Bellman-Ford算法模板
- Bellman-Ford
Bellman-Ford
int n, m; // n表示点数,m表示边数 int dist[N]; // dist[x]存储1到x的最短路距离 struct Edge // 边,a表示出点,b表示入点,w表示边的权重 { int a, b, w; }edges[M]; // 求1到n的最短路距离,如果无法从1走到n,则返回-1。 int bellman_ford() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。 for (int i = 0; i < n; i ++ ) { for (int j = 0; j < m; j ++ ) { int a = edges[j].a, b = edges[j].b, w = edges[j].w; if (dist[b] > dist[a] + w) dist[b] = dist[a] + w; } } if (dist[n] > 0x3f3f3f3f / 2) return -1; return dist[n]; }
本模板来自:AcWing算法基础课
相关博客:bellman-ford