【智能优化算法】基于改进生物地理学优化算法求解单目标优化问题附matlab代码

简介: 【智能优化算法】基于改进生物地理学优化算法求解单目标优化问题附matlab代码

 1 内容介绍

生物地理学(Biogeography)是一门研究自然界种群迁移机制的科学,Dan Simon用生物地理学的方法和机制来解决工程优化问题,提出了生物地理学优化算法(BBO,Biogeography-Based Optimization).生物地理学优化算法以其独特的搜索机制和较好的性能在智能优化算法领域得到了广泛的关注.对生物地理学优化算法的设计原理,迁徙模型,算法流程及相应迁移和突变操作进行了综述.

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

2 仿真代码

clc;

clear all;

close all;

% 赋值

OPTIONS.Size = 50;                                          % 栖息地数量

OPTIONS.N = 2;                                              % 变量个数

OPTIONS.span = [-5 5;-5 5];                                 % 寻优参数范围

OPTIONS.I = 1;                                              % 最大迁入率I

OPTIONS.E = 1;                                              % 最大迁出率E

OPTIONS.dt = 1;                                             % 仿真步距

OPTIONS.pmutate = 0.05;                                     % 变异概率

OPTIONS.lmd_span = [0 1];                                   % λ变化范围

OPTIONS.keep = 0.02;                                        % 精英保留机制的比例

OPTIONS.Ps = ones(1,OPTIONS.Size)/OPTIONS.Size;             % 物种数概率

OPTIONS.method = 'ackley';                                  % 基准优化函数选择

OPTIONS.MaxGen = 200;                                       % 迭代次数

OPTIONS.img_disp = 1;                                       % 画图

% 种群初始化

global Habitats_BBO

global Habitats_DGBBO

global Habitats_EMBBO

global best

temp = init(OPTIONS);

Habitats_BBO = temp;    Habitats_DGBBO = temp;  Habitats_EMBBO = temp;  clear temp;

% 迭代

for gen = 1:OPTIONS.MaxGen

   

   time(gen) = gen;

   

   % 执行BBO优化程序

   Habitats_BBO = BBO(Habitats_BBO,OPTIONS);

   best.BBO.Var(gen,:) = Habitats_BBO(1).Var;

   best.BBO.Cost(gen) = Habitats_BBO(1).Cost;

   

   % 执行DGBBO优化程序

   Habitats_DGBBO = DGBBO(Habitats_DGBBO,OPTIONS,gen);

   best.DGBBO.Var(gen,:) = Habitats_DGBBO(1).Var;

   best.DGBBO.Cost(gen) = Habitats_DGBBO(1).Cost;

   

   % 执行EMBBO优化程序

   Habitats_EMBBO = EMBBO(Habitats_EMBBO,OPTIONS,gen);

   best.EMBBO.Var(gen,:) = Habitats_EMBBO(1).Var;

   best.EMBBO.Cost(gen) = Habitats_EMBBO(1).Cost;

   

   % 画图

   image_display(gen,OPTIONS);

   

end

3 运行结果

image.gif编辑

4 参考文献

[1]吕超. 基于生物地理学和粒子群的混合优化算法及其应用[D]. 兰州大学.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
18天前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
12天前
|
存储 监控 算法
解析公司屏幕监控软件中 C# 字典算法的数据管理效能与优化策略
数字化办公的时代背景下,企业为维护信息安全并提升管理效能,公司屏幕监控软件的应用日益普及。此软件犹如企业网络的 “数字卫士”,持续记录员工电脑屏幕的操作动态。然而,伴随数据量的持续增长,如何高效管理这些监控数据成为关键议题。C# 中的字典(Dictionary)数据结构,以其独特的键值对存储模式和高效的操作性能,为公司屏幕监控软件的数据管理提供了有力支持。下文将深入探究其原理与应用。
31 4
|
12天前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
18天前
|
机器学习/深度学习 人工智能 JSON
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
159 18
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
|
1月前
|
机器学习/深度学习 存储 算法
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
85 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
12天前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
12天前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
1月前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
|
1月前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。

热门文章

最新文章