【Linux】多进程高并发设计框架示例

简介: 【Linux】多进程高并发设计框架示例

多进程高并发设计框架

  • 建议根据cpu核心数量来设置子进程的数量。
  • 建议将对应某一进程绑定到某一cpu上。(cpu亲缘性)

image-20220817175419400

优点:

  • 充分利用多核系统的并发处理能力。(多个进程在多个不同的核心上运行)
  • 负载均衡。
  • 职责明确,管理进程仅负责管理,工作进程负责处理业务逻辑。

示例:

multip_process.c

#define _GNU_SOURCE
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>

//函数指针 返回值 xx 参数
typedef void (*spawn_proc_pt) (void *data);//函数指针,这里接收void* 类型的参数

static void worker_process_cycle(void *data);
static void start_worker_processes(int n);
pid_t spawn_process(spawn_proc_pt proc, void *data, char *name); 

int main(int argc,char **argv){
    //调用启动工作进程-4个
    start_worker_processes(4);
    //管理子进程
    wait(NULL);
}

//启动子进程
void start_worker_processes(int n){
    int i=0;
    for(i = n - 1; i >= 0; i--){
        //第一个参数为工作进程的处理周期
       spawn_process(worker_process_cycle,(void *)(intptr_t) i, "worker process");
    }
}

//创建子进程
pid_t spawn_process(spawn_proc_pt proc, void *data, char *name){

    pid_t pid;
    pid = fork();//创建子进程

    switch(pid){
    case -1:
        fprintf(stderr,"fork() failed while spawning \"%s\"\n",name);
        return -1;
    case 0:
          proc(data);
          return 0;
    default:
          break;
    }   
    printf("start %s %ld\n",name,(long int)pid);
    return pid;
}

//设置cpu亲缘关系,将进程绑定在其中的一个核上
static void worker_process_init(int worker){
    cpu_set_t cpu_affinity;

    //多核高并发处理 
    CPU_ZERO(&cpu_affinity);
    //参数 -  cpu编号 -掩码地址
    CPU_SET(worker % CPU_SETSIZE,&cpu_affinity);
    //sched_setaffinity
    if(sched_setaffinity(0,sizeof(cpu_set_t),&cpu_affinity) == -1){
       fprintf(stderr,"sched_setaffinity() failed\n");
    }
}

void worker_process_cycle(void *data){
     int worker = (intptr_t) data;
    //工作进程初始化
     worker_process_init(worker);

    //干活
    for(;;){
      sleep(10);
      printf("pid %ld ,doing ...\n",(long int)getpid());
    }
}

执行:

image-20220817185112288

补充:

  • 查看进程在cpu核心上的命令。
ps -eLo ruser,pid,lwp,psr,args

image-20220817185131054

  • 设置CPU亲缘性后,可以发现每个子进程对应一个核心。
  • 若不设置,则存在进程与核心之间的切换,进程从一个核切换到另一个核,进行拷贝与复制,从而浪费了CPU的性能,降低了执行效率。
  • typedef函数指针相关文章——对于函数指针和typedef的结合运用
相关文章
|
15天前
|
缓存 监控 Linux
linux进程管理万字详解!!!
本文档介绍了Linux系统中进程管理、系统负载监控、内存监控和磁盘监控的基本概念和常用命令。主要内容包括: 1. **进程管理**: - **进程介绍**:程序与进程的关系、进程的生命周期、查看进程号和父进程号的方法。 - **进程监控命令**:`ps`、`pstree`、`pidof`、`top`、`htop`、`lsof`等命令的使用方法和案例。 - **进程管理命令**:控制信号、`kill`、`pkill`、`killall`、前台和后台运行、`screen`、`nohup`等命令的使用方法和案例。
48 4
linux进程管理万字详解!!!
|
6天前
|
存储 运维 监控
深入Linux基础:文件系统与进程管理详解
深入Linux基础:文件系统与进程管理详解
43 8
|
27天前
|
Unix Linux
Linux | Rsync 命令:16 个实际示例(下)
Linux | Rsync 命令:16 个实际示例(下)
34 3
Linux | Rsync 命令:16 个实际示例(下)
|
15天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
48 4
|
16天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
17天前
|
消息中间件 存储 Linux
|
24天前
|
运维 Linux
Linux查找占用的端口,并杀死进程的简单方法
通过上述步骤和命令,您能够迅速识别并根据实际情况管理Linux系统中占用特定端口的进程。为了获得更全面的服务器管理技巧和解决方案,提供了丰富的资源和专业服务,是您提升运维技能的理想选择。
25 1
|
1月前
|
安全 Linux Shell
Linux | Rsync 命令:16 个实际示例(上)
Linux | Rsync 命令:16 个实际示例(上)
62 0
Linux | Rsync 命令:16 个实际示例(上)
|
1月前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
【10月更文挑战第9天】本文将深入浅出地介绍Linux系统中的进程管理机制,包括进程的概念、状态、调度以及如何在Linux环境下进行进程控制。我们将通过直观的语言和生动的比喻,让读者轻松掌握这一核心概念。文章不仅适合初学者构建基础,也能帮助有经验的用户加深对进程管理的理解。
22 1
|
1月前
|
消息中间件 Linux API
Linux c/c++之IPC进程间通信
这篇文章详细介绍了Linux下C/C++进程间通信(IPC)的三种主要技术:共享内存、消息队列和信号量,包括它们的编程模型、API函数原型、优势与缺点,并通过示例代码展示了它们的创建、使用和管理方法。
30 0
Linux c/c++之IPC进程间通信