【图像分割】基于粒子群、文化、进化策略算法实现化石图像分割附matlab代码

本文涉及的产品
视觉智能开放平台,视频通用资源包5000点
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 【图像分割】基于粒子群、文化、进化策略算法实现化石图像分割附matlab代码

 1 内容介绍

Start

Loading Image

Training Using Evolution Strategy Algorithm (Input: Raw Image and Target Histogram Vector)

Goal: To Adjusting the Intensity by Equalizing the Image Histogram

Initialize the Population Size N and Number of Generations

While (number of generations is not reached)

Recombination of Attributes and Variances of Individuals

Mutation of Attributes and Variances

Evaluation of Fitness Function for Individuals

Selection for New and Best Individuals (Best Target Histogram Value)

End While

Apply Best Selected Target Histogram Vector

End of ES

Output: Evolutionary Intensity Adjusted of Target Histogram for Raw Input Image

Training Using Cultural Algorithm (Input: ES Equalized Histogram Image and Threshold Levels Vector)

Goal: To Quantize the Image by Fitting Threshold Level

Initialize the Population Size N and Number of Generations

While (number of generations is not reached)

Fitness Evaluation

Updating Belief Space

Reproduction Operators

Influence and Acceptance Functions

Selecting Best Individuals (Best Threshold Value)

End While

Apply Best Selected Threshold Level Vector

End of CA

Output: Evolutionary Fitted Threshold Level for Input Image

Training Using Simulated Annealing Algorithm (Input: Quantized Image and Filter Matrix)

Goal: To Select Best Edge Filters

Initialize the Population Size N and Number of Generations

While (number of generations is not reached)

Objective Function Evaluation

If Objective Function Decreases

Update the Best Solution for Each Filter Vector

Reduce the Current Temperature

Generate a New Trial Solution and Go to Evaluation Step

Else If Metropolis Criterion Is Meet

Go to Update Step

Else

Go to Reduce Temperature Step

End While

Apply Best Selected Edge Filter

End of SA

Output: Evolutionary Edge Detected Image

Training Using Particle Swarm Optimization + SA (Input: Edge Detected Input Image)

Goal: To Segment the Input Image

Initialize the Population Size N and Number of Generations

While (number of generations is not reached)

Initialized Particles with Random Position and Velocity for PSO

Evaluate the Fitness of Particles for each Pixel and Their Corresponding Distance for PSO

Objective Function Evaluation for SA as Optimizer

Find and update pbest and gbest for PSO

Reduce The Current Temperature for SA

Calculate and Update Velocity and Position for PSO

Generate a New Trial Solution and Go to Evaluation Step for SA

Show gbest the Optimal Solution for PSO

Desirable Temperature Reached for SA

Update the Best Solution Found for Pixel and Distance by PSO+SA

End While

Apply Best Clusters Found on Image to Segment

End of PSOSA

Overlay All Evolutionary Techniques

Output: Evolutionary Segmented Image

End

2 仿真代码

function Culture = AdjustCulture(Culture, spop)

n = numel(spop);

nVar = numel(spop(1).Position);

for i = 1:n

if spop(i).Cost<Culture.Situational.Cost

Culture.Situational = spop(i);

end

for j = 1:nVar

if spop(i).Position(j)<Culture.Normative.Min(j) ...

|| spop(i).Cost<Culture.Normative.L(j)

Culture.Normative.Min(j) = spop(i).Position(j);

Culture.Normative.L(j) = spop(i).Cost;

end

if spop(i).Position(j)>Culture.Normative.Max(j) ...

|| spop(i).Cost<Culture.Normative.U(j)

Culture.Normative.Max(j) = spop(i).Position(j);

Culture.Normative.U(j) = spop(i).Cost;

end

end

end

Culture.Normative.Size = Culture.Normative.Max-Culture.Normative.Min;

end

3 运行结果

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

4 参考文献

[1]余胜威. 基于FODPSO算法的图像分割及DSP实现[D]. 西南交通大学, 2016.

[2]王建宾. 基于粒子群优化絮体图像分割算法的设计和应用[D]. 华东交通大学.

Mousavi, S. M. H. (2022). Bio-Inspired Fossil Image Segmentation for %% Paleontology. International Journal of Mechatronics, Electrical and %% Computer Technology (IJMEC), 12(45), 5243-5249.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
17天前
|
机器学习/深度学习 算法 新能源
【优化调度】基于matlab粒子群算法求解水火电经济调度优化问题研究(Matlab代码实现)
【优化调度】基于matlab粒子群算法求解水火电经济调度优化问题研究(Matlab代码实现)
|
17天前
|
传感器 并行计算 算法
【无人机编队】基于非支配排序遗传算法II NSGA-II高效可行的无人机离线集群仿真研究(Matlab代码实现)
【无人机编队】基于非支配排序遗传算法II NSGA-II高效可行的无人机离线集群仿真研究(Matlab代码实现)
|
17天前
|
存储 算法 安全
【无人机】基于灰狼优化算法的无人机路径规划问题研究(Matlab代码实现)
【无人机】基于灰狼优化算法的无人机路径规划问题研究(Matlab代码实现)
110 0
|
17天前
|
机器学习/深度学习 传感器 数据采集
【23年新算法】基于鱼鹰算法OOA-Transformer-BiLSTM多特征分类预测附Matlab代码 (多输入单输出)(Matlab代码实现)
【23年新算法】基于鱼鹰算法OOA-Transformer-BiLSTM多特征分类预测附Matlab代码 (多输入单输出)(Matlab代码实现)
|
17天前
|
机器学习/深度学习 数据采集 算法
【创新无忧】基于白鲨算法WSO优化广义神经网络GRNN电机故障诊断(Matlab代码实现)
【创新无忧】基于白鲨算法WSO优化广义神经网络GRNN电机故障诊断(Matlab代码实现)
|
18天前
|
算法 Java 调度
【车间调度】基于GA、PSO、SA、ACO、TS优化算法的车间调度比较研究(Matlab代码实现)
【车间调度】基于GA、PSO、SA、ACO、TS优化算法的车间调度比较研究(Matlab代码实现)
|
17天前
|
机器学习/深度学习 存储 并行计算
【无人机】基于MPC的无人机路径规划研究(Matlab代码实现)
【无人机】基于MPC的无人机路径规划研究(Matlab代码实现)
123 6
|
17天前
|
机器学习/深度学习 边缘计算 人工智能
【无人机】采用NOMA的节能多无人机多接入边缘计算(Matlab代码实现)
【无人机】采用NOMA的节能多无人机多接入边缘计算(Matlab代码实现)
|
17天前
|
机器学习/深度学习 传感器 运维
【电机轴承监测】基于matlab声神经网络电机轴承监测研究(Matlab代码实现)
【电机轴承监测】基于matlab声神经网络电机轴承监测研究(Matlab代码实现)
|
17天前
|
数据采集 算法 调度
【电力系统】基于matlab虚拟电厂内部负荷调度优化模型(matlab+yalmip+cplex)(Matlab代码实现)
【电力系统】基于matlab虚拟电厂内部负荷调度优化模型(matlab+yalmip+cplex)(Matlab代码实现)

热门文章

最新文章