人工智能在社交媒体中的应用

简介: 目前,很多公司已开始利用社交媒体平台的巨大潜力,在电子商务、客户服务、市场营销、公共关系等领域发挥作用。但是,管理社交媒体及其所有活动并非易事。这其中包括很多复杂工作,比如创建内容,在适当的时间分享内容,与受众互动,监测活动,管理付费广告,分析数据并创建报告等等。

​通过使用AI工具,市场营销者可以选择合适的社交策略,追踪受众行为,分析营销表现,从而可以令你更专注于营销运营中更具创造性的方面。在本文中,我们将引导您逐步了解有关AI的知识,以及如何使用它来优化社交媒体营销策略。

134ded48314a4d0555e7539edbe9c54607f4ce.jpg

内容智能筛选和推荐
利用大数据描绘用户画像几乎是用户体量上亿的社交媒体平台进入人工智能的敲门砖。在社交媒体刚开始兴起时,好友和订阅几乎是唯一驱动力,用户依靠时间线获取订阅对象和好友的信息。

几年前,Twitter和微博就相继通过信息流优化的方式淡化了时间线的概念,后来Facebook也是用信息流的方式优化了社交媒体。信息流相对于传统时间线而言最大区别就是根据相关性与兴趣性来组织内容呈现,用户可以看到什么,先看到什么后看到什么,都交由黑箱内的算法来定夺。

微博基于自身几亿用户千亿关系近万亿内容,描绘了中国网民图谱;数据类型丰富而且内容广泛。在内容分发上根据关系流和兴趣流直接推荐;从内容生产上挖掘优质内容,自动标题和摘要等。

协助营销分析提升效率
曾与乔布斯联合创立苹果计算机公司的神奇巫师Steve Wozniak在被问及他梦想中的终极产品会是什么时,他回答说希望是“能给他更多时间”的东西。我们生活在一个当谷歌搜索仅仅延迟400毫秒就会导致减少800万搜索量的时代,洞察万物的速度需要飞速提升。

提供社交媒体监测服务的Brandwatch等公司正在试图使用人工智能来减少社交分析师花在搜寻品牌数据上的时间。相比以往平均每周要花费3.2小时,现在社交分析师可以转去处理更重要的事情,而AI使得相关数据更容易被解读同时也更容易被整个组织获取。

Brandwatch通过分析图表中的高峰和低谷,将多元异构的的数据汇总在一起,然后用它来解释为什么某个图表会在某个特定时刻达到顶峰——也许是一篇社媒文章与来自同一行业的新闻事件相吻合,从而吸引新受众进入该频道。这些人工智能的见解使社媒营销的分析报告更加直截了当,因为它们摒弃了社交分析的猜测成分。

改善用户体验
人们喜欢与提供优质服务的品牌开展业务。通过将人工智能整合到社交媒体中,将更加了解受众群体的偏好。人工智能可以创建内容,定位广告并改善产品或服务,从而增强用户体验。它能够迅速识别问题区域并立即修复,及时响应用户的问题投诉,提供最佳的客户体验。

584d60f6686bbcf343e195576f56e72f35f1e2.png

竞争对手分析
如果想保持领先地位,必须了解竞争情况,以找出对应的方法。基于AI的分析可以准确快速地分析竞争对手的社交资料。跟踪他们的覆盖面、参与率、转化率,客户对其的看法以及他们采取的有效策略。有了这些信息,就可以优化自己的社交策略,从而提高参与度并增加转化率。

收集受众观点
人工智能帮助整合了诸如社交倾听之类的工具,这些工具可以大规模分析社交媒体的帖文,倾听人们对品牌的评价,并发现新兴趋势或新的目标受众。

AI产生的消费者观点将巩固与受众的联系,并提高品牌声誉和资产价值。人们可能会以未曾预料的方式使用您的产品和服务,了解这些观点将为品牌推广开辟新途径。

毋庸置疑,随着技术的日益发展和不断成熟,人工智能渗透到传媒行业的各个流程、环节是不可避免的,5G、物联网、大数据等技术也将为行业未来打开无限的想象空间。未来的“智媒”时代,人工智能或许不仅能提升人们在互联网上获取信息时的效率,还能帮助人们更好、更有针对性地获取自己想需要的信息。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

相关文章
|
2天前
|
边缘计算 人工智能 算法
AI在智慧能源管理中的边缘计算应用
AI在智慧能源管理中的边缘计算应用
42 13
|
2天前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。
|
2天前
|
存储 人工智能 Serverless
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术深度解析:生成式AI的革命性突破与产业应用实战
蒋星熠Jaxonic,AI技术探索者,深耕生成式AI领域。本文系统解析AIGC核心技术,涵盖Transformer架构、主流模型对比与实战应用,分享文本生成、图像创作等场景的实践经验,展望技术趋势与产业前景,助力开发者构建完整认知体系,共赴AI原生时代。
62 1
|
5天前
|
人工智能 自然语言处理 算法
现代AI工具深度解析:从GPT到多模态的技术革命与实战应用
蒋星熠Jaxonic,AI技术探索者,深耕代码生成、多模态AI与提示词工程。分享AI工具架构、实战应用与优化策略,助力开发者提升效率,共赴智能编程新纪元。
31 4
|
8天前
|
人工智能 关系型数据库 OLAP
一键搞定本土认证难题,AnalyticDB版Supabase助力AI应用实现支付宝&微信登录
阿里云AnalyticDB PostgreSQL版推出全新第三方身份认证能力,原生支持微信、支付宝、GitHub、Google、Apple等主流平台登录,助力开发者快速构建本土化用户系统。相比传统开发方式,无需从零开发认证模块,5分钟即可完成集成,大幅降低开发成本。适用于AI应用、创业项目及企业级智能应用,提升用户增长效率,实现安全、便捷的身份管理。
|
8天前
|
人工智能 Kubernetes 安全
重塑云上 AI 应用“运行时”,函数计算进化之路
回顾历史,电网的修建,深刻地改变了世界的经济地理和创新格局。今天,一个 AI 原生的云端运行时的进化,其意义也远不止于技术本身。这是一次设计哲学的升华:从“让应用适应平台”到“让平台主动理解和适应智能应用”的转变。当一个强大、易用、经济且安全的 AI 运行时成为像水电一样的基础设施时,它将极大地降低创新的门槛。一个独立的开发者、一个小型创业团队,将有能力去创造和部署世界级的 AI 应用。这才是技术平权的真谛,是激发全社会创新潜能的关键。
|
8天前
|
人工智能 算法 数据挖掘
AI Agent工作流实用手册:5种常见模式的实现与应用,助力生产环境稳定性
本文介绍了五种AI Agent结构化工作流模式,帮助解决传统提示词方式在生产环境中输出不稳定、质量不可控的问题。通过串行链式处理、智能路由、并行处理、编排器-工作器架构和评估器-优化器循环,可提升任务执行效率、资源利用和输出质量,适用于复杂、高要求的AI应用。
143 0
AI Agent工作流实用手册:5种常见模式的实现与应用,助力生产环境稳定性
人工智能 关系型数据库 OLAP
63 0
|
14天前
|
人工智能 数据可视化 测试技术
AI 时代 API 自动化测试实战:Postman 断言的核心技巧与实战应用
AI 时代 API 自动化测试实战:Postman 断言的核心技巧与实战应用
198 11