• 关于

    bp神经网络的特点是

    的搜索结果
  • 《深度学习导论及案例分析》一2.14通用反向传播算法

    #### 本节书摘来自华章出版社《深度学习导论及案例分析》一书中的第2章,第2.14节,作者李玉鑑 张婷,更多章节内容可以访问云栖社区“华章计算机”公众号查看。 2.14通用反向传播算法 由于深度学习在本质上是人工神经网络的延续,是在克服反向传播算法对深层网络的训练困难过程中逐步发展和建立起来的...

    文章 华章计算机 2017-05-02 917浏览量

  • RBF网络——核心思想:把向量从低维m映射到高维P,低维线性不可分的情况到高维就线性可分了

    RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。 输入X是个m维的向量,样本容量为P,P>m。可以看到输入数据点X...

    文章 桃子红了呐 2017-11-09 1402浏览量

  • 人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

    2016 年,谷歌 AlphaGo 下围棋战胜了人类世界冠军李世石;美国白宫发布了人工智能白皮书;微软研发的 AI 语音识别首次超过了人类...人工智能一跃成为产业发展的主要方向、科技进步的关键源动力。 相信很多人都注意到了这一趋势,但现实是:仍有许多朋友对 AI 一知半解,如雾里看花。究其原因,...

    文章 玄学酱 2017-08-02 991浏览量

  • 《中国人工智能学会通讯》——5.24 受神经元和突触特性的启发

    5.24 受神经元和突触特性的启发 大脑的基本运算单元是神经元,它对某些特定的刺激起反应,并发放动作电位来编码信息。神经元动作电位的发放有显著的噪声,在计算神经学中经常用泊松过程[13]的模型来描述。人脑中具有海量的连接,而这种噪声可以理解为人脑“参数学习”过程中的一种规范化手段[14] 。Dro...

    文章 知与谁同 2017-09-04 905浏览量

  • 带你走进神经网络的“前世今生”

    摘要:提起神经网络,你会想到什么?关于深度学习,你又是否思考过其中的原理呢?从上个世纪四十年代神经网络诞生开始,到今天已经历经70多年的发展,这中间它又经历了什么?本文将带领大家走进神经网络的“前世今生”一探究竟。 本次直播视频精彩回顾,戳这里! 演讲嘉宾简介: 孙飞(花名:丹丰),阿里巴巴...

    文章 青衫染烟雨 2018-03-21 4955浏览量

  • 一文读懂神经网络(附PPT、视频)

    演讲嘉宾简介: 孙飞(丹丰),阿里巴巴搜索事业部高级算法工程师。中科院计算所博士,博士期间主要研究方向为文本分布式表示,在SIGIR、ACL、EMNLP以及IJCAI等会议发表论文多篇。目前主要从事推荐系统以及文本生成相关方面研发工作。 以下内容根据演讲嘉宾视频分享以及PPT整理而成。 本次的...

    文章 技术小能手 2018-03-26 2941浏览量

  • BAT资深算法工程师「Deep Learning」读书系列分享(一) | 分享总结

    雷锋网 AI 科技评论按:「Deep Learning」这本书是机器学习领域的重磅书籍,三位作者分别是机器学习界名人、GAN的提出者、谷歌大脑研究科学家 Ian Goodfellow,神经网络领域创始三位创始人之一的蒙特利尔大学教授 Yoshua Bengio(也是 Ian Goodfel...

    文章 云栖大讲堂 2017-08-01 844浏览量

  • UCL等三强联手提出完全可微自适应神经树:神经网络与决策树完美结合

    【新智元导读】UCL、帝国理工和微软的研究人员合作,将神经网络与决策树结合在一起,提出了一种新的自适应神经树模型ANT,打破往局限,可以基于BP算法做训练,在MNIST和CIFAR-10数据集上的准确率高达到99%和90%。 神经网络的成功关键在于其表示学习的能力。但是随着网络深度的增加,模型的容...

    文章 技术小能手 2018-07-24 1807浏览量

  • CNN卷积神经网络

    一、BP神经网络回顾 人工全连接神经网络 (1)每相邻两层之间的每个神经元之间都是有边相连的 (2)当输入层的特征维度变得很高时,这时全连接网络需要训练               的参数就会增大很多,计算速度就会变得很慢 传统神经网络存在的问题: (1)权值太多,计算量太大 (2)权值太多,...

    文章 飞天小橘子 2018-05-26 1380浏览量

  • Tensorflow快餐教程(8) - 深度学习简史

    深度学习简史 从机器学习流派说起 如果要给机器学习划分流派的话,初步划分可以分为『归纳学习』和『统计学习』两大类。所谓『归纳学习』,就跟我们平时学习所用的归纳法差不多,也叫『从样例中学习』。归纳学习又分为两大类,一类是像我们归纳知识点一样,把知识分解成一个一个的点,然后进行学习。因为最终都要表示成...

    文章 lusing 2018-05-03 2921浏览量

  • 一文读懂 CNN、DNN、RNN 内部网络结构区别

    从广义上来说,NN(或是更美的DNN)确实可以认为包含了CNN、RNN这些具体的变种形式。在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括卷积层或是LSTM单元。但是就题主的意思来看,这里的DNN应该特指全连接的神经元结构,并不包含卷积单元或是时间上的关联。 因此,题主一定要...

    文章 青衫无名 2017-08-01 1689浏览量

  • 一文读懂 CNN、DNN、RNN 内部网络结构区别

    从广义上来说,NN(或是更美的DNN)确实可以认为包含了CNN、RNN这些具体的变种形式。在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括卷积层或是LSTM单元。但是如果说DNN特指全连接的神经元结构,并不包含卷积单元或是时间上的关联。因此,如果一定要将DNN、CNN、RNN...

    文章 玄学酱 2017-08-02 2449浏览量

  • 电子相册搭建(感悟)

    伴随着图像处理技术的飞速发展,推动了图像识别技术的产生和发展,并逐渐成为人工智能领域中重要的组成部分,并广泛地运用于面部识别、指纹识别、医疗诊断等等领域中,发挥重要作用。这也给学生思考课题给了更多的空间,今天小编就来浅谈热门课题方向中图像识别技术,希望给学生更多的启发!图像识别技术概述图像识别技术...

    文章 刘有毅 2020-09-25 172浏览量

  • 独家 | 一文读懂优化算法

    一、前言 模拟退火、遗传算法、禁忌搜索、神经网络等在解决全局最优解的问题上有着独到的优点,其中共同特点就是模拟了自然过程。模拟退火思路源于物理学中固体物质的退火过程,遗传算法借鉴了自然界优胜劣汰的进化思想,禁忌搜索模拟了人类有记忆过程的智力过程,神经网络更是直接模拟了人脑。它们之间的联系也非常紧...

    文章 行者武松 2017-10-10 2075浏览量

  • 神经网络和机器学习基础入门分享

             最近在做知识图谱实体对齐和属性对齐中,简单用了下Word2vec谷歌开源代码。Word2vec是一个将单词表征成向量的形式,它可以把文本内容的处理简化为向量空间中的向量运算,计算出向量空间上的相似度,来表示文本语义上的相似度。         Word2vec采用CBOW(Con...

    文章 小珞珞 2015-11-03 6801浏览量

  • 《模式识别原理及工程应用》——第2章 基于贝叶斯决策理论的分类器 2.1 分类器的描述方法

    第2章 基于贝叶斯决策理论的分类器 2.1 分类器的描述方法 分类器是一种计算机程序,它的设计目标是在通过学习后,可自动将数据分到已知类别。分类器常应用在搜索引擎以及各种检索程序中,同时也大量应用于数据分析与预测领域。分类器是一种机器学习程序,因此归为人工智能的范畴。人工智能的多个领域,包括数据挖...

    文章 华章计算机 2017-08-01 1775浏览量

  • 分类算法总结

          目前看到的比较全面的分类算法,总结的还不错.       主要分类方法介绍解决分类问题的方法很多[40-42] ,单一的分类方法主要包括:决策树、贝叶斯、人工神经网络、K-近邻、支持向量机和基于关联规则的分类等;另外还有用于组合单一分类方法的集成学习算法,如Bagging和Boosti...

    文章 云栖-lxl 2015-11-28 679浏览量

  • 【深度学习之美】局部连接来减参,权值共享肩并肩(入门系列之十一)

    系列文章: 一入侯门“深”似海,深度学习深几许(深度学习入门系列之一) 人工“碳”索意犹尽,智能“硅”来未可知(深度学习入门系列之二) 神经网络不胜语,M-P模型似可寻(深度学习入门系列之三) “机器学习”三重门,“中庸之道”趋若人(深度学习入门系列之四) Hello World感知机,懂你我心才...

    文章 【方向】 2017-08-06 23694浏览量

  • 独家 | 一文读懂深度学习

    Figure1. Deep learning导图   前言 深度学习(deep learning)的概念最早可以追溯到1940-1960年间的控制论(cybernetics),之后在1980-1990年间发展为连接主义(connectionism),第三次发展浪潮便是2006年由人工神经网络(A...

    文章 行者武松 2017-08-01 2182浏览量

  • 纯干货:大数据挖掘方法及案例介绍(以后不会再被忽悠了)

    1、数据挖掘的引入 面对山一样高的,海一样广的数据,我们该怎么办? 数据挖掘中的5W问题 为什么要使用数据挖掘? 数据挖掘是什么? 谁在使用数据挖掘? 数据挖掘有哪些方法? 数据挖掘使用在哪些领域? 百度百科中关于数据挖掘的定义如下: 数据挖掘(英语:Data mining),又译为资料探勘、数...

    文章 skyme 2016-05-05 5407浏览量

  • 【直观梳理深度学习关键概念】优化算法、调参基本思路、正则化方式等

    引言 深度学习目前已成为发展最快、最令人兴奋的机器学习领域之一,许多卓有建树的论文已经发表,而且已有很多高质量的开源深度学习框架可供使用。然而,论文通常非常简明扼要并假设读者已对深度学习有相当的理解,这使得初学者经常卡在一些概念的理解上,读论文似懂非懂,十分吃力。另一方面,即使有了简单易用的深度学...

    文章 技术小能手 2017-11-28 2157浏览量

  • 一页纸说清楚“深度学习”

    深度学习:像人脑一样深层次地思考 如果你认为"个性化推荐"系统有了“人工智能”,那你就错了。其实,这些推荐系统背后的运行原理主要基于概率统计、矩阵或图模型,计算机对这些数值运算确实很擅长,但由于采用的只是“经验主义”的实用方法(也即管用就行),而非以“理性主义”的原则真正探求智能产生的原理,所以距...

    文章 小旋风柴进 2017-04-03 1266浏览量

  • CNCC 2016 | 中国工程院高文院士39张PPT带你看懂人工智能60年浪潮

    雷锋网(公众号:雷锋网)按:本文根据高文院士今天上午在 CNCC 2016 上所做的大会特邀报告《人工智能--螺旋上升的60年》编辑整理而来,在未改变原意的基础上略有删减。 高文,北京大学信息科学技术学院教授。中国工程院院士、ACM/IEEE Fellow。1991年获日本东京大学电子工程学博士。...

    文章 青衫无名 2017-08-01 928浏览量

  • 数据挖掘技术

     1. 引言   数据挖掘(data mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。随着信息技术的高速发展,人们积累的数据量急剧增长,动辄以tb计,如何从海量的数据中提取有用的知识成为当务之急。数据挖掘就...

    文章 nieson 2013-12-19 1278浏览量

  • 大牛的《深度学习》笔记,Deep Learning速成教程

    雷锋网(公众号:雷锋网)按:本文由Zouxy责编,全面介绍了深度学习的发展历史及其在各个领域的应用,并解释了深度学习的基本思想,深度与浅度学习的区别和深度学习与神经网络之间的关系。 深度学习,即Deep Learning,是一种学习算法(Learning algorithm),亦是人工智能领域的一...

    文章 青衫无名 2017-08-01 1291浏览量

  • 深度学习的昨天,今天和明天

    机器学习是人工智能领域的一个重要学科.自从20世纪80年代以来机器学习在算法理论和应用等方面都获得巨大成功.2006年以来机器学习领域中一个叫深度学习的课题开始受到学术界广泛关注到今天已经成为互联网大数据和人工智能的一个热潮.深度学习通过建立类似于人脑的分层模型结构对输入数据逐级提取从底层到高层的...

    文章 小旋风柴进 2017-05-02 1983浏览量

  • 机器学习与数据挖掘基本算法初步介绍

    随着互联网技术的发展,特别是web2.0时代的到来,互联网为我们提供了丰富的数据来源,如何充分的利用这些数据,挖掘用户信息,是下一代互联网急需解决的问题。 机器学习和数据挖掘主要是解决以下几个方面的问题,分类与预测,优化,独立特征提取等。机器学习的很多算法都是基于以下图1中模型来进行设计。 ...

    文章 nieson 2014-01-03 2074浏览量

  • 《短文本数据理解(1)》一1.2 短文本理解研究现状

    本节书摘来自华章出版社《短文本数据理解(1)》一书中的第1章,第1.2节,作者王仲远,更多章节内容可以访问云栖社区“华章计算机”公众号查看 1.2 短文本理解研究现状 1.2.1 短文本理解模型概述 本节根据短文本理解所需知识源的属性,将短文本理解模型分为三类:隐性(implicit)语义模型...

    文章 华章计算机 2017-05-02 3445浏览量

  • Tensorflow快餐教程(10) - 循环神经网络

    循环神经网络 上节介绍了在图像和语音领域里大放异彩引发革命的CNN。但是,还有一类问题是CNN所不擅长的。这类问题的特点是上下文相关序列,比如理解文字。这时需要一种带有记忆的结构,于是,深度学习中的另一法宝RNN横空出世了。 大家还记得第8节中我们讲的人工神经网络的第二次复兴吗?没错,第二次复兴的...

    文章 lusing 2018-05-08 2975浏览量

  • 转载:从机器学习谈起

      在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核。当然,本文也面对一般读者,不会对阅读有相关的前提要求。   在进入...

    文章 巴洛克上校 2017-07-07 3957浏览量

1 2 >

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT