• 关于 系统响应时间怎么看配置 的搜索结果

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

回答

用异步实现,具体可以看下netty或者xsocket,两者都有proxy的实现###### JVM调整只是一方面,最重要的还是从代码入手,使用并发包、NIO等,另外在linux上java程序的性能比在windows上好得多。###### 问题补充说明下: 操作系统:linux   内存:8G  CUP: 两块 JDK:1.5 程序以经没什么可调整的了(我自个觉得,最主要是想从JVM这方面把它往上调,能调多少调多少),现在主要是布署在服务器上我的JVM如何调整认其响应速度更快,就目前,(非专业)我自个测下来的情况下2*24H  400个并发(最起码保证有200个足的并发下),接收请求2亿多次,响应才2千多万多点差不多三千那个样子,这个响应比太小了,能否优化JVM把这一性能再往上走进一步呢,(已试过优化JVM确实能提高,之前没优前更差), 但就目前,本人能力和限优不下去了: -server -Xms2048m -Xmx2048m -Xmn768m -XX:+UseTLAB -XX:+UseParNewGC \ 目前的设置如上,朋友们可否指点指点啊!###### 把JDK升级到1.6,因为支持epoll###### 回头去试试###### 一般来说,考虑性能问题,都先要分析清楚到底性能的瓶颈在哪里,哪几个阶段的性能不够,如何针对这几个阶段进行优化,这样大家也才好给你更具体的建议###### 把JDK升级到1.6,因为支持epoll 试了,JDK换了个1.6的性能确实有了点变化###### 你先把性能瓶颈找到再考虑其他的。 例如你这个例子,2亿多的请求,实际只响应了几千万条,说明程序的处理能力不够,资源不够。导致程序只能处理一部分的请求,多余的请求丢掉了。是每一个请求的处理时间和资源消耗太大,还是说怎么?如果一定要同步的请求和响应,那么如果你认为你程序没问题的话,也就是加资源的问题。CPU,内存,该加的加吧。 如果不一定非要请求响应同步,可以把请求和响应异步起来,这样你的并发就可以达到一个很可关的数字。######        类似的压力己做过,现在我主要的任务是调JVM,因为其它情况下的模拟以经做,最主要原因还是想在现有的硬件配置基础上,把JVM调到最优,对于这个应用而言        之所以才有这么些响应(应该更多一些,请求是人为做的,目的是让程序在里边做处理过滤掉没意义的部分),但按照预测,不应该这么低,在调试中,遇到JVM有崩掉情况,后发现是内存泄漏导致所至,现在主要是想把JVM调到最优化,有相关经验的可否能分享分享###### 个人觉得还是找到瓶颈,有时候一句不正确的代码都有可能使你的内存用光,可以用jprofile调试下

爱吃鱼的程序员 2020-06-03 20:58:28 0 浏览量 回答数 0

回答

1、阿里云扶持型套餐为什么只能绑定两个域名啊?能不能多绑定几个啊?       (目前不能,应该是考虑到备案人工成本高) 2、云主机只能安装PHPWIND程序吗?我想用其他程序建站可以吗?        (你可以安装其他程序,按官方说法,你需要有一个才有phpwind搭建的站点,不过你可以随意在二级域名下安装一个应付) 3、阿里云主机续费和购买的价钱一样吗?          (目前购买的套餐续费价格一样,年付只需支付10个月) 4、阿里云扶持型套餐可以建几个数据库?          (不限,但需根据你的站点数据库大小和负载情况而定) 5、云主机能自动备份吗?一般多久备份一次?           (会自动快照,多久一次未知,按行内应该不超过7天一次) 6、如果数据库或者网站里面的文件丢失或者损坏能找回来吗?             (提交售后,找快照) 7、阿里云为什么不开通QQ客服。。这里发帖解答的太慢了。没QQ和53KF效率高            (其实提交工单的做法,挺多大公司都这么做,相应速度确实要加快,可能目前人手不够) 8、有哪些站用阿里云扶持型套餐?能不能发两三个站点给我看看?·             (查看案例 http://phpwind.aliyun.com/front/case,或论坛找找有人发的。) 9、阿里云主机的配置中哪个操作系统性能最好。云主机是不是什么格式的网页文件都支持?              (使用php程序建议选用linux系统,如centos、redhat等。采用asp、asp.net程序需选用windows2008。支持的网页格式没有限制,由你自行配置系统运行环境) 10、如果我现在用的是扶持型套餐,不够用了我换成标准型套餐怎么收费?            (查看《套餐升级帮助》 http://bbs.aliyun.com/read.php?tid=5739) 11、云数据库服务是什么东东?为什么里面只能选择1G?为什么是试用?难道以后还要单独买云数据库吗?             (试用时间一年,正式上线需要付费。你可以不采用云数据库,可在自己的云主机上配置mysql环境,数据库大小由硬盘大小决定) 12、如果不会操作云主机,有没有客服手把手指导??              (按目前反映来看,客服可负责免费有限次配置环境,响应服务器故障,phpwind程序可提供简单技术支持)

migee 2019-12-02 02:30:33 0 浏览量 回答数 0

新用户福利专场,云服务器ECS低至102元/年

新用户专场,1核2G 102元/年起,2核4G 699.8元/年起

问题

性能测试技术怎么进行?

猫饭先生 2019-12-01 21:26:08 1341 浏览量 回答数 0

问题

小试用,大学问菜鸟也要知道如何去试用之云服务器测评

universitylife 2019-12-01 21:15:34 33359 浏览量 回答数 19

问题

小试用,大学问菜鸟也要知道如何去试用之云服务器测评

universitylife 2019-12-01 21:31:33 15660 浏览量 回答数 10

问题

支付宝的性能测试

云效平台 2019-12-01 21:47:13 5472 浏览量 回答数 1

回答

一、故障现象描述 NAS操作系统内核为Linux,自带的存储有16块硬盘,总共分两组,每组做了RAID5,Linux操作系统无法正常启动,在服务启动到cups那里就停止了,按键ctrl+c强制断开也没有响应,查看硬盘状态,都是正常的,没有报警或者警告现象。 二、问题判断思路 通过上面这些现象,首先判断NAS硬件应该没问题,NAS存储盘也应该正常,现在Linux无法启动,应该是Linux系统本身存在问题,因此,首先从Linux系统入手进行排查。 三、问题处理过程 1、第一次处理过程 NAS系统本身就是一个Linux内核装载了一个文件系统管理软件,管理软件可以对系统磁盘、系统服务、文件系统等进行管理和操作,正常情况下,基于Linux内核的NAS系统应该启动到init3或者init5模式下,由于NAS仅用了Linux一个内核模块和几个简单服务,所以判断NAS下的Linux系统肯定是启动到init 3模式下,那么现在无法启动到多用户字符界面下,何不让Linux直接进入单用户(init 1)模式下呢,因为单用户模式下仅仅启用系统所必须的几个服务,而cpus服务是应用程序级别的,肯定不会在“init 1”模式下启动,这样就避开了cups无法启动的问题,所以,下面的工作就是要进入Linux的单用户模式下。 很多的Linux发行版本都可以在启动的引导界面通过相关的设置进入单用户模式下,通过查看NAS的启动过程,基本判断这个Linux系统与RHEL/Centos发行版极为类似,因此,就通过RHEL/Centos进入单用户模式的方法试一试。 RHEL/Centos进入单用户模式很简单,就是在系统启动到引导欢迎界面下,按键e,然后编辑正确的内核引导选项,在最后面加上“single”选项,最后直接按键“b“即可进入单用户了。 接下来,重新启动NAS,然后硬件自检,接着开始启动Linux,一直在等待这个NAS的启动欢迎界面,但是欢迎界面一直没出来,就直接进入内核镜像,加载内核阶段了,没有内核引导界面,如何进入单用户啊,经过简单思考,还是决定在硬件检测完毕后直接按键盘”e“键,奇迹出现了,还真的可以,NAS进入到了内核引导界面,通过简单观察,发行第二个正是要引导的内核选项,于是移动键盘上下键,选择这个内核,然后在按键”e“,进入内核引导编辑界面了,在这行的最后面,输入“single”,然后按回车键,返回上个界面,接着按键“b”开始进行单用户引导,经过一分钟的时间,系统如愿以偿的进入了单用户下的shell命令行。 进入单用户模式后,能做的事情就很多了,首先要做的就是将cups服务在多用户模式下自启动关闭,执行命令如下: chkconfig --levle 35 cups off 执行成功后,重启系统进入多用户模式下,看看系统是否能正常启动。 2、第二次处理过程 将cups服务开机自启动关闭后,重启NAS,发现问题依旧,NAS还是启动到cups服务那里停止了,难道上面的命令没有执行成功吗?明明已经禁止了cups服务启动了,怎么还是启动了呢?于是,继续重启NAS,再次进入单用户模式下,看看问题究竟出在哪里了。 进入单用户后,再次执行chkconfig 命令,依旧可以成功,难道是cups服务有问题,先看看配置文件,执行如下命令: vi /etc/cups/cupsd.conf 在这里发现了一个问题,vi打开cupsd.conf时,提示“write file in swap”,文件明明真实存在,怎么说在虚拟内存中呢,经过思考,只有一种可能,NAS设备的Linux系统分区应该没有正确挂载,导致在进入单用户的时候,所有文件都存储在了虚拟内存中,要验证非常简单,执行“df”命令查看即可,如下图所示: 从这里可以看出,Linux的系统分区并未挂载,通过“fdisk -l”检查下磁盘分区状态,输出如下图所示: 通过输出可知,NAS的系统盘是/dev/sda,仅划分了/dev/sda1和/dev/sda2两个系统分区,而数据磁盘是经过做RAID5完成的,在系统上的设备标识分别是/dev/sdb1和/dev/sdc1,由于单用户默认没有挂载任何NAS磁盘,这里尝试手动挂载NAS的系统盘,执行如下命令: [root@NASserver ~]#mount /dev/sda2 /mnt [root@NASserver ~]#mount /dev/sda1 /opt 这里的/mnt、/opt是随意挂载的目录,也可以挂载到其他空目录下,挂载完成,分别进入这连个目录看看内容有什么,如下图所示: 通过这两个内容的查看,初步判断,/dev/sda2分区应该是Linux的根分区,而/dev/sda1应该是/boot分区。现在分区已经挂载上去了,再次执行df命令看看挂载情况,如下图所示: 到这里为止,发现问题了。/dev/sda2磁盘分区已经没有可用的磁盘空间了,而这个分区刚好是NAS系统的根分区,根分区没有空间了,那么系统启动肯定就出问题了。 下面再把思路转到前面介绍的案例中,由于系统cups服务在启动的时候会写启动日志到根分区,而根分区因为没有空间了,所以也就无法写日志了,由此导致的结果就是cups服务无法启动,这就解释了此案例中NAS系统每次启动到cups服务就停止的原因。 四解决问题 由于NAS系统只有根分区和/boot分区,所以系统产生的相关日志都会存储在根分区中,现在根分区满了,首先可以清理的就是/var目录下的系统相关日志文件,通常可以清理的目录有/var/log,执行如下命令查看/var/log日志目录占据磁盘空间大小: [root@NASserver ~]# du -sh /var/log 50.1G /var/log 通过命令输出发现/var/log目录占据了根分区仅70%的空间,清理这个目录下的日志文件即可释放大部分根分区空间,清理完毕,重启NAS系统,发现系统cups服务能正常启动了,NAS服务也启动正常了。 答案来源网络,供参考,希望对您有帮助

问问小秘 2019-12-02 03:02:01 0 浏览量 回答数 0

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。

hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

问题

druid连接池 一段时间不用,然后在使用就会报错?报错

爱吃鱼的程序员 2020-06-14 16:24:19 0 浏览量 回答数 1

问题

阿里云服务器 如何处理网站高并发流量问题?(含教程)

元芳啊 2019-12-01 21:54:35 1511 浏览量 回答数 1

回答

2014年12月第2周 1)SLB植入cookie和SLB重写cookie有什么区别? cookie植入,表示直接由SLB系统来分配和管理对客户端进行的cookie植入操作,用户在进行配置时 需要指定会话保持的超时时间; cookie重写,表示SLB系统会根据用户自定义cookie名称来分配和管理对客户端进行的cookie植入操 作,便于用户识别和区分自定义的cookie名称 http://help.aliyun.com/doc/view/13510025.html?spm=0.0.0.0.vwbsGF 2)SLB有没有对外提供API接口,因为我想做到用程序自动去控制SLB的操作? SLB api您可以参考http://help.aliyun.com/view/13621674.html? spm=5176.7114037.1996646101.1.9RoTFM&pos=1 3)使用slb怎么实现数据的单向同步和双向同步? 单向同步可以使用rsync,双向同步的话rsync需要借用别的服务来实现,如unison+inotify。 4)slb的vip是否可以实现远程登录? slb 的vip无法实现远程登录。 5)slb的带宽是所有后端ECS服务器的带宽总和吗? 不是,使您购买的slb实例带宽。 6)slb健康检查机制是什么? 用户开启健康检查功能后,当后端某个ECS健康检查出现问题时会将请求转发到其他健康检查正常的 ECS上,而当该ECS恢复正常运行时,SLB会将其自动恢复到对外或对内的服务中。 针对7层(HTTP协议)服务,SLB系统的健康检查机制为:默认通过SLB的后端系统来向该ECS应用服务 器配置的缺省首页发起http head请求(缺省通过在服务监听配置中指定的后端ECS端口进行访问), 返回200 OK后将视为后端ECS运行正常,否则视为后端ECS运行异常。如果用户用来进行健康检查的页 面并不是应用服务器的缺省首页,那么需要用户指定相应的URI。如果用户对http head请求限定了 host字段的参数,那么需要用户指定相应的URL。用户也可以通过设定健康检查的频率、健康阈值和 不健康阈值来更好的控制健康检查功能。 针对4层(TCP协议)服务,SLB系统的健康检查机制为:默认通过在服务监听配置中指定的后端ECS端 口发起访问请求,如果端口访问正常则视为后端ECS运行正常,否则视为后端ECS运行异常。 当用户后端ECS健康检查异常后,SLB系统会将该ECS的转发权重设置为0,从而确保新的连接不会再被 转发到该ECS上,而已经建立的连接的请求却不会被直接断掉。 针对可能引起健康检查异常的排查思路点击这里查看。 关于健康检查的参数配置,提供如下参考建议: 响应超时时间:5秒 健康检查间隔:2秒 不健康阈值:3 健康阈值:3 7)权重设置为0怎么办? 权重为0的服务器将无法提供服务。 8)健康检查异常的排查思路? 参考http://help.aliyun.com/doc/view/13510029.html?spm=0.0.0.0.Oa9Ezv ------------------------- 12月份第3周1)轮询与最小连接数方式的区别是什么?当前SLB支持轮询和最小连接数2种模式的转发规则。“轮询模式”会将外部和内部的访问请求依序分发给后端ECS进行处理,而“最小连接数模式”会将外部和内部的访问请求分发给当前连接数最小的一台后端ECS进行处理。2)SLB支持redis的主备?目前我们的SLB不支持主备模式(冷备),只支持"轮询"和"最小连接数"两种负载模式。关于SLB的原理您可以参阅如下博文:http://blog.aliyun.com/149 基于ECS的redis搭建,您可以参阅论坛中其它用户的分享案例:http://bbs.aliyun.com/read/161389.html3)负载均衡的多台服务器之间文件会不会自动同步?slb是不会自动同步的,需要您自行配置。4)四层和七层检查的区别是什么?如果是4层(TCP)配置,健康检查只是简单的TCP握手,不会真正去访问您的业务。但对于7层(HTTP)配置,会发HTTP请求(类似于正常访问),并根据返回状态码判断服务状态(2XX表示服务正常)。5)我有多个slb,之前一个slb由于被攻击被黑洞给屏蔽了外部请求,是否可以在slb 并屏蔽后 能够自动将请求分发到另外的slb?由于攻击导致屏蔽外部请求的话,slb没有自动切换的方法的。6)目前slb是否可以设置黑名单?暂不支持。7)我的slb实例控制台显示是停止,为什么?需要给监听的端口设置带宽才能正常。  8)我使用了 SLB那么ESC 需要购买带宽吗?不需要的。但如需要管理ECS,则可购买少些的带宽如1M来管理。9)slb变更计费方式需要多久才能生效?变更和计费将在第二日零点后生效。10)私网SLB的使用,是如何收费的呢?私网slb是不收取费用的。 ------------------------- 12月第4周1)最近用slb后打开网页老出现503 和504错误?一般都是从ECS获取站点信息等异常导致的。您首先先确保源站都可以正常的访问。2)slb检查时突然发现SLB监听错误,怎么回事?配置的健康检查的域名为空,检查的路径是/index.html,目前查看服务器中只有站点c绑定了空主机头,且站点目录下有index.html,而此站点是停止状态,现已帮您启用,查看服务器的健康检查状态已经正常。3)我想使用slb搭建一个负载均衡,后端使用windows服务器,想咨询一下后端服务器是否需要进行什么特别配置呢?另外使用了slb后,后端还能否得到用户的真实IP地址呢,要不要进行什么特殊配置才可以得到后端用户的真实IP。后端服务器的操作系统和web环境最好保持一致,硬件配置上没有什么特别的,4层tcp是可以直接获得前端用户访问的真实地址的,7层http需要在后端web服务端设置一下,参考http://help.aliyun.com/view/13502961.html?spm=5176.7114037.1996646101.1.oRpnOM&pos=14)slb支持https吗?slb您可以通过TCP协议配置443端口的方式来实现,但是安全证书需要保存在您的后端ECS上。5)健康检查后续是否提供多个域名?健康检查只支持一个域名。6)我想关闭负载均衡的健康检查,请问如何配置?4层tcp是无法关闭健康检查的,7层http可以在控制台关闭。健康检查是不会消耗您服务器的资源的,因为slb都是通过内网ip来进行健康检查。7)如何在BLS上 限制单个IP 禁止访问 我的网站呢?SLB暂时不支持设置屏蔽用户端IP。 ------------------------- Re:Re负载均衡SLB常见咨询问题(持续连载) 引用第2楼517449116于2014-12-17 15:54发表的 Re负载均衡SLB常见咨询问题(持续连载) : 如果开启健康检查,健康检查异常的话,是不是就不会给这个异常的ECS分发? [url=http://bbs.aliyun.com/job.php?action=topost&tid=188736&pid=596806][/url] 异常的话不会在分发。 ------------------------- 2015年1月第1周1)有2台ECS起名叫A和B做SLB,A权重设的100 B权重设的0.请问.当A死机时,SLB是否会转到权重是0的B上?如果有一台设置为0,永远都不会有请求转发到此服务器上,即使权重100的宕机也不会转发到0权重的。2)会话保持的选择?开启会话保持功能后,SLB会把来自同一客户端的访问请求分发到同一台后端ECS上进行处理。针对7层(HTTP协议)服务,SLB系统是基于cookie的会话保持。针对4层(TCP协议)服务,SLB系统是基于IP地址的会话保持。3)用nagios或zabbix监控网络带宽,是否可以监控 slb的流量?nagios或zabbix,cacti是要要被监控端安装snmp或者相关agent ,slb不支持安装这些,所以无法通过这条监控软件进行监控。您可以在slb的控制台里面进行查看流量等相关信息。4)用了负载均衡后升级带宽,是不是只用在负载上面升级就可以了,ECS是不是不用在升级了?SLB与后端服务器是经过内网通信,所以如果业务量增加,您对SLB的带宽调整就行,不需要对服务器ECS进行带宽的升级。 ------------------------- 2015年1月第2周 1)SLB到期之后,会对SLB有关联的云主机怎么处理?云主机还没到期的前提下  我想把网站域名解析到SLB上 如果SLB到期了 会影响到我的网站服务么? 云服务器是不会有什么影响的,会自动又变成单独的云服务器可以供您使用的。但是如果您的域名是解析到SLB上,那么会影响到您的站点访问的。服务器上不会有其他的问题感谢您的支持。 2)当SLB 状态为停止的时候 还计算费用吗?停止后公网slb会收取实例费用。SLB价格总览参考:http://help.aliyun.com/view/11108234_13502923.html?spm=0.0.0.0.kBLsVA 3)做了SLB负载均衡,四层和7层负载均衡是否都走slb带宽? 都走slb带宽。 4)我想 移除 slb下的ecs(用作其他用途),请问在移除的时候是否会影响被负载到这台 ecs上的服务的使用 ,也是说slb这是是怎么处理的? 您可以将要移除的主机的权重更改为0 ,这样默认就不会在分发到权重为0的主机上,这个时候您可以移除该主机。但要确保您的另外一台服务器可以承受所有的访问。 5)SLB实例如何释放? 您需要登录管理控制台点击负载均衡。查询您之前创建的实例在哪个节点下,然后释放您的实例。 6)SLB按照小时的带宽计费, 是否需要每小时调整?比如我可否按照一个比较高的上限, 比如3G,然后每个小时按照该小时的峰值进行独立计费呢?   在一个自然日内,限制用户变更计费方式的次数为1次,变更计费方式将在第二日零点后生效;比如用户在今天5月5日的10:00提交了变更计费方式,那么该变配申请将在明天5月6日00:00后生效。http://help.aliyun.com/view/13502923.html?spm=5176.7114037.1996646101.3.67L5dm&pos=2;SLB目前最大带宽是1000Mbps 7)SLB可以限制每个ip的访问频率吗?(工单1F684MN)slb不支持这样配置的。 8)为什么我设置SLB健康检查间隔为5S,但却每秒都有很多请求?因为用于健康检查的服务ip不止一个,每秒中都会有不同的内网ip进行健康检查,健康检查是通过内网方式,不会消耗您后端服务器的资源,您可以将健康检查间隔阈值跳大些,这样监测频率会降低很多。 ------------------------- Re:负载均衡SLB常见咨询问题(持续连载至2015年1月第3周) 2015年1月第3周 1.发现很多100.97.0.0/16 的ip段扫描,给我服务器带来很大压力,怎么办? 100.97.0.0/16 是我们slb的健康检查服务ip段,如果给服务器带来较大压力,请调整健康检查的设置;健康检查的话 1)调低检查频率 2)设置检查静态文件,而不是默认首页或者动态文件 3)设置一个不记录日志的virtualhost,专门用于健康检查。 2)SLB里的带宽 和后面对应服务器的带宽有什么关联关系?比如SLB我设置了带宽为10M, 但是我后 面2台服务器购买的带宽都只有2M, 这种情况带宽以哪个为准? 如果您设置的是常规7层slb负载均衡,那么网站访问所使用的带宽,都将通过slb而不需要消耗云服 务器的带宽,但是云服务器本身的系统更新,以及您更新网站等等也是需要带宽的,因此您保留2M 即可。 3)采用流量计费方式的话带宽是否没有限制? SLB按流量计费最大的带宽是1G。 4)请问我如何获得一个外网SLB期所对应的内网IP呢?比如现在我有一个外网SLB下挂了一个ECS, 而ECS的iptables里我想做一些配置,针对来自于这个SLB的请求做一个判断,我需要知道这个外网 SLB的内网IP。 目前SLB与后端通过如下地址段进行交互: 10.158.0.0/16 10.159.0.0/16 100.97.0.0/16 您可以针对上述地址段做相关配置。 5)如何确保SLB后端的多台ECS之间的数据同步呢? 目前,有很多类似的工具可以实现服务器之间的数据同步,比如:rsync。具体使用及选择,还请通 过其他途径获得更多的介绍资料及指导信息。您也可以将您的ECS配置成无状态的应用服务器,而数 据和文件统一存放在RDS和OSS服务上。 ------------------------- 2015年1月第4周1.为什么我的SLB实例突然消失了?请检查您的SLB服务是否设置了自动释放时间导致。2.我想关掉负载均衡,怎么操作?您直接登录到阿里云管理控制台——slb负载均衡——实例中查询创建的slb服务,后方有“释放”的按钮,您直接释放即可。3. 我现在有两个阿里账号里面都有ECS,我能不能在一个slb里面配置不同阿里云账户下的ECS?目前只能将同一账户下的服务器添加到SLB中,无法跨账户添加。4.ECS做负载均衡需要用户做额外的配置吗?可以参考http://help.aliyun.com/knowledge_detail.htm?knowledgeId=5973987。5. 云服务器上做数据库负载均衡如何实现,需要购买什么产品 ?文件服务器能否做负载均衡,比如10台文件服务器,包括读写这种的  ?1)数据库集群,用slb理论上是可以做的,但是如果您需要集群级别的数据库,建议使用我们的RDS。2)文件服务器也可以负载均衡,使用slb在均衡,保持会话,但是有一个问题是后端文件同步的,需要您自行同步,如 rsync。6.看SLB的说明是支持ddos的防护的,请问下,SLB的防护的峰值是多少,超过峰值黑洞时间是多少?这个与slb所在地区有关,和ecs的防御阀值是一样的,黑洞时间也是2.5小时。7. slb第七层是基于haproxy还是nginx还是tengine实现的?使用tengine实现的。8.7层和4层 SLB的超时时间是多少?7层超时时间是60s,4层超时时间是900s。9.负载均衡健康检查请求数量太多,怎么回事?因为slb前端机器是一组机器,所以健康检查请求较多,请您不要担心,集群内的每台服务都会对您的健康按照您设定的频率去做健康检查:您可以按照上述方法去优化您的健康检查项,看似请求量很大,但是对您资源消耗很少的,有2个建议给您:1)扩大健康检查的频率2)将检查页面配置为静态页面。这样请求消耗的资源会节省。10. SLB配置中的最小连接数是基于什么样判断?SLB会自动判断 当前ECS 的established 来判断是否转发。 ------------------------- 2015年2月第1周1)我想了解下SLB按流量计费是不是每小时需要扣0.02元?按量付费,国内节点配置费用是按照0.02/小时。流量单独计费。按带宽计费:采取按小时计费,以日结算(运行未满一日,按照当日实际使用小时数*当日开通的最高带宽的天价格/24)。如果您使用SLB实例的时间不足一小时,按一小时收费。2)请问健康检查发的什么请求? head 还是 get?head请求。3)SLB最大连接数如何来设置?目前暂不支持设置最大连接数限制。4)SLB 后端有两个服务器HA1和HA2,为什么我将HA1的权重设置成0,SLB的健康检查就有告警呢?slb四层的话,只要权重设置为0,那么健康检查就是显示异常。 ------------------------- 2015年2月第3周1)负载均衡SLB的实例防攻击防御是多少?我们有云盾的防御黑洞策略,比如以杭州节点的slb,其最高防御的流量阈值为5G,当最大流量超过5G,您的slb vip则会被加入到黑洞中,触发黑洞会使ecs或者slb正常使用中断2.5小时,这个您可以通过云盾管理控制台查看到这个说明。2) 我其他机房的服务器能添加到你们的负载均衡SLB中吗?不可以的,slb使用的是内网和后端的ECS互联,无法直接添加非阿里云主机的服务器,且slb后端的ecs需要使用同一节点的主机。3)负载均衡服务支持的最大负载均衡实例数目多少?总体峰值可支持每秒新建链接数大约多少?SLB对于后端服务器的数目是没有限制的。对于总体峰值每秒新建连接数是没有限制的。但是因为SLB前端是云盾服务,所以最大值取决于云盾中您配置的请求数。您可以查看云盾看到具体的值。4)SLB按量计费为什么需要设置带宽峰值?如果不设置带宽峰值,遇到攻击等情况,可能流量打的非常高的,带宽流量峰值您可以在slb控制台设置。5)在SLB控制面板看到的流入流量,要比后端服务器的eth0的income流量小很多, 请问slb的流入流量是否应该等于后端服务器的内网网卡入流量吗?不等于的,后端的eth0包括了slb的流量,还有其他的流量,包括ecs直接的内网通信等。slb只做转发,不处理请求的,slb通过内网转发到ecs。6)SLB中的月账单 是指我们拥有所有的 SLB 实例的计费呢,还是单独的某个 SLB 的计费?月账单是指您不同类型产品,截止当前日期内月内消费计费额度的,是所有SLB产品的。您也可以通过账单明细进行查询具体信息的。 ------------------------- 2014年2月第4周1)10.159.63.55,这个内网ip,总是恶意访问我们网站?SLB系统除了会通过系统服务器的内网IP将来自外部的访问请求转到后端ECS上之外,还会对ECS进行健康检查(前提是您已经开启了这一功能)和对您的SLB服务进行可用性监控,这些访问的来源都是由SLB系统发起的,具体包含的IP地址段是:杭州、青岛、北京、深圳节点SLB系统IP地址段:10.159.0.0/16,10.158.0.0/16和100.97.0.0/16,为了确保您对外服务的可用性,请确保对上述地址的访问配置放行规则。2)slb计费方式变更需要多久,业务会受到影响么?变更计费方式与变更配置说明1、支持用户在按使用流量和按公网带宽2种计费方式间切换;2、支持按固定带宽方式计费的用户灵活变更带宽配置;3、在一个自然日内,限制用户变更计费方式的次数为1次,变更计费方式将在第二日零点后生效;比如:用户在今天5月5日的10:00提交了变更计费方式,那么该变配申请将在明天5月6日00:00后生效。4、按固定带宽方式计费变更带宽配置即时生效,带宽计费取自然日内用户开通的最高带宽。5、对客户业务不会造成影响;3)负载均衡能将我的外部非阿里云服务器和ECS服务器放到一块?目前负载均衡SLB仅支持阿里云ECS,无法支持外部非阿里云服务器。4)slb是否有连接数限制,需要大量终端一直与平台保持长连接,阿里云能提多少长连接?SLB没有并发连接数限制的,slb是转发请求不做处理,实际连接数还要跟您后端的处理能力有关。 ------------------------- 2015年3月第1周1)调整权重会对SLB已经有的正常连接有影响吗?目前调整权重会对调整权重的这台主机已有的连接产生影响,会有连接卡主,卡住时间由健康检查配置的时间决定。2)slb是否支持UDP协议?目前SLB暂不支持UDP协议。3)现在TCP四层负载均衡的出口带宽受ECS机器的出口带宽限制吗?slb和ECS之间走的是内网流量,带宽是不受限制的。4)如果没有外网ip, 是否可以用slb的4层转发 ?没有带宽4层SLB也是可以使用的。 ------------------------- Re:负载均衡SLB常见咨询问题(持续连载至2015年3月第1周) 2015年3月第2周 1)SLB变更计费方式并支付成功后无法添加配置? SLB在一个自然日内,限制用户变更计费方式的次数为1次,变更计费方式将在第二日零点后生效查看您今天变更过一 次计费方式,开始时间:2015-03-09 00:00:00。原按使用流量计费,在2015-03-09 00:00:00后变更为按固定带宽计 费,带宽峰值: 2Mbps。同时在您新的计费方式生效之前,您是无法对该SLB进行修改配置的。 2)我的账户怎么欠费¥7.88,这是怎么回事? 查看您有使用负载均衡slb业务,在slb产品的账单欠费,请您登陆用户中心-消费记录-账单明细中查看 记录。 3)如何屏蔽健康检查探测的日志记录? 关闭或者屏蔽对test.php访问日志的方式: 在站点配置文件中添加内容: location ~ /test.php { access_log off; fastcgi_pass 127.0.0.1:9000; fastcgi_index index.php; include fastcgi.conf; } 注: 1、对test.php的location必须要放置在对php|php5处理前,否则会因为先被进行全局匹配导致无法生效。 2、还可以用另一种方案实现: a、在后端服务器中单独为用于健康检查的页面建立一个站点; b、关闭这个站点的日志记录: location ~ .*\.(php|php5)?$ { access_log off; fastcgi_pass 127.0.0.1:9000; fastcgi_index index.php; include fastcgi.conf; } 3、如果检查页面是其他格式,比如test.html,可以采用如下方式进行屏蔽: location ~ /test.html { access_log off; } 4.我想问下SLB的固定带宽,10M是不是上行和下行最大都能达到10M? 固定带宽指的是下行带宽最大达到10M,上行带宽没有限制。上行带宽指的是SLB的入流量(上行),就是进入SLB的 流量。带宽指的是SLB的出流量(下行),就是SLB对外发生给客户端的流量。 5.一般配置SLB的时候有个权重0到100,是如何选择数值的? 权重需要您根据后端机器的配置进行选择比如AB两台机器性能一致就分别设置50,这样请求就会在这两台机器上轮询 ,不同权重决定请求分发的分配。 ------------------------- 2015年3月第3周1)公网的SLB和ECS之间的流量是否收费?不收费。2) 想做SLB+两台ECS,附件OSS,程序Discuz。但是不知道如何实现?slb要求后端的两台ecs数据是一致的,为了保持数据的一致性,建议共享存数和数据,静态文件放置到oss里,数据库文件走自己搭建的主从或者,连接同一台rds。3)按流量计算是否需要设置峰值?按流量计费不需要设置峰值的。4)如何建一个子帐号来管理负载均衡SLB?子账户无法管理负载均衡服务。

qilu 2019-12-02 01:15:34 0 浏览量 回答数 0

问题

【阿里云产品评测】个人WP站的云体验

cnsjw 2019-12-01 20:54:27 22207 浏览量 回答数 25

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

问题

HBase Read Replicas功能介绍系列

pandacats 2019-12-20 19:45:55 4 浏览量 回答数 0

回答

1.产品2.UI3.CSS4.JS5.后端(Java/php/python)6.DBA(mysql/oracle)7.运维(OP) 8.测试(QA)9.算法(分类/聚类/关系抽取/实体识别)10.搜索(Lucene/Solr/elasticSearch)11.大数据工程师(Hadoop)12.Android13.IOS14.运营 一.产品1 工作内容:了解用户需求,做竞品调研,画产品原型,写产品文档,讲解产品需求,测试产品Bug,收集用户反馈,苦练金刚罩以防止程序员拿刀砍。2 需要技能:PPT,Word, Axure,XP,MVP,行业知识,沟通。 二. UI1 工作内容:收到产品原型,给原型上色,偶尔会自作主张调整下原型的位置,出不同的风格给老板和客户选,然后听他们的意见给出一个自己极不喜欢的风格,最好给Android,IOS或者是CSS做好标注,还有的需要直接帮他们切好图,最后要练出来象素眼,看看这些不靠谱的程序员们有没有上错色或者是有偏差。2 需要技能:PS,Illustrator,Sketch,耐性,找素材。 三. CSS1 工作内容:产品设计好原型,UI做出来了效果图,剩下的就是CSS工程师用代码把静态文件写出来的。 2 需要技能:环境【IDE(WEBStorm,Sublime,EditPlus),源码管理(SVN/Git) ,WEB服务器(nginx)】基础【PS,域名,Html,Html5,CSS,CSS3】扩展【自适应,响应式,Bootstrap,Less,Flex】 四 .JS 1 工作内容:JS工程师其实分成两类,在之前讲CSS的时候已经提到过,一个是套页面的,一个是前后端分离的。对这两个概念还是分不太清的,可以回过头去看CSS的部分。 2 需要技能:环境【IDE(WEBStorm,Sublime,EditPlus),源码管理(SVN/Git) ,WEB服务器(nginx)】基础【Http,REST,跨域,语法,组件,F12,Json,Websocket】框架【JQuery,AngularJS,Bower,RequireJS,GruntJS,ReactJS,PhoneGap】业务【金融,教育,医疗,汽车,房产等等等等各种行业】 五 .后端(Java/python/go) 1 工作内容:大部分的后端工程师都停留在功能实现的层面上。这是现在国内二流或者是三流的公司的现状,甚至是在某些一流的公司。很多时候都是架构师出了架构设计,更多的外包公司根本就是有DBA来做设计,然后后端程序员从JS到CSS到Java全写,完全就是一个通道,所有的复杂逻辑全部交给DB来做,这也是几年前DBA很受重视的原因。 2 需要技能:环境【IDE(Idea/Eclipse,Maven,jenkins,Nexus,Jetty,Shell,Host),源码管理(SVN/Git) ,WEB服务器(nginx,tomcat,Resin)】基础【Http,REST,跨域,语法,Websocket,数据库,计算机网络,操作系统,算法,数据结构】框架【Spring,AOP,Quartz,Json TagLib,tiles,activeMQ,memcache,redis,mybatis,log4j,junit等等等等等】业务【金融,教育,医疗,汽车,房产等等等等各种行业】。 六 .DBA  1 工作内容:如果你做了一个DBA,基本上会遇到两种情况。一种是你的后端工程师懂架构,知道怎么合便使用DB,知道如何防止穿透DB,那么恭喜你,你只是需要当一个DB技术兜底的顾问就好,基本上没什么活可以做,做个监控,写个统计就好了。你可以花时间在MongoDB了,Hadoop了这些,随便玩玩儿。再按照我之前说的,做好数据备份。如果需求变动比较大,往往会牵涉到一些线上数据的更改,那么就在发布的时候安静的等着,等着他们出问题。。。。如果不出问题就可以回家睡觉了。 2 需要技能:环境【Linux,Mysql,Oracle,MongoDB,Hadoop】工具【各种DB的版本,工具,备份,日志等】。 七. 运维  1 工作内容:运维的工作大概分成几个部分,我对于修真院学习运维的少年们都这么说,大概是:A。基础环境的搭建和常用软件的安装和配置(兼网管的还有各种程控机),常用软件指的是SVN,Git,邮箱这种,更细节的内容请参考修真院对于运维职业的介绍。B。日常的发布和维护,如刚刚讲到的一样,测试环境和线上环境的发布和记录,原则上,对线上所有的变更都应该有记录。C。数据的备份和服务的监控&安全配置。各种数据,都要做好备份和回滚的手段,提前准备好各种紧急预案,服务的监制要做好。安全始终都是不怎么被重点考虑的问题,因为这个东西无底洞,你永远不知道做到什么程度算是比较安全了,所以大多数都是看着情况来。D。运维工具的编写。这一点在大的云服务器商里格外常见,大公司也是一样的。E。Hadoop相关的大数据体系架构的运维,确实有公司在用几百台机器做Hadoop,所以虽然不常见,我还是列出来吧。 2 需要技能:环境【Linux,Mysql,Oracle,MongoDB,Hadoop,nginx,apache,F5,lvs,vpn,iptable,svn,git,memcache,redis】工具【linux 常用工具,Mysql常用工具,Jenkins,zabbix,nagios】自动化运维【openstack,docker,ansible】语言【shell,python】 八 .QA  1 工作内容:QA需要了解需求,很多公司会要求QA写测试用例,我觉得是扯淡。完全是在浪费时间。通常开发三周,QA测试的时间只有一周到一周半。还有关于提前写测试用例的,都不靠谱。 2 需要技能:流程【Bug修复流程,版本发布流程】工具【禅道,BugZilla,Jira,Excel表格来统计Bug数,自动化测试】性格【严谨,耐心】 九. 算法工程师  1 工作内容:算法工程师的工作内容,大部分时间都是在调优。就是调各种参数和语料,寻找特征,验证结果,排除噪音。也会和Hadoop神马的打一些交道,mahout神马的,我那个时候还在用JavaML。现在并不知道有没有什么更好用的工具了。有的时候还要自己去标注语料---当然大部分人都不爱做这个事儿,会找漂亮的小编辑去做。2 需要技能:基础【机器学习,数据挖掘】工具【Mahout,JavaML等其他的算法工具集】 十. 搜索工程师  1 工作内容: 所以搜索现在其实分成两种。一种是传统的搜索。包括:A。抓取 B。解析C。去重D。处理E。索引F。查询另一种是做为架构的搜索。并不包括之前的抓取解析去重,只有索引和查询。A。索引B。查询 2 需要技能:环境【Linux】框架【Luence,Slor,ElasticSearch,Cassandra,MongoDB】算法【倒排索引,权重计算公式,去重算法,Facet搜索的原理,高亮算法,实时索引】 十一. 大数据工程师  1 工作内容:工作内容在前期会比较多一些,基础搭建还是一个挺讲究的事儿。系统搭建好之后呢,大概是两种,一种是向大数据部门提交任务,跑一圈给你。一种是持续的文本信息处理中增加新的处理模块,像我之前说的增加个分类啦,实体识别神马的。好吧第一种其实我也不记得是从哪得来的印象了,我是没有见到过的。架构稳定了之后,大数据部门的工作并不太多,常常会和算法工程师混到一起来。其他的应该就是大数据周边产品的开发工作了。再去解决一些Bug什么的。2 需要技能:环境【Linux】框架【Hadoo,spark,storm,pig,hive,mahout,zookeeper 】算法【mapreduce,hdfs,zookeeper】。 十二. Android工程师  1 工作内容:Android工程师的日常就是听产品经理讲需求,跟后端定接口,听QA反馈哪款机器不兼容,闹着申请各种测试机,以及悲催的用Android做IOS的控件。 2 需要技能:环境【Android Studio,Maven,Gradle】基础【数据结构,Java,计算机网络】组件【IM,地图,支付,拍照,视频,音频,统计,分享,手势密码】 十三. IOS工程师  1 工作内容:IOS工程师的工作内容真的挺简单的,听需求,定接口。做个适配,抛弃一下iphone4。还有啥。。马丹,以我为数不多的IOS知识来讲,真的不知道还有啥了。我知道的比较复杂的系统也是各种背景高斯模糊,各种渐变,各种图片滤镜处理,其他并没有什么。支付,地图,统计这些东西。 嗯。2 需要技能:环境【Xcode】基础【数据结构,Object,计算机网络】组件【IM,地图,支付,拍照,视频,音频,统计,分享,手势密码】

行者武松 2019-12-02 01:21:45 0 浏览量 回答数 0

问题

最大限度利用 JavaScript 和 Ajax 性能:报错

kun坤 2020-06-05 22:56:50 0 浏览量 回答数 1

回答

转自:阿飞的博客 一、数据库技术选型的思考维度 我们做选型的时候首先要问: 谁选型?是负责采购的同学、 DBA 还是业务研发? 如果选型的是采购的同学,他们更注重成本,包括存储方式、网络需求等。 如果选型的是 DBA 同学,他们关心的: ① 运维成本 首先是运维成本,包括监控告警是否完善、是否有备份恢复机制、升级和迁移的成本是否高、社区是否稳定、是否方便调优、排障是否简易等; ② 稳定性 其次,DBA会关注稳定性,包括是否支持数据多副本、服务高可用、多写多活等; ③ 性能 第三是性能,包括延迟、QPS 以及是否支持更高级的分级存储功能等; ④ 拓展性 第四是扩展性,如果业务的需求不确定,是否容易横向扩展和纵向扩容; ⑤ 安全 最后是安全,需要符合审计要求,不容易出现 SQL 注入或拖库情况。 ⑥ 其他 除了采购和 DBA之外,后台应用研发的同学同样会关注稳定性、性能、扩展性等问题,同时也非常关注数据库接口是否便于开发,是否便于修改数据库 schema 等问题。 接下来我们来看一下爱奇艺使用的数据库类型: MySQL,互联网业务必备系统; TiDB,爱奇艺的 TiDB 实践会有另外的具体介绍; Redis,KV 数据库,互联网公司标配; Couchbase,这个在爱奇艺用得比较多,但国内互联网公司用得比较少,接下来的部分会详细说明; 其他,比如 MongoDB、图数据库、自研 KV 数据库 HiKV 等; 大数据分析相关系统,比如 Hive、Impala 等等。 可以看到爱奇艺的数据库种类还是很多的,这会造成业务开发的同学可能不太清楚在他的业务场景下应该选用哪种数据库系统。 那么,我们先对这些数据库按照接口(SQL、NoSQL)和面向的业务场景(OLTP、OLAP)这两位维度进行一个简单非严谨的分类。 下图中,左上角是面向 OLTP、支持 SQL 的这样一类系统,例如 MySQL,一般支持事务不同的隔离级别, QPS 要求比较高,延时比较低,主要用于交易信息和关键数据的存储,比如订单、VIP 信息等。 左下角是 NoSQL 数据库,是一类针对特殊场景做优化的系统,schema 一般比较简单,吞吐量较高、延迟较低,一般用作缓存或者 KV 数据库。 整个右侧都是 OLAP 的大数据分析系统,包括 Clickhouse、Impala等,一般支持SQL、不支持事务,扩展性比较好,可以通过加机器增加数据的存储量,响应延迟较长。 还有一类数据库是比较中立的,在数据量比较小的时候性能比较好,在数据量较大或复杂查询的时候性能也不差,一般通过不同的存储引擎和查询引擎来满足不同的业务需求,我们把它叫做 HTAP,TiDB 就是这样一种数据库。 二、iQIYI对数据库的优化与完善 前面我们提到了很多种的数据库,那么接下来就和大家介绍一下在爱奇艺我们是怎么使用这些数据库的。 1、MySQL在爱奇艺的使用 ① MySQL 首先是 MySQL。MySQL 基本使用方式是 master-slave + 半同步,支持每周全备+每日增量备份。我们做了一些基本功能的增强,首先是增强了数据恢复工具 Xtrabackup 的性能。 之前遇到一个情况,我们有一个全量库是 300G 数据,增量库每天 70G 数据,总数据量 700G 左右。我们当时只需要恢复一个表的数据,但该工具不支持单表恢复,且整库恢复需要 5 个小时。 针对这个情况我们具体排查了原因,发现在数据恢复的过程中需要进行多次写盘的 IO 操作并且有很多串行操作,所以我们做了一些优化。例如删减过程中的一些写盘操作,减少落盘并将数据处理并行化,优化后整库恢复耗时减少到 100 分钟,而且可以直接恢复单表数据。 然后是适配 DDL 和 DML 工具到内部系统,gh-ostt 和 oak-online-alter-table 在数据量大的时候会造成 master-slave 延时,所以我们在使用工具的时候也增加了延时上的考虑,实时探测Master-Slave 库之间延时的情况,如果延时较大会暂停工具的使用,恢复到正常水平再继续。 ② MySQL高可用 第二是 MySQL 高可用。Master-slave 加上半同步这种高可用方式不太完善,所以我们参照了 MHA 并进行了改动,采用 master + agent 的方式。Agent 在每一个物理机上部署,可以监控这个物理机上的所有实例的状态,周期性地向 master 发送心跳,Master 会实时监测各个Agent的状态。 如果 MySQL故障,会启动 Binlog 补偿机制,并切换访问域名完成 failover。考虑到数据库跨机房跨地区部署的情况,MHA 的 master 我们也做了高可用设计,众多 master 会通过 raft 组成一个 raft group,类似 TiDB 的 PD 模块。目前 MySQL failover 策略支持三种方式:同机房、同地域跨机房以及跨地域。 ③ MySQL拓展能力 第三是提高MySQL扩展能力,以提供更大容量的数据存储。扩展方式有 SDK,例如开源的 ShardingSphere,在爱奇艺的使用也比较广泛。另外就是 Proxy,开源的就更多了。但是 SDK 和 Proxy 使用的问题是支持的 SQL 语句简单,扩容难度大,依赖较多且运维复杂,所以部分业务已经迁移至 TiDB。 ④ 审计 第四是审计。我们在 MySQL 上做了一个插件获取全量 SQL 操作,后端打到 Kafka,下游再接入包括 Clickhouse 等目标端进行 SQL 统计分析。除此之外还有安全策略,包括主动探索是否有 SQL 注入及是否存在拖库情况等,并触发对应的告警。 MySQL 审计插件最大的问题是如何降低对 MySQL 性能的影响,对此我们进行了一些测试,发现使用 General Log 对性能损耗较大,有 10%~20% 的降低。 于是我们通过接口来获取 MySQL 插件里的监控项,再把监控项放到 buffer 里边,用两级的 RingBuffer 来保证数据的写入不会有锁资源竞争。在这个插件里再启动一个线程,从 RingBuffer 里读取数据并把数据打包写到 FIFO 管道里。 我们在每台 MySQL 的物理机里再启动一个 Agent,从管道里阻塞地读取数据发至 Kafka。优化后我们再次进行压测,在每台机器上有 15 万的更新、删除或插入操作下不会丢失数据,性能损耗一般情况下小于 2%。 目前已经在公司内部的集群上线了一年时间,运行比较稳定,上线和下线对业务没有影响。 ⑤ 分级存储 第五是分级存储。MySQL 里会存一些过程性的数据,即只需要读写最近一段时间存入的数据,过段时间这些数据就不需要了,需要进行定时清理。 分级存储就是在 MySQL 之上又用了其他存储方式,例如 TiDB 或其他 TokuDB,两者之间可以进行数据自动搬迁和自动归档,同时前端通过 SDK + Proxy 来做统一的访问入口。这样一来,业务的开发同学只需要将数据存入 MySQL 里,读取时可能从后端接入的任意数据库读出。这种方式目前只是过渡使用,之后会根据 TiDB 的特性进行逐步迁移。 Redis在爱奇艺的使用 接下来是 Redis。Redis 也是使用 master - slave 这种方式,由于网络的复杂性我们对 Sentinel 的部署进行了一些特殊配置,在多机房的情况下每个机房配置一定数量 Sentinel 来避免脑裂。 备份恢复方面介绍一个我们的特殊场景,虽然 Redis 是一个缓存,但我们发现不少的业务同学会把它当做一个 KVDB 来使用,在某些情况下会造成数据的丢失。 所以我们做了一个 Redis 实时备份功能,启动一个进程伪装成 Redis 的 Slave 实时获取数据,再放到后端的 KV 存储里,例如 ScyllaDB,如果要恢复就可以从 ScyllaDB 里把数据拉出来。 我们在用 Redis 时最大的痛点就是它对网络的延迟或抖动非常敏感。如有抖动造成 Redis Master 超时,会由 Sentinel 重新选出一个新的节点成为 Master,再把该节点上的数据同步到所有 Slave 上,此过程中数据会放在 Master 节点的 Buffer 里,如果写入的 QPS 很高会造成 Buffer 满溢。如果 Buffer 满后 RDB 文件还没有拷贝过去,重建过程就会失败。 基于这种情况,我们对 Redis 告警做了自动化优化,如有大量 master - slave 重建失败,我们会动态调整一些参数,例如把 Buffer 临时调大等, 此外我们还做了 Redis 集群的自动扩缩容功能。 我们在做 Redis 开发时如果是 Java 语言都会用到 Jedis。用 Jedis 访问客户端分片的 Redis 集群,如果某个分片发生了故障或者 failover,Jedis 就会对所有后端的分片重建连接。如果某一分片发生问题,整个 Redis 的访问性能和 QPS 会大幅降低。针对这个情况我们优化了 Jedis,如果某个分片发生故障,就只针对这个分片进行重建。 在业务访问 Redis 时我们会对 Master 绑定一个读写域名,多个从库绑定读域名。但如果我们进行 Master failover,会将读写域名从某旧 Master 解绑,再绑定到新 Master 节点上。 DNS 本身有一个超时时间,所以数据库做完 failover 后业务程序里没有立刻获取到新的 Master 节点的 IP的话,有可能还会连到原来的机器上,造成访问失败。 我们的解决方法是把 DNS 的 TTL 缩短,但对 DNS 服务又会造成很大的压力,所以我们在 SDK 上提供 Redis 的名字服务 RNS,RNS 从 Sentinel 里获取集群的拓扑和拓扑的变化情况,如果集群 failover,Sentinel 会接到通知,客户端就可以通过 RNS 来获取新的 Master 节点的 IP 地址。我们去掉域名,通过 IP 地址来访问整个集群,屏蔽了 DNS 的超时,缩短了故障的恢复时间。 SDK 上还做了一些功能,例如 Load Balance 以及故障检测,比如某个节点延时较高的话会被临时熔断等。 客户端分片的方式会造成 Redis 的扩容非常痛苦,如果客户端已经进行了一定量的分片,之后再增加就会非常艰难。 Redis 在 3.0 版本后会提供 Redis Cluster,因为功能受限在爱奇艺应用的不是很多,例如不支持显示跨 DC 部署和访问,读写只在主库上等。 我们某些业务场景下会使用 Redis 集群,例如数据库访问只发生在本 DC,我们会在 DC 内部进行 Cluster 部署。 但有些业务在使用的过程中还是想做 failover,如果集群故障可以切换到其他集群。根据这种情况我们做了一个 Proxy,读写都通过它来进行。写入数据时 Proxy 会做一个旁路,把新增的数据写在 Kafka 里,后台启用同步程序再把 Kafka 里的数据同步到其他集群,但存在一些限制,比如我们没有做冲突检测,所以集群间数据需要业务的同学做单元化。线上环境的Redis Cluster 集群间场景跨 DC 同步 需要 50 毫秒左右的时间。 2、Couchbase在爱奇艺的使用 Redis 虽然提供 Cluster 这种部署方式,但存在一些问题。所以数据量较大的时候(经验是 160G),就不推荐 Redis 了,而是采用另一种存储方式 Couchbase。 Couchbase 在国内互联网公司用的比较少,一开始我们是把他当做一个 Memcached 来使用的,即纯粹的缓存系统。 但其实它性能还是比较强大的,是一个分布式高性能的 KV 系统,支持多种存储引擎 (bucket)。第一种是 Memcached bucket,使用方式和 Memcached 一样为 KV 存储,不支持数据持久化也没有数据副本,如果节点故障会丢失数据; 第二种是 Couchbase bucket,支持数据持久化,使用 Json 写入,有副本,我们一般会在线上配置两个副本,如果新加节点会对数据进行 rebalance,爱奇艺使用的一般是 Couchbase bucket 这种配置。 Couchbase 数据的分布如下图,数据写入时在客户端上会先进行一次哈希运算,运算完后会定位 Key 在哪一个 vBucket (相当于数据库里的某个分片)。之后客户端会根据 Cluster Map 发送信息至对应的服务端,客户端的 Cluster Map 保存的是 vBucket 和服务器的映射关系,在服务端数据迁移的过程中客户端的 Cluster Map 映射关系会动态更新,因此客户端对于服务端的 failover 操作不需要做特殊处理,但可能在 rebalance 过程中会有短暂的超时,导致的告警对业务影响不大。 Couchbase 在爱奇艺应用比较早,2012 年还没有 Redis Cluster 的时候就开始使用了。集群管理使用 erlang 语言开发,最大功能是进行集群间的复制,提供多种复制方式:单向、双向、星型、环式、链式等。 爱奇艺从最初的 1.8 版本使用到如今的 5.0 版本,正在调研的 6.0,中间也遇到了很多坑,例如 NTP 时间配置出错会导致崩溃,如果每个集群对外 XDCR 并发过高导致不稳定,同步方向变更会导致数据丢失等等,我们通过运维和一些外部工具来进行规避。 Couchbase 的集群是独立集群,集群间的数据同步通过 XDCR,我们一般配置为双向同步。对于业务来说,如果 Cluster 1 写入, Cluster 2 不写入,正常情况下客户端会写 Cluster 1。如果 Cluster 1 有故障,我们提供了一个 Java SDK,可以在配置中心把写入更改到 Cluster 2,把原来到 Cluster 1 的连接逐步断掉再与Cluster 2 新建连接。这种集群 failover 的过程对于客户端来说是相对透明和无感的。 3、爱奇艺自研数据库HiKV的使用 Couchbase 虽然性能非常高,并且数据的存储可以超过内存。但是,如果数据量超过内存 75% 这个阈值,性能就会下降地特别快。在爱奇艺,我们会把数据量控制在可用内存的范围之内,当做内存数据库使用。但是它的成本非常高,所以我们后面又开发了一个新的数据库—— HiKV。 开发 HiKV 的目的是为了把一些对性能要求没那么高的 Couchbase 应用迁移到 HiKV 上。HiKV 基于开源系统 ScyllaDB,主要使用了其分布式数据库的管理功能,增加了单机存储引擎 HiKV。 ScyllaDB 比较吸引人的是它宣称性能高于 Cassandra 十倍,又完全兼容 Cassandra 接口,设计基本一致,可以视为 C++ 版 Cassandra 系统。 ScyllaDB 性能的提升主要是使用了一些新的技术框架,例如 C++ 异步框架 seastar,主要原理是在j每台物理机的核上会 attach 一个应用线程,每个核上有自己独立的内存、网络、IO 资源,核与核之间没有数据共享但可以通信,其最大的好处是内存访问无锁,没有冲突过程。 当一个数据读或写到达 ScyllaDB 的 server 时,会按照哈希算法来判断请求的 Key 是否是该线程需要处理的,如果是则本线程处理,否则会转发到对应线程上去。 除此之外,它还支持多副本、多数据中心、多写多活,功能比较强大。 在爱奇艺,我们基于 SSD 做了一个 KV 存储引擎。Key 放在内存里,Value 放在盘上的文件里,我们在读和写文件时,只需要在内存索引里定位,再进行一次盘的 IO 开销就可以把数据读出来,相比 ScyllaDB 原本基于 LSM Tree 的存储引擎方式对 IO 的开销较少。 索引数据全部放在内存中,如果索引长度较长会限制单机可存储的数据量,于是我们通过开发定长的内存分布器,对于比较长的 Key 做摘要缩短长度至 20 字节,采用红黑树索引,限制每条记录在内存里的索引长度至为 64 字节。内存数据要定期做 checkpoint,客户端要做限流、熔断等。 HiKV 目前在爱奇艺应用范围比较大,截至目前已经替换了 30% 的 Couchbase,有效地降低了存储成本。 4、爱奇艺的数据库运维管理 爱奇艺数据库种类较多,如何高效地运维和管理这些数据库也是经历了不同的阶段。 最初我们通过 DBA 写脚本的方式管理,如果脚本出问题就找 DBA,导致了 DBA 特别忙碌。 第二个阶段我们考虑让大家自己去查问题的答案,于是在内部构建了一个私有云,通过 Web 的方式展示数据库运行状态,让业务的同学可以自己去申请集群,一些简单的操作也可以通过自服务平台实现,解放了 DBA。一些需要人工处理的大型运维操作经常会造成一些人为故障,敲错参数造成数据丢失等。 于是在第三个阶段我们把运维操作 Web 化,通过网页点击可以进行 90% 的操作。 第四个阶段让经验丰富的 DBA 把自身经验变成一些工具,比如有业务同学说 MySQL master-slave 延时了,DBA 会通过一系列操作排查问题。现在我们把这些操作串起来形成一套工具,出问题时业务的同学可以自己通过网页上的一键诊断工具去排查,自助进行处理。 除此之外我们还会定期做预警检查,对业务集群里潜在的问题进行预警报告;开发智能客服,回答问题;通过监控的数据对实例打标签,进行削峰填谷地智能调度,提高资源利用率。 三、不同场景下数据库选型建议 1、实用数据库选型树 最后来说一些具体数据库选型建议。这是 DBA 和业务一起,通过经验得出来的一些结论。 对于关系型数据库的选型来说,可以从数据量和扩展性两个维度考虑,再根据数据库有没有冷备、要不要使用 Toku 存储引擎,要不要使用 Proxy 等等进行抉择。 NoSQL 也是什么情况下使用 master-slave,什么情况下使用客户端分片、集群、Couchbase、HiKV 等,我们内部自服务平台上都有这个选型树信息。 2、一些思考 ① 需求 我们在选型时先思考需求,判断需求是否真实。 你可以从数据量、QPS、延时等方面考虑需求,但这些都是真实需求吗?是否可以通过其他方式把这个需求消耗掉,例如在数据量大的情况下可以先做数据编码或者压缩,数据量可能就降下来了。 不要把所有需求都推到数据库层面,它其实是一个兜底的系统。 ② 选择 第二个思考的点是对于某个数据库系统或是某个技术选型我们应该考虑什么?是因为热门吗?还是因为技术上比较先进?但是不是能真正地解决你的问题?如果你数据量不是很大的话就不需要选择可以存储大数据量的系统。 ③ 放弃 第三是放弃,当你放弃一个系统时真的是因为不好用吗?还是没有用好?放弃一个东西很难,但在放弃时最好有一个充分的理由,包括实测的结果。 ④ 自研 第四是自研,在需要自己开发数据库时可以参考和使用一些成熟的产品,但不要盲目自研。 ⑤ 开源 最后是开源,要有拥抱开源的态度。

茶什i 2019-12-27 14:17:56 0 浏览量 回答数 0

回答

以下是我列出的2020年Java开发者应该学习的技术: 1、DevOps (Docker and Jenkins) 过去的一年,越来越多的公司正在转型DevOps,DevOps非常庞大,需要学习很多工具和原理,但你不需要担心。有大神已经分享了DevOps路线图(https://github.com/kamranahmedse/developer-roadmap,可以按照这个路线图以自己的速度学习和掌握DevOps。 如果你是一个有经验的Java程序员,愿意学习环境管理、自动化和整体改进,你也可以成为DevOps工程师。 2、Java 9 - Java 15 相信现在很多Java开发人员主要使用的Java版本还是以Java 8为主,虽然Java 9 - Java 13已经推出了有一段时间。 但是作为Java程序员,我们可能因为某些原因没办法在线上环境真正的进行JDK的升级,但是花一些时间学习Java 9、Java 10、Java 11、Java 12和 Java 13的新特性还是有必要的。 另外,大家可以重点关注一些关键特性,如GC相关的特性、对编码风格有改变的特性等。还有就是Java的LTS版本(Java 8、Java 11)要重点学习。 还要提醒大家一点,在2020年,Oracle还会推出Java 14 和 Java 15!!!如果你在使用Java 7的话,马上就要被"套圈"了! 3、Spring Framework 5 2017年我们见证了Spring和Java生态系统的许多重大升级,Spring 5.0就是其中之一。Spring 5 的新反应式编程模型、HTTP/2 支持,以及 Spring 通过 Kotlin 对函数式编程的全面支持这些都值得我们好好了解一下。 4、Spring Security 5.0 Spring Security 5.0 提供了许多新功能,并支持 Spring Framework 5.0,总共有 400 多个增强功能和 bug 修复。在Spring Security 5.0.0之前,密码是明文保存,十分不安全。因为这一次发布的是大版本,所以我们决定使用更安全的密码存储方式。Spring Security 5.0.0的主要亮点在于它只需要最小化的JDK 8、反应式安全特性、OAuth 2.0(OIDC)和现代密码存储。 5、Spring Boot 2 Spring Boot 2.0 基于 Spring 5 Framework ,提供了 异步非阻塞 IO 的响应式 Stream 、非堵塞的函数式 Reactive Web 框架 Spring WebFlux等特性。很多使用过SpringBoot的人都知道,使用SpringBoot搭建Web应用真的是又快又好,相信Spring Boot 2会带来更多惊喜。 6、Hadoop、Spark 和 Kafka 另外在2020年Java程序员需要学习的是大数据相关的知识。特别是Apache Spark 和 Kafka两个框架。 如果你也想在2020年学习大数据,也一定绕不开Hadoop生态。 7、Elasticsearch 全文搜索属于最常见的需求,开源的 Elasticsearch (以下简称 Elastic)是目前全文搜索引擎的首选。维基百科、Stack Overflow、Github 都在使用它。 Elasticsearch是一个基于Lucene库的搜索引擎。它提供了一个分布式、支持多租户的全文搜索引擎,具有HTTP Web接口和无模式JSON文档。Elasticsearch是用Java开发的,并在Apache许可证下作为开源软件发布。 8、ServiceMesh 这两年很火,火的一塌糊涂。在2019年,但凡是程序员相关的大会,如果没有讲ServiceMest的专题,那都不好意思开。 所有人都在说 ServiceMesh; 几乎没人知道怎么落地 ServiceMesh; 但是大家都觉得其他人在大力做 ServiceMesh; 所以大家都宣称自己在做 ServiceMesh; 这个号称下一代微服务架构的概念,现在对于大多数人来说根本不知道是啥。只知道很多大厂宣称自己在做,很多大牛在布道。 9、Serverless 无服务器运算(英语:Serverless computing),又被称为功能即服务(Function-as-a-Service,缩写为 FaaS),是云计算的一种模型。以平台即服务(PaaS)为基础,无服务器运算提供一个微型的架构,终端客户不需要部署、配置或管理服务器服务,代码运行所需要的服务器服务皆由云平台来提供。这东西,听上去就很高大上。 2019年,和ServiceMesh一样,所有人都宣称自己在做。但是又很很多人不知道他到底是什么。 10、Kotlin 如果大家有关注Java 13的新特性的话,一定知道推出了字符串文本块的功能,这个功能其实是借鉴的Kotlin,除此之外,最近几年,Java有很多特性都在借鉴Kotlin,相比较于Java,Kotlin更加简洁,而且Kotlin编出来的代码也可以直接通过JVM运行。 Kotlin是一种在Java虚拟机上运行的静态类型编程语言,它也可以被编译成为JavaScript源代码。Kotlin的设计初衷就是用来生产高性能要求的程序的,所以运行起来和Java也是不相上下。Kotlin可以从 JetBrains InteilliJ Idea IDE这个开发工具以插件形式使用。 总结 以上,就是作者总结的建议Java程序员在2020年学习的一些技术,其中有一些是一定要学习的,还有一些是看大家的精力情况酌情考虑。

剑曼红尘 2020-04-07 20:42:52 0 浏览量 回答数 0

回答

转自:阿里云官网 — 知乎 写好代码,阿里专家沉淀了一套“如何写复杂业务代码”的方法论,在此分享给大家,相信同样的方法论可以复制到大部分复杂业务场景。 一文教会你如何写复杂业务代码 了解我的人都知道,我一直在致力于应用架构和代码复杂度的治理。 这两天在看零售通商品域的代码。面对零售通如此复杂的业务场景,如何在架构和代码层面进行应对,是一个新课题。针对该命题,我进行了比较细致的思考和研究。结合实际的业务场景,我沉淀了一套“如何写复杂业务代码”的方法论,在此分享给大家。 我相信,同样的方法论可以复制到大部分复杂业务场景。 一个复杂业务的处理过程 业务背景 简单的介绍下业务背景,零售通是给线下小店供货的B2B模式,我们希望通过数字化重构传统供应链渠道,提升供应链效率,为新零售助力。阿里在中间是一个平台角色,提供的是Bsbc中的service的功能。 在商品域,运营会操作一个“上架”动作,上架之后,商品就能在零售通上面对小店进行销售了。是零售通业务非常关键的业务操作之一,因此涉及很多的数据校验和关联操作。 针对上架,一个简化的业务流程如下所示: 过程分解 像这么复杂的业务,我想应该没有人会写在一个service方法中吧。一个类解决不了,那就分治吧。 说实话,能想到分而治之的工程师,已经做的不错了,至少比没有分治思维要好很多。我也见过复杂程度相当的业务,连分解都没有,就是一堆方法和类的堆砌。 不过,这里存在一个问题:即很多同学过度的依赖工具或是辅助手段来实现分解。比如在我们的商品域中,类似的分解手段至少有3套以上,有自制的流程引擎,有依赖于数据库配置的流程处理: 本质上来讲,这些辅助手段做的都是一个pipeline的处理流程,没有其它。因此,我建议此处最好保持KISS(Keep It Simple and Stupid),即最好是什么工具都不要用,次之是用一个极简的Pipeline模式,最差是使用像流程引擎这样的重方法。 除非你的应用有极强的流程可视化和编排的诉求,否则我非常不推荐使用流程引擎等工具。第一,它会引入额外的复杂度,特别是那些需要持久化状态的流程引擎;第二,它会割裂代码,导致阅读代码的不顺畅。大胆断言一下,全天下估计80%对流程引擎的使用都是得不偿失的。 回到商品上架的问题,这里问题核心是工具吗?是设计模式带来的代码灵活性吗?显然不是,问题的核心应该是如何分解问题和抽象问题,知道金字塔原理的应该知道,此处,我们可以使用结构化分解将问题解构成一个有层级的金字塔结构: 按照这种分解写的代码,就像一本书,目录和内容清晰明了。以商品上架为例,程序的入口是一个上架命令(OnSaleCommand), 它由三个阶段(Phase)组成。 @Command public class OnSaleNormalItemCmdExe { @Resource private OnSaleContextInitPhase onSaleContextInitPhase; @Resource private OnSaleDataCheckPhase onSaleDataCheckPhase; @Resource private OnSaleProcessPhase onSaleProcessPhase; @Override public Response execute(OnSaleNormalItemCmd cmd) { OnSaleContext onSaleContext = init(cmd); checkData(onSaleContext); process(onSaleContext); return Response.buildSuccess(); } private OnSaleContext init(OnSaleNormalItemCmd cmd) { return onSaleContextInitPhase.init(cmd); } private void checkData(OnSaleContext onSaleContext) { onSaleDataCheckPhase.check(onSaleContext); } private void process(OnSaleContext onSaleContext) { onSaleProcessPhase.process(onSaleContext); } } 每个Phase又可以拆解成多个步骤(Step),以OnSaleProcessPhase为例,它是由一系列Step组成的: @Phase public class OnSaleProcessPhase { @Resource private PublishOfferStep publishOfferStep; @Resource private BackOfferBindStep backOfferBindStep; //省略其它step public void process(OnSaleContext onSaleContext){ SupplierItem supplierItem = onSaleContext.getSupplierItem(); // 生成OfferGroupNo generateOfferGroupNo(supplierItem); // 发布商品 publishOffer(supplierItem); // 前后端库存绑定 backoffer域 bindBackOfferStock(supplierItem); // 同步库存路由 backoffer域 syncStockRoute(supplierItem); // 设置虚拟商品拓展字段 setVirtualProductExtension(supplierItem); // 发货保障打标 offer域 markSendProtection(supplierItem); // 记录变更内容ChangeDetail recordChangeDetail(supplierItem); // 同步供货价到BackOffer syncSupplyPriceToBackOffer(supplierItem); // 如果是组合商品打标,写扩展信息 setCombineProductExtension(supplierItem); // 去售罄标 removeSellOutTag(offerId); // 发送领域事件 fireDomainEvent(supplierItem); // 关闭关联的待办事项 closeIssues(supplierItem); } } 看到了吗,这就是商品上架这个复杂业务的业务流程。需要流程引擎吗?不需要,需要设计模式支撑吗?也不需要。对于这种业务流程的表达,简单朴素的组合方法模式(Composed Method)是再合适不过的了。 因此,在做过程分解的时候,我建议工程师不要把太多精力放在工具上,放在设计模式带来的灵活性上。而是应该多花时间在对问题分析,结构化分解,最后通过合理的抽象,形成合适的阶段(Phase)和步骤(Step)上。 过程分解后的两个问题的确,使用过程分解之后的代码,已经比以前的代码更清晰、更容易维护了。不过,还有两个问题值得我们去关注一下: 1、领域知识被割裂肢解什么叫被肢解? 因为我们到目前为止做的都是过程化拆解,导致没有一个聚合领域知识的地方。每个Use Case的代码只关心自己的处理流程,知识没有沉淀。相同的业务逻辑会在多个Use Case中被重复实现,导致代码重复度高,即使有复用,最多也就是抽取一个util,代码对业务语义的表达能力很弱,从而影响代码的可读性和可理解性。 2、代码的业务表达能力缺失 试想下,在过程式的代码中,所做的事情无外乎就是取数据--做计算--存数据,在这种情况下,要如何通过代码显性化的表达我们的业务呢? 说实话,很难做到,因为我们缺失了模型,以及模型之间的关系。脱离模型的业务表达,是缺少韵律和灵魂的。 举个例子,在上架过程中,有一个校验是检查库存的,其中对于组合品(CombineBackOffer)其库存的处理会和普通品不一样。原来的代码是这么写的: boolean isCombineProduct = supplierItem.getSign().isCombProductQuote(); // supplier.usc warehouse needn't check if (WarehouseTypeEnum.isAliWarehouse(supplierItem.getWarehouseType())) { // quote warehosue check if (CollectionUtil.isEmpty(supplierItem.getWarehouseIdList()) && !isCombineProduct) { throw ExceptionFactory.makeFault(ServiceExceptionCode.SYSTEM_ERROR, "亲,不能发布Offer,请联系仓配运营人员,建立品仓关系!"); } // inventory amount check Long sellableAmount = 0L; if (!isCombineProduct) { sellableAmount = normalBiz.acquireSellableAmount(supplierItem.getBackOfferId(), supplierItem.getWarehouseIdList()); } else { //组套商品 OfferModel backOffer = backOfferQueryService.getBackOffer(supplierItem.getBackOfferId()); if (backOffer != null) { sellableAmount = backOffer.getOffer().getTradeModel().getTradeCondition().getAmountOnSale(); } } if (sellableAmount < 1) { throw ExceptionFactory.makeFault(ServiceExceptionCode.SYSTEM_ERROR, "亲,实仓库存必须大于0才能发布,请确认已补货.\r[id:" + supplierItem.getId() + "]"); } } 然而,如果我们在系统中引入领域模型之后,其代码会简化为如下: if(backOffer.isCloudWarehouse()){ return; } if (backOffer.isNonInWarehouse()){ throw new BizException("亲,不能发布Offer,请联系仓配运营人员,建立品仓关系!"); } if (backOffer.getStockAmount() < 1){ throw new BizException("亲,实仓库存必须大于0才能发布,请确认已补货.\r[id:" + backOffer.getSupplierItem().getCspuCode() + "]"); } 有没有发现,使用模型的表达要清晰易懂很多,而且也不需要做关于组合品的判断了,因为我们在系统中引入了更加贴近现实的对象模型(CombineBackOffer继承BackOffer),通过对象的多态可以消除我们代码中的大部分的if-else。 过程分解+对象模型 通过上面的案例,我们可以看到有过程分解要好于没有分解,过程分解+对象模型要好于仅仅是过程分解。对于商品上架这个case,如果采用过程分解+对象模型的方式,最终我们会得到一个如下的系统结构: 写复杂业务的方法论 通过上面案例的讲解,我想说,我已经交代了复杂业务代码要怎么写:即自上而下的结构化分解+自下而上的面向对象分析。 接下来,让我们把上面的案例进行进一步的提炼,形成一个可落地的方法论,从而可以泛化到更多的复杂业务场景。 上下结合 所谓上下结合,是指我们要结合自上而下的过程分解和自下而上的对象建模,螺旋式的构建我们的应用系统。这是一个动态的过程,两个步骤可以交替进行、也可以同时进行。这两个步骤是相辅相成的,上面的分析可以帮助我们更好的理清模型之间的关系,而下面的模型表达可以提升我们代码的复用度和业务语义表达能力。其过程如下图所示: 使用这种上下结合的方式,我们就有可能在面对任何复杂的业务场景,都能写出干净整洁、易维护的代码。 能力下沉 一般来说实践DDD有两个过程: 1. 套概念阶段 了解了一些DDD的概念,然后在代码中“使用”Aggregation Root,Bonded Context,Repository等等这些概念。更进一步,也会使用一定的分层策略。然而这种做法一般对复杂度的治理并没有多大作用。 2. 融会贯通阶段 术语已经不再重要,理解DDD的本质是统一语言、边界划分和面向对象分析的方法。 大体上而言,我大概是在1.7的阶段,因为有一个问题一直在困扰我,就是哪些能力应该放在Domain层,是不是按照传统的做法,将所有的业务都收拢到Domain上,这样做合理吗?说实话,这个问题我一直没有想清楚。 因为在现实业务中,很多的功能都是用例特有的(Use case specific)的,如果“盲目”的使用Domain收拢业务并不见得能带来多大的益处。相反,这种收拢会导致Domain层的膨胀过厚,不够纯粹,反而会影响复用性和表达能力。 鉴于此,我最近的思考是我们应该采用能力下沉的策略。 所谓的能力下沉,是指我们不强求一次就能设计出Domain的能力,也不需要强制要求把所有的业务功能都放到Domain层,而是采用实用主义的态度,即只对那些需要在多个场景中需要被复用的能力进行抽象下沉,而不需要复用的,就暂时放在App层的Use Case里就好了。 注:Use Case是《架构整洁之道》里面的术语,简单理解就是响应一个Request的处理过程 通过实践,我发现这种循序渐进的能力下沉策略,应该是一种更符合实际、更敏捷的方法。因为我们承认模型不是一次性设计出来的,而是迭代演化出来的。 下沉的过程如下图所示,假设两个use case中,我们发现uc1的step3和uc2的step1有类似的功能,我们就可以考虑让其下沉到Domain层,从而增加代码的复用性。 指导下沉有两个关键指标:代码的复用性和内聚性。 复用性是告诉我们When(什么时候该下沉了),即有重复代码的时候。 内聚性是告诉我们How(要下沉到哪里),功能有没有内聚到恰当的实体上,有没有放到合适的层次上(因为Domain层的能力也是有两个层次的,一个是Domain Service这是相对比较粗的粒度,另一个是Domain的Model这个是最细粒度的复用)。 比如,在我们的商品域,经常需要判断一个商品是不是最小单位,是不是中包商品。像这种能力就非常有必要直接挂载在Model上。 public class CSPU { private String code; private String baseCode; //省略其它属性 /** * 单品是否为最小单位。 * */ public boolean isMinimumUnit(){ return StringUtils.equals(code, baseCode); } /** * 针对中包的特殊处理 * */ public boolean isMidPackage(){ return StringUtils.equals(code, midPackageCode); } } 之前,因为老系统中没有领域模型,没有CSPU这个实体。你会发现像判断单品是否为最小单位的逻辑是以StringUtils.equals(code, baseCode)的形式散落在代码的各个角落。这种代码的可理解性是可想而知的,至少我在第一眼看到这个代码的时候,是完全不知道什么意思。 业务技术要怎么做 写到这里,我想顺便回答一下很多业务技术同学的困惑,也是我之前的困惑:即业务技术到底是在做业务,还是做技术?业务技术的技术性体现在哪里? 通过上面的案例,我们可以看到业务所面临的复杂性并不亚于底层技术,要想写好业务代码也不是一件容易的事情。 业务技术和底层技术人员唯一的区别是他们所面临的问题域不一样。业务技术面对的问题域变化更多、面对的人更加庞杂。而底层技术面对的问题域更加稳定、但对技术的要求更加深。比如,如果你需要去开发Pandora,你就要对Classloader有更加深入的了解才行。 但是,不管是业务技术还是底层技术人员,有一些思维和能力都是共通的。比如,分解问题的能力,抽象思维,结构化思维等等。 用我的话说就是:“做不好业务开发的,也做不好技术底层开发,反之亦然。业务开发一点都不简单,只是我们很多人把它做“简单”了因此,如果从变化的角度来看,业务技术的难度一点不逊色于底层技术,其面临的挑战甚至更大。 因此,我想对广大的从事业务技术开发的同学说:沉下心来,夯实自己的基础技术能力、OO能力、建模能力... 不断提升抽象思维、结构化思维、思辨思维... 持续学习精进,写好代码。我们可以在业务技术岗做的很”技术“!。

茶什i 2020-01-10 11:53:44 0 浏览量 回答数 0

回答

先说结论: 不要对接!不要对接!不要对接! 开个玩笑,以上仅代表个人观点,大家也知道这种“三体式警告”根本没有用的,我自己也研究如何对接,说不定做完后就觉得“真香”了。 为什么要对接? 首先讨论一下为什么要把 Flutter 对接到 Web 生态。 Flutter 现在是一个炙手可热的跨平台技术,能够一套代码运行在 Android、iOS、PC、IoT 以及浏览器上,被认为是下一代跨平台技术。相比于 Weex 和 React Native 可以很好地解决多平台一致性问题,原生渲染性能相近,上层没有 JS 那么厚的封装层次,整体性能会略好一些。 但是大部分兴冲冲去学 Flutter 的人疑惑的第一个问题就是:为什么 Flutter 要用 Dart?一个全新的语言意味着新的学习成本,难道 JS 不香吗?JS 不香不是还有 TypeScript 吗!事实上 Flutter 抛弃的岂止是 JS 这门语言,也抛弃了 HTML 和 CSS,设计了一套解耦得更好的 Widget 体系,Flutter 抛弃的是整个 Web,致力于打造一个新的生态,但是这个生态无法复用 Web 生态的代码和解决方案。尤其是之前所有跨平台方案 Hybrid、React Native、Weex 都是对接 Web 生态的,这让 Flutter 显得有些格格不入,也让大部分前端开发者望而却步。 下面是我整理出来的,前端开发者使用 Flutter 的各方面成本: 因为 Flutter 的开发模式和前端框架比较像(可以说就是抄的 React),所以框架的学习成本并不高,稍微高一些的是 Dart 语言的学习成本,另外还要学习如何用 Widget 组装 UI,虽然很多布局 Widget 设计得和 CSS 很像,灵活度还是差了很多。要想在真实项目中用起来,还要改造整个工具链,以“Native First”的视角做开发,开发 Flutter 和开发原生应用的链路是比较像的,和开发前端页面有较大差异。最高的还是生态成本,前端生态的积累无论是代码还是技术方案都很难复用,这是最痛的一点,生态也是 Flutter 最弱的一环。 无论是为了先进的技术理念还是出于商业私心,先不管 Flutter 为什么抛弃 Web 生态,现实问题是最大的 UI 开发者群体是前端,最丰富的生态是 Web 生态,我觉得 Web 技术也是开发 UI 最高效的方式。如果能在上层使用 Web 技术栈开发,在底层使用 Flutter 实现跨平台渲染,不是可以很好的兼顾开发效率、性能和跨平台一致性吗?还能复用 Web 技术栈大量的技术积累。 可能这些理由也不够充分,暂且先照着这个假设继续分析,最后再重新讨论到底该不该对接。 关于 Flutter 和 Web 生态的对接涉及两个方面: 从 Web 到 Flutter。就是使用 Web 技术栈来开发,然后对接到 Flutter 上实现跨平台渲染。对 Web 来说是解决性能和跨平台一致性问题,对 Flutter 来说是解决生态复用问题。从 Flutter 到 Web。就是官方已经实现的 Web support for Flutter,把已经用 Dart 开发好的 App 编译成 HTML/JS/CSS 然后运行在浏览器上,可以用于降级和外投场景。 如何实现“从 Web 到 Flutter”? 首先分析一下 Flutter 的架构图,看看可以从哪里下手。 Flutter 可以分为 Framework 和 Engine 两部分,Engine 部分比较底层也比较稳定了,最好不要动,需要改的是用 Dart 实现的 Framework。要想对接 Web 生态的话,JS 引擎肯定是要引入的,至于是否保留 Dart VM 有待讨论。图中最上面 Material 和 Cupertino 两个 UI 库前端是不需要的,前端有自己的。关键是 Widget 这部分,是替换成 HTML/CSS 的方式写 UI,还是继续保留 Widget 但是把语言换成 JS,不同方案给出的解法也不一样。 有不少方案可以实现对接,业界有挺多尝试的,我总结了下面三种方式: - TS 魔改:用 JS 引擎替换掉 Dart VM,用 JS/TS 重新实现 Flutter Framework(或者直接 dart2js 编译过来)。 - JS 对接:引入 JS 引擎同时保留 Dart VM,用前端框架对接 Flutter Framework。 - C++ 魔改:用 JS 引擎替换掉 Dart VM,用 C++ 重新实现 Flutter Framework。 TS 魔改 TS 魔改就是完全抛弃掉 Dart VM,用 TypeScript 重新实现一遍用 Dart 写的 Flutter Framework。 为啥是 TS 而不是 JS?这不是因为 TS 是个大热门嘛,而且向下兼容 JS,现在几乎所有时髦的框架都要用 TS 重写了。 这种方案的出发点是“如果能把 Flutter 的 Dart 换成 JS 就好了”,最容易想到的路就是把 Dart 翻译成 TS,或者直接用 dart2js 把代码编译成 js,但是编译出来的代码包含很多 dart:ui 之类的库的封装,生成的包也挺大的,也比较难定制需要导出的接口,不如干脆用 TS 重写一遍,工具链更熟悉一些,还可以加一些定制。 理论上讲翻译之后 Flutter 绝大部分功能都依然支持,可以复用各种 npm 包,还可以动态化,但是丧失了 AOT 能力,JS 语言的执行性能应该是不如 Dart 的。而且所有节点的布局运算都发生在 JS,底层只需要提供基础的图形能力就好了,就好像是基于 Canvas API 写了一套 UI 框架,性能未必有现存前端框架的性能高。 此外最大的问题是如何与官方 Flutter 保持一致,假如现在是从 v1.13 版本翻译过来的,以后官方升级到了 v1.15 要不要同步更新?这个过程没啥技术含量,而且需要持续投入,做起来比较恶心。 另外还需要考虑上层是用 Widget 的方式写 UI,还是用前端熟悉的 HTML+CSS。如果依然用 Widget 的话,那大部分前端组件还是用不了的,UI 还是得重写一遍。反正要重写的话,成本也没降下来,那就用 Dart 重写呗…… 直接用官方原版 Flutter 也避免每次更新都要翻译一遍 Dart 代码。所以既然选择了对接前端生态,那就要对接 CSS,不然就没有足够的价值。然而 CSS 和 Widget 的对接也是很繁琐的过程,而且存在完备性问题。 JS 对接 翻译代码的方式不够优雅,那就保留 Dart,把 JS/CSS 对接到 Widget 上面不就好了? 当然可以,这种方式是仅把 Flutter 当做了底层的渲染引擎,上层保持前端框架的写法,仅把渲染部分对接到 Flutter。现存的很多前端框架都把底层渲染能力做了抽象,可以对接到不同渲染引擎上,如 Vue/Rax 同时支持浏览器和 Weex,用同样的方式,可以再支持一个 Flutter。 这种方式对前端框架的兼容性比较好,但是链路太长了,业务代码调用前端框架接口做渲染,一顿操作之后发出了渲染指令,这个渲染指令要基于通信的方式传给 Flutter Framework,这中间涉及一次 JS 到 C++ 再到 Dart 的跨语言转换,然后再接收到渲染指令之后还要转成相应的 Widget 树,从 CSS 到 Widget 的转换依然很繁琐。而且 Widget 本身是可以带有状态的,本身就是响应式更新的,在更新时会重新生成 widget 并 diff,如果在前端更新 UI 的话,前端框架在 js 里 diff 一次 vdom,传到 Flutter 之后又 diff 一次 widget。 如果要绕过 Widget 直接对接图中的 Rendering 这一层,可以绕过 widget diff 但是得改 Flutter Framework 的渲染链路,既然要改 Flutter Framework 那为什么不直接用 TS 魔改呢,还绕过了 JS 到 Dart 的通信,又回到了第一种方案。 总结来说,这个方案的优点是:实现简单、能最大化保留前端开发体验,缺点是:渲染链路长、通信成本高、响应式逻辑冲突、CSS 转 Widget 不完备等。 C++ 魔改 想要干掉 Dart VM,就需要用其他语言重新实现用 Dart 开发的 Framework,用 JS/TS 可以,用 C++ 当然可以,最硬核的方式就是用 C++ 重新实现 Flutter 的 Framework,然后接入 JS 引擎,通过 binding 把 C++ 接口透出到 JS 环境,上层应用还是用 JS 做开发。 把 Framework 层下沉到 C++ 之后,不仅会有更好的性能,也能支持更多语言。原本 Flutter Framework 是在 Dart VM 之上的,必须依赖 Dart VM 才能运行,所以对 Dart 有强依赖;用 C++ 重新实现之后,JS 引擎是在 C++ 版 Framework 之上的,框架本身并不依赖 JS 引擎,还可以对接其他各种语言,如对接了 JVM 之后可以支持 Java 和 Kotlin,对接回 Dart VM 可以继续支持 Dart。 这个方案可以增强性能,也能保持和 Flutter 的一致性,但是改造成本和维护成本都相当高。C++ 的开发效率肯定不如 Dart,当 Flutter 快速迭代之后如何跟进是很大的问题,如果跟进不及时或者实现不一致那很可能就分化了。从 CSS 到 Widget 的转换也是不得不面对的问题。 几种方案对比 把上面几种方案画在同一张图里是这个样子的: 图中实线部分表示了跨语言的通信,太过频繁会影响性能,虚线部分表示了其他对接可能性。 从下到上,Flutter Engine 是不需要动的,这一层是跨平台的关键。Framework 则有三种语言版本,JS/TS、Dart、C++,性能是 C++ 版本最好,成本是 Dart 版本最低。然后还需要向上处理 HTML/CSS 和 Widget 的问题,可以直接对接一个前端框架,也可以直接在 C++ 层实现(不然需要透出的 binding 接口就太多了,用通信的方式也太过频繁了)。 如何实现“从 Flutter 到 Web”? 这个功能官方已经实现了,可以把使用 Dart 开发的 App 编译成 Web App 运行在浏览器上,官方文档以介绍用法和 API 为主,我这里简单分析一下内部具体的实现方案。 实现原理 结合 Flutter 的架构图来看,要实现 Web 到 Flutter 需要改造的是上层 Framework,要实现 Flutter 到 Web 需要改造的则是底层 Engine。 Framework 对 Engine 的核心依赖是 dart:ui,这是库是在 Engine 里实现的,抽象出了绘制 UI 图层的接口,底层对接 skia 的实现,向上透出 Dart 语言的接口。这样来看,对接方式就比较简单了: 使用 dart2js 把 Framework 编译成 JS 代码。基于浏览器的 API 重新实现 dart:ui,即 dart:web_ui。 把 Dart 编译成 JS 没什么问题,性能可能会有一点影响,功能都是可以完全保留的,关键是 dart:web_ui 的实现。在原生 Engine 中,dart:ui 依赖 skia 透出的 SkCanvas 实现绘制,这是一套很底层的图形接口,只定义了画线、画多边形、贴图之类的底层能力,用浏览器接口实现这一套接口还是很有挑战的。上图可以看到 Web 版 Engine 是基于 DOM 和 Canvas 实现的,底层定义了 DomCanvas 和 BitmapCanvas 两种图形接口,会把传来的 layer tree 渲染成浏览器的 Element tree,但是节点上仅包含了 position, transform, opacity 之类的样式,只用到 CSS 很小的一个子集,一些更复杂的绘制直接用 2D canvas 实现。 存在的问题 我编译了一个还算复杂的 demo 试了一下,性能很不理想,滑动不流畅,有时候图片还会闪动。生成出来的 js 代码有 1.1MB (minify 之后,未 gzip),节点层次也比较深,我评估这个页面用前端写不会超过 300KB,节点数可以少一半以上。 另外再看一下 Flutter 仓库的 issue,过滤出 platfrom-web 相关的,可以看到大量:文字编辑失效、找不到光标、ListView 在 ios 上不可滚动、checkbox/button 行为不正常、安卓滚动卡顿图片闪烁、字体失效、某些机型视频无法播放、文字选中后无法复制、无法调试…… 感觉 flutter for web 已经陷入泥潭,让人回想起前端当年处理各种浏览器兼容性的噩梦。 这些性能和兼容性问题,核心原因是浏览器未暴露足够的底层能力,以及浏览器处理手势、用户输入和方式和 Flutter 差异巨大。 实现 Flutter Engine 需要的是底层的图形接口和系统能力,虽然canvas 提供了相似的图形接口,如果全部用 canvas 实现的话很难处理可访问性、文本选择、手势、表单等问题,也会存在很多兼容性问题。所以真实方案里用的是 Canvas + DOM 混合的方式,封装层次太高了,渲染链路太长。就好像 Flutter Framework 里进行了一顿猛如虎的操作之后,节点生成好了、布局算好了、绘制属性也处理好了,就差一个画布画出来了,然后交到浏览器手里,又生成一遍 Element,再算一遍布局,在处理一遍绘制,最终才交给了底层的图形库画出来。 再比如长页面的滚动,浏览器里只要一条 CSS (overflow:scroll) 就可以让元素可滚动,手势的监听以及页面的滚动以及滚动动画都是浏览器原生实现的,不需要与 JS 交互,甚至不需要重新 layout 和 paint,只需要 compositing。如上图所示,在 Flutter 中 Animation 和 Gesture 是用 Dart 实现的,编译过来就是 JS 实现的,浏览器本身并不知道这个元素是否可滚,只是不断派发 touchmove 事件,JS 根据事件属性计算节点偏移,然后运算动画,然后把 transform 或者新的 position 作用到节点上,然后浏览器再来一遍完整的渲染流程…… 优化方案 性能和兼容性的问题还是要解决的,短期内先把 issue 解掉,长线的优化方案,官方有两种尝试: 使用 CSS Painting API 做绘制。 a, 这是还处于提案状态的新标准,可以用 JS 实现一些绘制功能,自定义 CSS 属性。 b. 目前还未实现,需要等浏览器先把 CSS Houdini 支持好。 使用 WebAssembly 版本的 Skia 做绘制 https://skia.org/user/modules/canvaskit a, 这样可以发挥 wasm 的性能优势,并且保持 skia 功能的一致。但是目前 wasm 在浏览器环境里未必有性能优势,这里不展开讨论了。 b. 已经部分实现,参考这里的配置启用功能: https://github.com/flutter/flutter/issues/41062#issuecomment-533952994 这两个方案都是想更多的利用到浏览器的底层能力,只有浏览器暴露了更多底层能力,才能更好的实现 Flutter 的 Web Engine。不过这个要等挺久的时间,我们也参与不了,现阶段想要使用 flutter for web,还是得保持现有架构,一起参与进去把 issue 解决掉,优先保障功能,其次优化性能。 一种适应性更好的架构 如果理想化一点,能不能从架构角度让 Flutter 和 Web 生态融合的更好一些呢? 回顾文章最开始的官方架构图,上面是 Framework(Dart),下面是 Engine(C++),切分在 Foundation 这一层,双方之间的交互是几何图形信息。如果还保持这个架构,把切分层次划分的更靠上一些,如下图所示,划分在 Widgets 和 Rendering 这一层,理论上讲对 Flutter 的开发者来说是无感知的,因为上层的开发语言和 Widget 接口都是不变的。 切分在这一层,Framework 和 Engine 之间的交互就不再是几何图形而是节点信息,Widget 的组合、setState 响应式更新、Widget diff 都还在 Dart 中,展开后的 RenderObject 的布局、绘制、裁剪、动画全都在 C++ 中,不仅有更好的性能,还可以与 Engine 有更好的结合。 或者说,还原本保留 Engine 的设计,把下沉的这部分逻辑上划分成 Renderer,就有了如下三层的结构: 这样划分出来的每一层都有明确的定位: Framework: 开发框架。为开发者提供可编程 API,实现响应式的开发模式,提供细粒度 Widget 供开发者自由封装和组合。Renderer: 渲染引擎。专门实现布局、绘制、动画、手势的的处理,这部分功能相对独立,是可以与开发框架解耦的,也不必与特定语言绑定。Engine: 图形引擎。实现跨平台一致的图形接口,合成输入的层并绘制到屏幕上,处理好平台力的接入和适配。 这样切分除了有性能优势以外,也使得渲染引擎摆脱了对 Dart 的依赖,能够支持多种语言,也能支持多种开发模式。对接到 Dart VM 就可以用 Dart 写代码,对接到 JS 引擎就可以用 JS 写代码,对接到 JVM 还可以写 Java,但是无论怎么写,底层的渲染能力是一样的,一套统一的布局算法,动画和手势的处理行为也是一致的。 在这样的架构下,对接 Web 生态就更容易了。Dart 和 Widget 是前端不想要的,希望能换成 JS 和 CSS,但是又想要底层的跨平台一致渲染引擎,那从 Renderer 层开始对接就好了,绕过了所有不想要的,也保留了所有想要的。 要实现 Flutter for Web 也更简单了一些。在 Engine 层做对接,一直苦于浏览器透出的底层能力不够,如果是在 Renderer 之上做对接就更容易一些,基于 JS/CSS/DOM/Canvas 的能力封装出一套 Rendering 接口,供 Widget 调用就好了,这样可以使渲染链路更短一些,但是依然要处理 Widget 和 DOM/CSS 之间的兼容性问题。 再讨论一遍:为什么要对接? 技术上已经分析完了,要想搞定 Flutter 生态和 Web 生态的对接,需要投入很大的成本,所以真正决定做之前,要先讨论清楚为什么要做对接?到底要不要做对接? 首先 Google 官方对 Flutter 的定位就是个问题。Flutter 设计之初就是不考虑 Web 生态的,甚至在刻意回避,倡导的是更贴近原生的开发方式。我之所以在开头说不要对接,原因也很简单:两种技术设计理念不同,不是朝着一个方向发展的,生态不通,技术方案不通,强行融合很可能让彼此都丧失了优势。但是业界又有很多团队在做这种尝试,说明需求是存在的,如果 Google 抵制这个方向,那就不好做了。不过现在官方已经支持了 Flutter for Web,已经向 Web 生态迈了一步,未来是否进一步与 Web 融合,也是有可能的。 另外就是跨平台技术本身的问题,浏览器发展了二三十年,已经是个很强大的跨平台产品了,几乎是 Web 的代名词了,这一点无人能敌。但是也臃肿不堪,有大量历史包袱,性能和体验不够好,和 Native 的结合度差,尤其在移动和 IoT 平台。虽然硬件性能在不断提升,但这是所有软件共享的,浏览器的性能和体验总会比 Native 差一些,差的这一些很可能就是新业务和新场景的发挥空间。观察一下近几年新诞生的业务场景,很多都是利用到了 Native 新提供的能力才火爆起来的,如 AI/AR/ 视频 / 直播 等,有因为新的 Web API 而孵化生出来的商业模式吗? 原文链接: https://mp.weixin.qq.com/s?__biz=MzAxNDEwNjk5OQ==&mid=2650405725&idx=1&sn=0b7476f7c7c01df7fdafda578f9ceb98&chksm=83953345b4e2ba53917ac30b709c07be15bd1c2fd5ae2a8ecfbb129b3813f771621b8fac95ca&scene=27#wechat_redirect

剑曼红尘 2020-03-10 09:54:40 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 SQL审核 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 人工智能 阿里云云栖号 云栖号案例 云栖号直播