容易。它导致了数不清的错误、漏洞和系统崩溃,可能在之后 40 年中造成了十亿美元的损失。” null引用存在的问题 以java为例,看null引用的设计到底存在哪些问题 空指针问题NPE 编译时不能对空指针做出检查,运行时访问null对象就会出现错误,这个就是工程中常见的空指针异常。 null本身没有语义,会存在歧义 值未被初始化 值不存在 也许表示一种状态 逻辑上有漏洞 Java中,null可以赋值给任何引用,比如赋值给String类型变量,String a = null,但是null并不是String类型: a instanceof String 返回的是false,这个其实是有些矛盾的。所以当持有一个String类型的变量,就存在两种情况,null或者真正的String. 解决NPE的方式 防御式代码 在访问对象前判空,但会有冗余代码;会规避问题,而隐藏真正的问题 抛出异常给调用方处理 方法中传参传入的空值、无效值,抛出受检查异常给上层调用方 增加注解 Android中可以增加@NonNull注解,编译时做额外检查 空状态对象设计模式 空状态对象是一个实现接口但是不做任何业务逻辑的对象,可以取代判空检查;这样的空状态对象也可以在数据不可用的时候提供默认的行为 java8 Optional类 java8中引入了Optional类,来解决广泛存在的null引用问题.官方javadoc文档介绍 A container object which may or may not contain a non-null value. If a value is present, isPresent() will return true and get() will return the value. Additional methods that depend on the presence or absence of a contained value are provided, such as orElse() (return a default value if value not present) and ifPresent() (execute a block of code if the value is present). 来看一下是如何实现的。 举一个访问对象读取熟悉的例子 java 8 之前 : image.png java 8: image.png 总结: 1.用Optional还是会比较繁琐,这个也说明了设计一个替代null的方案还是比较难的。 optional的耗时大约是普通判空的数十倍,主要是涉及泛型、使用时多创键了一个对象的创建;数据比较大时,会造成性能损失。 java8 引入Optional的意义在于提示调用者,用特殊类型包装的变量可能为空,在使用取出时需要判断 Kotlin的空类型设计 Kotlin中引入了可空类型和不可空类型的区分,可以区分一个引用可以容纳null,还是不能容纳null。 String vs String? String 类型表示变量不能为空,String?则表示变量可以为空 String?含义是String or null.这两种是不同的类型. 比如: var a:String = “abc” //ok var a:String = null //不允许 var b :String? = null //ok a=b // 不允许 String?类型的值不能给String类型的值赋值 这样就将类型分成了可空类型和不可能类型,每一个类型都有这样的处理;Kotlin中访问非空类型变量永远不会出现空指针异常。 同样上面的例子,采用Kotlin去写,就会简洁很多 image.png 编程范式-函数式编程 编程范式是什么? 编程范式是程序员看待程序和写程序的观点 主要的类型 非结构化编程 结构化编程 面向对象编程 命令式编程 函数式编程 这些类型并不是彼此互斥的,而是按照不同的维度做的划分,一种编程语言可能都支持多个编程范式 非结构化编程 第一代的高级语言往往是非结构化编程 比如 BASIC语言 每一行的代码前面都有一个数字作为行号,通常使用GOTO的跳跃指令来实现判断和循环. 看一下下面这段代码是做什么的: image.png 实际上做的是:程序在屏幕上显示数字 1 到 10 及其对应的平方 采用这种方式写程序,大量的使用goto实现逻辑的跳转,代码一长,可读性和维护性就比较差了,形成“面条式代码” 结构化编程 采用顺序、分支、循环结构来表达,禁用或者少用GOTO; 并用子程序来组织代码,采用自顶向下的方式来写程序 代表语言是C语言 实现同样的逻辑: image.png 可见采用结构化编程,代码的逻辑会更清晰。 面向对象编程 思想: 将计算机程序视为一组对象的集合,而每个对象都可以接收其他对象发过来的消息,并处理这些消息,计算机程序的执行就是一系列消息在各个对象之间传递。 特性: 封装性、继承性、多态性。 命令式编程 把计算机程序视为一系列的命令集合 主要思想是关注计算机执行的步骤,即一步一步告诉计算机先做什么再做什么。 “先做这,再做那”,强调“怎么做” 实现: 用变量来储存数据,用语句来执行指令,改变变量状态。 基本所有的常见的编程语言都具有此范式 函数式编程 声明式语法,描述要什么,而不是怎么做 类似于SQL语句 语言: kotlin swift python javascript scala 函数是第一等公民 可以赋值给变量,可作为参数传入另一个函数,也可作为函数的返回值 纯函数 y=f(x) 只要输入相同,返回值不变 没有副作用:不修改函数的外部状态 举个栗子 公司部门要进行outing,去哪里是个问题,要考虑多个因素,比如花费、距离、天数等等,有多个备选地点进行选择。 定义一个数据类: image.png 要进行筛选了,分别用sql,kotlin,java来实现 找出花费低于2000元的outing地点信息 SQL image.png Kotlin image.png java 7 image.png 可见kotin的写法还是比较接近于sql的思想的,声明式的写法,而不管具体如何实现;其中的:place->place.money<2000 就是函数,可以作为参数传递给fliter这个高阶函数;而且这个函数没有副作用,不改变外部状态。 再来一个复杂一点的: 找出花费低于5000元,时间不多于4天,按照距离排序的outing地点名称 SQL image.png Kotlin: image.png java 7 image.png 由此可见用kotlin的函数式写法,会更简洁,逻辑也更清晰,这段代码的目标一目了然,这种清晰在于实现了业务逻辑与控制逻辑的分离,业务逻辑就是由函数实现的,比如place->place.money<500,而控制逻辑是由filter,sorterBy等高阶函数实现的。 而java的传统写法是基于对数据的操作,避免不了遍历的操作,业务逻辑与控制逻辑交织在了一起,这段代码的目的就不是那么容易清晰看到的了。 总结 kotlin是实用的现代编程语言,吸收了众多编程语言的优点,支持类型推断、空类型安全、函数式编程、DSL等特性,非常值得学习和使用。

问问小秘 2020-04-30 16:33:40 0 浏览量 回答数 0

问题

MathML 介绍:报错

kun坤 2020-06-08 11:09:17 2 浏览量 回答数 1

问题

Linux堆内存管理深入分析(下)

移动安全 2019-12-01 21:29:55 5623 浏览量 回答数 0

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

回答

Go 的优势在于能够将简单的和经过验证的想法结合起来,同时避免了其他语言中出现的许多问题。本文概述了 Go 背后的一些设计原则和工程智慧,作者认为,Go 语言具备的所有这些优点,将共同推动其成为接替 Java 并主导下一代大型软件开发平台的最有力的编程语言候选。很多优秀的编程语言只是在个别领域比较强大,如果将所有因素都纳入考虑,没有其他语言能够像 Go 语言一样“全面开花”,在大型软件工程方面,尤为如此。 基于现实经验 Go 是由经验丰富的软件行业老手一手创建的,长期以来,他们对现有语言的各种缺点有过切身体会的痛苦经历。几十年前,Rob Pike 和 Ken Thompson 在 Unix、C 和 Unicode 的发明中起到了重要作用。Robert Griensemer 在为 JavaScript 和 Java 开发 V8 和 HotSpot 虚拟机之后,在编译器和垃圾收集方面拥有数十年的经验。有太多次,他们不得不等待 Google 规模的 C++/Java 代码库进行编译。于是,他们开始着手创建新的编程语言,将他们半个世纪以来的编写代码所学到的一切经验包含进去。 专注于大型工程 小型工程项目几乎可以用任何编程语言来成功构建。当成千上万的开发人员在数十年的持续时间压力下,在包含数千万行代码的大型代码库上进行协作时,就会发生真正令人痛苦的问题。这样会导致一些问题,如下: 较长的编译时间导致中断开发。代码库由几个人 / 团队 / 部门 / 公司所拥有,混合了不同的编程风格。公司雇佣了数千名工程师、架构师、测试人员、运营专家、审计员、实习生等,他们需要了解代码库,但也具备广泛的编码经验。依赖于许多外部库或运行时,其中一些不再以原始形式存在。在代码库的生命周期中,每行代码平均被重写 10 次,被弄得千疮百痍,而且还会发生技术偏差。文档不完整。 Go 注重减轻这些大型工程的难题,有时会以使小型工程变得更麻烦为代价,例如,代码中到处都需要几行额外的代码行。 注重可维护性 Go 强调尽可能多地将工作转给自动化的代码维护工具中。Go 工具链提供了最常用的功能,如格式化代码和导入、查找符号的定义和用法、简单的重构以及代码异味的识别。由于标准化的代码格式和单一的惯用方式,机器生成的代码更改看起来非常接近 Go 中人为生成的更改并使用类似的模式,从而允许人机之间更加无缝地协作。 保持简单明了 初级程序员为简单的问题创建简单的解决方案。高级程序员为复杂的问题创建复杂的解决方案。伟大的程序员找到复杂问题的简单解决方案。 ——Charles Connell 让很多人惊讶的一点是,Go 居然不包含他们喜欢的其他语言的概念。Go 确实是一种非常小巧而简单的语言,只包含正交和经过验证的概念的最小选择。这鼓励开发人员用最少的认知开销来编写尽可能简单的代码,以便许多其他人可以理解并使用它。 使事情清晰明了 良好的代码总是显而易见的,避免了那些小聪明、难以理解的语言特性、诡异的控制流和兜圈子。 许多语言都致力提高编写代码的效率。然而,在其生命周期中,人们阅读代码的时间却远远超过最初编写代码所需的时间(100 倍)。例如,审查、理解、调试、更改、重构或重用代码。在查看代码时,往往只能看到并理解其中的一小部分,通常不会有完整的代码库概述。为了解释这一点,Go 将所有内容都明确出来。 错误处理就是一个例子。让异常在各个点中断代码并在调用链上冒泡会更容易。Go 需要手动处理和返回每个错误。这使得它可以准确地显示代码可以被中断的位置以及如何处理或包装错误。总的来说,这使得错误处理编写起来更加繁琐,但是也更容易理解。 简单易学 Go 是如此的小巧而简单,以至于人们可以在短短几天内就能研究通整个语言及其基本概念。根据我们的经验,培训用不了一个星期(相比于掌握其他语言需要几个月),初学者就能够理解 Go 专家编写的代码,并为之做出贡献。为了方便吸引更多的用户,Go 网站提供了所有必要的教程和深入研究的文章。这些教程在浏览器中运行,允许人们在将 Go 安装到本地计算机上之前就能够学习和使用 Go。 解决之道 Go 强调的是团队之间的合作,而不是个人的自我表达。 在 Go(和 Python)中,所有的语言特性都是相互正交和互补的,通常有一种方法可以做一些事情。如果你想让 10 个 Python 或 Go 程序员来解决同一个问题,你将会得到 10 个相对类似的解决方案。不同的程序员在彼此的代码库中感觉更自在。在查看其他人的代码时,国骂会更少,而且人们的工作可以更好地融合在一起,从而形成了一致的整体,人人都为之感到自豪,并乐于工作。这还避免了大型工程的问题,如: 开发人员认为良好的工作代码很“混乱”,并要求在开始工作之前进行重写,因为他们的思维方式与原作者不同。 不同的团队成员使用不同的语言子集来编写相同代码库的部分内容。 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/e64418f1455d46aaacfdd03fa949f16d.png) 简单、内置的并发性 Go 专为现代多核硬件设计。 目前使用的大多数编程语言(Java、JavaScript、Python、Ruby、C、C++)都是 20 世纪 80 年代到 21 世纪初设计的,当时大多数 CPU 只有一个计算内核。这就是为什么它们本质上是单线程的,并将并行化视为边缘情况的马后炮。通过现成和同步点之类的附加组件来实现,而这些附加组件既麻烦又难以正确使用。第三方库虽然提供了更简单的并发形式,如 Actor 模型,但是总有多个可用选项,结果导致了语言生态系统的碎片化。今天的硬件拥有越来越多的计算内核,软件必须并行化才能高效运行。Go 是在多核处理器时代编写的,并且在语言中内置了简单、高级的 CSP 风格并发性。 面向计算的语言原语 就深层而言,计算机系统接收数据,对其进行处理(通常要经过几个步骤),然后输出结果数据。例如,Web 服务器从客户端接收 HTTP 请求,并将其转换为一系列数据库或后端调用。一旦这些调用返回,它就将接收到的数据转换成 HTML 或 JSON 并将其输出给调用者。Go 的内置语言原语直接支持这种范例: 结构表示数据 读和写代表流式 IO 函数过程数据 goroutines 提供(几乎无限的)并发性 在并行处理步骤之间传输管道数据 因为所有的计算原语都是由语言以直接形式提供的,因此 Go 源代码更直接地表达了服务器执行的操作。 OO — 好的部分 更改基类中的某些内容的副作用 面向对象非常有用。过去几十年来,面向对象的使用富有成效,并让我们了解了它的哪些部分比其他部分能够更好地扩展。Go 在面向对象方面采用了一种全新的方法,并记住了这些知识。它保留了好的部分,如封装、消息传递等。Go 还避免了继承,因为它现在被认为是有害的,并为组合提供了一流的支持。 现代标准库 目前使用的许多编程语言(Java、JavaScript、Python、Ruby)都是在互联网成为当今无处不在的计算平台之前设计的。因此,这些语言的标准库只提供了相对通用的网络支持,而这些网络并没有针对现代互联网进行优化。Go 是十年前创建的,当时互联网已全面发展。Go 的标准库允许在没有第三方库的情况下创建更复杂的网络服务。这就避免了第三方库的常见问题: 碎片化:总是有多个选项实现相同的功能。 膨胀:库常常实现的不仅仅是它们的用途。 依赖地狱:库通常依赖于特定版本的其他库。 未知质量:第三方代码的质量和安全性可能存在问题。 未知支持:第三方库的开发可能随时停止支持。 意外更改:第三方库通常不像标准库那样严格地进行版本控制。 关于这方面更多的信息请参考 Russ Cox 提供的资料 标准化格式 Gofmt 的风格没有人会去喜欢,但人人都会喜欢 gofmt。 ——Rob Pike Gofmt 是一种以标准化方式来格式化 Go 代码的程序。它不是最漂亮的格式化方式,但却是最简单、最不令人生厌的格式化方式。标准化的源代码格式具有惊人的积极影响: 集中讨论重要主题: 它消除了围绕制表符和空格、缩进深度、行长、空行、花括号的位置等一系列争论。 开发人员在彼此的代码库中感觉很自在, 因为其他代码看起来很像他们编写的代码。每个人都喜欢自由地按照自己喜欢的方式进行格式化代码,但如果其他人按照自己喜欢的方式格式化了代码,这么做很招人烦。 自动代码更改并不会打乱手写代码的格式,例如引入了意外的空白更改。 许多其他语言社区现在正在开发类似 gofmt 的东西。当作为第三方解决方案构建时,通常会有几个相互竞争的格式标准。例如,JavaScript 提供了 Prettier 和 StandardJS。这两者都可以用,也可以只使用其中的一个。但许多 JS 项目并没有采用它们,因为这是一个额外的决策。Go 的格式化程序内置于该语言的标准工具链中,因此只有一个标准,每个人都在使用它。 快速编译 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/8a76f3f07f484266af42781d9e7b8692.png) 对于大型代码库来说,它们长时间的编译是促使 Go 诞生的原因。Google 主要使用的是 C++ 和 Java,与 Haskell、Scala 或 Rust 等更复杂的语言相比,它们的编译速度相对较快。尽管如此,当编译大型代码库时,即使是少量的缓慢也会加剧编译的延迟,从而激怒开发人员,并干扰流程。Go 的设计初衷是为了提高编译效率,因此它的编译器速度非常快,几乎没有编译延迟的现象。这给 Go 开发人员提供了与脚本类语言类似的即时反馈,还有静态类型检查的额外好处。 交叉编译 由于语言运行时非常简单,因此它被移植到许多平台,如 macOS、Linux、Windows、BSD、ARM 等。Go 可以开箱即用地为所有这些平台编译二进制文件。这使得从一台机器进行部署变得很容易。 快速执行 Go 的运行速度接近于 C。与 JITed 语言(Java、JavaScript、Python 等)不同,Go 二进制文件不需要启动或预热的时间,因为它们是作为编译和完全优化的本地代码的形式发布的。Go 的垃圾收集器仅引入微秒量级的可忽略的停顿。除了快速的单核性能外,Go 还可以轻松利用所有的 CPU 内核。 内存占用小 像 JVM、Python 或 Node 这样的运行时不仅仅在运行时加载程序代码,每次运行程序时,它们还会加载大型且高度复杂的基础架构,以进行编译和优化程序。如此一来,它们的启动时间就变慢了,并且还占用了大量内存(数百兆字节)。而 Go 进程的开销更小,因为它们已经完全编译和优化,只需运行即可。Go 还以非常节省内存的方式来存储数据。在内存有限且昂贵的云环境中,以及在开发过程中,这一点非常重要。我们希望在一台机器上能够快速启动整个堆栈,同时将内存留给其他软件。 部署规模小 Go 的二进制文件大小非常简洁。Go 应用程序的 Docker 镜像通常比用 Java 或 Node 编写的等效镜像要小 10 倍,这是因为它无需包含编译器、JIT,以及更少的运行时基础架构的原因。这些特点,在部署大型应用程序时很重要。想象一下,如果要将一个简单的应用程序部署到 100 个生产服务器上会怎么样?如果使用 Node/JVM 时,我们的 Docker 注册表就必须提供 100 个 docker 镜像,每个镜像 200MB,那么一共就需要 20GB。要完成这些部署就需要一些时间。想象一下,如果我们想每天部署 100 次的话,如果使用 Go 服务,那么 Docker 注册表只需提供 10 个 docker 镜像,每个镜像只有 20MB,共只需 2GB 即可。大型 Go 应用程序可以更快、更频繁地部署,从而使得重要更新能够更快地部署到生产环境中。 独立部署 Go 应用程序部署为一个包含所有依赖项的单个可执行文件,并无需安装特定版本的 JVM、Node 或 Python 运行时;也不必将库下载到生产服务器上,更无须对运行 Go 二进制文件的机器进行任何更改。甚至也不需要讲 Go 二进制文件包装到 Docker 来共享他们。你需要做的是,只是将 Go 二进制文件放到服务器上,它就会在那里运行,而不用关心服务器运行的是什么。前面所提到的那些,唯一的例外是使用net和os/user包时针对对glibc的动态链接。 供应依赖关系 Go 有意识避免使用第三方库的中央存储库。Go 应用程序直接链接到相应的 Git 存储库,并将所有相关代码下载(供应)到自己的代码库中。这样做有很多好处: 在使用第三方代码之前,我们可以对其进行审查、分析和测试。该代码就和我们自己的代码一样,是我们应用程序的一部分,应该遵循相同的质量、安全性和可靠性标准。 无需永久访问存储依赖项的各个位置。从任何地方(包括私有 Git repos)获取第三方库,你就能永久拥有它们。 经过验收后,编译代码库无需进一步下载依赖项。 若互联网某处的代码存储库突然提供不同的代码,这也并不足为奇。 即使软件包存储库速度变慢,或托管包不复存在,部署也不会因此中断。 兼容性保证 Go 团队承诺现有的程序将会继续适用于新一代语言。这使得将大型项目升级到最新版本的编译器会非常容易,并且可从它们带来的许多性能和安全性改进中获益。同时,由于 Go 二进制文件包含了它们需要的所有依赖项,因此可以在同一服务器上并行运行使用不同版本的 Go 编译器编译的二进制文件,而无需进行复杂的多个版本的运行时设置或虚拟化。 文档 在大型工程中,文档对于使软件可访问性和可维护性非常重要。与其他特性类似,Go 中的文档简单实用: 由于它是嵌入到源代码中的,因此两者可以同时维护。 它不需要特殊的语法,文档只是普通的源代码注释。 可运行单元测试通常是最好的文档形式。因此 Go 要求将它们嵌入到文档中。 所有的文档实用程序都内置在工具链中,因此每个人都使用它们。 Go linter 需要导出元素的文档,以防止“文档债务”的积累。 商业支持的开源 当商业实体在开放式环境下开发时,那么一些最流行的、经过彻底设计的软件就会出现。这种设置结合了商业软件开发的优势——一致性和精细化,使系统更为健壮、可靠、高效,并具有开放式开发的优势,如来自许多行业的广泛支持,多个大型实体和许多用户的支持,以及即使商业支持停止的长期支持。Go 就是这样发展起来的。 缺点 当然,Go 也并非完美无缺,每种技术选择都是有利有弊。在决定选择 Go 之前,有几个方面需要进行考虑考虑。 未成熟 虽然 Go 的标准库在支持许多新概念(如 HTTP 2 Server push 等)方面处于行业领先地位,但与 JVM 生态系统中的第三方库相比,用于外部 API 的第三方 Go 库可能不那么成熟。 即将到来的改进 由于清楚几乎不可能改变现有的语言元素,Go 团队非常谨慎,只在新特性完全开发出来后才添加新特性。在经历了 10 年的有意稳定阶段之后,Go 团队正在谋划对语言进行一系列更大的改进,作为 Go 2.0 之旅的一部分。 无硬实时 虽然 Go 的垃圾收集器只引入了非常短暂的停顿,但支持硬实时需要没有垃圾收集的技术,例如 Rust。 结语 本文详细介绍了 Go 语言的一些优秀的设计准则,虽然有的准则的好处平常看起来没有那么明显。但当代码库和团队规模增长几个数量级时,这些准则可能会使大型工程项目免于许多痛苦。总的来说,正是这些设计准则让 Go 语言成为了除 Java 之外的编程语言里,用于大型软件开发项目的绝佳选择。

有只黑白猫 2020-01-07 14:11:38 0 浏览量 回答数 0

回答

一.Lock接口(java.util.concurrent.locks): void lock():获取锁,阻塞方式;如果资源已被其他线程锁定,那么lock将会阻塞直到获取锁,锁阻塞期间不受线程的Interrupt的影响,在获取锁成功后,才会检测线程的interrupt状态,如果interrupt=true,则抛出异常。 unlock():释放锁 tryLock():尝试获取锁,并发环境中"闯入"行为,如果有锁可用,直接获取锁并返回true,否则范围false. lockInterruptibly():尝试获取锁,并支持"中断"请求。与lock的区别时,此方法的开始、结束和执行过程中,都会不断检测线程的interrupt状态,如果线程被中断,则立即抛出异常;而不像lock方法那样只会在获取锁之后才检测。 二.Lock接口实现类 Lock直接实现,只有3个类:ReentrantLock和WriteLock/ReadLock;这三种锁;Lock和java的synchronized(内置锁)的功能一致,均为排他锁. ReentrantLock为重入排他锁,对于同一线程,如果它已经持有了锁,那么将不会再次获取锁,而直接可以使用. ReentrantReadWriteLock并没有继承ReentrantLock,而是一个基于Lock接口的单独实现.它实现了 ReadWriteLock,即读写分离锁,是一种采用锁分离技巧的API. 尽管在API级别ReentrantReadWriteLock和ReentrantLock没有直接继承关系,但是ReentrantReadWriteLock中的ReadLock和WriteLock都具有ReentrantLock的全部语义(简单说,就是把ReentrantLock的代码copy了一下.),即锁的可重入性.WriteLock支持Condition(条件),ReadLock不支持. Lock的实现类中,都包含了2中锁等待策略:公平和非公平;其实他们的实现也非常简单,底层都是使用了queue来维持锁请求顺序.[参考:http://shift-alt-ctrl.iteye.com/blog/1839142] 公平锁,就是任何锁请求,首先将请求加入队列,然后再有队列机制来决定,是阻塞还是分配锁. 非公平,就是允许"闯入",当然公平锁,也无法干扰"闯入",对于任何锁请求,首先检测锁状态是否可用,如果可用直接获取,否则加入队列.. ReentrantLock本质上和synchronized修饰词是同一语义,如果一个线程lock()之后,其他线程进行lock时必须阻塞,直到当前线程的前续线程unlock.[执行lock操作时,将会被队列化(假如在公平模式下),获取lock的线程都将具有前续/后继线程,前续线程就是当前线程之前执行lock操作而阻塞的线程,后继线程就是当前线程之后执行lock操作的线程;那么对于unlock操作就是"解锁"信号的传递,如果当前线程unlock,那么将会触发后继线程被"唤醒",即它因为lock操作阻塞状态被解除.];这是ReentrantLock的基本原理,但是当ReentrantLock在Conditon情况下,事情就变得更加复杂.[参加下述] 三.Condition:锁条件 Condition与Lock形成happen-before关系。Condition将Object的监视器方法(wait,notify,notifyAll)分解成截然不同的对象,以便通过这些对象与任意Lock实现组合。使Lock具有等待“集合”的特性,或者“类型”;Lock替代了synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。(synchronized + object.wait对应Lock + Condition.await) Condition又称条件队列,为线程提供了一个含义,以便在某种状态条件现在可能为true的其他线程通知它之前,一直挂起该线程。即多个线程,其中一个线程因为某个条件而阻塞,其他线程当“条件”满足时,则“通知”哪些阻塞的线程。这,几乎和object中wait和notify的机制一样。 Condition和wait一样,阻塞时也将原子性的释放锁(间接执行了release()方法)。并挂起线程。Condition必须与Lock形成关系,只有获取lock权限的,才能进行Condition操作。Condition底层基于AQS实现,条件阻塞,将以队列的方式,LockSupport支持。其实现类有ConditionObject,这也是Lock.newCondition()的返回实际类型,在等待 Condition 时,允许发生“虚假唤醒”,这通常作为对基础平台语义的让步。对于大多数应用程序,这带来的实际影响很小,因为 Condition 应该总是在一个循环中被等待,并测试正被等待的状态声明。某个实现可以随意移除可能的虚假唤醒,但建议应用程序程序员总是假定这些虚假唤醒可能发生,因此总是在一个循环中等待。 void await() throws InterruptedException:当前线程阻塞,并原子性释放对象锁。如下条件将触发线程唤醒: 当线程被中断(支持中断响应), 其他线程通过condition.signal()方法,且碰巧选中当前线程唤醒 其他线程通过condition.signalAll()方法 发生虚假唤醒 底层实现,await()方法将当前线程信息添加到Conditon内部维护的"await"线程队列的尾部(此队列的目的就是为singal方法保持亟待唤醒的线程的顺序),然后释放锁(执行tryRelease()方法,注意此处释放锁,仅仅是释放了锁信号,并不是unlock,此时其他线程仍不能获取锁--lock方法阻塞),然后使用LockSupport.park(this)来强制剥夺当前线程执行权限。await方法会校验线程的中断标记。 由此可见,await()方法执行之后,因为已经"归还"了锁信号,那么其他线程此时执行lock方法,将不再阻塞.. void awaitUninterruptibly():阻塞,直到被唤醒。此方法不响应线程中断请求。即当线程被中断时,它将继续等待,直到接收到signal信号(你应该能想到"陷阱"),当最终从此方法返回时,仍然将设置其中断状态。 void signal()/signalAll():唤醒一个/全部await的线程。 对于signal()方法而言,底层实现为,遍历await"线程队列,找出此condition上最先阻塞的线程,并将此阻塞线程unpark.至此为止,我们似乎发现"锁信号"丢失了,因为在线程await时通过tryRelease时释放了一次信号.那么被signal成功的线程,首先执行一次acquire(增加锁信号),然后校验自己是否被interrupted,如果锁信号获取成功且线程状态正常,此时才正常的从await()方法退出.经过这么复杂的分析,终于明白了ReentrantLock + Condition情况下,锁状态变更和线程控制的来龙去脉... Java代码 收藏代码 //////例子: private Lock lock = new ReentrantLock(); private Condition full = lock.newCondition(); private Condition empty = lock.newCondition(); public Object take(){ lock.lock(); try{ while(isEmpty()){ empty.await() } Object o = get() full.signalAll(); return o; }finally{ lock.unlock(); } } public void put(Object o){ lock.lock(); try{ while(isFull()){ full.await(); } put(o); empty.signalAll(); }finally{ lock.unlock(); } } 四.机制 Lock 实现提供了比使用 synchronized 方法和语句可获得的更广泛的锁定操作。此实现允许更灵活的结构,可以具有差别很大的属性,可以支持多个相关的 Condition 对象。注意,Lock 实例只是普通的对象,其本身可以在 synchronized 语句中作为目标使用。获取 Lock 实例的监视器锁与调用该实例的任何 lock() 方法没有特别的关系。为了避免混淆,建议除了在其自身的实现中之外,决不要以这种方式使用 Lock 实例。 Lock接口具有的方法: void lock():获取锁,阻塞直到获取。 void lockInterruptibly() throws InterrutedException:获取锁,阻塞直到获取成功,支持中断响应。 boolean tryLock():尝试获取锁,返回是否获取的结果。如果碰巧获取成功,则返回true,此时已经持有锁。 boolean tryLock(long time,TimeUnit) throws InterruptedException:尝试获取锁,获取成功返回true,超时时且没有获取锁则返回false。 void unlock():释放锁。约定只有持有锁者才能释放锁,否则抛出异常。 void newCondition():返回绑定到lock的条件。 五.ReadWriteLock ReadWriteLock 维护了一对相关的锁,一个用于只读操作,另一个用于写入操作。只要没有 writer(写锁),读取锁可以由多个 reader 线程同时保持(共享锁)。写入锁是独占的。所有 ReadWriteLock 实现都必须保证 writeLock 操作的内存同步效果也要保持与相关 readLock 的联系。也就是说,成功获取读锁的线程会看到写入锁之前版本所做的所有更新。 与互斥锁相比,读-写锁允许对共享数据进行更高级别的并发访问。虽然一次只有一个线程(writer 线程)可以修改共享数据,但在许多情况下,任何数量的线程可以同时读取共享数据(reader 线程),读-写锁利用了这一点。从理论上讲,与互斥锁相比,使用读-写锁所允许的并发性增强将带来更大的性能提高。在实践中,只有在多处理器上并且只在访问模式适用于共享数据时,才能完全实现并发性增强。 Lock readLock():返回读锁。 Lock writeLock():返回写锁。 六.ReentrantLock ReentrantLock,重入排它锁,它和synchronized具有相同的语义以及在监视器上具有相同的行为,但是功能更加强大。 ReetrantLock将由最近成功获得锁且还没有释放锁的线程标记为“锁占有者”;当锁没有被线程持有时,调用lock方法将会成功获取锁并返回,如果当前线程为锁持有者,再次调用lock将立即返回。可以使用 isHeldByCurrentThread() 和 getHoldCount() 方法来检查此情况是否发生。 ReentrantLock的构造方法,允许接收一个“公平策略”参数,“公平策略”下,多个线程竞争获取锁时,将会以队列化锁请求者,并将锁授予队列的head。在“非公平策略”下,则不完全保证锁获取的顺序,允许闯入行为(tryLock)。 ReentrantLock基于AQS机制,锁信号量为1,如果信号量为1且当前锁持有者不为自己,则不能获取锁。释放锁时,如果当前锁持有者不是自己,也将抛出“IllegalMonitorStateException”。由此可见,对于ReentrantLock,lock和release方法是需要组合出现。 七.ReentrantReadWriteLock:可重入读写分离锁 重入性 :当前线程可以重新获取相应的“读锁”或者“写锁”,在写入线程保持的所有写入锁都已经释放后,才允许重入reader(读取线程)使用它们。writer线程可以获取读锁,但是reader线程却不能直接获取写锁。 锁降级:重入还允许写入锁降级为读锁,其实现方式为:先获取写入锁,然后获取读取锁,最后释放写入锁。但是读取锁不能升级为写入锁。 Conditon的支持:只有写入锁支持conditon,对于读取锁,newConditon方法直接抛出UnsupportedOperationException。 ReentrantReadWriteLock目前在java api中无直接使用。ReentrantReadWriteLock并没有继承自 ReentrantLock,而是单独重新实现。其内部仍然支持“公平性”“非公平性”策略。 ReentrantReadWriteLock基于AQS,但是AQS只有一个state来表示锁的状态,所以如果一个state表示2种类型的锁状态,它做了一个很简单的策略,“位运算”,将一个int类型的state拆分为2个16位段,左端表示readlock锁引用计数,右端16位表示write锁。在readLock、writeLock进行获取锁或者释放锁时,均是通过有效的位运算和位控制,来达到预期的效果。 八.ReadLock void lock():获取读取锁,伪代码如下: Java代码 收藏代码 //如果当前已经有“写锁”,且持有写锁者不是当前线程(如果是当前线程,则支持写锁,降级为读锁),则获取锁失败 //即任何读锁的获取,必须等待队列中的写锁释放 //c为实际锁引用量(exclusiveCount方法实现为:c & ((1<<16) -1) if (exclusiveCount(c) != 0 &&getExclusiveOwnerThread() != current) return -1; //CAS操作,操作state的左端16位。 if(CAS(c,c + (1<<16))){ return 1; } void unlock():释放read锁,即共享锁,伪代码如下: Java代码 收藏代码 //CAS锁引用 for (;;) { int c = getState(); int nextc = c - (1<<16);//位操作,释放一个锁。 if (compareAndSetState(c, nextc)) return nextc == 0; } 九.WriteLock void lock():获取写入锁,伪代码如下: Java代码 收藏代码 //当前线程 Thread current = Thread.currentThread(); //实际的锁引用state int c = getState(); //右端16位,通过位运算获取“写入锁”的state int w = exclusiveCount(c); //如果有锁引用 if (c != 0) { //且所引用不是自己 if (w == 0 || current != getExclusiveOwnerThread()){ return false; } } //如果写入锁state为0,且CAS成功,则设置state和独占线程信息 if ((w == 0 && writerShouldBlock(current)) ||!compareAndSetState(c, c + acquires)){ return false; } setExclusiveOwnerThread(current); return true; void unlock():释放写入锁,伪代码如下: Java代码 收藏代码 //计算释放锁的信号量 int nextc = getState() - releases; //对于写入锁,则校验当前线程是否为锁持有者,否则不可以释放(死锁) if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); //释放锁,且重置独占线程信息 if (exclusiveCount(nextc) == 0) { setExclusiveOwnerThread(null); setState(nextc); return true; } else { setState(nextc); return false; } 十.LockSupport:用来创建锁和其他同步类的基本线程阻塞原语。 底层基于hotspot的实现unsafe。park 和 unpark 方法提供了阻塞和解除阻塞线程的有效方法。三种形式的 park(即park,parkNanos(Object blocker,long nanos),parkUntil(Object blocker,long timestamp)) 还各自支持一个 blocker 对象参数。此对象在线程受阻塞时被记录,以允许监视工具和诊断工具确定线程受阻塞的原因。(这样的工具可以使用方法 getBlocker(java.lang.Thread) 访问 blocker。)建议最好使用这些形式,而不是不带此参数的原始形式。 在锁实现中提供的作为 blocker 的普通参数是 this。 static void park(Object blocker):阻塞当前线程,直到如下情况发生: 其他线程,调用unpark方法,并将此线程作为目标而唤醒 其他线程中断当前线程此方法不报告,此线程是何种原因被放回,需要调用者重新检测,而且此方法也经常在while循环中执行 Java代码 收藏代码 while(//condition,such as:queue.isEmpty){ LockSupport.park(queue);//此时queue对象作为“阻塞”点传入,以便其他监控工具查看,queue的状态 //检测当前线程是否已经中断。 if(Thread.interrupted()){ break; } } void getBlocker(Thread t):返回提供最近一次尚未解除阻塞的park的阻塞点。可以返回null。 void unpark(Thread t):解除指定线程阻塞,使其可用。参数null则无效果。 LockSupport实例(不过不建议在实际代码中直接使用LockSupport,很多时候,你可以使用锁来控制): Java代码 收藏代码 /////////////Demo public class LockSupportTestMain { /** * @param args */ public static void main(String[] args) throws Exception{ System.out.println("Hear!"); BlockerObject blocker = new BlockerObject(); LThread tp = new LThread(blocker, false); LThread tt = new LThread(blocker, true); tp.start(); tt.start(); Thread.sleep(1000); } static class LThread extends Thread{ private BlockerObject blocker; boolean take; LThread(BlockerObject blocker,boolean take){ this.blocker = blocker; this.take = take; } @Override public void run(){ if(take){ while(true){ Object o = blocker.take(); if(o != null){ System.out.println(o.toString()); } } }else{ Object o = new Object(); System.out.println("put,,," + o.toString()); blocker.put(o); } } } static class BlockerObject{ Queue<Object> inner = new LinkedList<Object>(); Queue<Thread> twaiters = new LinkedList<Thread>(); Queue<Thread> pwaiters = new LinkedList<Thread>(); public void put(Object o){ inner.offer(o); pwaiters.offer(Thread.currentThread()); Thread t = twaiters.poll(); if(t != null){ LockSupport.unpark(t); } System.out.println("park"); LockSupport.park(Thread.currentThread()); System.out.println("park is over"); } public Object take(){ Thread t = pwaiters.poll(); if(t != null){ System.out.println("unpark"); LockSupport.unpark(t); System.out.println("unpark is OK"); } //twaiters.offer(Thread.currentThread()); return inner.poll(); } } } 备注:有时候会疑惑wait()/notify() 和Unsafe.park()/unpark()有什么区别?区别是wait和notify是Object类的方法,它们首选需要获得“对象锁”,并在synchronized同步快中执行。park和unpark怎不需要这么做。wait和park都是有当前线程发起,notify和unpark都是其他线程发起。wait针对的是对象锁,park针对的线程本身,但是最终的效果都是导致当前线程阻塞。Unsafe不建议开发者直接使用。

景凌凯 2020-04-24 16:41:16 0 浏览量 回答数 0

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 34170 浏览量 回答数 10

回答

遍历一个 List 有哪些不同的方式?每种方法的实现原理是什么?Java 中 List 遍历的最佳实践是什么? 遍历方式有以下几种: for 循环遍历,基于计数器。在集合外部维护一个计数器,然后依次读取每一个位置的元素,当读取到最后一个元素后停止。 迭代器遍历,Iterator。Iterator 是面向对象的一个设计模式,目的是屏蔽不同数据集合的特点,统一遍历集合的接口。Java 在 Collections 中支持了 Iterator 模式。 foreach 循环遍历。foreach 内部也是采用了 Iterator 的方式实现,使用时不需要显式声明 Iterator 或计数器。优点是代码简洁,不易出错;缺点是只能做简单的遍历,不能在遍历过程中操作数据集合,例如删除、替换。 最佳实践:Java Collections 框架中提供了一个 RandomAccess 接口,用来标记 List 实现是否支持 Random Access。 如果一个数据集合实现了该接口,就意味着它支持 Random Access,按位置读取元素的平均时间复杂度为 O(1),如ArrayList。如果没有实现该接口,表示不支持 Random Access,如LinkedList。 推荐的做法就是,支持 Random Access 的列表可用 for 循环遍历,否则建议用 Iterator 或 foreach 遍历。 说一下 ArrayList 的优缺点 ArrayList的优点如下: ArrayList 底层以数组实现,是一种随机访问模式。ArrayList 实现了 RandomAccess 接口,因此查找的时候非常快。ArrayList 在顺序添加一个元素的时候非常方便。 ArrayList 的缺点如下: 删除元素的时候,需要做一次元素复制操作。如果要复制的元素很多,那么就会比较耗费性能。插入元素的时候,也需要做一次元素复制操作,缺点同上。 ArrayList 比较适合顺序添加、随机访问的场景。 如何实现数组和 List 之间的转换? 数组转 List:使用 Arrays. asList(array) 进行转换。List 转数组:使用 List 自带的 toArray() 方法。 代码示例: ArrayList 和 LinkedList 的区别是什么? 数据结构实现:ArrayList 是动态数组的数据结构实现,而 LinkedList 是双向链表的数据结构实现。随机访问效率:ArrayList 比 LinkedList 在随机访问的时候效率要高,因为 LinkedList 是线性的数据存储方式,所以需要移动指针从前往后依次查找。增加和删除效率:在非首尾的增加和删除操作,LinkedList 要比 ArrayList 效率要高,因为 ArrayList 增删操作要影响数组内的其他数据的下标。内存空间占用:LinkedList 比 ArrayList 更占内存,因为 LinkedList 的节点除了存储数据,还存储了两个引用,一个指向前一个元素,一个指向后一个元素。线程安全:ArrayList 和 LinkedList 都是不同步的,也就是不保证线程安全; 综合来说,在需要频繁读取集合中的元素时,更推荐使用 ArrayList,而在插入和删除操作较多时,更推荐使用 LinkedList。 补充:数据结构基础之双向链表 双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱。所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点。 ArrayList 和 Vector 的区别是什么? 这两个类都实现了 List 接口(List 接口继承了 Collection 接口),他们都是有序集合 线程安全:Vector 使用了 Synchronized 来实现线程同步,是线程安全的,而 ArrayList 是非线程安全的。性能:ArrayList 在性能方面要优于 Vector。扩容:ArrayList 和 Vector 都会根据实际的需要动态的调整容量,只不过在 Vector 扩容每次会增加 1 倍,而 ArrayList 只会增加 50%。 Vector类的所有方法都是同步的。可以由两个线程安全地访问一个Vector对象、但是一个线程访问Vector的话代码要在同步操作上耗费大量的时间。 Arraylist不是同步的,所以在不需要保证线程安全时时建议使用Arraylist。 插入数据时,ArrayList、LinkedList、Vector谁速度较快?阐述 ArrayList、Vector、LinkedList 的存储性能和特性? ArrayList、LinkedList、Vector 底层的实现都是使用数组方式存储数据。数组元素数大于实际存储的数据以便增加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数据慢。 Vector 中的方法由于加了 synchronized 修饰,因此 Vector 是线程安全容器,但性能上较ArrayList差。 LinkedList 使用双向链表实现存储,按序号索引数据需要进行前向或后向遍历,但插入数据时只需要记录当前项的前后项即可,所以 LinkedList 插入速度较快。 多线程场景下如何使用 ArrayList? ArrayList 不是线程安全的,如果遇到多线程场景,可以通过 Collections 的 synchronizedList 方法将其转换成线程安全的容器后再使用。例如像下面这样: 为什么 ArrayList 的 elementData 加上 transient 修饰? ArrayList 中的数组定义如下: private transient Object[] elementData; 再看一下 ArrayList 的定义: public class ArrayList extends AbstractList implements List<E>, RandomAccess, Cloneable, java.io.Serializable 可以看到 ArrayList 实现了 Serializable 接口,这意味着 ArrayList 支持序列化。transient 的作用是说不希望 elementData 数组被序列化,重写了 writeObject 实现: 每次序列化时,先调用 defaultWriteObject() 方法序列化 ArrayList 中的非 transient 元素,然后遍历 elementData,只序列化已存入的元素,这样既加快了序列化的速度,又减小了序列化之后的文件大小。 List 和 Set 的区别 List , Set 都是继承自Collection 接口 List 特点:一个有序(元素存入集合的顺序和取出的顺序一致)容器,元素可以重复,可以插入多个null元素,元素都有索引。常用的实现类有 ArrayList、LinkedList 和 Vector。 Set 特点:一个无序(存入和取出顺序有可能不一致)容器,不可以存储重复元素,只允许存入一个null元素,必须保证元素唯一性。Set 接口常用实现类是 HashSet、LinkedHashSet 以及 TreeSet。 另外 List 支持for循环,也就是通过下标来遍历,也可以用迭代器,但是set只能用迭代,因为他无序,无法用下标来取得想要的值。 Set和List对比 Set:检索元素效率低下,删除和插入效率高,插入和删除不会引起元素位置改变。 List:和数组类似,List可以动态增长,查找元素效率高,插入删除元素效率低,因为会引起其他元素位置改变 Set接口 说一下 HashSet 的实现原理? HashSet 是基于 HashMap 实现的,HashSet的值存放于HashMap的key上,HashMap的value统一为PRESENT,因此 HashSet 的实现比较简单,相关 HashSet 的操作,基本上都是直接调用底层 HashMap 的相关方法来完成,HashSet 不允许重复的值。 HashSet如何检查重复?HashSet是如何保证数据不可重复的? 向HashSet 中add ()元素时,判断元素是否存在的依据,不仅要比较hash值,同时还要结合equles 方法比较。 HashSet 中的add ()方法会使用HashMap 的put()方法。 HashMap 的 key 是唯一的,由源码可以看出 HashSet 添加进去的值就是作为HashMap 的key,并且在HashMap中如果K/V相同时,会用新的V覆盖掉旧的V,然后返回旧的V。所以不会重复( HashMap 比较key是否相等是先比较hashcode 再比较equals )。 以下是HashSet 部分源码: hashCode()与equals()的相关规定: 如果两个对象相等,则hashcode一定也是相同的 两个对象相等,对两个equals方法返回true 两个对象有相同的hashcode值,它们也不一定是相等的 综上,equals方法被覆盖过,则hashCode方法也必须被覆盖 hashCode()的默认行为是对堆上的对象产生独特值。如果没有重写hashCode(),则该class的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)。 ** ==与equals的区别** ==是判断两个变量或实例是不是指向同一个内存空间 equals是判断两个变量或实例所指向的内存空间的值是不是相同 ==是指对内存地址进行比较 equals()是对字符串的内容进行比较3.==指引用是否相同 equals()指的是值是否相同 HashSet与HashMap的区别 Queue BlockingQueue是什么? Java.util.concurrent.BlockingQueue是一个队列,在进行检索或移除一个元素的时候,它会等待队列变为非空;当在添加一个元素时,它会等待队列中的可用空间。BlockingQueue接口是Java集合框架的一部分,主要用于实现生产者-消费者模式。我们不需要担心等待生产者有可用的空间,或消费者有可用的对象,因为它都在BlockingQueue的实现类中被处理了。Java提供了集中BlockingQueue的实现,比如ArrayBlockingQueue、LinkedBlockingQueue、PriorityBlockingQueue,、SynchronousQueue等。 在 Queue 中 poll()和 remove()有什么区别? 相同点:都是返回第一个元素,并在队列中删除返回的对象。 不同点:如果没有元素 poll()会返回 null,而 remove()会直接抛出 NoSuchElementException 异常。 代码示例: Queue queue = new LinkedList (); queue. offer("string"); // add System. out. println(queue. poll()); System. out. println(queue. remove()); System. out. println(queue. size()); Map接口 说一下 HashMap 的实现原理? HashMap概述: HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。 HashMap的数据结构: 在Java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。 HashMap 基于 Hash 算法实现的 当我们往Hashmap中put元素时,利用key的hashCode重新hash计算出当前对象的元素在数组中的下标存储时,如果出现hash值相同的key,此时有两种情况。(1)如果key相同,则覆盖原始值;(2)如果key不同(出现冲突),则将当前的key-value放入链表中获取时,直接找到hash值对应的下标,在进一步判断key是否相同,从而找到对应值。理解了以上过程就不难明白HashMap是如何解决hash冲突的问题,核心就是使用了数组的存储方式,然后将冲突的key的对象放入链表中,一旦发现冲突就在链表中做进一步的对比。 需要注意Jdk 1.8中对HashMap的实现做了优化,当链表中的节点数据超过八个之后,该链表会转为红黑树来提高查询效率,从原来的O(n)到O(logn) HashMap在JDK1.7和JDK1.8中有哪些不同?HashMap的底层实现 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做拉链法的方式可以解决哈希冲突。 JDK1.8之前 JDK1.8之前采用的是拉链法。拉链法:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。 JDK1.8之后 相比于之前的版本,jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。 JDK1.7 VS JDK1.8 比较 JDK1.8主要解决或优化了一下问题: resize 扩容优化引入了红黑树,目的是避免单条链表过长而影响查询效率,红黑树算法请参考解决了多线程死循环问题,但仍是非线程安全的,多线程时可能会造成数据丢失问题。 HashMap的put方法的具体流程? 当我们put的时候,首先计算 key的hash值,这里调用了 hash方法,hash方法实际是让key.hashCode()与key.hashCode()>>>16进行异或操作,高16bit补0,一个数和0异或不变,所以 hash 函数大概的作用就是:高16bit不变,低16bit和高16bit做了一个异或,目的是减少碰撞。按照函数注释,因为bucket数组大小是2的幂,计算下标index = (table.length - 1) & hash,如果不做 hash 处理,相当于散列生效的只有几个低 bit 位,为了减少散列的碰撞,设计者综合考虑了速度、作用、质量之后,使用高16bit和低16bit异或来简单处理减少碰撞,而且JDK8中用了复杂度 O(logn)的树结构来提升碰撞下的性能。 putVal方法执行流程图 ①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容; ②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③; ③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals; ④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤; ⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可; ⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。 HashMap的扩容操作是怎么实现的? ①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容; ②.每次扩展的时候,都是扩展2倍; ③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。 在putVal()中,我们看到在这个函数里面使用到了2次resize()方法,resize()方法表示的在进行第一次初始化时会对其进行扩容,或者当该数组的实际大小大于其临界值值(第一次为12),这个时候在扩容的同时也会伴随的桶上面的元素进行重新分发,这也是JDK1.8版本的一个优化的地方,在1.7中,扩容之后需要重新去计算其Hash值,根据Hash值对其进行分发,但在1.8版本中,则是根据在同一个桶的位置中进行判断(e.hash & oldCap)是否为0,重新进行hash分配后,该元素的位置要么停留在原始位置,要么移动到原始位置+增加的数组大小这个位置上 HashMap是怎么解决哈希冲突的? 答:在解决这个问题之前,我们首先需要知道什么是哈希冲突,而在了解哈希冲突之前我们还要知道什么是哈希才行; 什么是哈希? Hash,一般翻译为“散列”,也有直接音译为“哈希”的,这就是把任意长度的输入通过散列算法,变换成固定长度的输出,该输出就是散列值(哈希值);这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。 所有散列函数都有如下一个基本特性**:根据同一散列函数计算出的散列值如果不同,那么输入值肯定也不同。但是,根据同一散列函数计算出的散列值如果相同,输入值不一定相同**。 什么是哈希冲突? 当两个不同的输入值,根据同一散列函数计算出相同的散列值的现象,我们就把它叫做碰撞(哈希碰撞)。 HashMap的数据结构 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做链地址法的方式可以解决哈希冲突: 这样我们就可以将拥有相同哈希值的对象组织成一个链表放在hash值所对应的bucket下,但相比于hashCode返回的int类型,我们HashMap初始的容量大小DEFAULT_INITIAL_CAPACITY = 1 << 4(即2的四次方16)要远小于int类型的范围,所以我们如果只是单纯的用hashCode取余来获取对应的bucket这将会大大增加哈希碰撞的概率,并且最坏情况下还会将HashMap变成一个单链表,所以我们还需要对hashCode作一定的优化 hash()函数 上面提到的问题,主要是因为如果使用hashCode取余,那么相当于参与运算的只有hashCode的低位,高位是没有起到任何作用的,所以我们的思路就是让hashCode取值出的高位也参与运算,进一步降低hash碰撞的概率,使得数据分布更平均,我们把这样的操作称为扰动,在JDK 1.8中的hash()函数如下: static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);// 与自己右移16位进行异或运算(高低位异或) } 这比在JDK 1.7中,更为简洁,相比在1.7中的4次位运算,5次异或运算(9次扰动),在1.8中,只进行了1次位运算和1次异或运算(2次扰动); JDK1.8新增红黑树 通过上面的链地址法(使用散列表)和扰动函数我们成功让我们的数据分布更平均,哈希碰撞减少,但是当我们的HashMap中存在大量数据时,加入我们某个bucket下对应的链表有n个元素,那么遍历时间复杂度就为O(n),为了针对这个问题,JDK1.8在HashMap中新增了红黑树的数据结构,进一步使得遍历复杂度降低至O(logn); 总结 简单总结一下HashMap是使用了哪些方法来有效解决哈希冲突的: 使用链地址法(使用散列表)来链接拥有相同hash值的数据;使用2次扰动函数(hash函数)来降低哈希冲突的概率,使得数据分布更平均;引入红黑树进一步降低遍历的时间复杂度,使得遍历更快; **能否使用任何类作为 Map 的 key? **可以使用任何类作为 Map 的 key,然而在使用之前,需要考虑以下几点: 如果类重写了 equals() 方法,也应该重写 hashCode() 方法。 类的所有实例需要遵循与 equals() 和 hashCode() 相关的规则。 如果一个类没有使用 equals(),不应该在 hashCode() 中使用它。 用户自定义 Key 类最佳实践是使之为不可变的,这样 hashCode() 值可以被缓存起来,拥有更好的性能。不可变的类也可以确保 hashCode() 和 equals() 在未来不会改变,这样就会解决与可变相关的问题了。 为什么HashMap中String、Integer这样的包装类适合作为K? 答:String、Integer等包装类的特性能够保证Hash值的不可更改性和计算准确性,能够有效的减少Hash碰撞的几率 都是final类型,即不可变性,保证key的不可更改性,不会存在获取hash值不同的情况 内部已重写了equals()、hashCode()等方法,遵守了HashMap内部的规范(不清楚可以去上面看看putValue的过程),不容易出现Hash值计算错误的情况; 如果使用Object作为HashMap的Key,应该怎么办呢? 答:重写hashCode()和equals()方法 重写hashCode()是因为需要计算存储数据的存储位置,需要注意不要试图从散列码计算中排除掉一个对象的关键部分来提高性能,这样虽然能更快但可能会导致更多的Hash碰撞; 重写equals()方法,需要遵守自反性、对称性、传递性、一致性以及对于任何非null的引用值x,x.equals(null)必须返回false的这几个特性,目的是为了保证key在哈希表中的唯一性; HashMap为什么不直接使用hashCode()处理后的哈希值直接作为table的下标 答:hashCode()方法返回的是int整数类型,其范围为-(2 ^ 31)~(2 ^ 31 - 1),约有40亿个映射空间,而HashMap的容量范围是在16(初始化默认值)~2 ^ 30,HashMap通常情况下是取不到最大值的,并且设备上也难以提供这么多的存储空间,从而导致通过hashCode()计算出的哈希值可能不在数组大小范围内,进而无法匹配存储位置; 那怎么解决呢? HashMap自己实现了自己的hash()方法,通过两次扰动使得它自己的哈希值高低位自行进行异或运算,降低哈希碰撞概率也使得数据分布更平均; 在保证数组长度为2的幂次方的时候,使用hash()运算之后的值与运算(&)(数组长度 - 1)来获取数组下标的方式进行存储,这样一来是比取余操作更加有效率,二来也是因为只有当数组长度为2的幂次方时,h&(length-1)才等价于h%length,三来解决了“哈希值与数组大小范围不匹配”的问题; HashMap 的长度为什么是2的幂次方 为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀,每个链表/红黑树长度大致相同。这个实现就是把数据存到哪个链表/红黑树中的算法。 这个算法应该如何设计呢? 我们首先可能会想到采用%取余的操作来实现。但是,重点来了:“取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是2的 n 次方;)。” 并且 采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是2的幂次方。 那为什么是两次扰动呢? 答:这样就是加大哈希值低位的随机性,使得分布更均匀,从而提高对应数组存储下标位置的随机性&均匀性,最终减少Hash冲突,两次就够了,已经达到了高位低位同时参与运算的目的; HashMap 与 HashTable 有什么区别? 线程安全: HashMap 是非线程安全的,HashTable 是线程安全的;HashTable 内部的方法基本都经过 synchronized 修饰。(如果你要保证线程安全的话就使用 ConcurrentHashMap 吧!); 效率: 因为线程安全的问题,HashMap 要比 HashTable 效率高一点。另外,HashTable 基本被淘汰,不要在代码中使用它; 对Null key 和Null value的支持: HashMap 中,null 可以作为键,这样的键只有一个,可以有一个或多个键所对应的值为 null。但是在 HashTable 中 put 进的键值只要有一个 null,直接抛NullPointerException。 **初始容量大小和每次扩充容量大小的不同 **: ①创建时如果不指定容量初始值,Hashtable 默认的初始大小为11,之后每次扩充,容量变为原来的2n+1。HashMap 默认的初始化大小为16。之后每次扩充,容量变为原来的2倍。②创建时如果给定了容量初始值,那么 Hashtable 会直接使用你给定的大小,而 HashMap 会将其扩充为2的幂次方大小。也就是说 HashMap 总是使用2的幂作为哈希表的大小,后面会介绍到为什么是2的幂次方。 底层数据结构: JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。Hashtable 没有这样的机制。 推荐使用:在 Hashtable 的类注释可以看到,Hashtable 是保留类不建议使用,推荐在单线程环境下使用 HashMap 替代,如果需要多线程使用则用 ConcurrentHashMap 替代。 如何决定使用 HashMap 还是 TreeMap? 对于在Map中插入、删除和定位元素这类操作,HashMap是最好的选择。然而,假如你需要对一个有序的key集合进行遍历,TreeMap是更好的选择。基于你的collection的大小,也许向HashMap中添加元素会更快,将map换为TreeMap进行有序key的遍历。 HashMap 和 ConcurrentHashMap 的区别 ConcurrentHashMap对整个桶数组进行了分割分段(Segment),然后在每一个分段上都用lock锁进行保护,相对于HashTable的synchronized锁的粒度更精细了一些,并发性能更好,而HashMap没有锁机制,不是线程安全的。(JDK1.8之后ConcurrentHashMap启用了一种全新的方式实现,利用CAS算法。) HashMap的键值对允许有null,但是ConCurrentHashMap都不允许。 ConcurrentHashMap 和 Hashtable 的区别? ConcurrentHashMap 和 Hashtable 的区别主要体现在实现线程安全的方式上不同。 底层数据结构: JDK1.7的 ConcurrentHashMap 底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构跟HashMap1.8的结构一样,数组+链表/红黑二叉树。Hashtable 和 JDK1.8 之前的 HashMap 的底层数据结构类似都是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的; 实现线程安全的方式(重要): ① 在JDK1.7的时候,ConcurrentHashMap(分段锁) 对整个桶数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。(默认分配16个Segment,比Hashtable效率提高16倍。) 到了 JDK1.8 的时候已经摒弃了Segment的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6以后 对 synchronized锁做了很多优化) 整个看起来就像是优化过且线程安全的 HashMap,虽然在JDK1.8中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本;② Hashtable(同一把锁) :使用 synchronized 来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。 两者的对比图: HashTable: JDK1.7的ConcurrentHashMap: JDK1.8的ConcurrentHashMap(TreeBin: 红黑二叉树节点 Node: 链表节点): 答:ConcurrentHashMap 结合了 HashMap 和 HashTable 二者的优势。HashMap 没有考虑同步,HashTable 考虑了同步的问题。但是 HashTable 在每次同步执行时都要锁住整个结构。 ConcurrentHashMap 锁的方式是稍微细粒度的。 ConcurrentHashMap 底层具体实现知道吗?实现原理是什么? JDK1.7 首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。 在JDK1.7中,ConcurrentHashMap采用Segment + HashEntry的方式进行实现,结构如下: 一个 ConcurrentHashMap 里包含一个 Segment 数组。Segment 的结构和HashMap类似,是一种数组和链表结构,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素,每个 Segment 守护着一个HashEntry数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment的锁。 该类包含两个静态内部类 HashEntry 和 Segment ;前者用来封装映射表的键值对,后者用来充当锁的角色;Segment 是一种可重入的锁 ReentrantLock,每个 Segment 守护一个HashEntry 数组里得元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment 锁。 JDK1.8 在JDK1.8中,放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,synchronized只锁定当前链表或红黑二叉树的首节点,这样只要hash不冲突,就不会产生并发,效率又提升N倍。 结构如下: 如果该节点是TreeBin类型的节点,说明是红黑树结构,则通过putTreeVal方法往红黑树中插入节点;如果binCount不为0,说明put操作对数据产生了影响,如果当前链表的个数达到8个,则通过treeifyBin方法转化为红黑树,如果oldVal不为空,说明是一次更新操作,没有对元素个数产生影响,则直接返回旧值;如果插入的是一个新节点,则执行addCount()方法尝试更新元素个数baseCount; 辅助工具类 Array 和 ArrayList 有何区别? Array 可以存储基本数据类型和对象,ArrayList 只能存储对象。Array 是指定固定大小的,而 ArrayList 大小是自动扩展的。Array 内置方法没有 ArrayList 多,比如 addAll、removeAll、iteration 等方法只有 ArrayList 有。 对于基本类型数据,集合使用自动装箱来减少编码工作量。但是,当处理固定大小的基本数据类型的时候,这种方式相对比较慢。 如何实现 Array 和 List 之间的转换? Array 转 List: Arrays. asList(array) ;List 转 Array:List 的 toArray() 方法。 comparable 和 comparator的区别? comparable接口实际上是出自java.lang包,它有一个 compareTo(Object obj)方法用来排序comparator接口实际上是出自 java.util 包,它有一个compare(Object obj1, Object obj2)方法用来排序 一般我们需要对一个集合使用自定义排序时,我们就要重写compareTo方法或compare方法,当我们需要对某一个集合实现两种排序方式,比如一个song对象中的歌名和歌手名分别采用一种排序方法的话,我们可以重写compareTo方法和使用自制的Comparator方法或者以两个Comparator来实现歌名排序和歌星名排序,第二种代表我们只能使用两个参数版的Collections.sort(). 方法如何比较元素? TreeSet 要求存放的对象所属的类必须实现 Comparable 接口,该接口提供了比较元素的 compareTo()方法,当插入元素时会回调该方法比较元素的大小。TreeMap 要求存放的键值对映射的键必须实现 Comparable 接口从而根据键对元素进 行排 序。 Collections 工具类的 sort 方法有两种重载的形式, 第一种要求传入的待排序容器中存放的对象比较实现 Comparable 接口以实现元素的比较; 第二种不强制性的要求容器中的元素必须可比较,但是要求传入第二个参数,参数是Comparator 接口的子类型(需要重写 compare 方法实现元素的比较),相当于一个临时定义的排序规则,其实就是通过接口注入比较元素大小的算法,也是对回调模式的应用(Java 中对函数式编程的支持)。

剑曼红尘 2020-03-24 14:41:57 0 浏览量 回答数 0

回答

阿里云容器服务 Kubernetes 集群支持通过界面创建 StatefultSet 类型的应用,满足您快速创建有状态应用的需求。本例中将创建一个 nginx 的有状态应用,并演示 StatefulSet 应用的特性。 前提条件 您已成功创建一个 Kubernetes 集群。参见创建Kubernetes集群。 您已成功创建一个云盘存储卷声明,参见创建持久化存储卷声明。 您已连接到 Kubernetes 集群的 Master 节点,参见通过kubectl连接Kubernetes集群。 背景信息 StatefulSet 包括如下特性: 场景 说明 Pod 一致性 包含次序(启动、停止次序)、网络一致性。此一致性与 Pod 相关,与被调度到哪个 node 节点无关。 稳定的持久化存储 通过 VolumeClaimTemplate 为每个 Pod 创建一个 PV。删除、减少副本,不会删除相关的卷。 稳定的网络标志 Pod 的 hostname 模式为:(statefulset名称)−(序号)。 稳定的次序 对于N个副本的 StatefulSet,每个 Pod 都在 [0,N)的范围内分配一个数字序号,且是唯一的。 操作步骤 登录容器服务管理控制台。 在 Kubernetes 菜单下,单击左侧导航栏中的应用 > 有状态,然后单击页面右上角的使用镜像创建。 在应用基本信息页面进行设置,然后单击下一步 进入应用配置页面。 应用名称:设置应用的名称。 部署集群:设置应用部署的集群。 命名空间:设置应用部署所处的命名空间,默认使用 default 命名空间。 副本数量:即应用包含的 Pod 数量。 类型:可选择无状态(Deployment)和有状态(StatefulSet)两种类型。 说明 本例中选择有状态类型,创建 StatefulSet 类型的应用。 标签:为该应用添加一个标签,标识该应用。 注解:为该应用添加一个注解(annotation)。 应用配置页面 设置容器配置。 说明 您可为应用的 Pod 设置多个容器。 设置容器的基本配置。 镜像名称:您可以单击选择镜像,在弹出的对话框中选择所需的镜像并单击确定,本例中为 nginx。 您还可以填写私有 registry。填写的格式为domainname/namespace/imagename:tag 镜像版本:您可以单击选择镜像版本 选择镜像的版本。若不指定,默认为 latest。 总是拉取镜像:为了提高效率,容器服务会对镜像进行缓存。部署时,如果发现镜像 Tag 与本地缓存的一致,则会直接复用而不重新拉取。所以,如果您基于上层业务便利性等因素考虑,在做代码和镜像变更时没有同步修改 Tag ,就会导致部署时还是使用本地缓存内旧版本镜像。而勾选该选项后,会忽略缓存,每次部署时重新拉取镜像,确保使用的始终是最新的镜像和代码。 镜像密钥:单击设置镜像密钥设置镜像的密钥。对于私有仓库访问时,需要设置密钥,具体可以参见使用镜像密钥。 资源限制:可指定该应用所能使用的资源上限,包括 CPU 和内存两种资源,防止占用过多资源。其中,CPU 资源的单位为 millicores,即一个核的千分之一;内存的单位为 Bytes,可以为 Gi、Mi 或 Ki。 所需资源:即为该应用预留资源额度,包括 CPU 和内存两种资源,即容器独占该资源,防止因资源不足而被其他服务或进程争夺资源,导致应用不可用。 Init Container:勾选该项,表示创建一个Init Container,Init Container 包含一些实用的工具,具体参见https://kubernetes.io/docs/concepts/workloads/pods/init-containers/。 设置容器基本信息 可选: 配置环境变量。 支持通过键值对的形式为 Pod 配置环境变量。用于给 Pod 添加环境标志或传递配置等,具体请参见 Pod variable。 可选: 配置健康检查。 支持存活检查(liveness)和就绪检查(Readiness)。存活检查用于检测何时重启容器;就绪检查确定容器是否已经就绪,且可以接受流量。关于健康检查的更多信息,请参见https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes。 请求类型 配置说明 HTTP请求 即向容器发送一个HTTPget 请求,支持的参数包括: 协议:HTTP/HTTPS。 路径:访问HTTP server 的路径。 端口:容器暴露的访问端口或端口名,端口号必须介于1~65535。 HTTP头:即HTTPHeaders,HTTP请求中自定义的请求头,HTTP允许重复的header。支持键值对的配置方式。 延迟探测时间(秒):即initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为3秒。 执行探测频率(秒):即periodSeconds,指执行探测的时间间隔,默认为 10 秒,最小为 1 秒。 超时时间(秒):即timeoutSeconds,探测超时时间。默认 1 秒,最小 1 秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是 1,最小值是 1。对于存活检查(liveness)必须是 1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是 3,最小值是 1。 TCP连接 即向容器发送一个 TCP Socket,kubelet 将尝试在指定端口上打开容器的套接字。 如果可以建立连接,容器被认为是健康的,如果不能就认为是失败的。支持的参数包括: 端口:容器暴露的访问端口或端口名,端口号必须介于 1~65535。 延迟探测时间(秒):即 initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为 15 秒。 执行探测频率(秒):即 periodSeconds,指执行探测的时间间隔,默认为 10 秒,最小为 1 秒。 超时时间(秒):即 timeoutSeconds,探测超时时间。默认 1 秒,最小 1 秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是 1,最小值是 1。对于存活检查(liveness)必须是 1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是 3,最小值是 1。 命令行 通过在容器中执行探针检测命令,来检测容器的健康情况。支持的参数包括: 命令行:用于检测容器健康情况的探测命令。 延迟探测时间(秒):即 initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为5秒。 执行探测频率(秒):即 periodSeconds,指执行探测的时间间隔,默认为 10 秒,最小为 1 秒。 超时时间(秒):即 timeoutSeconds,探测超时时间。默认 1 秒,最小 1 秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是 1,最小值是 1。对于存活检查(liveness)必须是 1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是 3,最小值是 1。 可选: 配置生命周期。 您可以为容器的生命周期配置启动执行、启动后处理和停止前处理。具体参见https://kubernetes.io/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/。 启动执行:为容器设置预启动命令和参数。 启动后处理:为容器设置启动后的命令。 停止前处理:为容器设置预结束命令。 配置生命周期 配置数据卷信息。 支持配置本地存储和云存储。 本地存储:支持主机目录(hostpath)、配置项(configmap)、保密字典(secret)和临时目录,将对应的挂载源挂载到容器路径中。更多信息参见 volumes。 云存储:支持云存储。 本例中配置了一个云存储类型的数据卷声明 disk-ssd,将其挂载到容器的 /tmp 路径下。 配置数据卷 可选: 配置日志服务,您可进行采集配置和自定义 Tag 设置。 说明 请确保已部署 Kubernetes 集群,并且在此集群上已安装日志插件。 您可对日志进行采集配置: 日志库:即在日志服务中生成一个对应的 logstore,用于存储采集到的日志。 容器内日志路径:支持 stdout 和文本日志。 stdout: stdout 表示采集容器的标准输出日志。 文本日志:表示收集容器内指定路径的日志,本例中表示收集/var/log/nginx 下所有的文本日志,也支持通配符的方式。 您还可设置自定义 tag,设置 tag 后,会将该 tag 一起采集到容器的日志输出中。自定义 tag 可帮助您给容器日志打上 tag,方便进行日志统计和过滤等分析操作。 配置日志采集 完成容器配置后,单击 下一步。 进行高级设置。本例中仅进行访问设置。 设置访问设置。 您可以设置暴露后端 Pod 的方式,最后单击创建。本例中选择 ClusterIP 服务和路由(Ingress),构建一个公网可访问的 nginx 应用。 说明 针对应用的通信需求,您可灵活进行访问设置: 内部应用:对于只在集群内部工作的应用,您可根据需要创建 ClusterIP 或 NodePort 类型的服务,来进行内部通信。 外部应用:对于需要暴露到公网的应用,您可以采用两种方式进行访问设置: 创建 LoadBalancer 类型的服务:使用阿里云提供的负载均衡服务(Server Load Balancer,SLB),该服务提供公网访问能力。 创建路由(Ingress):通过路由(Ingress)提供公网访问能力,详情参见https://kubernetes.io/docs/concepts/services-networking/ingress/。 访问设置 在服务栏单击创建,在弹出的对话框中进行配置,最后单击创建。 创建服务 名称:您可自主设置,默认为 applicationname-svc。 类型:您可以从下面 3 种服务类型中进行选择。 虚拟集群 IP:即 ClusterIP,指通过集群的内部 IP 暴露服务,选择该项,服务只能够在集群内部访问。 节点端口:即 NodePort,通过每个 Node 上的 IP 和静态端口(NodePort)暴露服务。NodePort 服务会路由到 ClusterIP 服务,这个 ClusterIP 服务会自动创建。通过请求 : ,可以从集群的外部访问一个 NodePort 服务。 负载均衡:即 LoadBalancer,是阿里云提供的负载均衡服务,可选择公网访问或内网访问。负载均衡可以路由到 NodePort 服务和 ClusterIP 服务。 端口映射:您需要添加服务端口和容器端口,若类型选择为节点端口,还需要自己设置节点端口,防止端口出现冲突。支持 TCP/UDP 协议。 注解:为该服务添加一个注解(annotation),支持负载均衡配置参数,参见通过负载均衡(Server Load Balancer)访问服务。 标签:您可为该服务添加一个标签,标识该服务。 在路由栏单击创建,在弹出的对话框中,为后端 Pod 配置路由规则,最后单击创建。更多详细的路由配置信息,请参见路由配置说明。 说明 通过镜像创建应用时,您仅能为一个服务创建路由(Ingress)。本例中使用一个虚拟主机名称作为测试域名,您需要在 hosts 中添加一条记录。在实际工作场景中,请使用备案域名。 101.37.224.146 foo.bar.com #即ingress的IP 创建路由 在访问设置栏中,您可看到创建完毕的服务和路由,您可单击变更和删除进行二次配置。 变更或删除路由 可选: 容器组水平伸缩。 您可勾选是否开启容器组水平伸缩,为了满足应用在不同负载下的需求,容器服务支持服容器组 Pod 的弹性伸缩,即根据容器 CPU 和内存资源占用情况自动调整容器组数量。 说明 若要启用自动伸缩,您必须为容器设置所需资源,否则容器自动伸缩无法生效。参见容器基本配置环节。 指标:支持 CPU 和内存,需要和设置的所需资源类型相同。 触发条件:资源使用率的百分比,超过该使用量,容器开始扩容。 最大副本数量:该 StatefulSet 可扩容的容器数量上限。 最小副本数量:该 StatefulSet 可缩容的容器数量下限。 可选: 设置调度设置。 您可设置升级方式、节点亲和性、应用亲和性和应用非亲和性,详情参见https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity。 说明 亲和性调度依赖节点标签和 Pod 标签,您可使用内置的标签进行调度;也可预先为节点、Pod 配置相关的标签。 设置升级方式。 升级方式包括滚动升级(rollingupdate)和替换升级(recreate),详细请参见https://kubernetes.io/zh/docs/concepts/workloads/controllers/deployment/ 设置节点亲和性,通过 Node 节点的 Label 标签进行设置。 节点亲和性 节点调度支持硬约束和软约束(Required/Preferred),以及丰富的匹配表达式(In, NotIn, Exists, DoesNotExist. Gt, and Lt): 必须满足,即硬约束,一定要满足,对应 requiredDuringSchedulingIgnoredDuringExecution,效果与 NodeSelector 相同。本例中 Pod 只能调度到具有对应标签的 Node 节点。您可以定义多条硬约束规则,但只需满足其中一条。 尽量满足,即软约束,不一定满足,对应 preferredDuringSchedulingIgnoredDuringExecution。本例中,调度会尽量不调度 Pod 到具有对应标签的 Node 节点。您还可为软约束规则设定权重,具体调度时,若存在多个符合条件的节点,权重最大的节点会被优先调度。您可定义多条软约束规则,但必须满足全部约束,才会进行调度。 设置应用亲和性调度。决定应用的 Pod 可以和哪些 Pod 部署在同一拓扑域。例如,对于相互通信的服务,可通过应用亲和性调度,将其部署到同一拓扑域(如同一个主机)中,减少它们之间的网络延迟。 应用亲和性调度 根据节点上运行的 Pod 的标签(Label)来进行调度,支持硬约束和软约束,匹配的表达式有:In, NotIn, Exists, DoesNotExist。 必须满足,即硬约束,一定要满足,对应 requiredDuringSchedulingIgnoredDuringExecution,Pod 的亲和性调度必须要满足后续定义的约束条件。 命名空间:该策略是依据 Pod 的 Label 进行调度,所以会受到命名空间的约束。 拓扑域:即 topologyKey,指定调度时作用域,这是通过 Node 节点的标签来实现的,例如指定为 kubernetes.io/hostname,那就是以 Node 节点为区分范围;如果指定为 beta.kubernetes.io/os,则以 Node 节点的操作系统类型来区分。 选择器:单击选择器右侧的加号按钮,您可添加多条硬约束规则。 查看应用列表:单击应用列表,弹出对话框,您可在此查看各命名空间下的应用,并可将应用的标签导入到亲和性配置页面。 硬约束条件:设置已有应用的标签、操作符和标签值。本例中,表示将待创建的应用调度到该主机上,该主机运行的已有应用具有 app:nginx 标签。 尽量满足,即软约束,不一定满足,对应 preferredDuringSchedulingIgnoredDuringExecution。Pod 的亲和性调度会尽量满足后续定义的约束条件。对于软约束规则,您可配置每条规则的权重,其他配置规则与硬约束规则相同。 说明 权重:设置一条软约束规则的权重,介于 1-100,通过算法计算满足软约束规则的节点的权重,将 Pod 调度到权重最大的节点上。 设置应用非亲和性调度,决定应用的 Pod 不与哪些 Pod 部署在同一拓扑域。应用非亲和性调度的场景包括: 将一个服务的 Pod 分散部署到不同的拓扑域(如不同主机)中,提高服务本身的稳定性。 给予 Pod 一个节点的独占访问权限来保证资源隔离,保证不会有其它 Pod 来分享节点资源。 把可能会相互影响的服务的 Pod 分散在不同的主机上。 说明 应用非亲和性调度的设置方式与亲和性调度相同,但是相同的调度规则代表的意思不同,请根据使用场景进行选择。 最后单击创建。 创建成功后,默认进入创建完成页面,会列出应用包含的对象,您可以单击查看应用详情进行查看。 查看详情1 默认进入有状态副本集详情页面。 查看副本详情 然后单击左上角返回列表,进入有状态副本集列表页面,查看创建的 StatefulSet 应用。 查看应用 可选: 选择所需的 nginx 应用,单击右侧伸缩,验证服务伸缩性。 在弹出的对话框中,将容器组数量设置为 3,您可发现扩容时,扩容容器组的排序依次递增;反之,进行缩容时,先按 Pod 次序从高到低进行缩容。这体现 StatefulSet 中 Pod 的次序稳定性。 验证服务伸缩 单击左侧导航栏中的应用 > 存储声明,您可发现,随着应用扩容,会随着 Pod 创建新的云存储卷;缩容后,已创建的 PV/PVC 不会删除。 存储声明 后续步骤 连接到 Master 节点,执行以下命令,验证持久化存储特性。 在云盘中创建临时文件: kubectl exec nginx-1 ls /tmp #列出该目录下的文件 lost+found kubectl exec nginx-1 touch /tmp/statefulset #增加一个临时文件statefulset kubectl exec nginx-1 ls /tmp lost+found statefulset 删除 Pod,验证数据持久性: kubectl delete pod nginx-1 pod"nginx-1" deleted 过一段时间,待Pod自动重启后,验证数据持久性,证明 StatefulSet 应用的高可用性。 kubectl exec nginx-1 ls /tmp #数据持久化存储 lost+found statefulset 想要了解更多信息,参见Kubernetes有状态服务-StatefulSet使用最佳实践。

1934890530796658 2020-03-31 15:46:45 0 浏览量 回答数 0

回答

阿里云容器服务 Kubernetes 集群支持通过界面创建 StatefultSet 类型的应用,满足您快速创建有状态应用的需求。本例中将创建一个 nginx 的有状态应用,并演示 StatefulSet 应用的特性。 前提条件 您已成功创建一个 Kubernetes 集群。参见创建 Kubernetes 集群。 您已成功创建一个云盘存储卷声明,参见创建持久化存储卷声明。 您已连接到 Kubernetes 集群的 Master 节点,参见通过 kubectl 连接 Kubernetes 集群。 背景信息 StatefulSet 包括如下特性: 场景 说明 Pod 一致性 包含次序(启动、停止次序)、网络一致性。此一致性与 Pod 相关,与被调度到哪个 node 节点无关。 稳定的持久化存储 通过 VolumeClaimTemplate 为每个 Pod 创建一个 PV。删除、减少副本,不会删除相关的卷。 稳定的网络标志 Pod 的 hostname 模式为:(statefulset名称)−(序号)。 稳定的次序 对于N个副本的 StatefulSet,每个 Pod 都在 [0,N)的范围内分配一个数字序号,且是唯一的。 操作步骤 登录容器服务管理控制台。 在 Kubernetes 菜单下,单击左侧导航栏中的应用 > 有状态,然后单击页面右上角的使用镜像创建。 在应用基本信息页面进行设置,然后单击下一步 进入应用配置页面。 应用名称:设置应用的名称。 部署集群:设置应用部署的集群。 命名空间:设置应用部署所处的命名空间,默认使用 default 命名空间。 副本数量:即应用包含的 Pod 数量。 类型:可选择无状态(Deployment)和有状态(StatefulSet)两种类型。 说明 本例中选择有状态类型,创建 StatefulSet 类型的应用。 标签:为该应用添加一个标签,标识该应用。 注解:为该应用添加一个注解(annotation)。 应用配置页面 设置容器配置。 说明 您可为应用的 Pod 设置多个容器。 设置容器的基本配置。 镜像名称:您可以单击选择镜像,在弹出的对话框中选择所需的镜像并单击确定,本例中为 nginx。 您还可以填写私有 registry。填写的格式为domainname/namespace/imagename:tag 镜像版本:您可以单击选择镜像版本 选择镜像的版本。若不指定,默认为 latest。 总是拉取镜像:为了提高效率,容器服务会对镜像进行缓存。部署时,如果发现镜像 Tag 与本地缓存的一致,则会直接复用而不重新拉取。所以,如果您基于上层业务便利性等因素考虑,在做代码和镜像变更时没有同步修改 Tag ,就会导致部署时还是使用本地缓存内旧版本镜像。而勾选该选项后,会忽略缓存,每次部署时重新拉取镜像,确保使用的始终是最新的镜像和代码。 镜像密钥:单击设置镜像密钥设置镜像的密钥。对于私有仓库访问时,需要设置密钥,具体可以参见使用镜像密钥。 资源限制:可指定该应用所能使用的资源上限,包括 CPU 和内存两种资源,防止占用过多资源。其中,CPU 资源的单位为 millicores,即一个核的千分之一;内存的单位为 Bytes,可以为 Gi、Mi 或 Ki。 所需资源:即为该应用预留资源额度,包括 CPU 和内存两种资源,即容器独占该资源,防止因资源不足而被其他服务或进程争夺资源,导致应用不可用。 Init Container:勾选该项,表示创建一个Init Container,Init Container 包含一些实用的工具,具体参见https://kubernetes.io/docs/concepts/workloads/pods/init-containers/。 设置容器基本信息 可选: 配置环境变量。 支持通过键值对的形式为 Pod 配置环境变量。用于给 Pod 添加环境标志或传递配置等,具体请参见 Pod variable。 可选: 配置健康检查。 支持存活检查(liveness)和就绪检查(Readiness)。存活检查用于检测何时重启容器;就绪检查确定容器是否已经就绪,且可以接受流量。关于健康检查的更多信息,请参见https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes。 请求类型 配置说明 HTTP请求 即向容器发送一个HTTPget 请求,支持的参数包括: 协议:HTTP/HTTPS。 路径:访问HTTP server 的路径。 端口:容器暴露的访问端口或端口名,端口号必须介于1~65535。 HTTP头:即HTTPHeaders,HTTP请求中自定义的请求头,HTTP允许重复的header。支持键值对的配置方式。 延迟探测时间(秒):即initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为3秒。 执行探测频率(秒):即periodSeconds,指执行探测的时间间隔,默认为 10 秒,最小为 1 秒。 超时时间(秒):即timeoutSeconds,探测超时时间。默认 1 秒,最小 1 秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是 1,最小值是 1。对于存活检查(liveness)必须是 1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是 3,最小值是 1。 TCP连接 即向容器发送一个 TCP Socket,kubelet 将尝试在指定端口上打开容器的套接字。 如果可以建立连接,容器被认为是健康的,如果不能就认为是失败的。支持的参数包括: 端口:容器暴露的访问端口或端口名,端口号必须介于 1~65535。 延迟探测时间(秒):即 initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为 15 秒。 执行探测频率(秒):即 periodSeconds,指执行探测的时间间隔,默认为 10 秒,最小为 1 秒。 超时时间(秒):即 timeoutSeconds,探测超时时间。默认 1 秒,最小 1 秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是 1,最小值是 1。对于存活检查(liveness)必须是 1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是 3,最小值是 1。 命令行 通过在容器中执行探针检测命令,来检测容器的健康情况。支持的参数包括: 命令行:用于检测容器健康情况的探测命令。 延迟探测时间(秒):即 initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为5秒。 执行探测频率(秒):即 periodSeconds,指执行探测的时间间隔,默认为 10 秒,最小为 1 秒。 超时时间(秒):即 timeoutSeconds,探测超时时间。默认 1 秒,最小 1 秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是 1,最小值是 1。对于存活检查(liveness)必须是 1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是 3,最小值是 1。 可选: 配置生命周期。 您可以为容器的生命周期配置启动执行、启动后处理和停止前处理。具体参见https://kubernetes.io/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/。 启动执行:为容器设置预启动命令和参数。 启动后处理:为容器设置启动后的命令。 停止前处理:为容器设置预结束命令。 配置生命周期 配置数据卷信息。 支持配置本地存储和云存储。 本地存储:支持主机目录(hostpath)、配置项(configmap)、保密字典(secret)和临时目录,将对应的挂载源挂载到容器路径中。更多信息参见 volumes。 云存储:支持云存储。 本例中配置了一个云存储类型的数据卷声明 disk-ssd,将其挂载到容器的 /tmp 路径下。 配置数据卷 可选: 配置日志服务,您可进行采集配置和自定义 Tag 设置。 说明 请确保已部署 Kubernetes 集群,并且在此集群上已安装日志插件。 您可对日志进行采集配置: 日志库:即在日志服务中生成一个对应的 logstore,用于存储采集到的日志。 容器内日志路径:支持 stdout 和文本日志。 stdout: stdout 表示采集容器的标准输出日志。 文本日志:表示收集容器内指定路径的日志,本例中表示收集/var/log/nginx 下所有的文本日志,也支持通配符的方式。 您还可设置自定义 tag,设置 tag 后,会将该 tag 一起采集到容器的日志输出中。自定义 tag 可帮助您给容器日志打上 tag,方便进行日志统计和过滤等分析操作。 配置日志采集 完成容器配置后,单击 下一步。 进行高级设置。本例中仅进行访问设置。 设置访问设置。 您可以设置暴露后端 Pod 的方式,最后单击创建。本例中选择 ClusterIP 服务和路由(Ingress),构建一个公网可访问的 nginx 应用。 说明 针对应用的通信需求,您可灵活进行访问设置: 内部应用:对于只在集群内部工作的应用,您可根据需要创建 ClusterIP 或 NodePort 类型的服务,来进行内部通信。 外部应用:对于需要暴露到公网的应用,您可以采用两种方式进行访问设置: 创建 LoadBalancer 类型的服务:使用阿里云提供的负载均衡服务(Server Load Balancer,SLB),该服务提供公网访问能力。 创建路由(Ingress):通过路由(Ingress)提供公网访问能力,详情参见https://kubernetes.io/docs/concepts/services-networking/ingress/。 访问设置 在服务栏单击创建,在弹出的对话框中进行配置,最后单击创建。 创建服务 名称:您可自主设置,默认为 applicationname-svc。 类型:您可以从下面 3 种服务类型中进行选择。 虚拟集群 IP:即 ClusterIP,指通过集群的内部 IP 暴露服务,选择该项,服务只能够在集群内部访问。 节点端口:即 NodePort,通过每个 Node 上的 IP 和静态端口(NodePort)暴露服务。NodePort 服务会路由到 ClusterIP 服务,这个 ClusterIP 服务会自动创建。通过请求 : ,可以从集群的外部访问一个 NodePort 服务。 负载均衡:即 LoadBalancer,是阿里云提供的负载均衡服务,可选择公网访问或内网访问。负载均衡可以路由到 NodePort 服务和 ClusterIP 服务。 端口映射:您需要添加服务端口和容器端口,若类型选择为节点端口,还需要自己设置节点端口,防止端口出现冲突。支持 TCP/UDP 协议。 注解:为该服务添加一个注解(annotation),支持负载均衡配置参数,参见通过负载均衡(Server Load Balancer)访问服务。 标签:您可为该服务添加一个标签,标识该服务。 在路由栏单击创建,在弹出的对话框中,为后端 Pod 配置路由规则,最后单击创建。更多详细的路由配置信息,请参见路由配置说明。 说明 通过镜像创建应用时,您仅能为一个服务创建路由(Ingress)。本例中使用一个虚拟主机名称作为测试域名,您需要在 hosts 中添加一条记录。在实际工作场景中,请使用备案域名。 101.37.224.146 foo.bar.com #即ingress的IP 创建路由 在访问设置栏中,您可看到创建完毕的服务和路由,您可单击变更和删除进行二次配置。 变更或删除路由 可选: 容器组水平伸缩。 您可勾选是否开启容器组水平伸缩,为了满足应用在不同负载下的需求,容器服务支持服容器组 Pod 的弹性伸缩,即根据容器 CPU 和内存资源占用情况自动调整容器组数量。 说明 若要启用自动伸缩,您必须为容器设置所需资源,否则容器自动伸缩无法生效。参见容器基本配置环节。 指标:支持 CPU 和内存,需要和设置的所需资源类型相同。 触发条件:资源使用率的百分比,超过该使用量,容器开始扩容。 最大副本数量:该 StatefulSet 可扩容的容器数量上限。 最小副本数量:该 StatefulSet 可缩容的容器数量下限。 可选: 设置调度设置。 您可设置升级方式、节点亲和性、应用亲和性和应用非亲和性,详情参见https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity。 说明 亲和性调度依赖节点标签和 Pod 标签,您可使用内置的标签进行调度;也可预先为节点、Pod 配置相关的标签。 设置升级方式。 升级方式包括滚动升级(rollingupdate)和替换升级(recreate),详细请参见https://kubernetes.io/zh/docs/concepts/workloads/controllers/deployment/ 设置节点亲和性,通过 Node 节点的 Label 标签进行设置。 节点亲和性 节点调度支持硬约束和软约束(Required/Preferred),以及丰富的匹配表达式(In, NotIn, Exists, DoesNotExist. Gt, and Lt): 必须满足,即硬约束,一定要满足,对应 requiredDuringSchedulingIgnoredDuringExecution,效果与 NodeSelector 相同。本例中 Pod 只能调度到具有对应标签的 Node 节点。您可以定义多条硬约束规则,但只需满足其中一条。 尽量满足,即软约束,不一定满足,对应 preferredDuringSchedulingIgnoredDuringExecution。本例中,调度会尽量不调度 Pod 到具有对应标签的 Node 节点。您还可为软约束规则设定权重,具体调度时,若存在多个符合条件的节点,权重最大的节点会被优先调度。您可定义多条软约束规则,但必须满足全部约束,才会进行调度。 设置应用亲和性调度。决定应用的 Pod 可以和哪些 Pod 部署在同一拓扑域。例如,对于相互通信的服务,可通过应用亲和性调度,将其部署到同一拓扑域(如同一个主机)中,减少它们之间的网络延迟。 应用亲和性调度 根据节点上运行的 Pod 的标签(Label)来进行调度,支持硬约束和软约束,匹配的表达式有:In, NotIn, Exists, DoesNotExist。 必须满足,即硬约束,一定要满足,对应 requiredDuringSchedulingIgnoredDuringExecution,Pod 的亲和性调度必须要满足后续定义的约束条件。 命名空间:该策略是依据 Pod 的 Label 进行调度,所以会受到命名空间的约束。 拓扑域:即 topologyKey,指定调度时作用域,这是通过 Node 节点的标签来实现的,例如指定为 kubernetes.io/hostname,那就是以 Node 节点为区分范围;如果指定为 beta.kubernetes.io/os,则以 Node 节点的操作系统类型来区分。 选择器:单击选择器右侧的加号按钮,您可添加多条硬约束规则。 查看应用列表:单击应用列表,弹出对话框,您可在此查看各命名空间下的应用,并可将应用的标签导入到亲和性配置页面。 硬约束条件:设置已有应用的标签、操作符和标签值。本例中,表示将待创建的应用调度到该主机上,该主机运行的已有应用具有 app:nginx 标签。 尽量满足,即软约束,不一定满足,对应 preferredDuringSchedulingIgnoredDuringExecution。Pod 的亲和性调度会尽量满足后续定义的约束条件。对于软约束规则,您可配置每条规则的权重,其他配置规则与硬约束规则相同。 说明 权重:设置一条软约束规则的权重,介于 1-100,通过算法计算满足软约束规则的节点的权重,将 Pod 调度到权重最大的节点上。 设置应用非亲和性调度,决定应用的 Pod 不与哪些 Pod 部署在同一拓扑域。应用非亲和性调度的场景包括: 将一个服务的 Pod 分散部署到不同的拓扑域(如不同主机)中,提高服务本身的稳定性。 给予 Pod 一个节点的独占访问权限来保证资源隔离,保证不会有其它 Pod 来分享节点资源。 把可能会相互影响的服务的 Pod 分散在不同的主机上。 说明 应用非亲和性调度的设置方式与亲和性调度相同,但是相同的调度规则代表的意思不同,请根据使用场景进行选择。 最后单击创建。 创建成功后,默认进入创建完成页面,会列出应用包含的对象,您可以单击查看应用详情进行查看。 查看详情1 默认进入有状态副本集详情页面。 查看副本详情 然后单击左上角返回列表,进入有状态副本集列表页面,查看创建的 StatefulSet 应用。 查看应用 可选: 选择所需的 nginx 应用,单击右侧伸缩,验证服务伸缩性。 在弹出的对话框中,将容器组数量设置为 3,您可发现扩容时,扩容容器组的排序依次递增;反之,进行缩容时,先按 Pod 次序从高到低进行缩容。这体现 StatefulSet 中 Pod 的次序稳定性。 验证服务伸缩 单击左侧导航栏中的应用 > 存储声明,您可发现,随着应用扩容,会随着 Pod 创建新的云存储卷;缩容后,已创建的 PV/PVC 不会删除。 存储声明 后续步骤 连接到 Master 节点,执行以下命令,验证持久化存储特性。 在云盘中创建临时文件: kubectl exec nginx-1 ls /tmp #列出该目录下的文件 lost+found kubectl exec nginx-1 touch /tmp/statefulset #增加一个临时文件statefulset kubectl exec nginx-1 ls /tmp lost+found statefulset 删除 Pod,验证数据持久性: kubectl delete pod nginx-1 pod"nginx-1" deleted 过一段时间,待Pod自动重启后,验证数据持久性,证明 StatefulSet 应用的高可用性。 kubectl exec nginx-1 ls /tmp #数据持久化存储 lost+found statefulset 想要了解更多信息,参见Kubernetes有状态服务-StatefulSet使用最佳实践。

1934890530796658 2020-03-26 11:41:16 0 浏览量 回答数 0

回答

阿里云容器服务Kubernetes集群支持通过界面创建Job类型的应用。本例中将创建一个Job类型的busybox应用,并演示任务(Job)应用的特性。 前提条件 您已成功创建一个 Kubernetes 集群。参见创建Kubernetes集群。 背景信息 Job负责批量处理短暂的一次性任务 (short lived one-off tasks),即仅执行一次的任务,它保证批处理任务的一个或多个Pod成功结束。 Kubernetes支持以下几种Job: 非并行Job:通常创建一个Pod直至其成功结束 固定结束次数的Job:设置.spec.completions,创建多个Pod,直到.spec.completions个Pod成功结束 带有工作队列的并行Job:设置.spec.Parallelism但不设置.spec.completions,当所有Pod结束并且至少一个成功时,Job就认为是成功。 固定结束次数的并行Job:同时设置.spec.completions和.spec.Parallelism,多个Pod同时处理工作队列。 根据.spec.completions和.spec.Parallelism的设置,可以将Job划分为以下几种模式: 说明 本例中创建的任务属于固定结束次数的并行Job。 Job类型 使用示例 行为 completions Parallelism 一次性Job 数据库迁移 创建一个Pod直至其成功结束 1 1 固定结束次数的Job 处理工作队列的Pod 依次创建一个Pod运行直至completions个成功结束 2+ 1 固定结束次数的并行Job 多个Pod同时处理工作队列 依次创建多个Pod运行直至completions个成功结束 2+ 2+ 并行Job 多个Pod同时处理工作队列 创建一个或多个Pod直至有一个成功结束 1 2+ 操作步骤 登录容器服务管理控制台。 在Kubernetes菜单下,单击左侧导航栏中的应用 > 任务,然后单击页面右上角的使用镜像创建。 在应用基本信息页面进行设置,然后单击下一步 进入应用配置页面。 应用名称:设置应用的名称。 部署集群:设置应用部署的集群。 命名空间:设置应用部署所处的命名空间,默认使用default命名空间。 类型:设置类型为任务。 说明 本例中选择任务类型,即Job。 应用配置 设置容器配置。 说明 您可为应用的Pod设置多个容器。 设置容器的基本配置。 镜像名称:您可以单击选择镜像,在弹出的对话框中选择所需的镜像并单击确定,本例中为 busybox。 您还可以填写私有 registry。填写的格式为domainname/namespace/imagename:tag 镜像版本:您可以单击选择镜像版本 选择镜像的版本。若不指定,默认为 latest。 总是拉取镜像:为了提高效率,容器服务会对镜像进行缓存。部署时,如果发现镜像 Tag 与本地缓存的一致,则会直接复用而不重新拉取。所以,如果您基于上层业务便利性等因素考虑,在做代码和镜像变更时没有同步修改 Tag ,就会导致部署时还是使用本地缓存内旧版本镜像。而勾选该选项后,会忽略缓存,每次部署时重新拉取镜像,确保使用的始终是最新的镜像和代码。 设置镜像密钥:若您在使用私有镜像时,您可使用镜像密钥,保障镜像安全。具体配置请参见使用镜像密钥。 资源限制:可指定该应用所能使用的资源上限,包括 CPU 和内存两种资源,防止占用过多资源。其中,CPU 资源的单位为 millicores,即一个核的千分之一;内存的单位为 Bytes,可以为 Gi、Mi 或 Ki。 所需资源:即为该应用预留资源额度,包括 CPU 和内存两种资源,即容器独占该资源,防止因资源不足而被其他服务或进程抢占资源,导致应用不可用。 Init Container:勾选该项,表示创建一个Init Container,Init Container包含一些实用的工具,具体参见https://kubernetes.io/docs/concepts/workloads/pods/init-containers/。 容器基本配置 可选: 配置环境变量。 支持通过键值对的形式为 Pod 配置环境变量。用于给 Pod 添加环境标志或传递配置等,具体请参见 Pod variable。 可选: 配置健康检查。 支持存活检查(liveness)和就绪检查(Readiness)。存活检查用于检测何时重启容器;就绪检查确定容器是否已经就绪,且可以接受流量。关于健康检查的更多信息,请参见https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes。 配置健康检查 请求类型 配置说明 HTTP请求 即向容器发送一个HTTPget 请求,支持的参数包括: 协议:HTTP/HTTPS 路径:访问HTTP server 的路径 端口:容器暴露的访问端口或端口名,端口号必须介于1~65535。 HTTP头:即HTTPHeaders,HTTP请求中自定义的请求头,HTTP允许重复的header。支持键值对的配置方式。 延迟探测时间(秒):即initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为3秒。 执行探测频率(秒):即periodSeconds,指执行探测的时间间隔,默认为10s,最低为1s。 超时时间(秒):即timeoutSeconds,探测超时时间。默认1秒,最小1秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是1,最小值是1。对于存活检查(liveness)必须是1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是3。最小值是1。 TCP连接 即向容器发送一个TCP Socket,kubelet将尝试在指定端口上打开容器的套接字。 如果可以建立连接,容器被认为是健康的,如果不能就认为是失败的。支持的参数包括: 端口:容器暴露的访问端口或端口名,端口号必须介于1~65535。 延迟探测时间(秒):即initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为15秒。 执行探测频率(秒):即periodSeconds,指执行探测的时间间隔,默认为10s,最低为1s。 超时时间(秒):即timeoutSeconds,探测超时时间。默认1秒,最小1秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是1,最小值是1。对于存活检查(liveness)必须是1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是3。最小值是1。 命令行 通过在容器中执行探针检测命令,来检测容器的健康情况。支持的参数包括: 命令行:用于检测容器健康情况的探测命令。 延迟探测时间(秒):即initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为5秒。 执行探测频率(秒):即periodSeconds,指执行探测的时间间隔,默认为10s,最低为1s。 超时时间(秒):即timeoutSeconds,探测超时时间。默认1秒,最小1秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是1,最小值是1。对于存活检查(liveness)必须是1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是3。最小值是1。 可选: 配置生命周期。 您可以为容器的生命周期配置容器启动项、启动执行、启动后处理和停止前处理。具体参见https://kubernetes.io/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/。 容器启动项:勾选 stdin 表示为该容器开启标准输入;勾选 tty 表示为该容器分配一个虚拟终端,以便于向容器发送信号。通常这两个选项是一起使用的,表示将终端(tty)绑定到容器的标准输入(stdin)上,例如一个交互式的程序从用户获取标准输入,并显示到终端中。 启动执行:为容器设置预启动命令和参数。 启动后处理:为容器设置启动后的命令。 停止前处理:为容器设置预结束命令。 配置生命周期 可选: 配置数据卷信息。 支持配置本地存储和云存储。 本地存储:支持主机目录(hostpath)、配置项(configmap)、保密字典(secret)和临时目录,将对应的挂载源挂载到容器路径中。更多信息参见 volumes。 云存储:支持云盘/NAS/OSS三种云存储类型。 可选: 配置日志服务,您可进行采集配置和自定义Tag设置。 说明 请确保已部署Kubernetes集群,并且在此集群上已安装日志插件。 您可对日志进行采集配置: 日志库:即在日志服务中生成一个对应的logstore,用于存储采集到的日志。 容器内日志路径:支持stdout和文本日志。 stdout: stdout 表示采集容器的标准输出日志。 文本日志:您可收集容器内指定路径的文本日志,同时支持通配符的方式。 您还可设置自定义 tag,设置tag后,会将该tag一起采集到容器的日志输出中。自定义 tag 可帮助您给容器日志打上tag,方便进行日志统计和过滤等分析操作。 完成容器配置后,单击 下一步。 进行高级设置。 您可进行任务配置。 参数 说明 成功运行的Pod数 即completions,指定job需要成功运行Pods的数量。默认值为1 并行运行的Pod数 即parallelism,指定job在任一时刻应该并发运行Pod的数量。默认值为1 超时时间 即activeDeadlineSeconds,指定job可运行的时间期限,超过时间还未结束,系统将会尝试进行终止。 重试次数 即backoffLimit,指定job失败后进行重试的次数。默认是6次,每次失败后重试会有延迟时间,该时间是指数级增长,最长时间是6min。 重启策略 仅支持不重启(Never)和失败时(OnFailure) 高级设置 最后单击创建。 创建成功后,默认进入创建完成页面,会列出应用包含的对象。 创建完成 您可以单击查看应用详情,进入任务详情页面。 创建过程中,您可在状态栏中查看容器组的创建情况。本例中按照任务定义,一次性并行创建2个Pod。 查看应用详情 等待一段时间,所有容器组创建完毕。 查看应用结果 单击左上角返回列表,进入任务列表页面中,您可看到,该任务已显示完成时间。 说明 若任务未创建完毕所有容器组,任务不会显示完成时间。 任务详情

1934890530796658 2020-03-31 15:46:54 0 浏览量 回答数 0

回答

Spring Cloud 学习笔记(一)——入门、特征、配置 0 放在前面 0.1 参考文档 http://cloud.spring.io/spring-cloud-static/Brixton.SR7/ https://springcloud.cc/ http://projects.spring.io/spring-cloud/ 0.2 maven配置 org.springframework.boot spring-boot-starter-parent 1.5.2.RELEASE org.springframework.cloud spring-cloud-dependencies Dalston.RELEASE pom import org.springframework.cloud spring-cloud-starter-config org.springframework.cloud spring-cloud-starter-eureka 0.3 简介 Spring Cloud为开发人员提供了快速构建分布式系统中的一些通用模式(例如配置管理,服务发现,断路器,智能路由,微代理,控制总线,一次性令牌,全局锁,领导选举,分布式 会话,群集状态)。 分布式系统的协调引出样板模式(boiler plate patterns),并且使用Spring Cloud开发人员可以快速地实现这些模式来启动服务和应用程序。 它们可以在任何分布式环境中正常工作,包括开发人员自己的笔记本电脑,裸机数据中心和受管平台,如Cloud Foundry。 Version: Brixton.SR7 1 特征 Spring Cloud专注于为经典用例和扩展机制提供良好的开箱即用 分布式/版本配置 服务注册与发现 路由选择 服务调用 负载均衡 熔断机制 全局锁 领导人选举和集群状态 分布式消息 2 原生云应用程序 原生云是应用程序开发的一种风格,鼓励在持续交付和价值驱动领域的最佳实践。 Spring Cloud的很多特性是基于Spring Boot的。更多的是由两个库实现:Spring Cloud Context and Spring Cloud Commons。 2.1 Spring Cloud Context: 应用上下文服务 Spring Boot关于使用Spring构建应用有硬性规定:通用的配置文件在固定的位置,通用管理终端,监控任务。建立在这个基础上,Spring Cloud增加了一些额外的特性。 2.1.1 引导应用程序上下文 Spring Cloud会创建一个“bootstrap”的上下文,这是主应用程序的父上下文。对应的配置文件拥有最高优先级,并且,默认不能被本地配置文件覆盖。对应的文件名bootstrap.yml或bootstrap.properties。 可通过设置spring.cloud.bootstrap.enabled=false来禁止bootstrap进程。 2.1.2 应用上下文层级结构 当用SpringApplication或SpringApplicationBuilder创建应用程序上下文时,bootstrap上下文将作为父上下文被添加进去,子上下文将继承父上下文的属性。 子上下文的配置信息可覆盖父上下文的配置信息。 2.1.3 修改Bootstrap配置文件位置 spring.cloud.bootstrap.name(默认是bootstrap),或者spring.cloud.bootstrap.location(默认是空) 2.1.4 覆盖远程配置文件的值 spring.cloud.config.allowOverride=true spring.cloud.config.overrideNone=true spring.cloud.config.overrideSystemProperties=false 2.1.5 定制Bootstrap配置 在/META-INF/spring.factories的key为org.springframework.cloud.bootstrap.BootstrapConfiguration,定义了Bootstrap启动的组件。 在主应用程序启动之前,一开始Bootstrap上下文创建在spring.factories文件中的组件,然后是@Beans类型的bean。 2.1.6 定制Bootstrap属性来源 关键点:spring.factories、PropertySourceLocator 2.1.7 环境改变 应用程序可通过EnvironmentChangedEvent监听应用程序并做出响应。 2.1.8 Refresh Scope Spring的bean被@RefreshScope将做特殊处理,可用于刷新bean的配置信息。 注意 需要添加依赖“org.springframework.boot.spring-boot-starter-actuator” 目前我只在@Controller测试成功 需要自己发送POST请求/refresh 修改配置文件即可 2.1.9 加密和解密 Spring Cloud可对配置文件的值进行加密。 如果有"Illegal key size"异常,那么需要安装JCE。 2.1.10 服务点 除了Spring Boot提供的服务点,Spring Cloud也提供了一些服务点用于管理,注意都是POST请求 /env:更新Environment、重新绑定@ConfigurationProperties跟日志级别 /refresh重新加载配置文件,刷新标记@RefreshScope的bean /restart重启应用,默认不可用 生命周期方法:/pause、/resume 2.2 Spring Cloud Commons:通用抽象 服务发现、负载均衡、熔断机制这种模式为Spring Cloud客户端提供了一个通用的抽象层。 2.2.1 RestTemplate作为负载均衡客户端 通过@Bean跟@LoadBalanced指定RestTemplate。注意URI需要使用虚拟域名(如服务名,不能用域名)。 如下: @Configuration public class MyConfiguration { @LoadBalanced @Bean RestTemplate restTemplate() { return new RestTemplate(); } } public class MyClass { @Autowired private RestTemplate restTemplate; public String doOtherStuff() { String results = restTemplate.getForObject(" http://stores/stores", String.class); return results; } } 2.2.2 多个RestTemplate对象 注意@Primary注解的使用。 @Configuration public class MyConfiguration { @LoadBalanced @Bean RestTemplate loadBalanced() { return new RestTemplate(); } @Primary @Bean RestTemplate restTemplate() { return new RestTemplate(); } } public class MyClass { @Autowired private RestTemplate restTemplate; @Autowired @LoadBalanced private RestTemplate loadBalanced; public String doOtherStuff() { return loadBalanced.getForObject(" http://stores/stores", String.class); } public String doStuff() { return restTemplate.getForObject(" http://example.com", String.class); } } 2.2.3 忽略网络接口 忽略确定名字的服务发现注册,支持正则表达式配置。 3 Spring Cloud Config Spring Cloud Config提供服务端和客户端在分布式系统中扩展配置。支持不同环境的配置(开发、测试、生产)。使用Git做默认配置后端,可支持配置环境打版本标签。 3.1 快速开始 可通过IDE运行或maven运行。 默认加载property资源的策略是克隆一个git仓库(at spring.cloud.config.server.git.uri')。 HTTP服务资源的构成: /{application}/{profile}[/{label}] /{application}-{profile}.yml /{label}/{application}-{profile}.yml /{application}-{profile}.properties /{label}/{application}-{profile}.properties application是SpringApplication的spring.config.name,(一般来说'application'是一个常规的Spring Boot应用),profile是一个active的profile(或者逗号分隔的属性列表),label是一个可选的git标签(默认为"master")。 3.1.1 客户端示例 创建以Spring Boot应用即可,添加依赖“org.springframework.cloud:spring-cloud-starter-config”。 配置application.properties,注意URL为配置服务端的地址 spring.cloud.config.uri: http://myconfigserver.com 3.2 Spring Cloud Config 服务端 针对系统外的配置项(如name-value对或相同功能的YAML内容),该服务器提供了基于资源的HTTP接口。使用@EnableConfigServer注解,该服务器可以很容易的被嵌入到Spring Boot 系统中。使用该注解之后该应用系统就是一个配置服务器。 @SpringBootApplication @EnableConfigServer public class ConfigApplicion { public static void main(String[] args) throws Exception { SpringApplication.run(ConfigApplicion.class, args); } } 3.2.1 资源库环境 {application} 对应客户端的"spring.application.name"属性 {profile} 对应客户端的 "spring.profiles.active"属性(逗号分隔的列表) {label} 对应服务端属性,这个属性能标示一组配置文件的版本 如果配置库是基于文件的,服务器将从application.yml和foo.yml中创建一个Environment对象。高优先级的配置优先转成Environment对象中的PropertySource。 3.2.1.1 Git后端 默认的EnvironmentRepository是用Git后端进行实现的,Git后端对于管理升级和物理环境是很方便的,对审计配置变更也很方便。也可以file:前缀从本地配置库中读取数据。 这个配置库的实现通过映射HTTP资源的{label}参数作为git label(提交id,分支名称或tag)。如果git分支或tag的名称包含一个斜杠 ("/"),此时HTTP URL中的label需要使用特殊字符串"(_)"来替代(为了避免与其他URL路径相互混淆)。如果使用了命令行客户端如 curl,请谨慎处理URL中的括号(例如:在shell下请使用引号''来转义它们)。 Git URI占位符 Spring Cloud Config Server支持git库URL中包含针对{application}和 {profile}的占位符(如果你需要,{label}也可包含占位符, 不过要牢记的是任何情况下label只指git的label)。所以,你可以很容易的支持“一个应用系统一个配置库”策略或“一个profile一个配置库”策略。 模式匹配和多资源库 spring: cloud: config: server: git: uri: https://github.com/spring-cloud-samples/config-repo repos: simple: https://github.com/simple/config-repo special: pattern: special*/dev*,special/dev* uri: https://github.com/special/config-repo local: pattern: local* uri: file:/home/configsvc/config-repo 如果 {application}/{profile}不能匹配任何表达式,那么将使用“spring.cloud.config.server.git.uri”对应的值。在上例子中,对于 "simple" 配置库, 匹配模式是simple/* (也就说,无论profile是什么,它只匹配application名称为“simple”的应用系统)。“local”库匹配所有application名称以“local”开头任何应用系统,不管profiles是什么(来实现覆盖因没有配置对profile的匹配规则,“/”后缀会被自动的增加到任何的匹配表达式中)。 Git搜索路径中的占位符 spring.cloud.config.server.git.searchPaths 3.2.1.2 版本控制后端文件系统使用 伴随着版本控制系统作为后端(git、svn),文件都会被check out或clone 到本地文件系统中。默认这些文件会被放置到以config-repo-为前缀的系统临时目录中。在Linux上,譬如应该是/tmp/config-repo- 目录。有些操作系统routinely clean out放到临时目录中,这会导致不可预知的问题出现。为了避免这个问题,通过设置spring.cloud.config.server.git.basedir或spring.cloud.config.server.svn.basedir参数值为非系统临时目录。 3.2.1.3 文件系统后端 使用本地加载配置文件。 需要配置:spring.cloud.config.server.native.searchLocations跟spring.profiles.active=native。 路径配置格式:classpath:/, classpath:/config,file:./, file:./config。 3.2.1.4 共享配置给所有应用 基于文件的资源库 在基于文件的资源库中(i.e. git, svn and native),这样的文件名application 命名的资源在所有的客户端都是共享的(如 application.properties, application.yml, application-*.properties,etc.)。 属性覆盖 “spring.cloud.config.server.overrides”添加一个Map类型的name-value对来实现覆盖。 例如 spring: cloud: config: server: overrides: foo: bar 会使所有的配置客户端应用程序读取foo=bar到他们自己配置参数中。 3.2.2 健康指示器 通过这个指示器能够检查已经配置的EnvironmentRepository是否正常运行。 通过设置spring.cloud.config.server.health.enabled=false参数来禁用健康指示器。 3.2.3 安全 你可以自由选择任何你觉得合理的方式来保护你的Config Server(从物理网络安全到OAuth2 令牌),同时使用Spring Security和Spring Boot 能使你做更多其他有用的事情。 为了使用默认的Spring Boot HTTP Basic 安全,只需要把Spring Security 增加到classpath中(如org.springframework.boot.spring-boot-starter-security)。默认的用户名是“user”,对应的会生成一个随机密码,这种情况在实际使用中并没有意义,一般建议配置一个密码(通过 security.user.password属性进行配置)并对这个密码进行加密。 3.2.4 加密与解密 如果远程属性包含加密内容(以{cipher}开头),这些值将在通过HTTP传递到客户端之前被解密。 使用略 3.2.5 密钥管理 配置服务可以使用对称(共享)密钥或者非对称密钥(RSA密钥对)。 使用略 3.2.6 创建一个测试密钥库 3.2.7 使用多密钥和循环密钥 3.2.8 加密属性服务 3.3 可替换格式服务 配置文件可加后缀".yml"、".yaml"、".properties" 3.4 文本解释服务 /{name}/{profile}/{label}/{path} 3.5 嵌入配置服务器 一般配置服务运行在单独的应用里面,只要使用注解@EnableConfigServer即可嵌入到其他应用。 3.6 推送通知和总线 添加依赖spring-cloud-config-monitor,激活Spring Cloud 总线,/monitor端点即可用。 当webhook激活,针对应用程序可能已经变化了的,配置服务端将发送一个RefreshRemoteApplicationEvent。 3.7 客户端配置 3.7.1 配置第一次引导 通过spring.cloud.config.uri属性配置Config Server地址 3.7.2 发现第一次引导 如果用的是Netflix,则用eureka.client.serviceUrl.defaultZone进行配置。 3.7.3 配置客户端快速失败 在一些例子里面,可能希望在没有连接配置服务端时直接启动失败。可通过spring.cloud.config.failFast=true进行配置。 3.7.4 配置客户端重试 添加依赖spring-retry、spring-boot-starter-aop,设置spring.cloud.config.failFast=true。默认的是6次重试,初始补偿间隔是1000ms,后续补偿为1.1指数乘数,可通过spring.cloud.config.retry.*配置进行修改。 3.7.5 定位远程配置资源 路径:/{name}/{profile}/{label} "name" = ${spring.application.name} "profile" = ${spring.profiles.active} (actually Environment.getActiveProfiles()) "label" = "master" label对于回滚到之前的版本很有用。 3.7.6 安全 通过spring.cloud.config.password、spring.cloud.config.username进行配置。 答案来源于网络

养狐狸的猫 2019-12-02 02:18:34 0 浏览量 回答数 0

问题

DRDS 错误代码如何解决?

猫饭先生 2019-12-01 21:21:21 7993 浏览量 回答数 0

问题

详解 Spring 3.0 基于 Annotation 的依赖注入实现 配置报错 

kun坤 2020-06-01 09:44:47 3 浏览量 回答数 1

回答

1 写出下面代码输出内容。 package main import (    "fmt" ) funcmain() {     defer_call() } funcdefer_call() {     deferfunc() {fmt.Println("打印前")}()     deferfunc() {fmt.Println("打印中")}()     deferfunc() {fmt.Println("打印后")}()     panic("触发异常") } 考点:defer执行顺序 解答: defer 是后进先出。 panic 需要等defer 结束后才会向上传递。 出现panic恐慌时候,会先按照defer的后入先出的顺序执行,最后才会执行panic。 打印后 打印中 打印前 panic: 触发异常 2 以下代码有什么问题,说明原因。 type student struct {     Name string     Age  int } funcpase_student() {     m := make(map[string]*student)     stus := []student{         {Name: "zhou",Age: 24},         {Name: "li",Age: 23},         {Name: "wang",Age: 22},     }    for _,stu := range stus {         m[stu.Name] =&stu     } } 考点:foreach 解答: 这样的写法初学者经常会遇到的,很危险! 与Java的foreach一样,都是使用副本的方式。所以m[stu.Name]=&stu实际上一致指向同一个指针, 最终该指针的值为遍历的最后一个struct的值拷贝。 就像想修改切片元素的属性: for _, stu := rangestus {     stu.Age = stu.Age+10} 也是不可行的。 大家可以试试打印出来: func pase_student() {     m := make(map[string]*student)     stus := []student{         {Name: "zhou",Age: 24},         {Name: "li",Age: 23},         {Name: "wang",Age: 22},     }         // 错误写法     for _,stu := range stus {         m[stu.Name] =&stu     }          fork,v:=range m{               println(k,"=>",v.Name)     }           // 正确     for i:=0;i<len(stus);i++ {        m[stus[i].Name] = &stus[i]     }          fork,v:=range m{                println(k,"=>",v.Name)     } } 3 下面的代码会输出什么,并说明原因 func main() {     runtime.GOMAXPROCS(1)     wg := sync.WaitGroup{}     wg.Add(20)   for i := 0; i < 10; i++ {                  gofunc() {            fmt.Println("A: ", i)            wg.Done()         }()     }             for i:= 0; i < 10; i++ {                    gofunc(i int) {            fmt.Println("B: ", i)            wg.Done()         }(i)     }     wg.Wait() } 考点:go执行的随机性和闭包 解答: 谁也不知道执行后打印的顺序是什么样的,所以只能说是随机数字。 但是A:均为输出10,B:从0~9输出(顺序不定)。 第一个go func中i是外部for的一个变量,地址不变化。遍历完成后,最终i=10。 故go func执行时,i的值始终是10。 第二个go func中i是函数参数,与外部for中的i完全是两个变量。 尾部(i)将发生值拷贝,go func内部指向值拷贝地址。 4 下面代码会输出什么? type People struct{}func (p People)ShowA() {     fmt.Println("showA")     p.ShowB() } func(pPeople)ShowB() {     fmt.Println("showB") } typeTeacher struct {     People } func(t*Teacher)ShowB() {     fmt.Println("teachershowB") } funcmain() {     t := Teacher{}     t.ShowA() } 考点:go的组合继承 解答: 这是Golang的组合模式,可以实现OOP的继承。 被组合的类型People所包含的方法虽然升级成了外部类型Teacher这个组合类型的方法(一定要是匿名字段),但它们的方法(ShowA())调用时接受者并没有发生变化。 此时People类型并不知道自己会被什么类型组合,当然也就无法调用方法时去使用未知的组合者Teacher类型的功能。 showAshowB 5 下面代码会触发异常吗?请详细说明 func main() {     runtime.GOMAXPROCS(1)     int_chan := make(chanint, 1)     string_chan := make(chanstring, 1)     int_chan <- 1     string_chan <- "hello"     select {                case value := <-int_chan:        fmt.Println(value)           casevalue := <-string_chan:                   panic(value)     } } 考点:select随机性 解答: select会随机选择一个可用通用做收发操作。 所以代码是有肯触发异常,也有可能不会。 单个chan如果无缓冲时,将会阻塞。但结合 select可以在多个chan间等待执行。有三点原则: select 中只要有一个case能return,则立刻执行。 当如果同一时间有多个case均能return则伪随机方式抽取任意一个执行。 如果没有一个case能return则可以执行”default”块。 6 下面代码输出什么? funccalc(indexstring, a, bint) int {     ret := a+ b     fmt.Println(index,a, b, ret)     return ret } funcmain() {          a := 1     b := 2     defer calc("1", a,calc("10", a, b))    a = 0     defer calc("2", a,calc("20", a, b))    b = 1 } 考点:defer执行顺序 解答: 这道题类似第1题 需要注意到defer执行顺序和值传递 index:1肯定是最后执行的,但是index:1的第三个参数是一个函数,所以最先被调用 calc("10",1,2)==>10,1,2,3 执行index:2时,与之前一样,需要先调用calc("20",0,2)==>20,0,2,2 执行到b=1时候开始调用,index:2==>calc("2",0,2)==>2,0,2,2最后执行index:1==>calc("1",1,3)==>1,1,3,4 10 1 2 320 0 2 22 0 2 21 1 3 4 7 请写出以下输入内容 funcmain() {            s := make([]int,5)     s = append(s,1, 2, 3)     fmt.Println(s) } 考点:make默认值和append 解答: make初始化是由默认值的哦,此处默认值为0 [00000123] 大家试试改为: s := make([]int, 0) s = append(s, 1, 2, 3) fmt.Println(s)//[1 2 3] 8 下面的代码有什么问题? type UserAges struct {     ages map[string]int     sync.Mutex } func(uaUserAges)Add(name string, age int) {     ua.Lock()          deferua.Unlock()     ua.ages[name] = age } func(uaUserAges)Get(name string)int {           ifage, ok := ua.ages[name]; ok {                  return age     }         return-1 } 考点:map线程安全 解答: 可能会出现 fatal error: concurrent mapreadandmapwrite. 修改一下看看效果 func (ua *UserAges)Get(namestring)int {     ua.Lock()          deferua.Unlock()          ifage, ok := ua.ages[name]; ok {                   return age     }            return-1 } 9.   下面的迭代会有什么问题? func (set *threadSafeSet)Iter()<-chaninterface{} {     ch := make(chaninterface{})                  gofunc() {         set.RLock()                for elem := range set.s {            ch <- elem         }                   close(ch)         set.RUnlock()     }()      return ch } 考点:chan缓存池 解答: 看到这道题,我也在猜想出题者的意图在哪里。 chan?sync.RWMutex?go?chan缓存池?迭代? 所以只能再读一次题目,就从迭代入手看看。 既然是迭代就会要求set.s全部可以遍历一次。但是chan是为缓存的,那就代表这写入一次就会阻塞。 我们把代码恢复为可以运行的方式,看看效果 package main import (          "sync"     "fmt")//下面的迭代会有什么问题?type threadSafeSet struct {     sync.RWMutex     s []interface{} } func(set*threadSafeSet)Iter() <-chaninterface{} {     //ch := make(chan interface{}) // 解除注释看看!     ch := make(chaninterface{},len(set.s))    gofunc() {         set.RLock()        forelem,value := range set.s {            ch <- elem             println("Iter:",elem,value)         }       close(ch)         set.RUnlock()     }()     return ch } funcmain() {     th:=threadSafeSet{         s:[]interface{}{"1","2"},     }     v:=<-th.Iter()     fmt.Sprintf("%s%v","ch",v) } 10 以下代码能编译过去吗?为什么? package main import (   "fmt") typePeople interface {     Speak(string) string } typeStduent struct{} func(stu*Stduent)Speak(think string)(talk string) {     ifthink == "bitch" {         talk = "Youare a good boy"     } else {         talk = "hi"     }     return } funcmain() {     var peoPeople = Stduent{}     think := "bitch"    fmt.Println(peo.Speak(think)) } 考点:golang的方法集 解答: 编译不通过! 做错了!?说明你对golang的方法集还有一些疑问。 一句话:golang的方法集仅仅影响接口实现和方法表达式转化,与通过实例或者指针调用方法无关。 11 以下代码打印出来什么内容,说出为什么。 package main import (   "fmt") typePeople interface {     Show() } typeStudent struct{} func(stuStudent)Show() { } funclive()People {     var stuStudent     return stu } funcmain() {   if live() == nil {         fmt.Println("AAAAAAA")     } else {         fmt.Println("BBBBBBB")     } } 考点:interface内部结构 解答: 很经典的题! 这个考点是很多人忽略的interface内部结构。 go中的接口分为两种一种是空的接口类似这样: varininterface{} 另一种如题目: type People interface {     Show() } 他们的底层结构如下: type eface struct {      //空接口     _type _type        //类型信息     data  unsafe.Pointer //指向数据的指针(go语言中特殊的指针类型unsafe.Pointer类似于c语言中的void)} typeiface struct {      //带有方法的接口     tab  itab          //存储type信息还有结构实现方法的集合     data unsafe.Pointer  //指向数据的指针(go语言中特殊的指针类型unsafe.Pointer类似于c语言中的void)} type_type struct {     size       uintptr //类型大小     ptrdata    uintptr //前缀持有所有指针的内存大小     hash       uint32  //数据hash值     tflag     tflag     align      uint8   //对齐     fieldalign uint8   //嵌入结构体时的对齐     kind       uint8   //kind 有些枚举值kind等于0是无效的     alg       *typeAlg //函数指针数组,类型实现的所有方法     gcdata    *byte   str       nameOff     ptrToThis typeOff }type itab struct {     inter  *interfacetype //接口类型     _type  *_type         //结构类型     link   *itab     bad    int32     inhash int32     fun    [1]uintptr     //可变大小方法集合} 可以看出iface比eface 中间多了一层itab结构。 itab 存储_type信息和[]fun方法集,从上面的结构我们就可得出,因为data指向了nil 并不代表interface 是nil, 所以返回值并不为空,这里的fun(方法集)定义了接口的接收规则,在编译的过程中需要验证是否实现接口 结果: BBBBBBB 12.是否可以编译通过?如果通过,输出什么? func main() {     i := GetValue() switch i.(type) {          caseint:                println("int")            casestring:                println("string")            caseinterface{}:                println("interface")            default:                 println("unknown")     } } funcGetValue()int {    return1 } 解析 考点:type 编译失败,因为type只能使用在interface 13.下面函数有什么问题? func funcMui(x,y int)(sum int,error){     returnx+y,nil } 解析 考点:函数返回值命名 在函数有多个返回值时,只要有一个返回值有指定命名,其他的也必须有命名。 如果返回值有有多个返回值必须加上括号; 如果只有一个返回值并且有命名也需要加上括号; 此处函数第一个返回值有sum名称,第二个未命名,所以错误。 14.是否可以编译通过?如果通过,输出什么? package mainfunc main() {    println(DeferFunc1(1)) println(DeferFunc2(1)) println(DeferFunc3(1)) }func DeferFunc1(i int)(t int) {     t = i   deferfunc() {         t += 3     }() return t } funcDeferFunc2(i int)int {     t := i  deferfunc() {         t += 3     }() return t } funcDeferFunc3(i int)(t int) {   deferfunc() {         t += i     }() return2} 解析 考点:defer和函数返回值 需要明确一点是defer需要在函数结束前执行。 函数返回值名字会在函数起始处被初始化为对应类型的零值并且作用域为整个函数 DeferFunc1有函数返回值t作用域为整个函数,在return之前defer会被执行,所以t会被修改,返回4; DeferFunc2函数中t的作用域为函数,返回1;DeferFunc3返回3 15.是否可以编译通过?如果通过,输出什么? funcmain() {    list := new([]int)     list = append(list,1)     fmt.Println(list) } 解析 考点:new list:=make([]int,0) 16.是否可以编译通过?如果通过,输出什么? package mainimport "fmt"funcmain() {     s1 := []int{1, 2, 3}     s2 := []int{4, 5}     s1 = append(s1,s2)     fmt.Println(s1) } 解析 考点:append append切片时候别漏了'…' 17.是否可以编译通过?如果通过,输出什么? func main() {     sn1 := struct {         age  int         name string     }{age: 11,name: "qq"}     sn2 := struct {         age  int         name string     }{age: 11,name: "qq"}  if sn1== sn2 {         fmt.Println("sn1== sn2")     }     sm1 := struct {         age int         m   map[string]string     }{age: 11, m:map[string]string{"a": "1"}}     sm2 := struct {         age int         m   map[string]string     }{age: 11, m:map[string]string{"a": "1"}}             if sm1 == sm2 {         fmt.Println("sm1== sm2")     } } 解析 考点:结构体比较 进行结构体比较时候,只有相同类型的结构体才可以比较,结构体是否相同不但与属性类型个数有关,还与属性顺序相关。 sn3:= struct {     name string     age  int } {age:11,name:"qq"} sn3与sn1就不是相同的结构体了,不能比较。 还有一点需要注意的是结构体是相同的,但是结构体属性中有不可以比较的类型,如map,slice。 如果该结构属性都是可以比较的,那么就可以使用“==”进行比较操作。 可以使用reflect.DeepEqual进行比较 if reflect.DeepEqual(sn1, sm) {     fmt.Println("sn1==sm") }else {     fmt.Println("sn1!=sm") } 所以编译不通过: invalid operation: sm1 == sm2 18.是否可以编译通过?如果通过,输出什么? func Foo(x interface{}) {    if x== nil {         fmt.Println("emptyinterface")                 return     }     fmt.Println("non-emptyinterface") }        funcmain() {           var x *int = nil     Foo(x) } 解析 考点:interface内部结构 non-emptyinterface 19.是否可以编译通过?如果通过,输出什么? func GetValue(m map[int]string, id int)(string, bool) {              if _,exist := m[id]; exist {                    return"存在数据", true     }            returnnil, false}funcmain() {     intmap:=map[int]string{    1:"a",        2:"bb",        3:"ccc",     }     v,err:=GetValue(intmap,3)     fmt.Println(v,err) } 解析 考点:函数返回值类型 nil 可以用作 interface、function、pointer、map、slice 和 channel 的“空值”。但是如果不特别指定的话,Go 语言不能识别类型,所以会报错。报:cannot use nil as type string in return argument. 20.是否可以编译通过?如果通过,输出什么? const (     x = iota     y     z = "zz"     k     p = iota) funcmain()  {     fmt.Println(x,y,z,k,p) } 解析 考点:iota 结果: 0 1 zz zz 4 21.编译执行下面代码会出现什么? package mainvar(     size :=1024     max_size = size*2) funcmain() {     println(size,max_size) } 解析 考点:变量简短模式 变量简短模式限制: 定义变量同时显式初始化 不能提供数据类型 只能在函数内部使用 结果: syntaxerror: unexpected := 22.下面函数有什么问题? package main const cl = 100 var bl   = 123 funcmain() {     println(&bl,bl)    println(&cl,cl) } 解析 考点:常量 常量不同于变量的在运行期分配内存,常量通常会被编译器在预处理阶段直接展开,作为指令数据使用, cannot take the address of cl 23.编译执行下面代码会出现什么? package main funcmain() {     for i:=0;i<10;i++  {     loop:        println(i)     }    gotoloop } 解析 考点:goto goto不能跳转到其他函数或者内层代码 goto loop jumps intoblock starting at 24.编译执行下面代码会出现什么? package main import"fmt" funcmain() {      typeMyInt1 int      typeMyInt2 = int     var i int =9     var i1MyInt1 = i     var i2MyInt2 = i     fmt.Println(i1,i2) } 解析 考点:**Go 1.9 新特性 Type Alias ** 基于一个类型创建一个新类型,称之为defintion;基于一个类型创建一个别名,称之为alias。 MyInt1为称之为defintion,虽然底层类型为int类型,但是不能直接赋值,需要强转; MyInt2称之为alias,可以直接赋值。 结果: cannot use i (typeint) astype MyInt1 in assignment 25.编译执行下面代码会出现什么? package main import"fmt" typeUser struct { } typeMyUser1 User typeMyUser2 = User func(iMyUser1)m1(){     fmt.Println("MyUser1.m1") } func(iUser)m2(){     fmt.Println("User.m2") } funcmain() {     var i1MyUser1     var i2MyUser2     i1.m1()     i2.m2() } 解析 考点:**Go 1.9 新特性 Type Alias ** 因为MyUser2完全等价于User,所以具有其所有的方法,并且其中一个新增了方法,另外一个也会有。 但是 i1.m2() 是不能执行的,因为MyUser1没有定义该方法。 结果: MyUser1.m1User.m2 26.编译执行下面代码会出现什么? package main import"fmt" type T1 struct { } func(tT1)m1(){     fmt.Println("T1.m1") } type T2= T1 typeMyStruct struct {     T1     T2 } funcmain() {     my:=MyStruct{}     my.m1() } 解析 考点:**Go 1.9 新特性 Type Alias ** 是不能正常编译的,异常: ambiguousselectormy.m1 结果不限于方法,字段也也一样;也不限于type alias,type defintion也是一样的,只要有重复的方法、字段,就会有这种提示,因为不知道该选择哪个。 改为: my.T1.m1() my.T2.m1() type alias的定义,本质上是一样的类型,只是起了一个别名,源类型怎么用,别名类型也怎么用,保留源类型的所有方法、字段等。 27.编译执行下面代码会出现什么? package main import (           "errors"     "fmt") varErrDidNotWork = errors.New("did not work") funcDoTheThing(reallyDoItbool)(errerror) {     ifreallyDoIt {         result, err:= tryTheThing()         if err!= nil || result != "it worked" {            err = ErrDidNotWork         }     }    return err } functryTheThing()(string,error) {     return"",ErrDidNotWork } funcmain() {     fmt.Println(DoTheThing(true))     fmt.Println(DoTheThing(false)) } 解析 考点:变量作用域 因为 if 语句块内的 err 变量会遮罩函数作用域内的 err 变量,结果: 改为: func DoTheThing(reallyDoIt bool)(errerror) {     varresult string     ifreallyDoIt {         result, err =tryTheThing()         if err!= nil || result != "it worked" {            err = ErrDidNotWork         }     }    return err } 28.编译执行下面代码会出现什么? package main functest() []func() {     varfuns []func()     fori:=0;i<2;i++  {         funs = append(funs,func() {                       println(&i,i)         })     }    returnfuns } funcmain(){     funs:=test()            for_,f:=range funs{         f()     } } 解析 考点:闭包延迟求值 for循环复用局部变量i,每一次放入匿名函数的应用都是想一个变量。 结果: 0xc042046000 2 0xc042046000 2 如果想不一样可以改为: func test() []func()  {     varfuns []func()     fori:=0;i<2;i++  {         x:=i         funs = append(funs,func() {            println(&x,x)         })     }    returnfuns } 29.编译执行下面代码会出现什么? package main functest(x int)(func(),func()) {     returnfunc() {        println(x)     x+=10     }, func() {              println(x)     } } funcmain() {     a,b:=test(100)     a()     b() } 解析 考点:闭包引用相同变量* 结果: 100 110 30. 编译执行下面代码会出现什么? package main im port (   "fmt"     "reflect") funcmain1() {     deferfunc() {      iferr:=recover();err!=nil{           fmt.Println(err)        }else {           fmt.Println("fatal")        }     }()     deferfunc() {        panic("deferpanic")     }()     panic("panic") } funcmain() {     deferfunc() {        iferr:=recover();err!=nil{            fmt.Println("++++")            f:=err.(func()string)             fmt.Println(err,f(),reflect.TypeOf(err).Kind().String())         }else {            fmt.Println("fatal")         }     }()     deferfunc() {        panic(func()string {            return "defer panic"         })     }()     panic("panic") } 解析 考点:panic仅有最后一个可以被revover捕获 触发panic("panic")后顺序执行defer,但是defer中还有一个panic,所以覆盖了之前的panic("panic") 原文链接:https://blog.csdn.net/itcastcpp/article/details/80462619

剑曼红尘 2020-03-09 10:46:30 0 浏览量 回答数 0

回答

本文介绍了如何使用 Serverless 工作流提供长流程分布式事务保证,帮助用户聚焦于自身业务逻辑。 简介 复杂的业务场景例如电商网站、酒店、航班预定这类涉及订单管理的应用通常要访问多个远程服务,并且对操作事务性语义(即所有步骤全部成功或全部失败,不存在中间状态)有较高要求。在流量较小、数据存储集中的应用中,事务性可以通过关系型数据库提供的 ACID 特性满足。然而在大流量场景下,为了高可用和可扩展性,业务通常选择向微服务的分布式架构方向演进。在这样的架构中提供多步骤事务性的保证通常需要引入队列和数据库来持久化消息以及展现流程状态,这类系统的开发和运维会给业务方带来额外的成本和负担。而使用 Serverless 工作流提供长流程分布式事务保证会帮您解决这些问题。 场景描述 假设某应用为其用户提供预定火车票、航班和酒店的功能,要求三个步骤保证事务性。该功能需要三个远程调用实现(例如预定火车票需要调用 12306 接口),如果三个调用都成功则该订单成功。然而实际上任何一个远程调用都有可能会失败,因此该应用需要对不同的失败场景做出相应的补偿逻辑,回退已完成操作。如下图所示: 如果预定火车票(BuyTrainTicket)成功,而预定航班(ReserveFlight)失败,则需要取消已经购买的火车票 (CancelTrainTicket),并告知用户订单失败。 如果预定火车票(BuyTrainTicket)和预定航班(ReserveFlight)均成功,但是预订酒店(ReserveHotel) 失败,则需要取消已经预定的航班(CancelFlight)和火车票(CancelTrainTicket),并告知用户订单失败。 longtxn-saga_train_flight_hotel Serverless 工作流实现 下文的示例将 FC 函数编排成一个 Serverless 工作流流程从而实现了一个可靠的多步骤长流程,该示例分为 3 步: 创建 FC 函数 创建流程 执行并查看结果 步骤 1:创建 FC 函数(模拟上面提到的3个操作:预定火车票、预定航班、预定酒店) 创建下面的 Python2.7 的函数,关于创建的详细步骤,可以参见 FC 文档,建议命名: Service: fnf-demo Function: Operation Operation 函数模拟各操作(例如预定航班、预定酒店)的实现,根据输入决定该操作执行结果(成功或失败)。 import json import logging import uuid def handler(event, context): evt = json.loads(event) logger = logging.getLogger() id = uuid.uuid4() op = "operation" if 'operation' in evt: op = evt['operation'] if op in evt: result = evt[op] if result == False: logger.info("%s failed" % op) exit() logger.info("%s succeeded, id %s" % (op, id)) return '{"%s":"success", "%s_txnID": "%s"}' % (op, op, id) 步骤 2:创建流程 使用 Serverless 工作流控制台创建下面的流程。 配置流程 RAM 角色 { "Statement": [ { "Action": "sts:AssumeRole", "Effect": "Allow", "Principal": { "Service": [ "fnf.aliyuncs.com" ] } } ], "Version": "1" } 流程定义 version: v1 type: flow steps: - type: task resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation name: BuyTrainTicket inputMappings: - target: operation source: buy_train_ticket - target: buy_train_ticket source: $input.buy_train_ticket_result catch: - errors: - FC.Unknown goto: OrderFailed - type: task resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation name: ReserveFlight inputMappings: - target: operation source: reserve_flight - target: reserve_flight source: $input.reserve_flight_result catch: # 捕获 ReserveFlight task 抛出的 FC.Unknown 错误,跳转到 CancelTrainTicket。 - errors: - FC.Unknown goto: CancelTrainTicket - type: task resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation name: ReserveHotel inputMappings: - target: operation source: reserve_hotel - target: reserve_hotel source: $input.reserve_hotel_result retry: # 对 FC.Unknown 类型的错误最多指数退避重试 3 次,初始间隔 1s,后续间隔 = 上次间隔 * 2。 - errors: - FC.Unknown intervalSeconds: 1 maxAttempts: 3 multiplier: 2 catch: # 捕获 ReserveHotel task 抛出的 FC.Unknown 错误,跳转到 CancelFlight。 - errors: - FC.Unknown goto: CancelFlight - type: succeed name: OrderSucceeded - type: task resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation name: CancelFlight inputMappings: - target: operation source: cancel_flight - target: reserve_flight_txnID source: $local.reserve_flight_txnID - type: task resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation name: CancelTrainTicket inputMappings: - target: operation source: cancel_train_ticket - target: reserve_flight_txnID source: $local.reserve_flight_txnID - type: fail name: OrderFailed 步骤 3:执行并查看结果 在控制台上对创建好的流程(Flow)开始一个新的执行(Execution)。StartExecution API 要求传入 JSON 格式的输入。下面的 JSON 对象可以模拟每个步骤的成功或失败(例如 "reserve_hotel_result":"fail" 代表模拟预定酒店这步失败)。StartExecution 是一个异步 API,调用结束后,Serverless 工作流会返回一个执行名字用来查询流程执行状态。 { "buy_train_ticket_result":"success", "reserve_flight_result":"success", "reserve_hotel_result":"fail" } 流程执行开始后,在 Serverless 工作流控制台单击进入该执行并查看执行过程和结果。可以看到,由于 "reserve_hotel_result":"fail" 和 ReserveHotel 函数调用失败,Serverless 工作流按照流程定义,依次取消航班(CancelFlight)、取消火车票(CancelTrainTicket)。Serverless 工作流每个步骤转换有持久化的保证,因此网络中断或进程崩溃等失败场景不会影响流程事务性的保证。 Screen Shot 2019-06-26 at 12.14.50 PM 流程执行会产生执行历史事件(event),这些事件可以通过控制台或者 SDK/CLI 调用 GetExecutionHistory API 查询。 Screen Shot 2019-06-26 at 12.17.26 PM 错误处理和重试 上面示例中的预定航班、预定酒店等远程调用都有可能受到网络或服务错误等原因导致调用失败,而增加对瞬时错误的重试可以提高订单流程成功率。Serverless 工作流在任务(Task)类型的步骤(Step)自带重试功能,如预定酒店这个步骤用下面的写法可以实现对 FC.Unknown 类型的错误指数退避。假设重试到达最大次数后 ReserveHotel 都无法成功,按照该步骤中 catch 的定义,ReserveHotel 函数抛出的 FC.Unknown 错误会被捕获并将跳转到 CancelFlight 执行定义好的补偿逻辑。 - type: task resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation name: ReserveHotel inputMappings: - target: operation source: reserve_hotel retry: # 对 FC.Unknown 类型的错误最多指数退避重试3次,初始间隔1s,后续间隔 = 上次间隔 * 2。 - errors: - FC.Unknown intervalSeconds: 1 maxAttempts: 3 multiplier: 2 catch: # 捕获 ReserveHotel task 抛出的 FC.Unknown 错误,跳转到 CancelFlight。 - errors: - FC.Unknown goto: CancelFlight 下图可以看到加入重试之后预订酒店(ReserveHotel)任务执行了多次直到最大重试数。Screen Shot 2019-06-26 at 12.19.55 PM 步骤间的数据传递 预定酒店失败后需要取消航班和火车票,这两部分别需要用到预定航班和预定火车票返回的交易 ID (txnID),下面的 inputMapping 对象描述了如何将之前步骤产生的输出传入 CancelFlight 这个步骤中。 - type: task resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation name: CancelFlight inputMappings: - target: operation source: cancel_flight - target: reserve_flight_txnID source: $local.reserve_flight_txnID 流程执行各步骤结束的输出都会被放在 StepExited 事件详情(EventDetail)的 local 对象中。 { "input":{ "operation":"reserve_hotel", "reserve_hotel_result":"fail" }, "local":{ "buy_train_ticket":"success", "buy_train_ticket_txnID":"d37412b3-bb68-4d04-9d90-c8c15643d45e", "reserve_flight_result":"success", "reserve_flight_txnID":"024caecf-cfa3-43a6-b561-9b6fe0571b55" }, "resourceArn":"acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation", "cause":"{"errorMessage":"Process exited unexpectedly before completing request (duration: 12ms, maxMemoryUsage: 9.18MB)"}", "error":"FC.Unknown", "retryCount":3, "goto":"CancelFlight" } 结合上面的 EventDetail 和 inputMappings 的映射之后,传入到 CancelFlight 步骤的输入变成如下 JSON 对象,这样 CancelFlight 函数的输入会包含 reserve_flight_txnID 字段。 "input":{ "operation":"cancel_flight", "reserve_flight_txnID":"024caecf-cfa3-43a6-b561-9b6fe0571b55" }

1934890530796658 2020-03-27 10:47:41 0 浏览量 回答数 0

问题

[IBM DW] 用 inotify 监控 Linux 文件系统事件:报错

kun坤 2020-06-07 16:43:37 0 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 SQL审核 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 人工智能 阿里云云栖号 云栖号案例 云栖号直播