Java NIO模型详解

简介: 笔记

新的输入/输出 (NIO) 库是在 JDK 1.4 中引入的,弥补了原来的 I/O 的不足,提供了高速的、面向块的 I/O。@pdai

流与块

I/O 与 NIO 最重要的区别是数据打包和传输的方式,I/O 以流的方式处理数据,而 NIO 以块的方式处理数据。

面向流的 I/O 一次处理一个字节数据:一个输入流产生一个字节数据,一个输出流消费一个字节数据。为流式数据创建过滤器非常容易,链接几个过滤器,以便每个过滤器只负责复杂处理机制的一部分。不利的一面是,面向流的 I/O 通常相当慢。

面向块的 I/O 一次处理一个数据块,按块处理数据比按流处理数据要快得多。但是面向块的 I/O 缺少一些面向流的 I/O 所具有的优雅性和简单性。

I/O 包和 NIO 已经很好地集成了,java.io.* 已经以 NIO 为基础重新实现了,所以现在它可以利用 NIO 的一些特性。例如,java.io.* 包中的一些类包含以块的形式读写数据的方法,这使得即使在面向流的系统中,处理速度也会更快。

通道与缓冲区

1. 通道

通道 Channel 是对原 I/O 包中的流的模拟,可以通过它读取和写入数据。

通道与流的不同之处在于,流只能在一个方向上移动(一个流必须是 InputStream 或者 OutputStream 的子类),而通道是双向的,可以用于读、写或者同时用于读写。

通道包括以下类型:

  • FileChannel:从文件中读写数据;
  • DatagramChannel:通过 UDP 读写网络中数据;
  • SocketChannel:通过 TCP 读写网络中数据;
  • ServerSocketChannel:可以监听新进来的 TCP 连接,对每一个新进来的连接都会创建一个 SocketChannel。

2. 缓冲区

发送给一个通道的所有数据都必须首先放到缓冲区中,同样地,从通道中读取的任何数据都要先读到缓冲区中。也就是说,不会直接对通道进行读写数据,而是要先经过缓冲区。

缓冲区实质上是一个数组,但它不仅仅是一个数组。缓冲区提供了对数据的结构化访问,而且还可以跟踪系统的读/写进程。

缓冲区包括以下类型:

  • ByteBuffer
  • CharBuffer
  • ShortBuffer
  • IntBuffer
  • LongBuffer
  • FloatBuffer
  • DoubleBuffer

缓冲区状态变量

  • capacity:最大容量;
  • position:当前已经读写的字节数;
  • limit:还可以读写的字节数。

状态变量的改变过程举例:

① 新建一个大小为 8 个字节的缓冲区,此时 position 为 0,而 limit = capacity = 8。capacity 变量不会改变,下面的讨论会忽略它。

② 从输入通道中读取 5 个字节数据写入缓冲区中,此时 position 移动设置为 5,limit 保持不变。

③ 在将缓冲区的数据写到输出通道之前,需要先调用 flip() 方法,这个方法将 limit 设置为当前 position,并将 position 设置为 0。

④ 从缓冲区中取 4 个字节到输出缓冲中,此时 position 设为 4。

⑤ 最后需要调用 clear() 方法来清空缓冲区,此时 position 和 limit 都被设置为最初位置。

文件 NIO 实例

以下展示了使用 NIO 快速复制文件的实例:

public static void fastCopy(String src, String dist) throws IOException {
    /* 获得源文件的输入字节流 */
    FileInputStream fin = new FileInputStream(src);
    /* 获取输入字节流的文件通道 */
    FileChannel fcin = fin.getChannel();
    /* 获取目标文件的输出字节流 */
    FileOutputStream fout = new FileOutputStream(dist);
    /* 获取输出字节流的通道 */
    FileChannel fcout = fout.getChannel();
    /* 为缓冲区分配 1024 个字节 */
    ByteBuffer buffer = ByteBuffer.allocateDirect(1024);
    while (true) {
        /* 从输入通道中读取数据到缓冲区中 */
        int r = fcin.read(buffer);
        /* read() 返回 -1 表示 EOF */
        if (r == -1) {
            break;
        }
        /* 切换读写 */
        buffer.flip();
        /* 把缓冲区的内容写入输出文件中 */
        fcout.write(buffer);
        /* 清空缓冲区 */
        buffer.clear();
    }
}

选择器

NIO 常常被叫做非阻塞 IO,主要是因为 NIO 在网络通信中的非阻塞特性被广泛使用。

NIO 实现了 IO 多路复用中的 Reactor 模型,一个线程 Thread 使用一个选择器 Selector 通过轮询的方式去监听多个通道 Channel 上的事件,从而让一个线程就可以处理多个事件。

通过配置监听的通道 Channel 为非阻塞,那么当 Channel 上的 IO 事件还未到达时,就不会进入阻塞状态一直等待,而是继续轮询其它 Channel,找到 IO 事件已经到达的 Channel 执行。

因为创建和切换线程的开销很大,因此使用一个线程来处理多个事件而不是一个线程处理一个事件具有更好的性能。

应该注意的是,只有套接字 Channel 才能配置为非阻塞,而 FileChannel 不能,为 FileChannel 配置非阻塞也没有意义。

1. 创建选择器

Selector selector = Selector.open();

2. 将通道注册到选择器上

ServerSocketChannel ssChannel = ServerSocketChannel.open();
ssChannel.configureBlocking(false);
ssChannel.register(selector, SelectionKey.OP_ACCEPT);

通道必须配置为非阻塞模式,否则使用选择器就没有任何意义了,因为如果通道在某个事件上被阻塞,那么服务器就不能响应其它事件,必须等待这个事件处理完毕才能去处理其它事件,显然这和选择器的作用背道而驰。

在将通道注册到选择器上时,还需要指定要注册的具体事件,主要有以下几类:

  • SelectionKey.OP_CONNECT
  • SelectionKey.OP_ACCEPT
  • SelectionKey.OP_READ
  • SelectionKey.OP_WRITE

它们在 SelectionKey 的定义如下:

public static final int OP_READ = 1 << 0;
public static final int OP_WRITE = 1 << 2;
public static final int OP_CONNECT = 1 << 3;
public static final int OP_ACCEPT = 1 << 4;

可以看出每个事件可以被当成一个位域,从而组成事件集整数。例如:

int interestSet = SelectionKey.OP_READ | SelectionKey.OP_WRITE;

3. 监听事件

int num = selector.select();

使用 select() 来监听到达的事件,它会一直阻塞直到有至少一个事件到达。

4. 获取到达的事件

Set<SelectionKey> keys = selector.selectedKeys();
Iterator<SelectionKey> keyIterator = keys.iterator();
while (keyIterator.hasNext()) {
    SelectionKey key = keyIterator.next();
    if (key.isAcceptable()) {
        // ...
    } else if (key.isReadable()) {
        // ...
    }
    keyIterator.remove();
}

5. 事件循环

因为一次 select() 调用不能处理完所有的事件,并且服务器端有可能需要一直监听事件,因此服务器端处理事件的代码一般会放在一个死循环内。

while (true) {
    int num = selector.select();
    Set<SelectionKey> keys = selector.selectedKeys();
    Iterator<SelectionKey> keyIterator = keys.iterator();
    while (keyIterator.hasNext()) {
        SelectionKey key = keyIterator.next();
        if (key.isAcceptable()) {
            // ...
        } else if (key.isReadable()) {
            // ...
        }
        keyIterator.remove();
    }
}

套接字 NIO 实例

public class NIOServer {
    public static void main(String[] args) throws IOException {
        Selector selector = Selector.open();
        ServerSocketChannel ssChannel = ServerSocketChannel.open();
        ssChannel.configureBlocking(false);
        ssChannel.register(selector, SelectionKey.OP_ACCEPT);
        ServerSocket serverSocket = ssChannel.socket();
        InetSocketAddress address = new InetSocketAddress("127.0.0.1", 8888);
        serverSocket.bind(address);
        while (true) {
            selector.select();
            Set<SelectionKey> keys = selector.selectedKeys();
            Iterator<SelectionKey> keyIterator = keys.iterator();
            while (keyIterator.hasNext()) {
                SelectionKey key = keyIterator.next();
                if (key.isAcceptable()) {
                    ServerSocketChannel ssChannel1 = (ServerSocketChannel) key.channel();
                    // 服务器会为每个新连接创建一个 SocketChannel
                    SocketChannel sChannel = ssChannel1.accept();
                    sChannel.configureBlocking(false);
                    // 这个新连接主要用于从客户端读取数据
                    sChannel.register(selector, SelectionKey.OP_READ);
                } else if (key.isReadable()) {
                    SocketChannel sChannel = (SocketChannel) key.channel();
                    System.out.println(readDataFromSocketChannel(sChannel));
                    sChannel.close();
                }
                keyIterator.remove();
            }
        }
    }
    private static String readDataFromSocketChannel(SocketChannel sChannel) throws IOException {
        ByteBuffer buffer = ByteBuffer.allocate(1024);
        StringBuilder data = new StringBuilder();
        while (true) {
            buffer.clear();
            int n = sChannel.read(buffer);
            if (n == -1) {
                break;
            }
            buffer.flip();
            int limit = buffer.limit();
            char[] dst = new char[limit];
            for (int i = 0; i < limit; i++) {
                dst[i] = (char) buffer.get(i);
            }
            data.append(dst);
            buffer.clear();
        }
        return data.toString();
    }
}
public class NIOClient {
    public static void main(String[] args) throws IOException {
        Socket socket = new Socket("127.0.0.1", 8888);
        OutputStream out = socket.getOutputStream();
        String s = "hello world";
        out.write(s.getBytes());
        out.close();
    }
}

内存映射文件

内存映射文件 I/O 是一种读和写文件数据的方法,它可以比常规的基于流或者基于通道的 I/O 快得多。

向内存映射文件写入可能是危险的,只是改变数组的单个元素这样的简单操作,就可能会直接修改磁盘上的文件。修改数据与将数据保存到磁盘是没有分开的。

下面代码行将文件的前 1024 个字节映射到内存中,map() 方法返回一个 MappedByteBuffer,它是 ByteBuffer 的子类。因此,可以像使用其他任何 ByteBuffer 一样使用新映射的缓冲区,操作系统会在需要时负责执行映射。

MappedByteBuffer mbb = fc.map(FileChannel.MapMode.READ_WRITE, 0, 1024);

对比

NIO 与普通 I/O 的区别主要有以下两点:

  • NIO 是非阻塞的
  • NIO 面向块,I/O 面向流

八、参考资料

简介:

NIO 是java 1.4引入的新特性。是对原来的standard IO的扩展。

Standard IO是对字节流的读写,在进行IO之前,首先创建一个流对象,流对象进行读写操作都是按字节 ,一个字节一个字节的来读或写。而NIO把IO抽象成块,类似磁盘的读写,每次IO操作的单位都是一个块,块被读入内存之后就是一个byte[],NIO一次可以读或写多个字节。

NIO的几大组件:
1.Selector

多路复用选择器,基于“事件驱动”,其核心就是通过Selector来轮询注册在其上的Channel,当发现某个或多个Channel处于就绪状态后,从阻塞状态返回就绪的Channel的SelectionKey集合,进行I/O操作。

  • 创建多路复用器并启动线程
Selector selector=Selector.open();
 new Thread(new ReactorTask()).start();
  • 创建Channel
// 打开ServerSocketChannel,用于监听客户端的连接
ServerSocketChannel ssc=ServerSocketChannel.open();
//设置连接为非阻塞模式
ssc.configureBlocking(false);
//绑定监听端口
ServerSocket ss=ssc.socket();
ss.bind(new InetSocketAddress(InetAdderss.getByName("ip"),port));
//将ServerSocketChannel注册到多路复用器Selector上,监听ACCEPT事件
ssc.register(selector,SelectionKey.OP_ACCEPT);
  • 等待客户端的连接
while (true) {
            // selector.select是阻塞的,一直等到有客户端连接过来才返回,然后会检查发生的是哪一种事件,然后根据不同的事件做不同的操作
            selector.select();
            Set<SelectionKey> selectionKeys = selector.selectedKeys();
            Iterator<SelectionKey> it = selectionKeys.iterator();
            while (it.hasNext()) {
                SelectionKey key = it.next();
                if (key.isAcceptable()) {
                    // 处理新接入的请求消息
                    ServerSocketChannel ssc = (ServerSocketChannel) key.channel();
                    SocketChannel sc = ssc.accept();
                    sc.configureBlocking(false);
                    // 注册读事件
                    sc.register(selector, SelectionKey.OP_READ);
                }
                if (key.isReadable()) {
                    // 处理读请求
                    SocketChannel sc = (SocketChannel) key.channel();
                    ByteBuffer readBuffer = ByteBuffer.allocate(1024);
                    int readBytes = sc.read(readBuffer);
                    if (readBytes > 0) {
                        readBuffer.flip();
                        byte[] bytes = new byte[readBuffer.remaining()];
                        readBuffer.get(bytes);
                        System.out.println(new String(bytes, "UTF-8"));
                    }
                }
            }
        }
2.Channel

Channel是NIO对IO抽象的一个新概念,NIO在进行IO时需要创建一个Channel对象,是双向的,不象Standard IO分为输入流和输出流

3.Buffer

Buffer和Channel都是一起使用的,每次都是从一个Channel中读出一个Buffer或者把一个Buffer写入到一个Channel中

// 处理读请求
SocketChannel sc = (SocketChannel) key.channel();
ByteBuffer readBuffer = ByteBuffer.allocate(1024);
int readBytes = sc.read(readBuffer);
if (readBytes > 0) {
    readBuffer.flip();
    byte[] bytes = new byte[readBuffer.remaining()];
    readBuffer.get(bytes);
    System.out.println(new String(bytes, "UTF-8"));
}

Buffer有3个重要的属性

  • position 正整数,指向Buffer中下一个要读取或写入的字节位置
  • limit 正整数,指向Buffer中的某个位置,在IO时只读写下标小于limit的字节内容
  • capacity 正整数,Buffer所能容纳的最大字节数

0 <= position <= limit <= capacity

初始状态:

从Channel中读入5个字到ByteBuffer

flip(),准备写入或输出

public final Buffer flip() {
        limit = position;
        position = 0;
        mark = -1;
        return this;
    }

输出内容后,position就移动到跟limit相同的位置上

ByteBuffer如果要重复利用,需要清理,position和limit回到初始状态时的位置,然后可以接着用这个Buffer来读写数据,不需要再New 新的Buffer

public final Buffer clear() {
        position = 0;
        limit = capacity;
        mark = -1;
        return this;
    }

参考文章

相关文章
|
1月前
|
存储 Java 数据处理
|
1月前
|
Java
Java代码居然能画出抛物线模型
Java代码居然能画出抛物线模型
20 0
|
1月前
|
Java API
java中IO与NIO有什么不同
java中IO与NIO有什么不同
|
6天前
|
监控 Java 开发者
深入理解 Java 网络编程和 NIO
【4月更文挑战第19天】Java网络编程基于Socket,但NIO(非阻塞I/O)提升了效率和性能。NIO特点是非阻塞模式、选择器机制和缓冲区,适合高并发场景。使用NIO涉及通道、选择器和事件处理,优点是高并发、资源利用率和可扩展性,但复杂度、错误处理和性能调优是挑战。开发者应根据需求选择是否使用NIO,并深入理解其原理。
|
2月前
|
移动开发 编解码 网络协议
用Java的BIO和NIO、Netty来实现HTTP服务器(三) 用Netty实现
用Java的BIO和NIO、Netty来实现HTTP服务器(三) 用Netty实现
|
2月前
|
网络协议 Java Linux
用Java来实现BIO和NIO模型的HTTP服务器(二) NIO的实现
用Java来实现BIO和NIO模型的HTTP服务器(二) NIO的实现
|
2月前
|
编解码 网络协议 Java
用Java的BIO和NIO、Netty实现HTTP服务器(一) BIO与绪论
用Java的BIO和NIO、Netty实现HTTP服务器(一) BIO与绪论
|
9月前
|
Java
Java NIO系列教程三
​ 今天主要给大家介绍的是Buffer的基本使用这个也是NIO里面最总要的概率之一,里面的操作也是有一些复杂的同时也是需要大家必须要重点掌握的知识点,同时也介绍了一下Selector的用法下一篇文章我们将为大家介绍Pipe管道以及FileLock文件锁这也是NIO里面最后的一分部内容了。
79 0
|
9月前
|
安全 Java API
Java NIO系列教程四【完】-管道-文件锁-异步写入
​ 到此位置NIO的所有的内容都结束了,对于NIO来说主要是各种概念需要大家去理解然后有很多的用法和api也需要大家去熟悉所以想把NIO学懂学好其实并不容易一定要多写案例去测试巩固,也预祝大家能把NIO的知识看懂理顺!!!
81 0
|
9月前
|
网络协议 Java
Java NIO系列教程二
​ 今天主要是为大家详细的介绍了常见的各种Channel以及他们的用法,本文编写了大量的案例还需要大家认真的去实践以后才能真正的掌握住。介绍完Channel那么下一篇文章我们就可以为大家介绍Buffer和Selector的具体使用了。
65 0