Word

简介: Word

文章目录

一、Word

总结


一、Word

本题链接:Word


题目:


A. Word

time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That’s why he decided to invent an extension for his favorite browser that would change the letters’ register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.


Input

The first line contains a word s — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.


Output

Print the corrected word s. If the given word s has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.


Examples


input

HoUse

output

house


input

ViP

output

VIP


input

maTRIx

output

matrix


本博客给出本题截图:

image.png

题意:输入一个字符串,大写字母多就把字符串都变成大写,小写多或者一样多都变成小写

AC代码

#include <iostream>
#include <string>
using namespace std;
int main()
{
    string a;
    cin >> a;
    int cnt1 = 0, cnt2 = 0;
    for (int i = 0; i < a.size(); i ++ )
        if (a[i] >= 'A' && a[i] <= 'Z') cnt1 ++;
        else cnt2 ++;
    if (cnt1 > cnt2)
        for (int i = 0; i < a.size(); i ++ )
            if (a[i] >= 'a' && a[i] <= 'z')
                a[i] = a[i] - 'a' + 'A';
    if (cnt1 <= cnt2)
        for (int i = 0; i < a.size(); i ++ )
            if (a[i] >= 'A' && a[i] <= 'Z')
                a[i] = a[i] - 'A' + 'a';
    cout << a;
    return 0;
}

总结

水题,不解释


目录
打赏
0
0
0
0
62
分享
相关文章
Word2Vec
Word2Vec是由Google在2013年提出的词嵌入模型,能将词语转化为捕捉语义和句法关系的向量。它包含CBOW和Skip-Gram两种模型,分别通过上下文预测目标词或反之。Word2Vec在文本分类、情感分析等领域广泛应用,并可通过gensim等工具轻松实现。
|
4月前
word技巧
【10月更文挑战第24天】word技巧
61 1
Hello Word你真的理解了么?
Hello Word你真的理解了么?今天教我的表弟,有些感悟
203 0
Hello Word你真的理解了么?
Word Capitalization
Word Capitalization
108 0
Word Capitalization
Word - 原来 Word 竟可以折叠?
Word - 原来 Word 竟可以折叠?
194 0
Word - 原来 Word 竟可以折叠?