(1)Flink CEP复杂事件处理引擎介绍

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 复杂事件处理(CEP)既是把不同的数据看做不同的事件,并且通过分析事件之间的关系建立起一套事件关系序列库。利用过滤,聚合,关联性,依赖,层次等技术,最终实现由简单关系产生高级事件关系。复杂事件主要应用场景:主要用于信用卡欺诈检测、用户风险检测、设备故障检测、攻击行为分析等领域。Flink CEP能够利用的场景较多,在实际业务场景中也有了广泛的使用案例与经验积累。比如

(1)简介及应用场景:
复杂事件处理(CEP)既是把不同的数据看做不同的事件,并且通过分析事件之间的关系建立起一套事件关系序列库。利用过滤,聚合,关联性,依赖,层次等技术,最终实现由简单关系产生高级事件关系。
复杂事件主要应用场景:主要用于信用卡欺诈检测、用户风险检测、设备故障检测、攻击行为分析等领域。
Flink CEP能够利用的场景较多,在实际业务场景中也有了广泛的使用案例与经验积累。比如
image.png
在可编程方面,Flink同时推出了Flink SQL CEP,开发者可以通过较为属性的SQL语法快速构建各类CEP事件组合应用。
Flink CEP原理说明:
image.png
(2)Flink CEP匹配模式介绍:
在Flink CEP中匹配模式分为严格近邻模式和宽松近邻模式。严格近邻模式的事件必须是紧密连接的,宽松近邻事件可以无需紧密连接,如下图:
image.png
image.png
(3)Flink CEP SQL语法介绍:
(3.1)Flink CEP SQL样例:

String sql = "SELECT * " +
                "FROM CEP_SQL_3 " +
                "    MATCH_RECOGNIZE ( " +
                "        PARTITION BY symbol " +       //分组
                "        ORDER BY rowtime " +          //排序
                "        MEASURES " +                   //定义如何根据匹配成功的输入事件构造输出事件
                "            LISTAGG(CAST(e3.id as varchar),',') as ids,"+
                "            AVG(e1.price) as avgPrice,"+
//                "            START_ROW.rowtime AS start_tstamp, " +
                "            LAST(e1.rowtime) AS bottom_tstamp, " +     //第一次的事件时间为end_timestamp
                "            LAST(e3.rowtime) AS end_tstamp " +           //最新的事件时间为end_timestamp
                "        ONE ROW PER MATCH " +                                      //匹配成功输出一条
                "        AFTER MATCH  SKIP PAST LAST ROW " +                   //匹配后跳转到下一行
                "        PATTERN ( e1 e2 e3{1}) WITHIN INTERVAL '2' MINUTE" +  //定义事件组
                "        DEFINE " +                                            //定义每个事件的匹配条件     
                "            e1 AS " +
                "                e1.price = 25 , " +
                "            e2 AS " +
                "                e2.price = 18 ," +
                "            e3 AS " +
                "                e3.price = 15 " +
                "    ) MR";

(3.2)Flink CEP匹配规则:贪婪词量和勉强词量
Concatenation-像(AB)这样的模式意味着A和B之间的连接是严格的。因此,在它们之间不能存在没有映射到A或B的行。
Quantifiers-修改可以映射到模式变量的行数。

  • 0或者多行
  • 1或者多行

? 0或者1行
{n} 严格n行(n>0)
{n,} n或者更多行(n≥O)
{n,m} 在n到m(包含)行之间(0≤n≤m,0<m)< div="">
{,m}一在0到m(包含)行之间(m>0)
image.png
(3.3)匹配策略
SKIP PAST LAST ROW -匹配成功之后,从匹配成功的事件序列中的最后⼀个事件的下⼀个事件开始进⾏下⼀次匹配。
SKIP TO NEXT ROW -匹配成功之后,从匹配成功的事件序列中的第⼀个事件的下⼀个事件开始进⾏下⼀次匹配。(默认模式)
SKIP TO LAST variable -匹配成功之后,从匹配成功的事件序列中最后⼀个对应于变量的事件开始进行下⼀次匹 配。
SKIP TO FIRST variable -匹配成功之后,从匹配成功的事件序列中第⼀个对应于变量的事件开始进行下⼀次匹配。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1236 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
2月前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
86 0
|
1天前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。
128 2
探索Flink动态CEP:杭州银行的实战案例
|
1月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
88 9
|
2月前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
52 0
|
2月前
|
SQL 消息中间件 分布式计算
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
66 0
|
2月前
|
分布式计算 监控 大数据
大数据-129 - Flink CEP 详解 Complex Event Processing - 复杂事件处理
大数据-129 - Flink CEP 详解 Complex Event Processing - 复杂事件处理
68 0
|
4月前
|
Java Spring 安全
Spring 框架邂逅 OAuth2:解锁现代应用安全认证的秘密武器,你准备好迎接变革了吗?
【8月更文挑战第31天】现代化应用的安全性至关重要,OAuth2 作为实现认证和授权的标准协议之一,被广泛采用。Spring 框架通过 Spring Security 提供了强大的 OAuth2 支持,简化了集成过程。本文将通过问答形式详细介绍如何在 Spring 应用中集成 OAuth2,包括 OAuth2 的基本概念、集成步骤及资源服务器保护方法。首先,需要在项目中添加 `spring-security-oauth2-client` 和 `spring-security-oauth2-resource-server` 依赖。
58 0
|
4月前
|
消息中间件 监控 Kafka
实时计算 Flink版产品使用问题之处理Kafka数据顺序时,怎么确保事件的顺序性
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
消息中间件 数据挖掘 Kafka
揭秘大数据时代的极速王者!Flink:颠覆性流处理引擎,让实时数据分析燃爆你的想象力!
【8月更文挑战第29天】Apache Flink 是一个高性能的分布式流处理框架,适用于高吞吐量和低延迟的实时数据处理。它采用统一执行引擎处理有界和无界数据流,具备精确状态管理和灵活窗口操作等特性。Flink 支持毫秒级处理和广泛生态集成,但学习曲线较陡峭,社区相对较小。通过实时日志分析示例,我们展示了如何利用 Flink 从 Kafka 中读取数据并进行词频统计,体现了其强大功能和灵活性。
91 0