• 关于

    故障点出问题什么情况

    的搜索结果

问题

「运维」和「研发」,谁是故障的始作俑者?

        随着互联网的高速发展,产品迭代频繁,导致我们的工作节奏变得也越来越快,而如何高效的处理问题变得尤为重要。当然,对于互联网公司的开发者或者运维人员来说,如果...
sunny夏筱 2019-12-01 21:36:00 5551 浏览量 回答数 7

回答

“丢数据”和chunksize是两个不相关的东西,并没有直接的逻辑联系,不知道什么人会把这两个东西扯到一起说给你听。由于我也不知道具体指的什么样的特定场景出现丢数据,所以就我所知道的情况,给出一些可能会对你有用的答案。看起来你关注的是丢数据的问题而根本不是chunksize,再者通常情况下chunksize保留默认值就没有什么问题,所以chunksize的问题我就略过了。就“丢数据”做一些说明。对于任何一个数据库,无理由的丢数据都是不可容忍的。所以出现了丢数据的情况,要么是1.出现了不可抗拒的因素,比如断电,硬件损坏,网络故障等2.配置原因3.软件出现严重bug。对于1反正你也无能为力了,这点应该通过ReplicaSet的复制功能来尽可能减小影响。第2点,如果你没有开journal(默认已打开),遇到断电或者程序crash的情况,可能会丢失30ms内的数据。如果数据非常重要不能容忍30ms的丢失,请打开j参数:mongodb://ip:port/db?replicaSet=rs&j=1(以上参数也可能通过代码按单次请求的粒度来指定,请查阅你使用的驱动文档)这个参数确保数据写入时阻塞到journal写到磁盘上为止。但是你以为数据落盘就算安全了吗?记住这是分布式环境,单台机器的数据安全并不能代表集群。所以在万一的情况下,journal虽然落盘,但是还没来得及复制到replica的其他结点上,然后primary正当掉了,就会有其他结点通过选举成为新的primary,这时候就会发生一个有意思的情况叫做rollback,有兴趣可以阅读一下。当然通常复制的速度是非常快的,发生rollback的情况非常稀有。好吧你可能还是觉得不够安全,那还有一个w参数可以使用:mongodb://ip:port/db?replicaSet=rs&j=1&w=1w参数可以确保写入操作被阻塞直到数据落到多个结点上(w=1/2/3...n)。那这样就安全了吗?sorry,特别倒霉的情况下(真应该去买彩票),你把数据复制到了多于一个结点上,万一这组结点同时失效了怎么办?所以有了w=majority(大多数)。当集群失去大多数结点的时候会变为只读状态,所以不会有新数据写入,也就不会有rollback。当一切恢复之后,你的数据还在。以上是一些会出现数据丢失的情况,可以想象w和j的配置在数据安全性得到保障的同时,肯定会很大程度上影响写入效率。这实际上应该是你根据你对数据丢失的容忍程度自己定制的策略,不算是bug。另外想到一点,在社区经常遇到有人喜欢干这种事情:kill -9 mongod要我说简直太残暴了,干嘛一上来就用大炮打蚊子。这种情况下出现数据丢失只能说活该。实际上kill mongod是安全的,但是-9就是你的不对了。至于第3点,mongodb在开发过程中确实出现过导致数据丢失的bug,3.0.8-3.0.10是重灾区,避开这几个版本。话说回来,哪个软件开发过程中不出现点问题呢?3.0.10发现问题的当天就出了3.0.11,修复速度已经快得可以了。好了,说了这么多,也不知道对题主有没有用。还是提醒一下,尽可能把问题描述清楚,不然只能像我这样猜测你到底在什么样的场景下遇到了什么样的问题,最可能出现的情况就是那句老话:Garbage in, garbage out
蛮大人123 2019-12-02 02:49:01 0 浏览量 回答数 0

问题

30号故障之后,写给阿里云的工单

30号故障,系统重置,部分数据受损,导致我们服务中16小时 期间游戏正在推广,给我们照成用户流失,广告费浪费,玩家数据回档的严重后果, 虽然如...
airmud 2019-12-01 20:56:18 7664 浏览量 回答数 7

问题

运维人员处理云服务器故障方法七七云转载

我们团队为Ucloud云计算服务提供专家技术支持,每天都要碰到无数的用户故障,毕竟IAAS涉及比较底层的东西,不管设计的是大客户也好还是小客户,有了问题就必须要解决,也要要是再赶上修复时间紧、奇葩的技术平台、缺少信息和文档,基...
杨经理 2019-12-01 22:03:10 9677 浏览量 回答数 2

问题

吐槽今天凌晨20120922早上45点,rds无法正常使用

弄得我大半夜的要爬起来赶回公司处理,公司客服电话被人打爆,这些也就算了 问题是,到现在为止,我都不知道到底那会rds到底是出了什么问题,以后还会不会有类似的情况发...
akira 2019-12-01 20:27:26 6996 浏览量 回答数 2

问题

如何快速定位云主机的故障

作为一名从事Linux运维行业多年的运维人员,分享一下曾经在运维过程中遇到过的荆手的故障分析,供大家分享,如果你在使用云计算中有什么问题,可以根据以下方式来查找 遇到服务器故障,问题出现的原因很少可以一下就想到。我基本上都会从...
firstsko 2019-12-01 21:43:10 10637 浏览量 回答数 1

问题

云计算之路-阿里云上:拔云见日的那一刻,热泪盈眶

当用路过秋天的压力测试工具重现问题的那一刻,热泪盈眶!这段时间所承受的一切一涌而出。。。 下面这张图是首次压力测试重现问题时的Windows性能监视器截图,我们对这样的图太熟悉了,当...
cnblogs 2019-12-01 21:16:33 12129 浏览量 回答数 12

问题

云计算之路:为什么要选择云计算

这是我们迁移至阿里云之前发布的一篇博文:   云计算之路系列博文分享的是我们将网站从IDC机房迁移至云计算平台的实际经历,这次分享的是我们为什么要选择云计算。 这篇博文分享五个方面的考虑。 一、有效解决...
cnblogs 2019-12-01 21:09:48 9802 浏览量 回答数 16

问题

云计算之路:为什么要选择云计算

这是我们迁移至阿里云之前发布的一篇博文:   云计算之路系列博文分享的是我们将网站从IDC机房迁移至云计算平台的实际经历,这次分享的是我们为什么要选择云计算。 这篇博文分享五个方面的考虑。 一、有效解决...
cnblogs 2019-12-01 21:09:31 138347 浏览量 回答数 28

问题

阿里云服务器使用的前后

名下服务器台数:1台 服务器类型:标准B型 云服务器用途:网站服务器 使用心得:2012-08-17买了阿里云服务器,买前当时没看清,阿里云规定是必须...
buskh 2019-12-01 20:26:00 7271 浏览量 回答数 3

回答

Re吐槽一下阿里云的slb 引用第2楼vpsmm于2013-04-27 12:01发表的  : 这个东西到底能不能支持商业运营? 未知,我配置过最大的SLB支持环境,日IP30W,PV150W。DZ的动漫论坛,总带宽在20M(论坛)附件另放到OSS了。 这个东西到底能不能在大访问量下稳定运行? 同上,我实际用到的最大访问量了。 这个东西到底能不能真正实现均衡的负载? ....... 知道你是阿里云的铁杆粉丝。但说话要客观! 麻烦你给出你所谓配置过(并且能正常运行访问)的网站地址、拓扑图以及资源使用情况! 实际应用是在服务器繁忙的情况下,aliyun的slb不能很好地完成转发,其中原因有可能是cpu、io等多方面造成的。并且经常出现很多莫名其妙的故障,博客园实际上就是一个典型的例子! 博客园在使用过程中得到很多工程师的帮助,这个你看到了?为很么别人不能得到很多工程师的帮助?这对其他用户公平吗? ------------------------- Re吐槽一下阿里云的slb 引用第4楼billlee于2013-04-27 12:18发表的  : 首先,需要告诉楼主的是:无论SLB是否是一个已经正式商用的产品,我们对外所能提供的服务质量与已经正式商用的其他产品都是没有区别的。并不会存在非正式商用的产品存在稳定性差或服务标准低的说法。 其次,关于SLB的性能和所能达到的对外服务能力,这个除了SLB系统本身所能支持的范畴有关外,也与SLB后端的ECS云服务器本身性能有着密切的关系。但是,可以确保的是SLB系统本身是以集群的方式工作的,当我们系统还没有达到服务瓶颈的时候我们就会做横向的扩容从而确保系统本身的稳定性和可用性。所以,建议楼主在实际使用前可以根据自己的实际应用场景测试一下相关的服务,从而做到心里有数。 关于问题中涉及到的一些细节,比如SLB的转发、SLB的健康检查回报等问题,我看到@vpsmm已经做了较为详细的解答,也请楼主了解,同时感谢@vpsmm的热心回答。 ....... 非常感谢你的回复。 但我也注意到第二段文字。其中“这个除了SLB系统本身所能支持的范畴有关外,也与SLB后端的ECS云服务器本身性能有着密切的关系。” 实践证明,使用阿里云单机,cup占用较高的时候可能问题不大,但在slb里,ecs单机cpu占用一旦超过60-70%就很容易出问题,具体表现也不太一致。博客园的现象即是如此,我所知道的其他几个中型网站也是如此,只不过人家没说而已。 希望你们认真测试一下。 ------------------------- Re回5楼billz的帖子 引用第7楼vpsmm于2013-04-27 12:31发表的 回 5楼(billz) 的帖子 : 这是我帮朋友做的,网址就不公布了。只是一个十分简单的DZ论坛,没有太过详细的拓扑图。 目前附件是OSS上面,这个就没什么多说的。DZ比较简单,只要涉及PHP程序和MYSQL就行了。 单独一台4核CPU,8G内存,拿来跑MYSQL。 一台标准A,拿来跑uc。 ....... 四台标准B,拿来跑php程序,(全部在SLB里)。 用这个跑日IP30W,PV150W?你这真有点忽悠! 你要说别的行业我可能还不是很清楚,国内动漫论坛.....哈哈,你算忽悠错了。 ------------------------- Re回6楼billz的帖子 引用第11楼billlee于2013-04-27 13:14发表的 回 6楼(billz) 的帖子 : 如果SLB系统真的像楼主描述的那样存在当后端云服务器出现CPU利用率达到60-70%就会出现SLB访问不稳定的情况,那么我的建议是楼主可以通过工单提供一下你的VIP信息,我们的工作人员会帮助你针对这个情况进行核实和问题定位的。 相信已经有人和你们反映过类似的情况了。 由于这个问题指向并不是非常明确,故障现象也不很统一,所以发工单也未必能解决什么问题。你们自己多做做测试就能发现问题。 更何况发给你们的工单一般都是先由小客服们做第一手处理,这种问题他还没搞明白咋回事随手就被他给被关闭了。解决不了问题还惹一肚子气,没啥用处的。 ------------------------- Re回12楼billz的帖子 引用第13楼billlee于2013-04-27 13:32发表的 回 12楼(billz) 的帖子 : 那楼主是否方便把发生在你身上和你对外提供服务身上的问题直接提交给我,我们首先针对这个问题进行分析呢?这样至少可以先解决楼主自身的疑惑和困扰,从而确保楼主对外的服务问题得到妥善的解决。 另,关于客服工单服务质量的问题,我们内部已经在进一步加强对客服人员的培训和处理流程的优化,相信通过我们的努力一定会提升服务质量和专业度,从而保证所有用户通过工单提交的问题都能得到明确的定位、准确的解答和妥善的解决。 还是先不说了。我们已经被迫将cpu的占用都降到50%以下。 你们还是先好好搞一下你们的产品和服务吧。 看看今天的微博,你们已经被喷的很惨了,这样下去要完蛋的。只听那些小站长们拍马屁是没有用的。 http://weibo.com/1670517015/zu41ne2pY#_rnd1367043576717 ------------------------- Re回14楼billz的帖子 引用第17楼billlee于2013-04-27 15:28发表的 回 14楼(billz) 的帖子 : 既然不稳定的问题已经出现在了你的对外应用服务中,我的建议还是希望你能够配合我们一起把问题查一下,这样对于我们自身系统的成长和你本身对外服务的稳定性来说都是有益的。如果通过定位分析,问题真的是由SLB系统造成的,那么我们肯定会尽快给予解决和修复。因为很多问题在没有复现和最终定位的情况下只是通过简单的通用性测试是没有办法涵盖所有case和应用场景的(随着客户的逐渐增加,客户本身的应用场景越来越复杂和个性化,我们也需要大家的帮助来不断的完善我们的平台和服务),所以还是希望你能够协助我们一并解决问题,而不是采取变相的手段来掩盖问题本身。 阿里云的成长需要大家一起的努力来达成,感谢你及其他用户的支持! 你作为官方人士,在于用户交流的时候应该注意言辞。 作为用户,我没有必要替你们“掩盖”问题,我们只是以最简洁、高效的方式去处理问题。这里的用户提出过很多很多有益的建议,你们都能够迅速的处理解决吗?明显是不能的。所以,不如我们自己先改变一下部署,以便能够正常运营。 问题本身的解决还是依靠你们自己吧。看看几天微博的吐槽,人家说的一些问题都是事实吧,其中有些我们也经历过。论坛里大部分都是开小网站的,他们也许不会很在意停机几分钟甚至几小时,但这对一个中型网站,每一分钟的停顿都会造成直接的经济损失的网站来说意味着什么你们应该不难能理解吧? cpu、io性能问题、用户间相互印象的问题等等等等,拜托你们多下点功夫吧。 ------------------------- Re吐槽一下阿里云的slb 引用第32楼twl007于2013-04-28 00:16发表的  : 这帖子都喷成这样了 - - 我自己的使用经验来看 SLB的稳定性是跟RDS有的一拼的 用了一年多的SLB真正因为SLB自身原因引起的故障寥寥无几 大部分情况是服务器超载了SLB返回503 印象中没有因为SLB自身故障导致网站挂掉的 个人觉得SLB更侧重于提升网站的可用性 提升负载能力倒是次要了 当你网站需要多台服务器进行热备的时候SLB的重要性不言而喻 至于多台机器提升性能 我自己是用来看很少从性能方面考虑SLB 如果你真的需要两台一起工作才能承载整个网站访问 那么一台down掉 另一台也会因为承受不住压力down掉 这种情况下部署SLB是无意义的 只有在确定单台能满足要求然后横向扩展时才能发挥SLB提高网站可用性的作用 ....... 作为一个版主对slb的理解居然如此片面 ------------------------- Re回33楼alilab的帖子 引用第38楼twl007于2013-04-28 10:10发表的 回 33楼(alilab) 的帖子 : 难道是人品问题么 - - 我们从一年多前开始用阿里云就在使用SLB了 那时候功能还没现在的完善 但是我用到现在也只遇到过一次因为SLB故障我无法创建修改服务器集群 并没有出现过无法访问的问题…… 用了这么久SLB跟RDS是出问题最少的…… 每次工单问我们都有记录 真正问题原因是SLB引起的真心一次没有…… 而且SLB曾经多次在我们一台挂掉服务器状态的情况下成功把所有访问转移到另一台服务器 保证了网站没中断 ....... 先说说你的系统架构和流量数据。别吹牛b就行。 小站应该是没啥问题的。
billz 2019-12-02 01:08:30 0 浏览量 回答数 0

问题

robotium报错问题?报错

我在尝试运用robotium做自动化测试的时候遇上的问题,根据网上的流程进行一步一步的往下做,第一次测试的时候是通过了的,模拟器也完全演示了,但是第二次便一直出现报错的情况。 问题&...
爱吃鱼的程序员 2020-06-08 15:44:20 0 浏览量 回答数 1

回答

互联网时代,大家提倡敏捷迭代,总嫌传统方式太重,流程复杂,影响效率,什 么都希望短平快,在扁平化的组织中,经常是需求火速分发到一线研发,然后就靠个 人折腾去了,其实技术架构评审这同样是一个非常重要的环节。架构评审或技术方案 评审的价值在于集众人的力量大家一起来分析看看方案里是否有坑,方案上线后是否会遇到不可逾越的重大技术问题,提前尽可能把一些事情先考虑到提出质疑其实对项 目的健康发展有很大的好处。 基于架构评审,我们的目标核心是要满足以下几点: 1. 设计把关,确保方案合格,各方面都考虑到了,避免缺陷和遗漏,不求方案 多牛,至少不犯错。 2. 保证架构设计合理和基本一致,符合整体原则。 3. 维持对系统架构的全局认知,避免黑盒效应。 4. 通过评审发掘创新亮点,推广最佳实践。 5. 架构设计既要保证架构设计的合理性和可扩展性,又要避免过度设计。架构设计 不仅仅是考虑功能实现,还有很多非功能需求,以及持续运维所需要的工作,需要工 程实践经验,进行平衡和取舍。 架构评审需要以下几点: 1. 技术选型:为什么选用 A 组件不选用 B、C 组件,A 是开源的,开源协议是 啥?基于什么语言开发的,出了问题我们自身是否能够维护?性能方面有没 有压测过?这些所有问题作为技术选型我们都需要考虑清楚,才能做最终决定。 2. 高性能:产品对应的 TPS、QPS 和 RT 是多少?设计上会做到的 TPS、 QPS 和 RT 是多少?而实际上我们整体随着数据量的增大系统性能会不会出 现明显问题?随着业务量、数据量的上升,我们的系统的性能如何去进一步 提高?系统哪个环节会是最大的瓶颈?是否有抗突发性能压力的能力,大概 可以满足多少的 TPS 和 QPS,怎么去做来实现高性能,这些问题都需要我 们去思考。 3. 高可用:是否有单点的组件,非单点的组件如何做故障转移?是否考虑过多活 的方案?是否有数据丢失的可能性?数据丢失如何恢复?出现系统宕机情况, 对业务会造成哪些影响?有无其他补救方案?这些问题需要想清楚,有相应 的解决方案。 4. 可扩展性:A 和 B 的业务策略相差无几,后面会不会继续衍生出 C 的业务策 略,随着业务的发展哪些环节可以做扩展,如何做扩展?架构设计上需要考 虑到业务的可扩展性。 5. 可伸缩性:每个环节的服务是不是无状态的?是否都是可以快速横向扩展的? 扩容需要怎么做手动还是自动?扩展后是否可以提高响应速度?这所有的问 题都需要我们去思考清楚,并有对应的解决方案。 6. 弹性处理:消息重复消费、接口重复调用对应的服务是否保证幂等?是否考虑 了服务降级?哪些业务支持降级?支持自动降级还是手工降级?是否考虑了 服务的超时熔断、异常熔断、限流熔断?触发熔断后对客户的影响?服务是 否做了隔离,单一服务故障是否影响全局?这些问题统统需要我们想清楚对 应的解决方案,才会进一步保证架构设计的合理性。 7. 兼容性:上下游依赖是否梳理过,影响范围多大?怎么进行新老系统替换?新 老系统能否来回切换?数据存储是否兼容老的数据处理?如果对你的上下游 系统有影响,是否通知到上下游业务方?上下游依赖方进行升级的方案成本 如何最小化?这些问题需要有完美的解决方案,稍有不慎会导致故障。 8. 安全性:是否彻底避免 SQL 注入和 XSS ?是否有数据泄露的可能性?是否 做了风控策略?接口服务是否有防刷保护机制?数据、功能权限是否做了控制?小二后台系统是否做了日志审计?数据传输是否加密验签?应用代码中 是否有明文的 AK/SK、密码?这些安全细节问题需要我们统统考虑清楚,安 全问题任何时候都不能轻视。 9. 可测性:测试环境和线上的差异多大?是否可以在线上做压测?线上压测怎 么隔离测试数据?是否有测试白名单功能?是否支持部署多套隔离的测试环 境?测试黑盒白盒工作量的比例是怎么样的?新的方案是否非常方便测试, 在一定程度也需要考量。 10. 可运维性:系统是否有初始化或预热的环节?数据是否指数级别递增?业务 数据是否需要定期归档处理?随着时间的推移如果压力保持不变的话系统需 要怎么来巡检和维护?业务运维方面的设计也需要充分考虑到。 11. 监控与报警:对外部依赖的接口是否添加了监控与报警?应用层面系统内部 是否有暴露了一些指标作监控和报警?系统层面使用的中间件和存储是否有 监控报警?只有充分考虑到各个环节的监控、报警,任何问题会第一时间通 知到研发,阻止故障进一步扩散。 其实不同阶段的项目有不同的目标,我们不会在项目起步的时候做 99.99% 的 可用性支持百万 QPS 的架构,高效完成项目的业务目标也是架构考虑的因素之一。 而且随着项目的发展,随着公司中间件和容器的标准化,很多架构的工作被标准化替 代,业务代码需要考虑架构方面伸缩性运维性等等的需求越来越少,慢慢的这些工作 都能由架构和运维团队来接。一开始的时候我们可以花一点时间来考虑这些问题,但 是不是所有的问题都需要有最终的方案。
Lee_tianbai 2020-12-30 18:33:39 0 浏览量 回答数 0

问题

【推荐】Windows系统异常重启以及蓝屏的处理方法是什么

Windows 系统下,蓝屏(BSOD, Blue Sceen of Death)是客户有时会遇到的错误,Windows 操作系统在遇到异常的情况下,为了防止数据丢失,系统自动崩溃蓝屏...
boxti 2019-12-01 22:06:15 1737 浏览量 回答数 0

问题

如何解决消息队列的延时以及过期失效问题?【Java问答学堂】24期

面试题 如何解决消息队列的延时以及过期失效问题?消息队列满了以后该怎么处理?有几百万消息持续积压几小时,说说怎么解决? 面试官心理分析 你看这问法,其实本质针对的场...
剑曼红尘 2020-05-22 19:09:10 7 浏览量 回答数 1

问题

【Java问答学堂】6期 如何解决消息队列的延时以及过期失效问题?

面试题 如何解决消息队列的延时以及过期失效问题?消息队列满了以后该怎么处理?有几百万消息持续积压几小时,说说怎么解决? 面试官心理分析 你看这问法,其实本质针对的场...
剑曼红尘 2020-04-23 19:55:22 9 浏览量 回答数 1

问题

HBase 高可用原理与实践

转载自:http://www.hbase.group/article/42 前言 前段时间有套线上HBase出了点小问题,导致该套HBase集群服务停止了2个小时,从而造成使用该套HBase作为...
pandacats 2019-12-20 21:19:02 0 浏览量 回答数 0

回答

Re关于快照功能,根本用不了的东西你们拿出来害人的么???? 请问下数据丢失造成的损失谁来赔偿??你们拿个不能用的功能出来忽悠人的么? ------------------------- Re关于快照功能,根本用不了的东西你们拿出来害人的么???? GJ5KT70 工单号在这里 你们自己看吧 ------------------------- Re关于快照功能,根本用不了的东西你们拿出来害人的么???? 大概的情况就是,我使用了这里的快照功能,结果没一个是可以用的,使用了之后,ping不到服务器,也无法远程登录,他们所谓的VNC连接也连不上,然后折腾到刚才,让我重新初始化硬盘,然后让我自己重新用他们挂的硬盘找数据,这尼玛什么狗屁云主机?? ------------------------- Re关于快照功能,根本用不了的东西你们拿出来害人的么???? 之前自动备份的任何一个快照都不能回滚,回滚之后的情况就是服务器ping不同,无法远程登录,我甚至把主机的管理账号都给你们技术人员了,最后的结果就是让我重新初始化系统盘,然后自己拷数据,所有的环境,数据库数据都要自己重装,昨天晚上我们搞了一个通宵来取数据,还需要至少一两天来装环境,请问一下,这造成的损失谁来赔偿?另外,你们技术说我们自己的快照问题,我想请问下,最新的快照是9.9号凌晨的,我们9.9号白天还重启了服务器,如果说快照的时候,服务器就已经存在问题,那我们这个重启应该进不了系统才对啊?希望阿里云给出合理解释!!这期间造成的损失,谁来赔偿??? ------------------------- 回8楼woaj01的帖子 你一个人没问题不代表别人使用没问题,等你自己碰到快照问题的时候你会怎么做?最起码所有的数据环境你要重新自己装吧,那个时候是新手还是老手有什么关系? ------------------------- 回7楼旅者的帖子 不行,所有的快照都用不了,连系统ping都ping不通,应该是系统无法引导启动,但是我们9.9号还重启过一次电脑的,所以阿里云所谓的快照的时间点上,系统已经出问题的说法根本不成立! ------------------------- 回14楼西贝庄的帖子 本来我自己重启服务器,起码是oracle启动有问题,后来用快照回滚,整个服务器都访问不了了,我希望要一个解释,本来我昨天都跟你们阿里云的客服说了 还要再买一台云主机的,你们这种态度 我怎么买? ------------------------- 回18楼appayud1v的帖子 您是阿里云的托儿吗?首先,我在回滚之间,重启过系统,所以你说的系统问题不存在,另外,阿里云方面的工程师已经承认是他们的问题,并且告诉我这个问题没法找到问题的原因。整件事情上,我一直保持克制,我们的工程师花了一个通宵抢救数据,耗费的精力我就不说了,你们需要我配合买服务器给你们测试,我也买了,我是完全配合你们工程师寻找问题的。然后你们给我找了个所谓的资深经理跟我们沟通,结果呢?跟我说会继续跟进,然后就不理我们了,后面都是我们主动打电话找的他,而且全程一副“你们的问题解决了,还需要什么帮助吗?”的态度。这实在是令人气愤,工单到现在为止还没关闭,也没有任何人出来跟我们谈赔偿的事宜,请问下 阿里云你们就是这么准备上市的吗 ------------------------- 回22楼qilu的帖子 你说的这种情况是不存在的,因为在回滚快照前,我重启过系统,只不过当时因为oracle有点问题,所以我想用快照回复一下试试看,结果连系统都进不去了,这点你们的工程师已经承认不是这个原因造成的故障。
luck0o0 2019-12-02 00:22:57 0 浏览量 回答数 0

回答

参考:https://www.iteblog.com/archives/2530.html分布式和去中心化(Distributed and Decentralized)Cassandra 是分布式的,这意味着它可以运行在多台机器上,并呈现给用户一个一致的整体。事实上,在一个节点上运行 Cassandra 是没啥用的,虽然我们可以这么做,并且这可以帮助我们了解它的工作机制,但是你很快就会意识到,需要多个节点才能真正了解 Cassandra 的强大之处。它的很多设计和实现让系统不仅可以在多个节点上运行,更为多机架部署进行了优化,甚至一个 Cassandra 集群可以运行在分散于世界各地的数据中心上。你可以放心地将数据写到集群的任意一台机器上,Cassandra 都会收到数据。对于很多存储系统(比如 MySQL, Bigtable),一旦你开始扩展它,就需要把某些节点设为主节点,其他则作为从节点。但 Cassandra 是无中心的,也就是说每个节点都是一样的。与主从结构相反,Cassandra 的协议是 P2P 的,并使用 gossip 来维护存活或死亡节点的列表。关于 gossip 可以参见《分布式原理:一文了解 Gossip 协议》。去中心化这一事实意味着 Cassandra 不会存在单点失效。Cassandra 集群中的所有节点的功能都完全一样, 所以不存在一个特殊的主机作为主节点来承担协调任务。有时这被叫做服务器对称(server symmetry)。综上所述,Cassandra 是分布式、无中心的,它不会有单点失效,所以支持高可用性。弹性可扩展(Elastic Scalability)可扩展性是指系统架构可以让系统提供更多的服务而不降低使用性能的特性。仅仅通过给现有的机器增加硬件的容量、内存进行垂直扩展,是最简单的达到可扩展性的手段。而水平扩展则需要增加更多机器,每台机器提供全部或部分数据,这样所有主机都不必负担全部业务请求。但软件自己需要有内部机制来保证集群中节点间的数据同步。弹性可扩展是指水平扩展的特性,意即你的集群可以不间断的情况下,方便扩展或缩减服务的规模。这样,你就不需要重新启动进程,不必修改应用的查询,也无需自己手工重新均衡数据分布。在 Cassandra 里,你只要加入新的计算机,Cassandra 就会自动地发现它并让它开始工作。高可用和容错(High Availability and Fault Tolerance)从一般架构的角度来看,系统的可用性是由满足请求的能力来量度的。但计算机可能会有各种各样的故障,从硬件器件故障到网络中断都有可能。如何计算机都可能发生这些情况,所以它们一般都有硬件冗余,并在发生故障事件的情况下会自动响应并进行热切换。对一个需要高可用的系统,它必须由多台联网的计算机构成,并且运行于其上的软件也必须能够在集群条件下工作,有设备能够识别节点故障,并将发生故障的中端的功能在剩余系统上进行恢复。Cassandra 就是高可用的。你可以在不中断系统的情况下替换故障节点,还可以把数据分布到多个数据中心里,从而提供更好的本地访问性能,并且在某一数据中心发生火灾、洪水等不可抗灾难的时候防止系统彻底瘫痪。可调节的一致性(Tuneable Consistency)2000年,加州大学伯克利分校的 Eric Brewer 在 ACM 分布式计算原理会议提出了著名的 CAP 定律。CAP 定律表明,对于任意给定的系统,只能在一致性(Consistency)、可用性(Availability)以及分区容错性(Partition Tolerance)之间选择两个。关于 CAP 定律的详细介绍可参见《分布式系统一致性问题、CAP定律以及 BASE 理论》以及《一篇文章搞清楚什么是分布式系统 CAP 定理》。所以 Cassandra 在设计的时候也不得不考虑这些问题,因为分区容错性这个是每个分布式系统必须考虑的,所以只能在一致性和可用性之间做选择,而 Cassandra 的应用场景更多的是为了满足可用性,所以我们只能牺牲一致性了。但是根据 BASE 理论,我们其实可以通过牺牲强一致性获得可用性。Cassandra 提供了可调节的一致性,允许我们选定需要的一致性水平与可用性水平,在二者间找到平衡点。因为客户端可以控制在更新到达多少个副本之前,必须阻塞系统。这是通过设置副本因子(replication factor)来调节与之相对的一致性级别。通过副本因子(replication factor),你可以决定准备牺牲多少性能来换取一致性。 副本因子是你要求更新在集群中传播到的节点数(注意,更新包括所有增加、删除和更新操作)。客户端每次操作还必须设置一个一致性级别(consistency level)参数,这个参数决定了多少个副本写入成功才可以认定写操作是成功的,或者读取过程中读到多少个副本正确就可以认定是读成功的。这里 Cassandra 把决定一致性程度的权利留给了客户自己。所以,如果需要的话,你可以设定一致性级别和副本因子相等,从而达到一个较高的一致性水平,不过这样就必须付出同步阻塞操作的代价,只有所有节点都被更新完成才能成功返回一次更新。而实际上,Cassandra 一般都不会这么来用,原因显而易见(这样就丧失了可用性目标,影响性能,而且这不是你选择 Cassandra 的初衷)。而如果一个客户端设置一致性级别低于副本因子的话,即使有节点宕机了,仍然可以写成功。总体来说,Cassandra 更倾向于 CP,虽然它也可以通过调节一致性水平达到 AP;但是不推荐你这么设置。面向行(Row-Oriented)Cassandra 经常被看做是一种面向列(Column-Oriented)的数据库,这也并不算错。它的数据结构不是关系型的,而是一个多维稀疏哈希表。稀疏(Sparse)意味着任何一行都可能会有一列或者几列,但每行都不一定(像关系模型那样)和其他行有一样的列。每行都有一个唯一的键值,用于进行数据访问。所以,更确切地说,应该把 Cassandra 看做是一个有索引的、面向行的存储系统。Cassandra 的数据存储结构基本可以看做是一个多维哈希表。这意味着你不必事先精确地决定你的具体数据结构或是你的记录应该包含哪些具体字段。这特别适合处于草创阶段,还在不断增加或修改服务特性的应用。而且也特别适合应用在敏捷开发项目中,不必进行长达数月的预先分析。对于使用 Cassandra 的应用,如果业务发生变化了,只需要在运行中增加或删除某些字段就行了,不会造成服务中断。当然, 这不是说你不需要考虑数据。相反,Cassandra 需要你换个角度看数据。在 RDBMS 里, 你得首先设计一个完整的数据模型, 然后考虑查询方式, 而在 Cassandra 里,你可以首先思考如何查询数据,然后提供这些数据就可以了。灵活的模式(Flexible Schema)Cassandra 的早期版本支持无模式(schema-free)数据模型,可以动态定义新的列。 无模式数据库(如 Bigtable 和 MongoDB)在访问大量数据时具有高度可扩展性和高性能的优势。 无模式数据库的主要缺点是难以确定数据的含义和格式,这限制了执行复杂查询的能力。为了解决这些问题,Cassandra 引入了 Cassandra Query Language(CQL),它提供了一种通过类似于结构化查询语言(SQL)的语法来定义模式。 最初,CQL 是作为 Cassandra 的另一个接口,并且基于 Apache Thrift 项目提供无模式的接口。 在这个过渡阶段,术语“模式可选”(Schema-optional)用于描述数据模型,我们可以使用 CQL 的模式来定义。并且可以通过 Thrift API 实现动态扩展以此添加新的列。 在此期间,基础数据存储模型是基于 Bigtable 的。从 3.0 版本开始,不推荐使用基于 Thrift API 的动态列创建的 API,并且 Cassandra 底层存储已经重新实现了,以更紧密地与 CQL 保持一致。 Cassandra 并没有完全限制动态扩展架构的能力,但它的工作方式却截然不同。 CQL 集合(比如 list、set、尤其是 map)提供了在无结构化的格式里面添加内容的能力,从而能扩展现有的模式。CQL 还提供了改变列的类型的能力,以支持 JSON 格式的文本的存储。因此,描述 Cassandra 当前状态的最佳方式可能是它支持灵活的模式。高性能(High Performance)Cassandra 在设计之初就特别考虑了要充分利用多处理器和多核计算机的性能,并考虑在分布于多个数据中心的大量这类服务器上运行。它可以一致而且无缝地扩展到数百台机器,存储数 TB 的数据。Cassandra 已经显示出了高负载下的良好表现,在一个非常普通的工作站上,Cassandra 也可以提供非常高的写吞吐量。而如果你增加更多的服务器,你还可以继续保持 Cassandra 所有的特性而无需牺牲性能。
封神 2019-12-02 02:00:50 0 浏览量 回答数 0

回答

引用楼主cnblogs于2013-05-11 14:45发表的 值得每一位阿里云用户一读的媒体报道 : 报道标题:大掌门与阿里云和解:云生态系统呼之欲出 报道媒体:CSDN 推荐理由:采访的也许是遇到问题最多、最难缠的两位阿里云用户 阅读链接: CSDN: http://www.csdn.net/article/2013-05-10/2815227-aliyun-dazhangmen ....... 通过此次采访我们了解到阿里云确实对大小用户“一视同仁”,简直是“公平对待”了,所以,小子,努力发展吧! ------------------------- 回 楼主(cnblogs) 的帖子 亲,你就是杜勇本人吗? ------------------------- @叶凯Kevin:我们在阿里云上用了20多台。半年时间,出现过1次所有机器全部断电,2次多台硬盘突然只读,3次硬盘IO突然变满(给的解释是同台物理机上的其他虚拟机和我们抢资源),1次客服不通知直接重启。10次以上运维不响应,电话从没五分钟内接通过。已准备陆续迁出所有机器。叶凯微博记录:http://weibo.com/kevinye ------------------------- 回 10楼(cnblogs) 的帖子 有个朋友和你完全一样的名字   ------------------------- Re:回 5楼(cn0555) 的帖子 引用第10楼cnblogs于2013-05-11 16:37发表的 回 5楼(cn0555) 的帖子 : 我们都是通过工单提交问题的 据我神准的估计,博客园正在考察Ucloud   ------------------------- Re:回 13楼(云迷) 的帖子 引用第14楼cnblogs于2013-05-11 18:14发表的 回 13楼(云迷) 的帖子 : 神准的估计一点都不准,我们没那么花心 如你所说,不要逼你! ------------------------- Re:Re值得每一位阿里云用户一读的媒体报道 引用第16楼billz于2013-05-11 19:01发表的 Re值得每一位阿里云用户一读的媒体报道 : 阿里云必须认真面对产品、客服等问题。 糟糕程度可能比你们想象的严重得多。 尤其是各种不稳定,包括资源隔离、oi、slb等诸多问题频繁发生,给负载较高的用户造成了严重的困扰。 ....... 这是实在话,确实是,小站长体会不到阿里云的缺点的,访问量不到一个程度出问题也不容易发现!如果就放个博客那肯定稳定得很,这是自然的! ------------------------- 引用第17楼gdliwt于2013-05-11 19:15发表的  : 博客园每次故障都发文首页置顶,阿里云工程师帮助解决了。 玩蟹叶凯微博吐槽,阿里云高层亲自上门道歉。 这篇文章教育我们,不把事情闹大,你的问题就得不到官方关注。 这个,重视有影响力的客户是很自然的 ------------------------- 引用第5楼cn0555于2013-05-11 16:11发表的  : 为什么叶凯的问题没有得到阿里云的重视,博客园的问题阿里云很重视呢? 我觉得有问题还是在论坛里反映比提交工单或电话反映更有效果。 不对,因为博客园是博客园! 在程序圈内多有名啊!叶凯是谁,抱歉对他本人和他的公司都没听过 ------------------------- Re:Re值得每一位阿里云用户一读的媒体报道 引用第22楼billz于2013-05-12 11:04发表的 Re值得每一位阿里云用户一读的媒体报道 : 程序圈也只不过是互联网上的众多圈子之一。很抱歉,以前我连博客园也没听说过,也没想到博客园的运维能力这样菜! 希望阿里云能重视所有用户的问题,积极改善产品和服务。 有些严重的问题你们自己是很清楚的! 兄弟,那是因为你没看过博客园的日志记录,看了你就知道他们的运维能力是很强的了,解决问题的能力肯定超过绝大多数网站! ------------------------- Re:ReReRe值得每一位阿里云用户一读的媒体报道 引用第24楼billz于2013-05-12 11:20发表的 ReReRe值得每一位阿里云用户一读的媒体报道 : 正是因为看到他发的日志记录才知道他的运维能力很菜。对故障点的判断能力比较差,逻辑思维有点问题。 在cpu占用很高、也知道阿里云提供的占用曲线采样较低的情况下仍然用好几天才找到故障点.......还啰啰嗦嗦写了一大堆。 他写的那些记录还是很有价值的,对于很多后来人都有借鉴意义,算是一大贡献! ------------------------- Re:回 24楼(billz) 的帖子 引用第26楼cnblogs于2013-05-12 13:18发表的 回 24楼(billz) 的帖子 : 正因为我们运维能力菜,我们才更需要云计算。 要是你都菜,那很多站长都是菜中菜了!
云迷 2019-12-02 01:13:36 0 浏览量 回答数 0

问题

【开源项目】Nacos问答集锦

nacos 如果注册到不同的命名空间下,如何相互调用呢使用nacos-server-1.0.0时出现日志不兼容情况,请问是什么原因导致的nacos-server 空配置报错,java.util.Co...
一人吃饱,全家不饿 2021-02-02 10:51:08 11 浏览量 回答数 0

问题

监控任务故障诊断最佳实践

在日常运维中,用户可能会由于各种各样的原因导致监控任务出现异常。本文将详细介绍出现问题的各种场景,原因,以及处理方法,旨在帮助用户快速解决问题。 ARMS的任务处理环节介绍 如前面...
猫饭先生 2019-12-01 21:24:32 1245 浏览量 回答数 0

问题

为什么对基础设施的监控变得如此重要?

稍微懂点云计算的人都知道三个概念:IaaS「Infrastructure as a Service」、PaaS「Platform-as-a-Service」和SaaS「Software-as-a-service」,...
忆远0711 2019-12-01 21:46:44 8511 浏览量 回答数 1

问题

服务器急救

遇到服务器故障,出现问题的原因很少能一目了然。raksmart基本上都会从以下步骤入手:尽可能搞清楚问题的前因后果,不要一下子就扎到服务器前面,你需要先搞明白对这台服务器有多少已知的情...
fuwuqi1 2019-12-01 21:29:02 1556 浏览量 回答数 1

问题

你需要的是持续的服务改进

IT 正在变得越来越重要,作为公司运作链条上的一环,公司治理框架要将自己的业务目标、业务框架向 IT 传递。IT不再与基础建设和业务发展关联脱节,而是要紧密联系在一起的。 因此,有效...
sunny夏筱 2019-12-01 21:41:32 7450 浏览量 回答数 3

回答

Re阿里云的磁盘IO不稳定到了什么程度??这还能使用吗?有日志有真相 在excel中,对日志文件中,按40字节耗时排序 从日志文件中可看出,正常时耗时为0毫秒(因为仅仅只有40字节),但这两天不稳定,一旦出问题,磁盘根本无法访问,磁盘直接卡死 在03:09:21,连续481秒,超过6分钟没有响应! 5月21日零点到9点,超过1500秒出现这种不稳定的情况,占比高达4.62%。这样的磁盘IO,怎么让用户使用??? ------------------------- 回4楼gdliwt的帖子 每秒40字节的写操作是频繁的写操作??不知道这个标准是否是阿里云的标准?? 我不希望阿里云来迎合我,只希望阿里云的磁盘IO保持稳定。如果阿里云连每秒40字节的写入速度都不能保证,我当然无话可说。 ------------------------- 回6楼gdliwt的帖子 你好!这个不是抱怨,而是督促阿里云解决问题。 我的服务期尚未到期,在阿里云出现问题时,我当然是希望阿里云解决问题了。 ------------------------- 回9楼lusin的帖子 是的,这个是非常小的数据量,主要是检测阿里云磁盘彻底“卡死”的现象,也就是彻底无法访问磁盘IO。 网址的日志记录写入频率都是高于这个频率的。 而且这个每秒40个字节的写入,是一个计时器,写入后,等待下一秒才写入,并非连续不断写入。就这样低的要求,都无法达到。所以说,磁盘IO卡死时,根本就无法使用。 如果不是日志程序记录,我根本就不知道在03:09;07:02时磁盘IO卡死了几分钟,因为多数时间正常,但要命的是,它不稳定啊,一旦不正常,就卡死了。 其实这个问题非常普遍,只是没有发现而已。客户发现网站临时故障,一般也没有反馈给站长。 ------------------------- 回11楼淡淡烟味的帖子 就是使用有问题才测试,否则谁有闲心做个程序来测试呢?都是遇到问题了,才进行测试。 ------------------------- Re阿里云的磁盘IO不稳定到了什么程度??这还能使用吗?有日志有真相 解释一下,日志记录到内存变量,测试正常时才存盘。 同时,日志本身的数据量非常小(也就是每秒不足几十个字节的数据量而已),这点系统开销几乎可忽略不计。实测也证实了这个现象,绝大多数时间写入耗时是0毫秒(毕竟测试仅仅写入40字节),但要命的是不稳定的时候,整个磁盘IO就彻底卡死了。 另外,说明一下,检测程序并非持续不断写入,而是一个计数器,每秒测试一下40字节的写入(正常情况下耗时为0毫秒),之后就一直闲置,等待下一秒才测试。也就是说,检测程序本身基本上是完全闲置的,系统负荷非常轻。 ------------------------- Re阿里云的磁盘IO不稳定到了什么程度??这还能使用吗?有日志有真相 刚才接到了阿里售后工程师的电话,阿里至少在努力解决问题,这点要赞一个! 工程师这么晚还在工作,小小的感动了一把,:) 已经决定周末彻底迁移到另外一个集群,因为集群换了(IP都会变),数据、程序全部需要自己迁移,稍微麻烦一点,不过没有关系,只要能彻底解决问题就好! ------------------------- 回29楼j1zero的帖子 自己做了一个简单的程序,就是一个计数器,每秒执行一次,每次往磁盘写入40个字节,记录前后时间并放入内存变量中。正常情况下均为0毫秒的写入。但偶尔会出现磁盘彻底卡死。 我的这台服务器最近卡死较频繁,今日迁移到另外一个集群了,IP头:121.199,希望不再出现这种现象。 ------------------------- Re阿里云的磁盘IO不稳定到了什么程度??这还能使用吗?有日志有真相 有始有终,我是开贴的楼主,感谢阿里云工程师的协助,今日我的这台服务器已迁移到另外一个集群中了,IP头:121.199 感谢各位网友在这里的讨论,也感谢阿里云工程师的努力! 周末两天都用在迁移数据和程序上了(服务器集群变了,IP也变了,无法云迁移,只能完全依靠手工进行数据集程序的迁移),自己忙了两天,但只要不再出现这种磁盘不稳定的现象,我觉得是值得的! 在与阿里工程师交流过程中了解到,阿里目前已很重视这个问题,并已在加紧解决。这个周末,我在迁移数据中发现原服务器(就是前两周经常出现磁盘卡死的这台服务器)磁盘IO性能至少这两天已有明显改善了。
temp2012 2019-12-02 01:17:35 0 浏览量 回答数 0

问题

阿里云三周年之:质优价廉,性能服务价格,让我购入了阿里云。

名下服务器台数:1台 服务器类型:经济B 云服务器用途:网站服务器 使用心得:   阿里云从上市起就开始关注,什么大黄蜂小黄蜂,好吧。那只是因为...
utlion 2019-12-01 20:25:06 12178 浏览量 回答数 6

回答

MongoDB ACID事务支持 这里要有一定的关系型数据库的事务的概念,不然不一定能理解的了这里说的事务概念。 下面说一说MongoDB的事务支持,这里可能会有疑惑,前面我们在介绍MongoDB时,说MongoDB是一个NoSQL数据库,不支持事务。这里又介绍MongoDB的事务。这里要说明一下MongoDB的事务支持跟关系型数据库的事务支持是两码事,如果你已经非常了解关系型数据库的事务,通过下面一副图对比MongoDB事务跟MySQL事务的不同之处。 MongoDB是如何实现事务的ACID? 1)MongoDB对原子性(Atomicity)的支持 原子性在Mongodb中到底是一个什么概念呢?为什么说支持但又说Mongodb的原子性是单行/文档级原子性,这里提供了一个MongoDB更新语句样例,如下图: MongoDB是如何实现事务的ACID? 更新“username”等于“tj.tang”的文档,更新salary、jobs、hours字段。这里对于这三个字段Mongodb在执行时要么都更新要么都不更新,这个概念在MySQL中可能你没有考虑过,但在MongoDB中由于文档可以嵌套子文档可以很复杂,所以Mongodb的原子性叫单行/文档级原子性。 对于关系型数据库的多行、多文档、多语句原子性目前Mongodb是不支持的,如下情况: MongoDB是如何实现事务的ACID? MongoDB更新条件为工资小于50万的人都把工资调整为50万,这就会牵扯到多文档更新原子性。如果当更新到Frank这个文档时,出现宕机,服务器重启之后是无法像关系型数据库那样做到数据回滚的,也就是说处理这种多文档关系型数据库事务的支持,但MongoDB不支持。那么怎么解决Mongodb这个问题呢?可以通过建模,MongoDB不是范式而是反范式的设计,通过大表和小表可以把相关的数据放到同一个文档中去。然后通过一条语句来执行操作。 2)MongoDB对一致性(consistency)的支持 对于数据一致性来说,传统数据库(单机)跟分布式数据库(MongoDB)对于数据一致性是不太一样的,怎么理解呢?如下图: MongoDB是如何实现事务的ACID? 对于传统型数据库来说,数据一致性主要是在单机上,单机的问题主要是数据进来时的规则检验,数据不能被破坏掉。而在分布式数据库上,因为他们都是多节点分布式的,我们讲的一致性往往就是讲的各个节点之间的数据是否一致。而MongoDB在这点上做的还是不错的,MongoDB支持强一致性或最终一致性(弱一致性),MongoDB的数据一致性也叫可调一致性,什么意思呢?如下图: MongoDB是如何实现事务的ACID? MongoDB的可调一致性,也就是可以自由选择强一致性或最终一致性,如果你的应用场景是前台的方式可以选择强一致性,如果你的应用场景是后台的方式(如报表)可以选择弱一致性。 一致性 上面我们讲到了通过将数据冗余存储到不同的节点来保证数据安全和减轻负载,下面我们来看看这样做引发的一个问题:保证数据在多个节点间的一致性是非常困难的。在实际应用中我们会遇到很多困难,同步节点可能会故障,甚至会无法恢复,网络可能会有延迟或者丢包,网络原因导致集群中的机器被分隔成两个不能互通的子域等等。在NoSQL中,通常有两个层次的一致性:第一种是强一致性,既集群中的所有机器状态同步保持一致。第二种是最终一致性,既可以允许短暂的数据不一致,但数据最终会保持一致。我们先来讲一下,在分布式集群中,为什么最终一致性通常是更合理的选择,然后再来讨论两种一致性的具体实现结节。 关于CAP理论 为什么我们会考虑削弱数据的一致性呢?其实这背后有一个关于分布式系统的理论依据。这个理论最早被Eric Brewer提出,称为CAP理论,尔后Gilbert和Lynch对CAP进行了理论证明。这一理论首先把分布式系统中的三个特性进行了如下归纳: 一致性(C):在分布式系统中的所有数据备份,在同一时刻是否同样的值。 可用性(A):在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。 分区容忍性(P):集群中的某些节点在无法联系后,集群整体是否还能继续进行服务。 而CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。 要保证数据强一致性,最简单的方法是令写操作在所有数据节点上都执行成功才能返回成功,也就是同步概念。而这时如果某个结点出现故障,那么写操作就成功不了了,需要一直等到这个节点恢复。也就是说,如果要保证强一致性,那么就无法提供7×24的高可用性。 而要保证可用性的话,就意味着节点在响应请求时,不用完全考虑整个集群中的数据是否一致。只需要以自己当前的状态进行请求响应。由于并不保证写操作在所有节点都写成功,这可能会导致各个节点的数据状态不一致。 CAP理论导致了最终一致性和强一致性两种选择。当然,事实上还有其它的选择,比如在Yahoo的PNUTS中,采用的就是松散的一致性和弱可用性结合的方法。但是我们讨论的NoSQL系统没有类似的实现,所以我们在后续不会对其进行讨论。 强一致性 强一致性的保证,要求所有数据节点对同一个key值在同一时刻有同样的value值。虽然实际上可能某些节点存储的值是不一样的,但是作为一个整体,当客户端发起对某个key的数据请求时,整个集群对这个key对应的数据会达成一致。下面就举例说明这种一致性是如何实现的。 假设在我们的集群中,一个数据会被备份到N个结点。这N个节点中的某一个可能会扮演协调器的作用。它会保证每一个数据写操作会在成功同步到W个节点后才向客户端返回成功。而当客户端读取数据时,需要至少R个节点返回同样的数据才能返回读操作成功。而NWR之间必须要满足下面关系:R+W>N 下面举个实在的例子。比如我们设定N=3(数据会备份到A、B、C三个结点)。比如值 employee30:salary 当前的值是20000,我们想将其修改为30000。我们设定W=2,下面我们会对A、B、C三个节点发起写操作(employee30:salary, 30000),当A、B两个节点返回写成功后,协调器就会返回给客户端说写成功了。至于节点C,我们可以假设它从来没有收到这个写请求,他保存的依然是20000那个值。之后,当一个协调器执行一个对employee30:salary的读操作时,他还是会发三个请求给A、B、C三个节点: 如果设定R=1,那么当C节点先返回了20000这个值时,那我们客户端实际得到了一个错误的值。 如果设定R=2,则当协调器收到20000和30000两个值时,它会发现数据不太正确,并且会在收到第三个节点的30000的值后判断20000这个值是错误的。 所以如果要保证强一致性,在上面的应用场景中,我们需要设定R=2,W=2 如果写操作不能收到W个节点的成功返回,或者写操作不能得到R个一致的结果。那么协调器可能会在某个设定的过期时间之后向客户端返回操作失败,或者是等到系统慢慢调整到一致。这可能就导致系统暂时处于不可用状态。 对于R和W的不同设定,会导致系统在进行不同操作时需要不同数量的机器节点可用。比如你设定在所有备份节点上都写入才算写成功,既W=N,那么只要有一个备份节点故障,写操作就失败了。一般设定是R+W = N+1,这是保证强一致性的最小设定了。一些强一致性的系统设定W=N,R=1,这样就根本不用考虑各个节点数据可能不一致的情况了。 HBase是借助其底层的HDFS来实现其数据冗余备份的。HDFS采用的就是强一致性保证。在数据没有完全同步到N个节点前,写操作是不会返回成功的。也就是说它的W=N,而读操作只需要读到一个值即可,也就是说它R=1。为了不至于让写操作太慢,对多个节点的写操作是并发异步进行的。在直到所有的节点都收到了新的数据后,会自动执行一个swap操作将新数据写入。这个操作是原子性和一致性的。保证了数据在所有节点有一致的值。 最终一致性 像Voldemort,Cassandra和Riak这些类Dynamo的系统,通常都允许用户按需要设置N,R,W三个值,即使是设置成W+R<= N也是可以的。也就是说他允许用户在强一致性和最终一致性之间自由选择。而在用户选择了最终一致性,或者是W 3)MongoDB对隔离性(isolation)的支持 在关系型数据库中,SQL2定义了四种隔离级别,分别是READ UNCOMMITTED、READ COMMITTED、REPEATABLE READ和SERIALIZABLE。但是很少有数据库厂商遵循这些标准,比如Oracle数据库就不支持READ UNCOMMITTED和REPEATABLE READ隔离级别。而MySQL支持这全部4种隔离级别。每一种级别都规定了一个事务中所做的修改,哪些在事务内核事务外是可见的,哪些是不可见的。为了尽可能减少事务间的影响,事务隔离级别越高安全性越好但是并发就越差;事务隔离级别越低,事务请求的锁越少,或者保持锁的时间就越短,这也就是为什么绝大多数数据库系统默认的事务隔离级别是RC。 下图展示了几家不同的数据库厂商的不同事物隔离级别。 MongoDB是如何实现事务的ACID? MongoDB在3.2之前使用的是“读未提交”,这种情况下会出现“脏读”。但在MongoDB 3.2开始已经调整为“读已提交”。 下面说说每种隔离级别带来的问题: READ-UNCOMMITTED(读尚未提交的数据) 在这个级别,一个事务的修改,即使没有提交,对其他事务也都是可见的。事务可以读取未提交的数据,这也被称为“脏读(dirty read)”。这个级别会导致很多问题,从性能上来说,READ UNCOMMITTED不会比其他的级别好太多,但却缺乏其他级别的很多好处,除非真的有非常必要的理由,在实际应用中一般很少使用。 READ-COMMITTED(读已提交的数据) 在这个级别,能满足前面提到的隔离性的简单定义:一个事务开始时,只能“看见”已经提交的事务所做的修改。换句话说,一个事务从开始直到提交之前,所做的任何修改对其他事务都是不可见的。这个级别有时候也叫“不可重复读(non-repeatable read)”,因为两次执行同样的查询,可能会得到不一样的结果。 REPEATABLE-READ(可重复读) 在这个级别,保证了在同一个事务中多次读取统一记录的结果是一致的。MySQL默认使用这个级别。InnoDB和XtraDB存储引擎通过多版本并发控制MVCC(multiversion concurrency control)解决了“幻读”和“不可重复读”的问题。通过前面的学习我们知道RR级别总是读取事务开始那一刻的快照信息,也就是说这些数据数据库当前状态,这在一些对于数据的时效特别敏感的业务中,就很可能会出问题。 SERIALIZABLE(串行化) 在这个级别,它通过强制事务串行执行,避免了前面说的一系列问题。简单来说,SERIALIZABLE会在读取的每一行数据上都加锁,所以可能导致大量的超时和锁争用的问题。实际应用中也很少在本地事务中使用SERIALIABLE隔离级别,主要应用在InnoDB存储引擎的分布式事务中。 4)MongoDB对持久性(durability)的支持 对于数据持久性来说,在传统数据库中(单机)的表现为服务器任何时候发生宕机都不需要担心数据丢失的问题,因为有方式可以把数据永久保存起来了。一般都是通过日志来保证数据的持久性。通过下图来看一下传统数据库跟MongoDB对于数据持久性各自所使用的方式。 MongoDB是如何实现事务的ACID? 从上图可以看出,MongoDB同样是使用数据进来先写日志(日志刷盘的速度是非常快)然后在写入到数据库中的这种方式来保证数据的持久性,如果出现服务器宕机,当启动服务器时会从日志中读取数据。不同的是传统数据库这种方式叫做“WAL” Write-Ahead Logging(预写日志系统),而MongoDB叫做“journal”。此外MongoDB在数据持久性上这点可能做的更好,MongoDB的复制默认节点就是三节点以上的复制集群,当数据到达主节点之后会马上同步到从节点上去。
景凌凯 2019-12-02 02:05:12 0 浏览量 回答数 0

问题

在服务器上排除问题的头五分钟

遇到服务器故障,问题出现的原因很少可以一下就想到。我们基本上都会从以下步骤入手:一、尽可能搞清楚问题的前因后果不要一下子就扎到服务器前面,你需要先搞明白对这台服务器有多少已知的情况,还...
五弊三缺 2019-12-01 21:41:11 9114 浏览量 回答数 1

回答

转自:阿飞的博客 一、数据库技术选型的思考维度 我们做选型的时候首先要问: 谁选型?是负责采购的同学、 DBA 还是业务研发? 如果选型的是采购的同学,他们更注重成本,包括存储方式、网络需求等。 如果选型的是 DBA 同学,他们关心的: ① 运维成本 首先是运维成本,包括监控告警是否完善、是否有备份恢复机制、升级和迁移的成本是否高、社区是否稳定、是否方便调优、排障是否简易等; ② 稳定性 其次,DBA会关注稳定性,包括是否支持数据多副本、服务高可用、多写多活等; ③ 性能 第三是性能,包括延迟、QPS 以及是否支持更高级的分级存储功能等; ④ 拓展性 第四是扩展性,如果业务的需求不确定,是否容易横向扩展和纵向扩容; ⑤ 安全 最后是安全,需要符合审计要求,不容易出现 SQL 注入或拖库情况。 ⑥ 其他 除了采购和 DBA之外,后台应用研发的同学同样会关注稳定性、性能、扩展性等问题,同时也非常关注数据库接口是否便于开发,是否便于修改数据库 schema 等问题。 接下来我们来看一下爱奇艺使用的数据库类型: MySQL,互联网业务必备系统; TiDB,爱奇艺的 TiDB 实践会有另外的具体介绍; Redis,KV 数据库,互联网公司标配; Couchbase,这个在爱奇艺用得比较多,但国内互联网公司用得比较少,接下来的部分会详细说明; 其他,比如 MongoDB、图数据库、自研 KV 数据库 HiKV 等; 大数据分析相关系统,比如 Hive、Impala 等等。 可以看到爱奇艺的数据库种类还是很多的,这会造成业务开发的同学可能不太清楚在他的业务场景下应该选用哪种数据库系统。 那么,我们先对这些数据库按照接口(SQL、NoSQL)和面向的业务场景(OLTP、OLAP)这两位维度进行一个简单非严谨的分类。 下图中,左上角是面向 OLTP、支持 SQL 的这样一类系统,例如 MySQL,一般支持事务不同的隔离级别, QPS 要求比较高,延时比较低,主要用于交易信息和关键数据的存储,比如订单、VIP 信息等。 左下角是 NoSQL 数据库,是一类针对特殊场景做优化的系统,schema 一般比较简单,吞吐量较高、延迟较低,一般用作缓存或者 KV 数据库。 整个右侧都是 OLAP 的大数据分析系统,包括 Clickhouse、Impala等,一般支持SQL、不支持事务,扩展性比较好,可以通过加机器增加数据的存储量,响应延迟较长。 还有一类数据库是比较中立的,在数据量比较小的时候性能比较好,在数据量较大或复杂查询的时候性能也不差,一般通过不同的存储引擎和查询引擎来满足不同的业务需求,我们把它叫做 HTAP,TiDB 就是这样一种数据库。 二、iQIYI对数据库的优化与完善 前面我们提到了很多种的数据库,那么接下来就和大家介绍一下在爱奇艺我们是怎么使用这些数据库的。 1、MySQL在爱奇艺的使用 ① MySQL 首先是 MySQL。MySQL 基本使用方式是 master-slave + 半同步,支持每周全备+每日增量备份。我们做了一些基本功能的增强,首先是增强了数据恢复工具 Xtrabackup 的性能。 之前遇到一个情况,我们有一个全量库是 300G 数据,增量库每天 70G 数据,总数据量 700G 左右。我们当时只需要恢复一个表的数据,但该工具不支持单表恢复,且整库恢复需要 5 个小时。 针对这个情况我们具体排查了原因,发现在数据恢复的过程中需要进行多次写盘的 IO 操作并且有很多串行操作,所以我们做了一些优化。例如删减过程中的一些写盘操作,减少落盘并将数据处理并行化,优化后整库恢复耗时减少到 100 分钟,而且可以直接恢复单表数据。 然后是适配 DDL 和 DML 工具到内部系统,gh-ostt 和 oak-online-alter-table 在数据量大的时候会造成 master-slave 延时,所以我们在使用工具的时候也增加了延时上的考虑,实时探测Master-Slave 库之间延时的情况,如果延时较大会暂停工具的使用,恢复到正常水平再继续。 ② MySQL高可用 第二是 MySQL 高可用。Master-slave 加上半同步这种高可用方式不太完善,所以我们参照了 MHA 并进行了改动,采用 master + agent 的方式。Agent 在每一个物理机上部署,可以监控这个物理机上的所有实例的状态,周期性地向 master 发送心跳,Master 会实时监测各个Agent的状态。 如果 MySQL故障,会启动 Binlog 补偿机制,并切换访问域名完成 failover。考虑到数据库跨机房跨地区部署的情况,MHA 的 master 我们也做了高可用设计,众多 master 会通过 raft 组成一个 raft group,类似 TiDB 的 PD 模块。目前 MySQL failover 策略支持三种方式:同机房、同地域跨机房以及跨地域。 ③ MySQL拓展能力 第三是提高MySQL扩展能力,以提供更大容量的数据存储。扩展方式有 SDK,例如开源的 ShardingSphere,在爱奇艺的使用也比较广泛。另外就是 Proxy,开源的就更多了。但是 SDK 和 Proxy 使用的问题是支持的 SQL 语句简单,扩容难度大,依赖较多且运维复杂,所以部分业务已经迁移至 TiDB。 ④ 审计 第四是审计。我们在 MySQL 上做了一个插件获取全量 SQL 操作,后端打到 Kafka,下游再接入包括 Clickhouse 等目标端进行 SQL 统计分析。除此之外还有安全策略,包括主动探索是否有 SQL 注入及是否存在拖库情况等,并触发对应的告警。 MySQL 审计插件最大的问题是如何降低对 MySQL 性能的影响,对此我们进行了一些测试,发现使用 General Log 对性能损耗较大,有 10%~20% 的降低。 于是我们通过接口来获取 MySQL 插件里的监控项,再把监控项放到 buffer 里边,用两级的 RingBuffer 来保证数据的写入不会有锁资源竞争。在这个插件里再启动一个线程,从 RingBuffer 里读取数据并把数据打包写到 FIFO 管道里。 我们在每台 MySQL 的物理机里再启动一个 Agent,从管道里阻塞地读取数据发至 Kafka。优化后我们再次进行压测,在每台机器上有 15 万的更新、删除或插入操作下不会丢失数据,性能损耗一般情况下小于 2%。 目前已经在公司内部的集群上线了一年时间,运行比较稳定,上线和下线对业务没有影响。 ⑤ 分级存储 第五是分级存储。MySQL 里会存一些过程性的数据,即只需要读写最近一段时间存入的数据,过段时间这些数据就不需要了,需要进行定时清理。 分级存储就是在 MySQL 之上又用了其他存储方式,例如 TiDB 或其他 TokuDB,两者之间可以进行数据自动搬迁和自动归档,同时前端通过 SDK + Proxy 来做统一的访问入口。这样一来,业务的开发同学只需要将数据存入 MySQL 里,读取时可能从后端接入的任意数据库读出。这种方式目前只是过渡使用,之后会根据 TiDB 的特性进行逐步迁移。 Redis在爱奇艺的使用 接下来是 Redis。Redis 也是使用 master - slave 这种方式,由于网络的复杂性我们对 Sentinel 的部署进行了一些特殊配置,在多机房的情况下每个机房配置一定数量 Sentinel 来避免脑裂。 备份恢复方面介绍一个我们的特殊场景,虽然 Redis 是一个缓存,但我们发现不少的业务同学会把它当做一个 KVDB 来使用,在某些情况下会造成数据的丢失。 所以我们做了一个 Redis 实时备份功能,启动一个进程伪装成 Redis 的 Slave 实时获取数据,再放到后端的 KV 存储里,例如 ScyllaDB,如果要恢复就可以从 ScyllaDB 里把数据拉出来。 我们在用 Redis 时最大的痛点就是它对网络的延迟或抖动非常敏感。如有抖动造成 Redis Master 超时,会由 Sentinel 重新选出一个新的节点成为 Master,再把该节点上的数据同步到所有 Slave 上,此过程中数据会放在 Master 节点的 Buffer 里,如果写入的 QPS 很高会造成 Buffer 满溢。如果 Buffer 满后 RDB 文件还没有拷贝过去,重建过程就会失败。 基于这种情况,我们对 Redis 告警做了自动化优化,如有大量 master - slave 重建失败,我们会动态调整一些参数,例如把 Buffer 临时调大等, 此外我们还做了 Redis 集群的自动扩缩容功能。 我们在做 Redis 开发时如果是 Java 语言都会用到 Jedis。用 Jedis 访问客户端分片的 Redis 集群,如果某个分片发生了故障或者 failover,Jedis 就会对所有后端的分片重建连接。如果某一分片发生问题,整个 Redis 的访问性能和 QPS 会大幅降低。针对这个情况我们优化了 Jedis,如果某个分片发生故障,就只针对这个分片进行重建。 在业务访问 Redis 时我们会对 Master 绑定一个读写域名,多个从库绑定读域名。但如果我们进行 Master failover,会将读写域名从某旧 Master 解绑,再绑定到新 Master 节点上。 DNS 本身有一个超时时间,所以数据库做完 failover 后业务程序里没有立刻获取到新的 Master 节点的 IP的话,有可能还会连到原来的机器上,造成访问失败。 我们的解决方法是把 DNS 的 TTL 缩短,但对 DNS 服务又会造成很大的压力,所以我们在 SDK 上提供 Redis 的名字服务 RNS,RNS 从 Sentinel 里获取集群的拓扑和拓扑的变化情况,如果集群 failover,Sentinel 会接到通知,客户端就可以通过 RNS 来获取新的 Master 节点的 IP 地址。我们去掉域名,通过 IP 地址来访问整个集群,屏蔽了 DNS 的超时,缩短了故障的恢复时间。 SDK 上还做了一些功能,例如 Load Balance 以及故障检测,比如某个节点延时较高的话会被临时熔断等。 客户端分片的方式会造成 Redis 的扩容非常痛苦,如果客户端已经进行了一定量的分片,之后再增加就会非常艰难。 Redis 在 3.0 版本后会提供 Redis Cluster,因为功能受限在爱奇艺应用的不是很多,例如不支持显示跨 DC 部署和访问,读写只在主库上等。 我们某些业务场景下会使用 Redis 集群,例如数据库访问只发生在本 DC,我们会在 DC 内部进行 Cluster 部署。 但有些业务在使用的过程中还是想做 failover,如果集群故障可以切换到其他集群。根据这种情况我们做了一个 Proxy,读写都通过它来进行。写入数据时 Proxy 会做一个旁路,把新增的数据写在 Kafka 里,后台启用同步程序再把 Kafka 里的数据同步到其他集群,但存在一些限制,比如我们没有做冲突检测,所以集群间数据需要业务的同学做单元化。线上环境的Redis Cluster 集群间场景跨 DC 同步 需要 50 毫秒左右的时间。 2、Couchbase在爱奇艺的使用 Redis 虽然提供 Cluster 这种部署方式,但存在一些问题。所以数据量较大的时候(经验是 160G),就不推荐 Redis 了,而是采用另一种存储方式 Couchbase。 Couchbase 在国内互联网公司用的比较少,一开始我们是把他当做一个 Memcached 来使用的,即纯粹的缓存系统。 但其实它性能还是比较强大的,是一个分布式高性能的 KV 系统,支持多种存储引擎 (bucket)。第一种是 Memcached bucket,使用方式和 Memcached 一样为 KV 存储,不支持数据持久化也没有数据副本,如果节点故障会丢失数据; 第二种是 Couchbase bucket,支持数据持久化,使用 Json 写入,有副本,我们一般会在线上配置两个副本,如果新加节点会对数据进行 rebalance,爱奇艺使用的一般是 Couchbase bucket 这种配置。 Couchbase 数据的分布如下图,数据写入时在客户端上会先进行一次哈希运算,运算完后会定位 Key 在哪一个 vBucket (相当于数据库里的某个分片)。之后客户端会根据 Cluster Map 发送信息至对应的服务端,客户端的 Cluster Map 保存的是 vBucket 和服务器的映射关系,在服务端数据迁移的过程中客户端的 Cluster Map 映射关系会动态更新,因此客户端对于服务端的 failover 操作不需要做特殊处理,但可能在 rebalance 过程中会有短暂的超时,导致的告警对业务影响不大。 Couchbase 在爱奇艺应用比较早,2012 年还没有 Redis Cluster 的时候就开始使用了。集群管理使用 erlang 语言开发,最大功能是进行集群间的复制,提供多种复制方式:单向、双向、星型、环式、链式等。 爱奇艺从最初的 1.8 版本使用到如今的 5.0 版本,正在调研的 6.0,中间也遇到了很多坑,例如 NTP 时间配置出错会导致崩溃,如果每个集群对外 XDCR 并发过高导致不稳定,同步方向变更会导致数据丢失等等,我们通过运维和一些外部工具来进行规避。 Couchbase 的集群是独立集群,集群间的数据同步通过 XDCR,我们一般配置为双向同步。对于业务来说,如果 Cluster 1 写入, Cluster 2 不写入,正常情况下客户端会写 Cluster 1。如果 Cluster 1 有故障,我们提供了一个 Java SDK,可以在配置中心把写入更改到 Cluster 2,把原来到 Cluster 1 的连接逐步断掉再与Cluster 2 新建连接。这种集群 failover 的过程对于客户端来说是相对透明和无感的。 3、爱奇艺自研数据库HiKV的使用 Couchbase 虽然性能非常高,并且数据的存储可以超过内存。但是,如果数据量超过内存 75% 这个阈值,性能就会下降地特别快。在爱奇艺,我们会把数据量控制在可用内存的范围之内,当做内存数据库使用。但是它的成本非常高,所以我们后面又开发了一个新的数据库—— HiKV。 开发 HiKV 的目的是为了把一些对性能要求没那么高的 Couchbase 应用迁移到 HiKV 上。HiKV 基于开源系统 ScyllaDB,主要使用了其分布式数据库的管理功能,增加了单机存储引擎 HiKV。 ScyllaDB 比较吸引人的是它宣称性能高于 Cassandra 十倍,又完全兼容 Cassandra 接口,设计基本一致,可以视为 C++ 版 Cassandra 系统。 ScyllaDB 性能的提升主要是使用了一些新的技术框架,例如 C++ 异步框架 seastar,主要原理是在j每台物理机的核上会 attach 一个应用线程,每个核上有自己独立的内存、网络、IO 资源,核与核之间没有数据共享但可以通信,其最大的好处是内存访问无锁,没有冲突过程。 当一个数据读或写到达 ScyllaDB 的 server 时,会按照哈希算法来判断请求的 Key 是否是该线程需要处理的,如果是则本线程处理,否则会转发到对应线程上去。 除此之外,它还支持多副本、多数据中心、多写多活,功能比较强大。 在爱奇艺,我们基于 SSD 做了一个 KV 存储引擎。Key 放在内存里,Value 放在盘上的文件里,我们在读和写文件时,只需要在内存索引里定位,再进行一次盘的 IO 开销就可以把数据读出来,相比 ScyllaDB 原本基于 LSM Tree 的存储引擎方式对 IO 的开销较少。 索引数据全部放在内存中,如果索引长度较长会限制单机可存储的数据量,于是我们通过开发定长的内存分布器,对于比较长的 Key 做摘要缩短长度至 20 字节,采用红黑树索引,限制每条记录在内存里的索引长度至为 64 字节。内存数据要定期做 checkpoint,客户端要做限流、熔断等。 HiKV 目前在爱奇艺应用范围比较大,截至目前已经替换了 30% 的 Couchbase,有效地降低了存储成本。 4、爱奇艺的数据库运维管理 爱奇艺数据库种类较多,如何高效地运维和管理这些数据库也是经历了不同的阶段。 最初我们通过 DBA 写脚本的方式管理,如果脚本出问题就找 DBA,导致了 DBA 特别忙碌。 第二个阶段我们考虑让大家自己去查问题的答案,于是在内部构建了一个私有云,通过 Web 的方式展示数据库运行状态,让业务的同学可以自己去申请集群,一些简单的操作也可以通过自服务平台实现,解放了 DBA。一些需要人工处理的大型运维操作经常会造成一些人为故障,敲错参数造成数据丢失等。 于是在第三个阶段我们把运维操作 Web 化,通过网页点击可以进行 90% 的操作。 第四个阶段让经验丰富的 DBA 把自身经验变成一些工具,比如有业务同学说 MySQL master-slave 延时了,DBA 会通过一系列操作排查问题。现在我们把这些操作串起来形成一套工具,出问题时业务的同学可以自己通过网页上的一键诊断工具去排查,自助进行处理。 除此之外我们还会定期做预警检查,对业务集群里潜在的问题进行预警报告;开发智能客服,回答问题;通过监控的数据对实例打标签,进行削峰填谷地智能调度,提高资源利用率。 三、不同场景下数据库选型建议 1、实用数据库选型树 最后来说一些具体数据库选型建议。这是 DBA 和业务一起,通过经验得出来的一些结论。 对于关系型数据库的选型来说,可以从数据量和扩展性两个维度考虑,再根据数据库有没有冷备、要不要使用 Toku 存储引擎,要不要使用 Proxy 等等进行抉择。 NoSQL 也是什么情况下使用 master-slave,什么情况下使用客户端分片、集群、Couchbase、HiKV 等,我们内部自服务平台上都有这个选型树信息。 2、一些思考 ① 需求 我们在选型时先思考需求,判断需求是否真实。 你可以从数据量、QPS、延时等方面考虑需求,但这些都是真实需求吗?是否可以通过其他方式把这个需求消耗掉,例如在数据量大的情况下可以先做数据编码或者压缩,数据量可能就降下来了。 不要把所有需求都推到数据库层面,它其实是一个兜底的系统。 ② 选择 第二个思考的点是对于某个数据库系统或是某个技术选型我们应该考虑什么?是因为热门吗?还是因为技术上比较先进?但是不是能真正地解决你的问题?如果你数据量不是很大的话就不需要选择可以存储大数据量的系统。 ③ 放弃 第三是放弃,当你放弃一个系统时真的是因为不好用吗?还是没有用好?放弃一个东西很难,但在放弃时最好有一个充分的理由,包括实测的结果。 ④ 自研 第四是自研,在需要自己开发数据库时可以参考和使用一些成熟的产品,但不要盲目自研。 ⑤ 开源 最后是开源,要有拥抱开源的态度。
茶什i 2019-12-27 14:17:56 0 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务