程序员需要了解的硬核知识之压缩算法(一)

简介: 之前的文章更多的介绍了计算机的硬件知识,会有一些难度,本篇文章的门槛会低一些,一起来看一下计算机中都有哪些压缩算法

认识压缩算法

我们想必都有过压缩解压缩文件的经历,当文件太大时,我们会使用文件压缩来降低文件的占用空间。比如微信上传文件的限制是100 MB,我这里有个文件夹无法上传,但是我解压完成后的文件一定会小于 100 MB,那么我的文件就可以上传了。

此外,我们把相机拍完的照片保存到计算机上的时候,也会使用压缩算法进行文件压缩,文件压缩的格式一般是JPEG

那么什么是压缩算法呢?压缩算法又是怎么定义的呢?在认识算法之前我们需要先了解一下文件是如何存储的

文件存储

文件是将数据存储在磁盘等存储媒介的一种形式。程序文件中最基本的存储数据单位是字节。文件的大小不管是 xxxKB、xxxMB等来表示,就是因为文件是以字节 B = Byte 为单位来存储的。

文件就是字节数据的集合。用 1 字节(8 位)表示的字节数据有 256 种,用二进制表示的话就是 0000 0000 - 1111 1111 。如果文件中存储的数据是文字,那么该文件就是文本文件。如果是图形,那么该文件就是图像文件。在任何情况下,文件中的字节数都是连续存储的。

46.jpg


压缩算法的定义

上面介绍了文件的集合体其实就是一堆字节数据的集合,那么我们就可以来给压缩算法下一个定义。

压缩算法(compaction algorithm)指的就是数据压缩的算法,主要包括压缩和还原(解压缩)的两个步骤。

其实就是在不改变原有文件属性的前提下,降低文件字节空间和占用空间的一种算法。

根据压缩算法的定义,我们可将其分成不同的类型:

有损和无损

无损压缩:能够无失真地从压缩后的数据重构,准确地还原原始数据。可用于对数据的准确性要求严格的场合,如可执行文件和普通文件的压缩、磁盘的压缩,也可用于多媒体数据的压缩。该方法的压缩比较小。如差分编码、RLE、Huffman编码、LZW编码、算术编码。

有损压缩:有失真,不能完全准确地恢复原始数据,重构的数据只是原始数据的一个近似。可用于对数据的准确性要求不高的场合,如多媒体数据的压缩。该方法的压缩比较大。例如预测编码、音感编码、分形压缩、小波压缩、JPEG/MPEG。

对称性

如果编解码算法的复杂性和所需时间差不多,则为对称的编码方法,多数压缩算法都是对称的。但也有不对称的,一般是编码难而解码容易,如 Huffman 编码和分形编码。但用于密码学的编码方法则相反,是编码容易,而解码则非常难。

帧间与帧内

在视频编码中会同时用到帧内与帧间的编码方法,帧内编码是指在一帧图像内独立完成的编码方法,同静态图像的编码,如 JPEG;而帧间编码则需要参照前后帧才能进行编解码,并在编码过程中考虑对帧之间的时间冗余的压缩,如 MPEG。

实时性

在有些多媒体的应用场合,需要实时处理或传输数据(如现场的数字录音和录影、播放MP3/RM/VCD/DVD、视频/音频点播、网络现场直播、可视电话、视频会议),编解码一般要求延时 ≤50 ms。这就需要简单/快速/高效的算法和高速/复杂的CPU/DSP芯片。

分级处理

有些压缩算法可以同时处理不同分辨率、不同传输速率、不同质量水平的多媒体数据,如JPEG2000、MPEG-2/4。

这些概念有些抽象,主要是为了让大家了解一下压缩算法的分类,下面我们就对具体的几种常用的压缩算法来分析一下它的特点和优劣

几种常用压缩算法的理解

RLE 算法的机制

接下来就让我们正式看一下文件的压缩机制。首先让我们来尝试对 AAAAAABBCDDEEEEEF 这 17 个半角字符的文件(文本文件)进行压缩。虽然这些文字没有什么实际意义,但是很适合用来描述 RLE 的压缩机制。

由于半角字符(其实就是英文字符)是作为 1 个字节保存在文件中的,所以上述的文件的大小就是 17 字节。如图

47.jpg

(这里有个问题需要读者思考一下:为什么 17 个字符的大小是 17 字节,而占用空间却很大呢? 这个问题此篇文章暂不讨论)

那么,如何才能压缩该文件呢?大家不妨也考虑一下,只要是能够使文件小于 17 字节,我们可以使用任何压缩算法。

最显而易见的一种压缩方式我觉得你已经想到了,就是把相同的字符去重化,也就是 字符 * 重复次数 的方式进行压缩。所以上面文件压缩后就会变成下面这样

48.png


从图中我们可以看出,AAAAAABBCDDEEEEEF 的17个字符成功被压缩成了 A6B2C1D2E5F1 的12个字符,也就是 12 / 17 = 70%,压缩比为 70%,压缩成功了。

像这样,把文件内容用 数据 * 重复次数 的形式来表示的压缩方法成为 RLE(Run Length Encoding, 行程长度编码) 算法。RLE 算法是一种很好的压缩方法,经常用于压缩传真的图像等。因为图像文件的本质也是字节数据的集合体,所以可以用 RLE 算法进行压缩


            </div>
目录
相关文章
|
网络协议 Linux
音视频学习之rtsp推拉流学习2(流媒体服务器ZLMediaKit)
音视频学习之rtsp推拉流学习2(流媒体服务器ZLMediaKit)
1649 0
|
4月前
|
机器学习/深度学习 安全 数据挖掘
基于YOLOv8的疲劳状态识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
这是一套基于YOLOv8的疲劳状态识别项目,包含完整源码、数据集、PyQt5界面及训练流程。系统可实时检测打哈欠、闭眼等疲劳行为,支持图片、视频、文件夹和摄像头多种输入方式,并自动保存检测结果。项目开箱即用,配有详细教程,适合快速部署。模型高效精准,界面友好易用,为疲劳驾驶预警提供技术保障。
242 114
基于YOLOv8的疲劳状态识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
12月前
|
消息中间件 网络协议 API
微服务之间是如何独立通讯的?
微服务之间独立通讯主要依靠定义清晰的API协议、使用轻量级交互机制、以及通过服务发现机制维持服务间连接。微服务体系结构中,每个服务都设计为独立部署的单元,它们通过网络调用彼此的API以实现互操作。
365 0
|
Web App开发 安全 Linux
FFmpeg开发笔记(二十六)Linux环境安装ZLMediaKit实现视频推流
《FFmpeg开发实战》书中介绍轻量级流媒体服务器MediaMTX,但其功能有限,不适合生产环境。推荐使用国产开源的ZLMediaKit,它支持多种流媒体协议和音视频编码标准。以下是华为欧拉系统下编译安装ZLMediaKit和FFmpeg的步骤,包括更新依赖、下载源码、配置、编译、安装以及启动MediaServer服务。此外,还提供了通过FFmpeg进行RTSP和RTMP推流,并使用VLC播放器拉流的示例。
1329 3
FFmpeg开发笔记(二十六)Linux环境安装ZLMediaKit实现视频推流
|
数据可视化 图形学
小功能⭐️Unity2018 Shader Graph——全息影像、物体消融
小功能⭐️Unity2018 Shader Graph——全息影像、物体消融
|
Web App开发 Windows
FFmpeg开发笔记(十五)详解MediaMTX的推拉流
MediaMTX是开源轻量级流媒体服务器,提供RTSP, RTMP, HLS, WebRTC和SRT服务。启动后,它在不同端口监听。通过FFmpeg的推拉流测试,证明了MediaMTX成功实现HLS流媒体转发,但HLS播放兼容性问题可能因缺少音频流导致。推流地址为rtsp://127.0.0.1:8554/stream,RTMP地址为rtmp://127.0.0.1:1935/stream,HLS播放地址为http://127.0.0.1:8888/stream(Chrome)和http://127.0.0.1:8888/stream/index.m3u8(其他播放器可能不支持)。
2196 2
FFmpeg开发笔记(十五)详解MediaMTX的推拉流
|
消息中间件 Kafka
面试题Kafka问题之Kafka【线上】积压消费如何解决
面试题Kafka问题之Kafka【线上】积压消费如何解决
270 0
|
安全 Go 开发者
Go语言map并发安全使用的正确姿势
在Go并发编程中,由于普通map不是线程安全的,多goroutine访问可能导致数据竞态。为保证安全,可使用`sync.Mutex`封装map或使用从Go 1.9开始提供的`sync.Map`。前者通过加锁手动同步,后者内置并发控制,适用于多goroutine共享。选择哪种取决于具体场景和性能需求。
295 0
|
监控 负载均衡 算法
Golang深入浅出之-Go语言中的协程池设计与实现
【5月更文挑战第3天】本文探讨了Go语言中的协程池设计,用于管理goroutine并优化并发性能。协程池通过限制同时运行的goroutine数量防止资源耗尽,包括任务队列和工作协程两部分。基本实现思路涉及使用channel作为任务队列,固定数量的工作协程处理任务。文章还列举了一个简单的协程池实现示例,并讨论了常见问题如任务队列溢出、协程泄露和任务调度不均,提出了解决方案。通过合理设置缓冲区大小、确保资源释放、优化任务调度以及监控与调试,可以避免这些问题,提升系统性能和稳定性。
580 6
|
SQL 关系型数据库 编译器
SqlAlchemy 2.0 中文文档(四十七)(3)
SqlAlchemy 2.0 中文文档(四十七)
325 0