【操作系统】孤儿/僵尸/守护进程

简介: 【操作系统】孤儿/僵尸/守护进程

孤儿/僵尸/守护进程

  • 孤儿进程和僵尸进程以及守护进程都是对调用fork()函数后子进程的描述。

孤儿进程

一个父进程退出,而它的一个或多个子进程还在运行,那么那些子进程将成为孤儿进程。孤儿进程将被 init进程所收养,并由init进程对它们完成状态收集工作。

我们可以通过kill掉父进程来模仿一个孤儿进程。


僵尸进程

一个进程使用fork创建子进程,如果子进程退出,而父进程没有调用wait或waitpid获取子进程的状态信息,那么子进程的进程描述符仍然保存在系统中,这种进程(这个子进程)称之为僵尸进程。

僵尸进程如何产生?

当一个进程调用exit命令结束自己的声明周期时,其实它并没有真正的被销毁,而是留下一个称为僵尸进程的数据结构。

系统调用exit,它的作用是使进程退出,但也仅限于将一个正常的进程变成僵尸进程,并不能将其完全销毁。

在Linux进程的状态中,僵尸进程是非常特殊的一种,它已经放弃了几乎所有的内存空间,没有任何可执行代码,也不能被调度,仅仅在一个进程列表中保留了一个位置,记载该进程的退出状态等信息供其它进程收集。

除此之外,僵尸进程不再占有任何内存空间。它需要它的父进程来为它收尸,如果它的父进程没有安装SIGCHLD信号处理函数,调用wait或waitpid()等待子进程结束,又没有显式忽略该信号,那么它就一直保持僵尸状态,如果这时父进程结束了,那么init进程会自动接手这个子进程,为它收尸,它还是能被清除的,但是如果父进程是一个死循环,无法结束,那么子进程就是一直保持僵尸状态,这就是有时候系统会有很多的僵尸进程。

僵尸进程在系统中的标识

在ubuntu中,利用ps命令,发现标记有的进程就是僵尸进程。

如何清除僵尸进程?

改写父进程,为子进程收尸。具体做法是接收SIGCHLD信号,子进程死后会发送SIGCHLD信号给父进程,父进程收到此信号后,执行waitpid()函数为其(子进程)进行收尸。

就算父进程没有调用wait,内核也会向它发送SIGCHLD消息,默认处理为忽略,我们可以设置一个函数来对其进行处理。

如果把这个子进程(僵尸进程)的父进程杀掉,僵尸进程会变为孤儿进程,由init进程进行管理,init负责进行清理僵尸进程。


守护进程

守护进程是不与任何终端关联的进程,通常情况下守护进程在系统时就在运行,它们以root用户或其他特殊用户(apache和postfix)运行,并能处理一些系统级的任务。(可以理解为,我们打开一个终端,然后在终端上进行shell指令的输入,如果终端被关闭,择我们输入执行的程序中断,守护进程可以理解为,类似于添加nohup命令来执行程序,即后台运行。)

守护进程脱离于终端,是为了避免进程在执行过程中的信息在任何终端上显示,并且进程也不会被任何终端所产生的信息所打断(比如关闭终端等)。

守护进程就类似于一个后台进程。

如何成为一个守护进程?

  1. 调用fork()函数,创建子进程,它会是将来的守护进程。
  2. 在父进程中调用exit,保证子进程不是进程组长。
  3. 调用setsid()函数创建新的会话区。
  4. 将当前目录改成根目录(如果把当前目录作为守护进程的目录,当前目录就不能被卸载,因为它作为守护进程的工作目录)。

    • 补充:
    • 守护进程一般是一直执行到系统关机,在它运行过程中,它所在的目录就不能卸载(unmounted)。通过将它的工作目录转移到根目录,原来来的目录就允许卸载了。也不一定要根目录(这种情况,运行需要超级权限),可以选择一个不需要卸载的路径。—— 守护进程(Daemon)
    • 进程在哪个路径下被运行起来哪个路径就是进程的工作目录(Current Woring Directory, CWD)。——查看进程的工作目录
    • 目前个人把卸载目录理解为,断开目录与进程间的关系。
  5. 将标准输入,标准输出,标准错误重定向到/dev/null。

如何创建一个守护进程?

如下面的daemon函数。
#include <fcntl.h>
#include <unistd.h>

int daemon(int nochdir, int noclose)
{
    int fd;

    switch (fork()) {
    case -1:
        return (-1);
    case 0:
        break;
    default:
        _exit(0);
    }

    if (setsid() == -1)
        return (-1);

    if (!nochdir)
        (void)chdir("/");

    if (!noclose && (fd = open("/dev/null", O_RDWR, 0)) != -1) {
        (void)dup2(fd, STDIN_FILENO);
        (void)dup2(fd, STDOUT_FILENO);
        (void)dup2(fd, STDERR_FILENO);
        if (fd > 2)
            (void)close (fd);
    }
    return (0);
}

补充:

相关文章
|
2天前
|
算法 调度 UED
深入理解操作系统:进程调度与优先级队列
【10月更文挑战第31天】在计算机科学的广阔天地中,操作系统扮演着枢纽的角色,它不仅管理着硬件资源,还为应用程序提供了运行的环境。本文将深入浅出地探讨操作系统的核心概念之一——进程调度,以及如何通过优先级队列来优化资源分配。我们将从基础理论出发,逐步过渡到实际应用,最终以代码示例巩固知识点,旨在为读者揭开操作系统高效管理的神秘面纱。
|
1天前
|
Linux 调度 C语言
深入理解操作系统:进程和线程的管理
【10月更文挑战第32天】本文旨在通过浅显易懂的语言和实际代码示例,带领读者探索操作系统中进程与线程的奥秘。我们将从基础知识出发,逐步深入到它们在操作系统中的实现和管理机制,最终通过实践加深对这一核心概念的理解。无论你是编程新手还是希望复习相关知识的资深开发者,这篇文章都将为你提供有价值的见解。
|
3天前
|
算法 调度 UED
深入理解操作系统的进程调度机制
本文旨在探讨操作系统中至关重要的组成部分之一——进程调度机制。通过详细解析进程调度的概念、目的、类型以及实现方式,本文为读者提供了一个全面了解操作系统如何高效管理进程资源的视角。此外,文章还简要介绍了几种常见的进程调度算法,并分析了它们的优缺点,旨在帮助读者更好地理解操作系统内部的复杂性及其对系统性能的影响。
|
4天前
深入理解操作系统:进程与线程的管理
【10月更文挑战第30天】操作系统是计算机系统的核心,它负责管理计算机硬件资源,为应用程序提供基础服务。本文将深入探讨操作系统中进程和线程的概念、区别以及它们在资源管理中的作用。通过本文的学习,读者将能够更好地理解操作系统的工作原理,并掌握进程和线程的管理技巧。
13 2
|
3天前
|
消息中间件 算法 Linux
深入理解操作系统之进程管理
【10月更文挑战第30天】在数字时代的浪潮中,操作系统作为计算机系统的核心,扮演着至关重要的角色。本文将深入浅出地探讨操作系统中的进程管理机制,从进程的概念入手,逐步解析进程的创建、调度、同步与通信等关键过程,并通过实际代码示例,揭示这些理论在Linux系统中的应用。文章旨在为读者提供一扇窥探操作系统深层工作机制的窗口,同时激发对计算科学深层次理解的兴趣和思考。
|
5天前
|
消息中间件 算法 调度
深入理解操作系统:进程管理与调度策略
【10月更文挑战第29天】本文将带领读者深入探讨操作系统中的核心组件之一——进程,并分析进程管理的重要性。我们将从进程的生命周期入手,逐步揭示进程状态转换、进程调度算法以及优先级调度等关键概念。通过理论讲解与代码演示相结合的方式,本文旨在为读者提供对进程调度机制的全面理解,从而帮助读者更好地掌握操作系统的精髓。
17 1
|
5天前
|
算法 调度 UED
深入理解操作系统中的进程调度
【10月更文挑战第29天】探索进程调度的奥秘,本文将带你深入了解在操作系统中如何管理和控制多个并发执行的程序。从简单的调度算法到复杂的多级反馈队列,我们将逐步揭示如何优化系统性能和提高资源利用率。准备好一起揭开进程调度的神秘面纱吧!
|
5天前
|
调度 Python
深入浅出操作系统:进程与线程的奥秘
【10月更文挑战第28天】在数字世界的幕后,操作系统悄无声息地扮演着关键角色。本文将拨开迷雾,深入探讨操作系统中的两个基本概念——进程和线程。我们将通过生动的比喻和直观的解释,揭示它们之间的差异与联系,并展示如何在实际应用中灵活运用这些知识。准备好了吗?让我们开始这段揭秘之旅!
|
8天前
|
消息中间件 算法 调度
深入理解操作系统:进程管理的艺术
【10月更文挑战第25天】在数字世界的幕后,操作系统扮演着至关重要的角色,它如同一位精心策划的指挥家,协调着硬件与软件之间的和谐交响。本文将带领读者走进操作系统的核心——进程管理,探索它是如何在幕后默默支撑起整个计算系统的运行。我们将从进程的基本概念出发,逐步深入到进程调度、同步以及死锁处理等高级话题,旨在为读者提供一次深入浅出的技术之旅。
10 1
|
9天前
|
算法 调度
探索操作系统的心脏:内核与进程管理
【10月更文挑战第25天】在数字世界的复杂迷宫中,操作系统扮演着关键角色,如同人体中的心脏,维持着整个系统的生命力。本文将深入浅出地剖析操作系统的核心组件——内核,以及它如何通过进程管理来协调资源的分配和使用。我们将从内核的概念出发,探讨它在操作系统中的地位和作用,进而深入了解进程管理的机制,包括进程调度、状态转换和同步。此外,文章还将展示一些简单的代码示例,帮助读者更好地理解这些抽象概念。让我们一起跟随这篇文章,揭开操作系统神秘的面纱,理解它如何支撑起我们日常的数字生活。