• 关于

    数据可用性未响应

    的搜索结果

问题

高可用服务

高可用服务由 Detection、Repair、Notice 等模块组成,主要保障数据链路服务的可用性,除此之外还负责处理数据库内部的异常。 另外,RDS 还通过迁移到支持多可用区的地域和采用适当的...
云栖大讲堂 2019-12-01 21:34:33 1169 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:10 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:10 0 浏览量 回答数 0

Quick BI 数据可视化分析平台

2020年入选全球Gartner ABI魔力象限,为中国首个且唯一入选BI产品

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:12 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:12 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:11 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:11 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:10 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:10 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:12 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:10 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:12 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:11 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:11 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:11 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:12 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:11 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台ECS健康检查出现异常时,负载均衡会自动将新的请求分发到其它健康检查正常的ECS上;而当该ECS恢复正常运行时,负载均衡会将其自动恢复到负载均衡服务中。 如果您的业务对负载敏感性高,高频率的健康检查探测可能会对正常业务访问造成影响。您可以结合业务情况,通过降低健康检查频率、增大健康检查间隔、七层检查修改为四层检查等方式,来降低对业务的影响。但为了保障业务的持续可用,不建议关闭健康检查。 健康检查过程 负载均衡采用集群部署。LVS集群或Tengine集群内的相关节点服务器同时承载了数据转发和健康检查职责。 LVS集群内不同服务器分别独立、并行地根据负载均衡策略进行数据转发和健康检查操作。如果某一台LVS节点服务器对后端某一台ECS健康检查失败,则该LVS节点服务器将不会再将新的客户端请求分发给相应的异常ECS。LVS集群内所有服务器同步进行该操作。 负载均衡健康检查使用的地址段是100.64.0.0/10,后端服务器务必不能屏蔽该地址段。您无需在ECS安全组中额外针对该地址段配置放行策略,但如有配置iptables等安全策略,请务必放行(100.64.0.0/10 是阿里云保留地址,其他用户无法分配到该网段内,不会存在安全风险)。 HTTP/HTTPS监听健康检查机制 针对七层(HTTP或HTTPS协议)监听,健康检查通过HTTP HEAD探测来获取状态信息,如下图所示。 对于HTTPS监听,证书在负载均衡系统中进行管理。负载均衡与后端ECS之间的数据交互(包括健康检查数据和业务交互数据),不再通过HTTPS进行传输,以提高系统性能。 七层监听的检查机制如下: Tengine节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】+【检查路径】发送HTTP HEAD请求(包含设置的【域名】)。 后端ECS收到请求后,根据相应服务的运行情况,返回HTTP状态码。 如果在【响应超时时间】之内,Tengine节点服务器没有收到后端ECS返回的信息,则认为服务无响应,判定健康检查失败。 如果在【响应超时时间】之内,Tengine节点服务器成功接收到后端ECS返回的信息,则将该返回信息与配置的状态码进行比对。如果匹配则判定健康检查成功,反之则判定健康检查失败。 TCP监听健康检查机制 针对四层TCP监听,为了提高健康检查效率,健康检查通过定制的TCP探测来获取状态信息,如下图所示。 TCP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送TCP SYN数据包。 后端ECS收到请求后,如果相应端口正在正常监听,则会返回SYN+ACK数据包。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的数据包,则认为服务无响应,判定健康检查失败;并向后端ECS发送RST数据包中断TCP连接。 如果在【响应超时时间】之内,LVS节点服务器成功收到后端ECS返回的数据包,则认为服务正常运行,判定健康检查成功,而后向后端ECS发送RST数据包中断TCP连接。 说明 正常的TCP三次握手,LVS节点服务器在收到后端ECS返回的SYN+ACK数据包后,会进一步发送ACK数据包,随后立即发送RST数据包中断TCP连接。 该实现机制可能会导致后端ECS认为相关TCP连接出现异常(非正常退出),并在业务软件如Java连接池等日志中抛出相应的错误信息,如Connection reset by peer。 解决方案: TCP监听采用HTTP方式进行健康检查。 在后端ECS配置了获取客户端真实IP后,忽略来自前述负载均衡服务地址段相关访问导致的连接错误。 UDP监听健康检查 针对四层UDP监听,健康检查通过UDP报文探测来获取状态信息,如下图所示。 UDP监听的检查机制如下: LVS节点服务器根据监听的健康检查配置,向后端ECS的内网IP+【健康检查端口】发送UDP报文。 如果后端ECS相应端口未正常监听,则系统会返回类似返回 port XX unreachable的ICMP报错信息;反之不做任何处理。 如果在【响应超时时间】之内,LVS节点服务器收到了后端ECS返回的上述错误信息,则认为服务异常,判定健康检查失败。 如果在【响应超时时间】之内,LVS节点服务器没有收到后端ECS返回的任何信息,则认为服务正常,判定健康检查成功。 说明 当前UDP协议服务健康检查可能存在服务真实状态与健康检查不一致的问题: 如果后端ECS是Linux服务器,在大并发场景下,由于Linux的防ICMP攻击保护机制,会限制服务器发送ICMP的速度。此时,即便服务已经出现异常,但由于无法向前端返回port XX unreachable报错信息,会导致负载均衡由于没收到ICMP应答进而判定健康检查成功,最终导致服务真实状态与健康检查不一致。 解决方案: 负载均衡通过发送您指定的字符串到后端服务器,必须得到指定应答后才认为检查成功。但该实现机制需要客户端程序配合应答。 健康检查时间窗 健康检查机制的引入,有效提高了业务服务的可用性。但是,为了避免频繁的健康检查失败引起的切换对系统可用性的冲击,健康检查只有在健康检查时间窗内连续多次检查成功或失败后,才会进行状态切换。健康检查时间窗由以下三个因素决定: 健康检查间隔 (每隔多久进行一次健康检查) 响应超时时间 (等待服务器返回健康检查的时间) 检查阈值 (健康检查连续成功或失败的次数) 健康检查时间窗的计算方法如下: 健康检查失败时间窗=响应超时时间×不健康阈值+检查间隔×(不健康阈值-1) 健康检查成功时间窗= (健康检查成功响应时间x健康阈值)+检查间隔x(健康阈值-1) 说明 健康检查成功响应时间是一次健康检查请求从发出到响应的时间。当采用TCP方式健康检查时,由于仅探测端口是否存活,因此该时间非常短,几乎可以忽略不计。当采用HTTP方式健康检查时,该时间取决于应用服务器的性能和负载,但通常都在秒级以内。 健康检查状态对请求转发的影响如下: 如果目标ECS的健康检查失败,新的请求不会再分发到相应ECS上,所以对前端访问没有影响。 如果目标ECS的健康检查成功,新的请求会分发到该ECS上,前端访问正常。 如果目标ECS存在异常,正处于健康检查失败时间窗,而健康检查还未达到检查失败判定次数(默认为三次),则相应请求还是会被分发到该ECS,进而导致前端访问请求失败。
2019-12-01 23:31:12 0 浏览量 回答数 0

问题

云监控管理可用性监控

应用场景 可用性监控为您定期探测本地或远程指定路径或端口是否正常响应,当出现响应超时或状态码错误时,发送报警通知。帮您快速发现本地或依赖的远程服务无响应的情况。 注意事项 使用可用性监控功能依赖云监控插件...
反向一觉 2019-12-01 21:24:39 1357 浏览量 回答数 0

问题

表格存储的产品优势有什么

扩展性动态调整预留读/写吞吐量在创建表的时候,应用程序可以根据业务访问的情况来配置预留读/写吞吐量。表格存储根据表的预留读/写吞吐量进行资源的调度和预留,从而获得更低的资源使用成本。在使用过程中,还...
云栖大讲堂 2019-12-01 20:53:54 1342 浏览量 回答数 0

问题

短信常见运营商错误码有哪些?(601-753)

[tr=rgb(239, 251, 255)]序号错误代码代码描述 601LT:0086网关拦截602LT:0089无效号码603LT:0090网关拦截604LT:0092网关拦截605LT:0093网关拦截606LT:0098网关...
轩墨 2019-12-01 20:55:01 1529 浏览量 回答数 0

回答

HTTP 1xx-信息提示 这些状态代码表示临时的响应。客户端在收到常规响应之前,应准备接收一个或多个1xx响应。 100-继续。 101-切换协议。 2xx-成功 这类状态代码表明服务器成功地接受了客户端请求。 200-确定。客户端请求已成功。 201-已创建。 202-已接受。 203-非权威性信息。 204-无内容。 205-重置内容。 206-部分内容。 3xx-重定向 客户端浏览器必须采取更多操作来实现请求。例如,浏览器可能不得不请求服务器上的不同的页面,或通过代理服务器重复该请求。 301-对象已永久移走,即永久重定向。 302-对象已临时移动。 304-未修改。 307-临时重定向。 4xx-客户端错误 发生错误,客户端似乎有问题。例如,客户端请求不存在的页面,客户端未提供有效的身份验证信息。400-错误的请求。 401-访问被拒绝。IIS定义了许多不同的401错误,它们指明更为具体的错误原因。这些具体的错误代码在浏览器中显示,但不在IIS日志中显示: 401.1-登录失败。 401.2-服务器配置导致登录失败。 401.3-由于ACL对资源的限制而未获得授权。 401.4-筛选器授权失败。 401.5-ISAPI/CGI应用程序授权失败。 401.7–访问被Web服务器上的URL授权策略拒绝。这个错误代码为IIS6.0所专用。 403-禁止访问:IIS定义了许多不同的403错误,它们指明更为具体的错误原因: 403.1-执行访问被禁止。 403.2-读访问被禁止。 403.3-写访问被禁止。 403.4-要求SSL。 403.5-要求SSL128。 403.6-IP地址被拒绝。 403.7-要求客户端证书。 403.8-站点访问被拒绝。 403.9-用户数过多。 403.10-配置无效。 403.11-密码更改。 403.12-拒绝访问映射表。 403.13-客户端证书被吊销。 403.14-拒绝目录列表。 403.15-超出客户端访问许可。 403.16-客户端证书不受信任或无效。 403.17-客户端证书已过期或尚未生效。 403.18-在当前的应用程序池中不能执行所请求的URL。这个错误代码为IIS6.0所专用。 403.19-不能为这个应用程序池中的客户端执行CGI。这个错误代码为IIS6.0所专用。 403.20-Passport登录失败。这个错误代码为IIS6.0所专用。 404-未找到。 404.0-(无)–没有找到文件或目录。 404.1-无法在所请求的端口上访问Web站点。 404.2-Web服务扩展锁定策略阻止本请求。 404.3-MIME映射策略阻止本请求。 405-用来访问本页面的HTTP谓词不被允许(方法不被允许) 406-客户端浏览器不接受所请求页面的MIME类型。 407-要求进行代理身份验证。 412-前提条件失败。 413–请求实体太大。 414-请求URI太长。 415–不支持的媒体类型。 416–所请求的范围无法满足。 417–执行失败。 423–锁定的错误。 5xx-服务器错误 服务器由于遇到错误而不能完成该请求。 500-内部服务器错误。 500.12-应用程序正忙于在Web服务器上重新启动。 500.13-Web服务器太忙。 500.15-不允许直接请求Global.asa。 500.16–UNC授权凭据不正确。这个错误代码为IIS6.0所专用。 500.18–URL授权存储不能打开。这个错误代码为IIS6.0所专用。 500.100-内部ASP错误。 501-页眉值指定了未实现的配置。 502-Web服务器用作网关或代理服务器时收到了无效响应。 502.1-CGI应用程序超时。 502.2-CGI应用程序出错。application. 503-服务不可用。这个错误代码为IIS6.0所专用。 504-网关超时。 505-HTTP版本不受支持。 FTP 1xx-肯定的初步答复 这些状态代码指示一项操作已经成功开始,但客户端希望在继续操作新命令前得到另一个答复。 110重新启动标记答复。 120服务已就绪,在nnn分钟后开始。 125数据连接已打开,正在开始传输。 150文件状态正常,准备打开数据连接。 2xx-肯定的完成答复 一项操作已经成功完成。客户端可以执行新命令。200命令确定。 202未执行命令,站点上的命令过多。 211系统状态,或系统帮助答复。 212目录状态。 213文件状态。 214帮助消息。 215NAME系统类型,其中,NAME是AssignedNumbers文档中所列的正式系统名称。 220服务就绪,可以执行新用户的请求。 221服务关闭控制连接。如果适当,请注销。 225数据连接打开,没有进行中的传输。 226关闭数据连接。请求的文件操作已成功(例如,传输文件或放弃文件)。 227进入被动模式(h1,h2,h3,h4,p1,p2)。 230用户已登录,继续进行。 250请求的文件操作正确,已完成。 257已创建“PATHNAME”。 3xx-肯定的中间答复 该命令已成功,但服务器需要更多来自客户端的信息以完成对请求的处理。331用户名正确,需要密码。 332需要登录帐户。 350请求的文件操作正在等待进一步的信息。 4xx-瞬态否定的完成答复 该命令不成功,但错误是暂时的。如果客户端重试命令,可能会执行成功。421服务不可用,正在关闭控制连接。如果服务确定它必须关闭,将向任何命令发送这一应答。 425无法打开数据连接。 426Connectionclosed;transferaborted. 450未执行请求的文件操作。文件不可用(例如,文件繁忙)。 451请求的操作异常终止:正在处理本地错误。 452未执行请求的操作。系统存储空间不够。 5xx-永久性否定的完成答复 该命令不成功,错误是永久性的。如果客户端重试命令,将再次出现同样的错误。500语法错误,命令无法识别。这可能包括诸如命令行太长之类的错误。 501在参数中有语法错误。 502未执行命令。 503错误的命令序列。 504未执行该参数的命令。 530未登录。 532存储文件需要帐户。 550未执行请求的操作。文件不可用(例如,未找到文件,没有访问权限)。 551请求的操作异常终止:未知的页面类型。 552请求的文件操作异常终止:超出存储分配(对于当前目录或数据集)。 553未执行请求的操作。不允许的文件名。 常见的FTP状态代码及其原因 150-FTP使用两个端口:21用于发送命令,20用于发送数据。状态代码150表示服务器准备在端口20上打开新连接,发送一些数据。 226-命令在端口20上打开数据连接以执行操作,如传输文件。该操作成功完成,数据连接已关闭。 230-客户端发送正确的密码后,显示该状态代码。它表示用户已成功登录。 331-客户端发送用户名后,显示该状态代码。无论所提供的用户名是否为系统中的有效帐户,都将显示该状态代码。 426-命令打开数据连接以执行操作,但该操作已被取消,数据连接已关闭。 530-该状态代码表示用户无法登录,因为用户名和密码组合无效。如果使用某个用户帐户登录,可能键入错误的用户名或密码,也可能选择只允许匿名访问。如果使用匿名帐户登录,IIS的配置可能拒绝匿名访问。 550-命令未被执行,因为指定的文件不可用。例如,要GET的文件并不存在,或试图将文件PUT到您没有写入权限的目录。
元芳啊 2019-12-02 00:44:14 0 浏览量 回答数 0

回答

请求错误 这类的状态码代表了客户端看起来可能发生了错误,妨碍了服务器的处理。除非响应的是一个 HEAD 请求,否则服务器就应该返回一个解释当前错误状况的实体,以及这是临时的还是永久性的状况。这些状态码适用于任何请求方法。浏览器应当向用户显示任何包含在此类错误响应中的实体内容。 如果错误发生时客户端正在传送数据,那么使用TCP的服务器实现应当仔细确保在关闭客户端与服务器之间的连接之前,客户端已经收到了包含错误信息的数据包。如果客户端在收到错误信息后继续向服务器发送数据,服务器的TCP栈将向客户端发送一个重置数据包,以清除该客户端所有还未识别的输入缓冲,以免这些数据被服务器上的应用程序读取并干扰后者。 400 Bad Request 1、语义有误,当前请求无法被服务器理解。除非进行修改,否则客户端不应该重复提交这个请求。 2、请求参数有误。 401 Unauthorized 当前请求需要用户验证。该响应必须包含一个适用于被请求资源的 WWW-Authenticate 信息头用以询问用户信息。客户端可以重复提交一个包含恰当的 Authorization 头信息的请求。如果当前请求已经包含了 Authorization 证书,那么401响应代表着服务器验证已经拒绝了那些证书。如果401响应包含了与前一个响应相同的身份验证询问,且浏览器已经至少尝试了一次验证,那么浏览器应当向用户展示响应中包含的实体信息,因为这个实体信息中可能包含了相关诊断信息。参见RFC 2617。 402 Payment Required 该状态码是为了将来可能的需求而预留的。 403 Forbidden 服务器已经理解请求,但是拒绝执行它。与401响应不同的是,身份验证并不能提供任何帮助,而且这个请求也不应该被重复提交。如果这不是一个 HEAD 请求,而且服务器希望能够讲清楚为何请求不能被执行,那么就应该在实体内描述拒绝的原因。当然服务器也可以返回一个404响应,假如它不希望让客户端获得任何信息。 404 Not Found 请求失败,请求所希望得到的资源未被在服务器上发现。没有信息能够告诉用户这个状况到底是暂时的还是永久的。假如服务器知道情况的话,应当使用410状态码来告知旧资源因为某些内部的配置机制问题,已经永久的不可用,而且没有任何可以跳转的地址。404这个状态码被广泛应用于当服务器不想揭示到底为何请求被拒绝或者没有其他适合的响应可用的情况下。出现这个错误的最有可能的原因是服务器端没有这个页面。 405 Method Not Allowed 请求行中指定的请求方法不能被用于请求相应的资源。该响应必须返回一个Allow 头信息用以表示出当前资源能够接受的请求方法的列表。 鉴于 PUT,DELETE 方法会对服务器上的资源进行写操作,因而绝大部分的网页服务器都不支持或者在默认配置下不允许上述请求方法,对于此类请求均会返回405错误。 406 Not Acceptable 请求的资源的内容特性无法满足请求头中的条件,因而无法生成响应实体。 除非这是一个 HEAD 请求,否则该响应就应当返回一个包含可以让用户或者浏览器从中选择最合适的实体特性以及地址列表的实体。实体的格式由 Content-Type 头中定义的媒体类型决定。浏览器可以根据格式及自身能力自行作出最佳选择。但是,规范中并没有定义任何作出此类自动选择的标准。 407 Proxy Authentication Required 与401响应类似,只不过客户端必须在代理服务器上进行身份验证。代理服务器必须返回一个 Proxy-Authenticate 用以进行身份询问。客户端可以返回一个 Proxy-Authorization 信息头用以验证。参见RFC 2617。 408 Request Timeout 请求超时。客户端没有在服务器预备等待的时间内完成一个请求的发送。客户端可以随时再次提交这一请求而无需进行任何更改。 409 Conflict 由于和被请求的资源的当前状态之间存在冲突,请求无法完成。这个代码只允许用在这样的情况下才能被使用:用户被认为能够解决冲突,并且会重新提交新的请求。该响应应当包含足够的信息以便用户发现冲突的源头。 冲突通常发生于对 PUT 请求的处理中。例如,在采用版本检查的环境下,某次 PUT 提交的对特定资源的修改请求所附带的版本信息与之前的某个(第三方)请求向冲突,那么此时服务器就应该返回一个409错误,告知用户请求无法完成。此时,响应实体中很可能会包含两个冲突版本之间的差异比较,以便用户重新提交归并以后的新版本。 410 Gone 被请求的资源在服务器上已经不再可用,而且没有任何已知的转发地址。这样的状况应当被认为是永久性的。如果可能,拥有链接编辑功能的客户端应当在获得用户许可后删除所有指向这个地址的引用。如果服务器不知道或者无法确定这个状况是否是永久的,那么就应该使用404状态码。除非额外说明,否则这个响应是可缓存的。 410响应的目的主要是帮助网站管理员维护网站,通知用户该资源已经不再可用,并且服务器拥有者希望所有指向这个资源的远端连接也被删除。这类事件在限时、增值服务中很普遍。同样,410响应也被用于通知客户端在当前服务器站点上,原本属于某个个人的资源已经不再可用。当然,是否需要把所有永久不可用的资源标记为'410 Gone',以及是否需要保持此标记多长时间,完全取决于服务器拥有者。 411 Length Required 服务器拒绝在没有定义 Content-Length 头的情况下接受请求。在添加了表明请求消息体长度的有效 Content-Length 头之后,客户端可以再次提交该请求。 412 Precondition Failed 服务器在验证在请求的头字段中给出先决条件时,没能满足其中的一个或多个。这个状态码允许客户端在获取资源时在请求的元信息(请求头字段数据)中设置先决条件,以此避免该请求方法被应用到其希望的内容以外的资源上。 413 Request Entity Too Large 服务器拒绝处理当前请求,因为该请求提交的实体数据大小超过了服务器愿意或者能够处理的范围。此种情况下,服务器可以关闭连接以免客户端继续发送此请求。 如果这个状况是临时的,服务器应当返回一个 Retry-After 的响应头,以告知客户端可以在多少时间以后重新尝试。 414 Request-URI Too Long 请求的URI 长度超过了服务器能够解释的长度,因此服务器拒绝对该请求提供服务。这比较少见,通常的情况包括: 本应使用POST方法的表单提交变成了GET方法,导致查询字符串(Query String)过长。 重定向URI “黑洞”,例如每次重定向把旧的 URI 作为新的 URI 的一部分,导致在若干次重定向后 URI 超长。 客户端正在尝试利用某些服务器中存在的安全漏洞攻击服务器。这类服务器使用固定长度的缓冲读取或操作请求的 URI,当 GET 后的参数超过某个数值后,可能会产生缓冲区溢出,导致任意代码被执行[1]。没有此类漏洞的服务器,应当返回414状态码。 415 Unsupported Media Type 对于当前请求的方法和所请求的资源,请求中提交的实体并不是服务器中所支持的格式,因此请求被拒绝。 416 Requested Range Not Satisfiable 如果请求中包含了 Range 请求头,并且 Range 中指定的任何数据范围都与当前资源的可用范围不重合,同时请求中又没有定义 If-Range 请求头,那么服务器就应当返回416状态码。 假如 Range 使用的是字节范围,那么这种情况就是指请求指定的所有数据范围的首字节位置都超过了当前资源的长度。服务器也应当在返回416状态码的同时,包含一个 Content-Range 实体头,用以指明当前资源的长度。这个响应也被禁止使用 multipart/byteranges 作为其 Content-Type。 417 Expectation Failed 在请求头 Expect 中指定的预期内容无法被服务器满足,或者这个服务器是一个代理服务器,它有明显的证据证明在当前路由的下一个节点上,Expect 的内容无法被满足。 421 too many connections There are too many connections from your internet address 从当前客户端所在的IP地址到服务器的连接数超过了服务器许可的最大范围。通常,这里的IP地址指的是从服务器上看到的客户端地址(比如用户的网关或者代理服务器地址)。在这种情况下,连接数的计算可能涉及到不止一个终端用户。 422 Unprocessable Entity 请求格式正确,但是由于含有语义错误,无法响应。(RFC 4918 WebDAV) 423 Locked 当前资源被锁定。(RFC 4918 WebDAV) 424 Failed Dependency 由于之前的某个请求发生的错误,导致当前请求失败,例如 PROPPATCH。(RFC 4918 WebDAV) 425 Unordered Collection 在WebDav Advanced Collections 草案中定义,但是未出现在《WebDAV 顺序集协议》(RFC 3658)中。 426 Upgrade Required 客户端应当切换到TLS/1.0。(RFC 2817) 449 Retry With 由微软扩展,代表请求应当在执行完适当的操作后进行重试。 451Unavailable For Legal Reasons 该请求因法律原因不可用。(RFC 7725)
微wx笑 2019-12-01 23:36:42 0 浏览量 回答数 0

回答

MongoDB ACID事务支持 这里要有一定的关系型数据库的事务的概念,不然不一定能理解的了这里说的事务概念。 下面说一说MongoDB的事务支持,这里可能会有疑惑,前面我们在介绍MongoDB时,说MongoDB是一个NoSQL数据库,不支持事务。这里又介绍MongoDB的事务。这里要说明一下MongoDB的事务支持跟关系型数据库的事务支持是两码事,如果你已经非常了解关系型数据库的事务,通过下面一副图对比MongoDB事务跟MySQL事务的不同之处。 MongoDB是如何实现事务的ACID? 1)MongoDB对原子性(Atomicity)的支持 原子性在Mongodb中到底是一个什么概念呢?为什么说支持但又说Mongodb的原子性是单行/文档级原子性,这里提供了一个MongoDB更新语句样例,如下图: MongoDB是如何实现事务的ACID? 更新“username”等于“tj.tang”的文档,更新salary、jobs、hours字段。这里对于这三个字段Mongodb在执行时要么都更新要么都不更新,这个概念在MySQL中可能你没有考虑过,但在MongoDB中由于文档可以嵌套子文档可以很复杂,所以Mongodb的原子性叫单行/文档级原子性。 对于关系型数据库的多行、多文档、多语句原子性目前Mongodb是不支持的,如下情况: MongoDB是如何实现事务的ACID? MongoDB更新条件为工资小于50万的人都把工资调整为50万,这就会牵扯到多文档更新原子性。如果当更新到Frank这个文档时,出现宕机,服务器重启之后是无法像关系型数据库那样做到数据回滚的,也就是说处理这种多文档关系型数据库事务的支持,但MongoDB不支持。那么怎么解决Mongodb这个问题呢?可以通过建模,MongoDB不是范式而是反范式的设计,通过大表和小表可以把相关的数据放到同一个文档中去。然后通过一条语句来执行操作。 2)MongoDB对一致性(consistency)的支持 对于数据一致性来说,传统数据库(单机)跟分布式数据库(MongoDB)对于数据一致性是不太一样的,怎么理解呢?如下图: MongoDB是如何实现事务的ACID? 对于传统型数据库来说,数据一致性主要是在单机上,单机的问题主要是数据进来时的规则检验,数据不能被破坏掉。而在分布式数据库上,因为他们都是多节点分布式的,我们讲的一致性往往就是讲的各个节点之间的数据是否一致。而MongoDB在这点上做的还是不错的,MongoDB支持强一致性或最终一致性(弱一致性),MongoDB的数据一致性也叫可调一致性,什么意思呢?如下图: MongoDB是如何实现事务的ACID? MongoDB的可调一致性,也就是可以自由选择强一致性或最终一致性,如果你的应用场景是前台的方式可以选择强一致性,如果你的应用场景是后台的方式(如报表)可以选择弱一致性。 一致性 上面我们讲到了通过将数据冗余存储到不同的节点来保证数据安全和减轻负载,下面我们来看看这样做引发的一个问题:保证数据在多个节点间的一致性是非常困难的。在实际应用中我们会遇到很多困难,同步节点可能会故障,甚至会无法恢复,网络可能会有延迟或者丢包,网络原因导致集群中的机器被分隔成两个不能互通的子域等等。在NoSQL中,通常有两个层次的一致性:第一种是强一致性,既集群中的所有机器状态同步保持一致。第二种是最终一致性,既可以允许短暂的数据不一致,但数据最终会保持一致。我们先来讲一下,在分布式集群中,为什么最终一致性通常是更合理的选择,然后再来讨论两种一致性的具体实现结节。 关于CAP理论 为什么我们会考虑削弱数据的一致性呢?其实这背后有一个关于分布式系统的理论依据。这个理论最早被Eric Brewer提出,称为CAP理论,尔后Gilbert和Lynch对CAP进行了理论证明。这一理论首先把分布式系统中的三个特性进行了如下归纳: 一致性(C):在分布式系统中的所有数据备份,在同一时刻是否同样的值。 可用性(A):在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。 分区容忍性(P):集群中的某些节点在无法联系后,集群整体是否还能继续进行服务。 而CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。 要保证数据强一致性,最简单的方法是令写操作在所有数据节点上都执行成功才能返回成功,也就是同步概念。而这时如果某个结点出现故障,那么写操作就成功不了了,需要一直等到这个节点恢复。也就是说,如果要保证强一致性,那么就无法提供7×24的高可用性。 而要保证可用性的话,就意味着节点在响应请求时,不用完全考虑整个集群中的数据是否一致。只需要以自己当前的状态进行请求响应。由于并不保证写操作在所有节点都写成功,这可能会导致各个节点的数据状态不一致。 CAP理论导致了最终一致性和强一致性两种选择。当然,事实上还有其它的选择,比如在Yahoo的PNUTS中,采用的就是松散的一致性和弱可用性结合的方法。但是我们讨论的NoSQL系统没有类似的实现,所以我们在后续不会对其进行讨论。 强一致性 强一致性的保证,要求所有数据节点对同一个key值在同一时刻有同样的value值。虽然实际上可能某些节点存储的值是不一样的,但是作为一个整体,当客户端发起对某个key的数据请求时,整个集群对这个key对应的数据会达成一致。下面就举例说明这种一致性是如何实现的。 假设在我们的集群中,一个数据会被备份到N个结点。这N个节点中的某一个可能会扮演协调器的作用。它会保证每一个数据写操作会在成功同步到W个节点后才向客户端返回成功。而当客户端读取数据时,需要至少R个节点返回同样的数据才能返回读操作成功。而NWR之间必须要满足下面关系:R+W>N 下面举个实在的例子。比如我们设定N=3(数据会备份到A、B、C三个结点)。比如值 employee30:salary 当前的值是20000,我们想将其修改为30000。我们设定W=2,下面我们会对A、B、C三个节点发起写操作(employee30:salary, 30000),当A、B两个节点返回写成功后,协调器就会返回给客户端说写成功了。至于节点C,我们可以假设它从来没有收到这个写请求,他保存的依然是20000那个值。之后,当一个协调器执行一个对employee30:salary的读操作时,他还是会发三个请求给A、B、C三个节点: 如果设定R=1,那么当C节点先返回了20000这个值时,那我们客户端实际得到了一个错误的值。 如果设定R=2,则当协调器收到20000和30000两个值时,它会发现数据不太正确,并且会在收到第三个节点的30000的值后判断20000这个值是错误的。 所以如果要保证强一致性,在上面的应用场景中,我们需要设定R=2,W=2 如果写操作不能收到W个节点的成功返回,或者写操作不能得到R个一致的结果。那么协调器可能会在某个设定的过期时间之后向客户端返回操作失败,或者是等到系统慢慢调整到一致。这可能就导致系统暂时处于不可用状态。 对于R和W的不同设定,会导致系统在进行不同操作时需要不同数量的机器节点可用。比如你设定在所有备份节点上都写入才算写成功,既W=N,那么只要有一个备份节点故障,写操作就失败了。一般设定是R+W = N+1,这是保证强一致性的最小设定了。一些强一致性的系统设定W=N,R=1,这样就根本不用考虑各个节点数据可能不一致的情况了。 HBase是借助其底层的HDFS来实现其数据冗余备份的。HDFS采用的就是强一致性保证。在数据没有完全同步到N个节点前,写操作是不会返回成功的。也就是说它的W=N,而读操作只需要读到一个值即可,也就是说它R=1。为了不至于让写操作太慢,对多个节点的写操作是并发异步进行的。在直到所有的节点都收到了新的数据后,会自动执行一个swap操作将新数据写入。这个操作是原子性和一致性的。保证了数据在所有节点有一致的值。 最终一致性 像Voldemort,Cassandra和Riak这些类Dynamo的系统,通常都允许用户按需要设置N,R,W三个值,即使是设置成W+R<= N也是可以的。也就是说他允许用户在强一致性和最终一致性之间自由选择。而在用户选择了最终一致性,或者是W 3)MongoDB对隔离性(isolation)的支持 在关系型数据库中,SQL2定义了四种隔离级别,分别是READ UNCOMMITTED、READ COMMITTED、REPEATABLE READ和SERIALIZABLE。但是很少有数据库厂商遵循这些标准,比如Oracle数据库就不支持READ UNCOMMITTED和REPEATABLE READ隔离级别。而MySQL支持这全部4种隔离级别。每一种级别都规定了一个事务中所做的修改,哪些在事务内核事务外是可见的,哪些是不可见的。为了尽可能减少事务间的影响,事务隔离级别越高安全性越好但是并发就越差;事务隔离级别越低,事务请求的锁越少,或者保持锁的时间就越短,这也就是为什么绝大多数数据库系统默认的事务隔离级别是RC。 下图展示了几家不同的数据库厂商的不同事物隔离级别。 MongoDB是如何实现事务的ACID? MongoDB在3.2之前使用的是“读未提交”,这种情况下会出现“脏读”。但在MongoDB 3.2开始已经调整为“读已提交”。 下面说说每种隔离级别带来的问题: READ-UNCOMMITTED(读尚未提交的数据) 在这个级别,一个事务的修改,即使没有提交,对其他事务也都是可见的。事务可以读取未提交的数据,这也被称为“脏读(dirty read)”。这个级别会导致很多问题,从性能上来说,READ UNCOMMITTED不会比其他的级别好太多,但却缺乏其他级别的很多好处,除非真的有非常必要的理由,在实际应用中一般很少使用。 READ-COMMITTED(读已提交的数据) 在这个级别,能满足前面提到的隔离性的简单定义:一个事务开始时,只能“看见”已经提交的事务所做的修改。换句话说,一个事务从开始直到提交之前,所做的任何修改对其他事务都是不可见的。这个级别有时候也叫“不可重复读(non-repeatable read)”,因为两次执行同样的查询,可能会得到不一样的结果。 REPEATABLE-READ(可重复读) 在这个级别,保证了在同一个事务中多次读取统一记录的结果是一致的。MySQL默认使用这个级别。InnoDB和XtraDB存储引擎通过多版本并发控制MVCC(multiversion concurrency control)解决了“幻读”和“不可重复读”的问题。通过前面的学习我们知道RR级别总是读取事务开始那一刻的快照信息,也就是说这些数据数据库当前状态,这在一些对于数据的时效特别敏感的业务中,就很可能会出问题。 SERIALIZABLE(串行化) 在这个级别,它通过强制事务串行执行,避免了前面说的一系列问题。简单来说,SERIALIZABLE会在读取的每一行数据上都加锁,所以可能导致大量的超时和锁争用的问题。实际应用中也很少在本地事务中使用SERIALIABLE隔离级别,主要应用在InnoDB存储引擎的分布式事务中。 4)MongoDB对持久性(durability)的支持 对于数据持久性来说,在传统数据库中(单机)的表现为服务器任何时候发生宕机都不需要担心数据丢失的问题,因为有方式可以把数据永久保存起来了。一般都是通过日志来保证数据的持久性。通过下图来看一下传统数据库跟MongoDB对于数据持久性各自所使用的方式。 MongoDB是如何实现事务的ACID? 从上图可以看出,MongoDB同样是使用数据进来先写日志(日志刷盘的速度是非常快)然后在写入到数据库中的这种方式来保证数据的持久性,如果出现服务器宕机,当启动服务器时会从日志中读取数据。不同的是传统数据库这种方式叫做“WAL” Write-Ahead Logging(预写日志系统),而MongoDB叫做“journal”。此外MongoDB在数据持久性上这点可能做的更好,MongoDB的复制默认节点就是三节点以上的复制集群,当数据到达主节点之后会马上同步到从节点上去。
景凌凯 2019-12-02 02:05:12 0 浏览量 回答数 0

问题

健康检查原理

概述 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台E...
行者武松 2019-12-01 21:36:16 1626 浏览量 回答数 0

回答

  Tomcat 只是一个轻量级的容器,连接模型上还是采用了一请求,一线程的模型,这种模型最大的缺点是对延迟非常敏感,因为响应慢会导致新请求无可用连接可用。       但是,虽然理论上我们可以将配置中线程池设置到一个足够大的值,但是我们通常不建议这样做。更多的线程意味着更多的CPU切换时间。   解决这个问题的方案是 降低延迟,增加机器。 ######我也想换T_T######这是后台资源响应慢吧,例如数据库或者本地文件IO。可以分析看下各线程都在等待什么资源######大概知道卡在什么地方 但是对同样的地址压测却不会出现线程满的情况。。######可以看看最近网站上是不是有些会被请求的资源随着时间的增长而爆满了,比如数据库,文件目录等等,首先要找出为什么不卡现在卡的原因再做针对性的优化。######大概知道卡在什么地方 但是对同样的地址压测却不会出现线程满的情况。。。######达到极限了,你还是试一下resin,单机性能要高于tomcat######环境上暂时没法换中间件。。诶###### 不应该一味的从线程池增大的方向去解决性能问题,如果查询较慢,或者有比较复杂的算法、递归等操作,增大线程池没有意义的。 应该首先找到性能瓶颈。我建议先把线程池降下来。 ######从tomcat的管理页面知道大概都卡在什么地方 但是我自己对同样的地址压测却出不来线程阻塞的情况。。###### 换tomcat8 数据库数据量巨大?导致查询阻塞导致后来的线程都并发? 硬盘快挂了? ######tomcat7和8性能差很多么??######nginx 前端控制最大连接数######是想上nginx来着 但是目前没有条件 以及控制了最大连接数如果满了不是一样么= =######每个请求响应要多久 线程阻塞的话就没办法了  线程越多 切换越慢 ###### 查下日志,看下10:30 - 10:40有什么操作。 这期间响应时间明显变慢了。这期间如果有长时间未响应线程,线程池中的 线程很容易被耗尽。 ######不好查。。都是用户的操作###### compression="on" 这个关闭掉,让前面的Web服务器(Nginx / Apache)来做压缩。 ######那也关掉,压缩也是比较占计算资源的。######前面没有WEB服务器= =
爱吃鱼的程序员 2020-05-30 23:52:28 0 浏览量 回答数 0

回答

域名不能正确解析可以更换其它的dns服务器,在百度搜索“公用dns”,选一个就行了 IIS状态代码的含义 概要 当用户试图通过HTTP或文件传输协议(FTP)访问一台正在运行Internet信息服务(IIS)的服务器上的内容时,IIS返回一个表示该请求的状态的数字代码。该状态代码记录在IIS日志中,同时也可能在Web浏览器或FTP客户端显示。状态代码可以指明具体请求是否已成功,还可以揭示请求失败的确切原因。 更多信息 日志文件的位置 在默认状态下,IIS把它的日志文件放在%WINDIR\System32\Logfiles文件夹中。每个万维网(WWW)站点和FTP站点在该目录下都有一个单独的目录。在默认状态下,每天都会在这些目录下创建日志文件,并用日期给日志文件命名(例如,exYYMMDD.log)。 HTTP 1xx-信息提示 这些状态代码表示临时的响应。客户端在收到常规响应之前,应准备接收一个或多个1xx响应。 100-继续。 101-切换协议。 2xx-成功 这类状态代码表明服务器成功地接受了客户端请求。 200-确定。客户端请求已成功。 201-已创建。 202-已接受。 203-非权威性信息。 204-无内容。 205-重置内容。 206-部分内容。 3xx-重定向 客户端浏览器必须采取更多操作来实现请求。例如,浏览器可能不得不请求服务器上的不同的页面,或通过代理服务器重复该请求。 301-对象已永久移走,即永久重定向。 302-对象已临时移动。 304-未修改。 307-临时重定向。 4xx-客户端错误 发生错误,客户端似乎有问题。例如,客户端请求不存在的页面,客户端未提供有效的身份验证信息。400-错误的请求。 401-访问被拒绝。IIS定义了许多不同的401错误,它们指明更为具体的错误原因。这些具体的错误代码在浏览器中显示,但不在IIS日志中显示: 401.1-登录失败。 401.2-服务器配置导致登录失败。 401.3-由于ACL对资源的限制而未获得授权。 401.4-筛选器授权失败。 401.5-ISAPI/CGI应用程序授权失败。 401.7–访问被Web服务器上的URL授权策略拒绝。这个错误代码为IIS6.0所专用。 403-禁止访问:IIS定义了许多不同的403错误,它们指明更为具体的错误原因: 403.1-执行访问被禁止。 403.2-读访问被禁止。 403.3-写访问被禁止。 403.4-要求SSL。 403.5-要求SSL128。 403.6-IP地址被拒绝。 403.7-要求客户端证书。 403.8-站点访问被拒绝。 403.9-用户数过多。 403.10-配置无效。 403.11-密码更改。 403.12-拒绝访问映射表。 403.13-客户端证书被吊销。 403.14-拒绝目录列表。 403.15-超出客户端访问许可。 403.16-客户端证书不受信任或无效。 403.17-客户端证书已过期或尚未生效。 403.18-在当前的应用程序池中不能执行所请求的URL。这个错误代码为IIS6.0所专用。 403.19-不能为这个应用程序池中的客户端执行CGI。这个错误代码为IIS6.0所专用。 403.20-Passport登录失败。这个错误代码为IIS6.0所专用。 404-未找到。 404.0-(无)–没有找到文件或目录。 404.1-无法在所请求的端口上访问Web站点。 404.2-Web服务扩展锁定策略阻止本请求。 404.3-MIME映射策略阻止本请求。 405-用来访问本页面的HTTP谓词不被允许(方法不被允许) 406-客户端浏览器不接受所请求页面的MIME类型。 407-要求进行代理身份验证。 412-前提条件失败。 413–请求实体太大。 414-请求URI太长。 415–不支持的媒体类型。 416–所请求的范围无法满足。 417–执行失败。 423–锁定的错误。 5xx-服务器错误 服务器由于遇到错误而不能完成该请求。 500-内部服务器错误。 500.12-应用程序正忙于在Web服务器上重新启动。 500.13-Web服务器太忙。 500.15-不允许直接请求Global.asa。 500.16–UNC授权凭据不正确。这个错误代码为IIS6.0所专用。 500.18–URL授权存储不能打开。这个错误代码为IIS6.0所专用。 500.100-内部ASP错误。 501-页眉值指定了未实现的配置。 502-Web服务器用作网关或代理服务器时收到了无效响应。 502.1-CGI应用程序超时。 502.2-CGI应用程序出错。application. 503-服务不可用。这个错误代码为IIS6.0所专用。 504-网关超时。 505-HTTP版本不受支持。 FTP 1xx-肯定的初步答复 这些状态代码指示一项操作已经成功开始,但客户端希望在继续操作新命令前得到另一个答复。 110重新启动标记答复。 120服务已就绪,在nnn分钟后开始。 125数据连接已打开,正在开始传输。 150文件状态正常,准备打开数据连接。 2xx-肯定的完成答复 一项操作已经成功完成。客户端可以执行新命令。200命令确定。 202未执行命令,站点上的命令过多。 211系统状态,或系统帮助答复。 212目录状态。 213文件状态。 214帮助消息。 215NAME系统类型,其中,NAME是AssignedNumbers文档中所列的正式系统名称。 220服务就绪,可以执行新用户的请求。 221服务关闭控制连接。如果适当,请注销。 225数据连接打开,没有进行中的传输。 226关闭数据连接。请求的文件操作已成功(例如,传输文件或放弃文件)。 227进入被动模式(h1,h2,h3,h4,p1,p2)。 230用户已登录,继续进行。 250请求的文件操作正确,已完成。 257已创建“PATHNAME”。 3xx-肯定的中间答复 该命令已成功,但服务器需要更多来自客户端的信息以完成对请求的处理。331用户名正确,需要密码。 332需要登录帐户。 350请求的文件操作正在等待进一步的信息。 4xx-瞬态否定的完成答复 该命令不成功,但错误是暂时的。如果客户端重试命令,可能会执行成功。421服务不可用,正在关闭控制连接。如果服务确定它必须关闭,将向任何命令发送这一应答。 425无法打开数据连接。 426Connectionclosed;transferaborted. 450未执行请求的文件操作。文件不可用(例如,文件繁忙)。 451请求的操作异常终止:正在处理本地错误。 452未执行请求的操作。系统存储空间不够。 5xx-永久性否定的完成答复 该命令不成功,错误是永久性的。如果客户端重试命令,将再次出现同样的错误。500语法错误,命令无法识别。这可能包括诸如命令行太长之类的错误。 501在参数中有语法错误。 502未执行命令。 503错误的命令序列。 504未执行该参数的命令。 530未登录。 532存储文件需要帐户。 550未执行请求的操作。文件不可用(例如,未找到文件,没有访问权限)。 551请求的操作异常终止:未知的页面类型。 552请求的文件操作异常终止:超出存储分配(对于当前目录或数据集)。 553未执行请求的操作。不允许的文件名。 常见的FTP状态代码及其原因 150-FTP使用两个端口:21用于发送命令,20用于发送数据。状态代码150表示服务器准备在端口20上打开新连接,发送一些数据。 226-命令在端口20上打开数据连接以执行操作,如传输文件。该操作成功完成,数据连接已关闭。 230-客户端发送正确的密码后,显示该状态代码。它表示用户已成功登录。 331-客户端发送用户名后,显示该状态代码。无论所提供的用户名是否为系统中的有效帐户,都将显示该状态代码。 426-命令打开数据连接以执行操作,但该操作已被取消,数据连接已关闭。 530-该状态代码表示用户无法登录,因为用户名和密码组合无效。如果使用某个用户帐户登录,可能键入错误的用户名或密码,也可能选择只允许匿名访问。如果使用匿名帐户登录,IIS的配置可能拒绝匿名访问。 550-命令未被执行,因为指定的文件不可用。例如,要GET的文件并不存在,或试图将文件PUT到您没有写入权限的目录。 答案来源网络,供参考,希望对您有帮助
问问小秘 2019-12-02 03:01:30 0 浏览量 回答数 0

问题

香港服务器出问题官方给的答复,会有赔偿吗

本次故障因香港运营商IDC电力问题所致,我们已责成香港运营商尽快完成机房整改措施,规避此类问题的再次发生。对于本次故障给您带来的服务中断、焦虑及不安,我们感同身受,在此致以深深的歉意。...
fuhao2020 2019-12-01 22:02:34 3249 浏览量 回答数 2

问题

怎样实现数据存储的管理维护

    如何确保所有数据能够得到可靠备份,及时进行灾难恢复是存储管理软件的核心任务。此外数据存储的管理维护软件还存在以下一些基本功能,诸如改进系统和应用I/O性能及存储管理能力,提高数据和应用系统的...
elinks 2019-12-01 21:14:17 9098 浏览量 回答数 0

回答

kube-apiserver 主节点上负责提供 Kubernetes API 服务的组件;它是 Kubernetes 控制面的前端。 kube-apiserver 在设计上考虑了水平扩缩的需要。 换言之,通过部署多个实例可以实现扩缩。 etcd etcd 是兼具一致性和高可用性的键值数据库,可以作为保存 Kubernetes 所有集群数据的后台数据库。 您的 Kubernetes 集群的 etcd 数据库通常需要有个备份计划。 kube-scheduler 主节点上的组件,该组件监视那些新创建的未指定运行节点的 Pod,并选择节点让 Pod 在上面运行。 调度决策考虑的因素包括单个 Pod 和 Pod 集合的资源需求、硬件/软件/策略约束、亲和性和反亲和性规范、数据位置、工作负载间的干扰和最后时限。 kube-controller-manager 在主节点上运行控制器的组件。 从逻辑上讲,每个控制器都是一个单独的进程,但是为了降低复杂性,它们都被编译到同一个可执行文件,并在一个进程中运行。 这些控制器包括: 节点控制器(Node Controller): 负责在节点出现故障时进行通知和响应。 副本控制器(Replication Controller): 负责为系统中的每个副本控制器对象维护正确数量的 Pod。 端点控制器(Endpoints Controller): 填充端点(Endpoints)对象(即加入 Service 与 Pod)。 服务帐户和令牌控制器(Service Account & Token Controllers): 为新的命名空间创建默认帐户和 API 访问令牌. 云控制器管理器-(cloud-controller-manager) cloud-controller-manager 运行与基础云提供商交互的控制器 cloud-controller-manager 仅运行云提供商特定的控制器循环。您必须在 kube-controller-manager 中禁用这些控制器循环,您可以通过在启动 kube-controller-manager 时将 --cloud-provider 参数设置为 external 来禁用控制器循环。 cloud-controller-manager 允许云供应商的代码和 Kubernetes 代码彼此独立地发展。在以前的版本中,核心的 Kubernetes 代码依赖于特定云提供商的代码来实现功能。在将来的版本中,云供应商专有的代码应由云供应商自己维护,并与运行 Kubernetes 的云控制器管理器相关联。 以下控制器具有云提供商依赖性: 节点控制器(Node Controller): 用于检查云提供商以确定节点是否在云中停止响应后被删除 路由控制器(Route Controller): 用于在底层云基础架构中设置路由 服务控制器(Service Controller): 用于创建、更新和删除云提供商负载均衡器 数据卷控制器(Volume Controller): 用于创建、附加和装载卷、并与云提供商进行交互以编排卷
愚笨如你 2020-02-25 14:42:19 0 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT