【图像去噪】基于边缘增强扩散 (cEED) 和 Coherence Enhancing Diffusion (cCED) 滤波器实现图像去噪附matlab代码

简介: 【图像去噪】基于边缘增强扩散 (cEED) 和 Coherence Enhancing Diffusion (cCED) 滤波器实现图像去噪附matlab代码

 1 内容介绍

This paper discusses how to maintain more edge information in the process of image denoising. It is well known that in P M diffusion, noise at edges cannot be eliminated successfully and line like structures cannot be held well, while in coherence enhancing diffusion, false textures arise. Thus, a denoising method of jointing these two models comes out. First, a weighted model of combining P M diffusion with coherence enhancing diffusion is built, which emphasizes particularly on coherence enhancing diffusion at edges of an image while on P M diffusion at the other part. Then, how to select parameters in the model is analyzed. An adaptive parameter selection method in P M diffusion is achieved when the percent of the edge pixels in an image is given, and the experiential method to decide the parameters in coherence enhancing diffusion is proposed. And at last, the experimental results show that, compared with some conventional denoising methods, the proposed method can remove noise efficiently in images, keep line like structures well, and has higher peak signal to noise ratio.

2 仿真代码

% Main options fields :  

% - Weickert_lambda (edge detection threshold)

% - final_time (PDE evolution time)

% Secondary options fields :

% - Weickert_choice ('cEED','cCED','EED','CED'. Choice of PDE)

% - Weickert_alpha (diffusion tensors condition number is <=1/alpha)

% - Weickert_m (exponent in Weickert's tensors construction)

% - noise_filter, feature_filter (for structure tensor construction)

% - rescale for unit maximum trace (rescale structure tensors, true by default)

% - max_diff_iter (max number of time steps, and diffusion tensor updates)

% - max_inner_iter (number of inner time steps, between diffusion tensor updates)

% - verbose (true or false)

% Remark on performance: On 'large' cases, such as the MRI below, computation time

% is dominated by the sparse matrix assembly "spmat(col,row,coef,n,n)".

% In case of need, consider the following optimized C++ implementation designed for

% the Insight Toolkit (ITK)

% J. Fehrenbach, J.-M. Mirebeau, L. Risser, S. Tobji,

% Anisotropic Diffusion in ITK, Insight Journal, 2015

% http://www.insight-journal.org/browse/publication/953

addpath('ToolBox');

addpath('ToolBox/AD-LBR');

addpath('ToolBox/TensorConstruction');

addpath('Eig3Folder/Eig3Folder');

disp('----------------- Demo : MRI -----------------')

clear options;

img=double(hdf5read('ImageData/mrbrain_noisy_01.hdf5','/ITKImage/0/VoxelData'))/255;

%options.Weickert_choice = 'cEED'; %Edge enhancing diffusion (default)

options.Weickert_lambda = 0.003; %Edge detection threshold.

options.final_time=8; %PDE evolution time.

options.max_inner_iter=3;

smoothed=NonLinearDiffusion_3D(img,options);

imshow([img(:,:,50),smoothed(:,:,50)]);

pause();

imshow([squeeze(img(:,120,:)),squeeze(smoothed(:,120,:))]);

pause();

imshow([squeeze(img(100,:,:)),squeeze(smoothed(100,:,:))]);

pause();

disp('---------------- Demo : Cos3D ---------------')

clear options;

img=double(hdf5read('ImageData/Cos3D_Noisy.hdf5','/ITKImage/0/VoxelData'))/255;

options.Weickert_choice = 'cCED';

options.Weickert_lambda = 0.02; %Edge detection threshold.

options.final_time=10; %PDE evolution time.

options.noise_filter = fspecial('gaussian',[10,1],4);

options.feature_filter = fspecial('gaussian',[16,1],5);

smoothed=NonLinearDiffusion_3D(img,options);

imshow([img(:,:,90),smoothed(:,:,90)]);

pause();

3 运行结果

image.gif编辑

4 参考文献

[1]Jérme Fehrenbach,  Mirebeau J M . Sparse Non-negative Stencils for Anisotropic Diffusion[J]. Journal of Mathematical Imaging and Vision, 2014.

[2] Ying X H ,  Yin Z H ,  Hua X M , et al. Image Denoising through Combination of P M Diffusion and Coherence Enhancing DiffusionP2M扩散与相干增强扩散相结合的抑制噪声方法[J]. 中国图象图形学报, 2005, 10(2):158-163.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
17天前
|
机器学习/深度学习 边缘计算 人工智能
【无人机】采用NOMA的节能多无人机多接入边缘计算(Matlab代码实现)
【无人机】采用NOMA的节能多无人机多接入边缘计算(Matlab代码实现)
|
17天前
|
机器学习/深度学习 传感器 运维
【电机轴承监测】基于matlab声神经网络电机轴承监测研究(Matlab代码实现)
【电机轴承监测】基于matlab声神经网络电机轴承监测研究(Matlab代码实现)
|
17天前
|
传感器 并行计算 算法
【无人机编队】基于非支配排序遗传算法II NSGA-II高效可行的无人机离线集群仿真研究(Matlab代码实现)
【无人机编队】基于非支配排序遗传算法II NSGA-II高效可行的无人机离线集群仿真研究(Matlab代码实现)
|
17天前
|
机器学习/深度学习 算法 新能源
【优化调度】基于matlab粒子群算法求解水火电经济调度优化问题研究(Matlab代码实现)
【优化调度】基于matlab粒子群算法求解水火电经济调度优化问题研究(Matlab代码实现)
|
17天前
|
机器学习/深度学习 存储 并行计算
【无人机】基于MPC的无人机路径规划研究(Matlab代码实现)
【无人机】基于MPC的无人机路径规划研究(Matlab代码实现)
123 6
|
17天前
|
数据采集 算法 调度
【电力系统】基于matlab虚拟电厂内部负荷调度优化模型(matlab+yalmip+cplex)(Matlab代码实现)
【电力系统】基于matlab虚拟电厂内部负荷调度优化模型(matlab+yalmip+cplex)(Matlab代码实现)
|
17天前
|
存储 并行计算 算法
【图像压缩】在 MATLAB 中使用奇异值分解 (SVD) 进行图像压缩(Matlab代码实现)
【图像压缩】在 MATLAB 中使用奇异值分解 (SVD) 进行图像压缩(Matlab代码实现)
137 3
|
18天前
|
算法 Java 计算机视觉
【图像去模糊】非盲去模糊实景图像处理,使用点扩散函数(PSF)快速去除实景图像中的模糊(Matlab代码实现)
【图像去模糊】非盲去模糊实景图像处理,使用点扩散函数(PSF)快速去除实景图像中的模糊(Matlab代码实现)
118 2
|
18天前
|
机器学习/深度学习 资源调度 算法
【图像去噪的滤波器】非局部均值滤波器的实现,用于鲁棒的图像去噪研究(Matlab代码实现)
【图像去噪的滤波器】非局部均值滤波器的实现,用于鲁棒的图像去噪研究(Matlab代码实现)
|
18天前
|
机器学习/深度学习 分布式计算 算法
【投资组合】具有多个视野的动态投资组合管理研究(Matlab代码实现)
【投资组合】具有多个视野的动态投资组合管理研究(Matlab代码实现)

热门文章

最新文章