初识CUDA使用线程索引

简介: 初识CUDA使用线程索引

第一种方法:

CUDA thread index:

int blockId =    blockIdx.z * (gridDim.x*gridDim.y)

                   + blockIdx.y *  gridDim.x

                   + blockIdx.x;

int threadId =    blockId       * (blockDim.x * blockDim.y * blockDim.z)

                     + threadIdx.z * (blockDim.x * blockDim.y)

                     + threadIdx.y *  blockDim.x

                     + threadIdx.x;

 

从上到下分别是:

block的3,2,1维;

thread的3,2,1维。

如果没有对应维度,删除对应的计算部分即可。

维度的值最小是1,但是索引的值最小是0.

这里定义的格式为:

dim3 blocks(blockDim.x,blockDim.y,blockDim.z);

dim3 grids(gridDim.x,gridDim.y,gridDim.z);  // 这里需要说明的是 如果的你的数组满足 M[NX][NY][NZ] 的形似,在设置blocks 和 grids时候 应该满足 blockDim.x * gridDim.x=NX, blockDim.y * gridDim.y =NY, blockDim.z * gridDim.z=NZ;

ps: 最少的情况是都只有1维,最多的情况是都有3维。

所以最简单的都只有1维时:blockIdx.x * blockDim.x + threadIdx.x


第二种方法:

分别计算 idx,idy,idz

idx = threadIdx.x + blockDim.x * blockIdx.x;

idy = threadIdx.y + blockDim.y * blockIdx.y;

idz = threadIdx.z + blockDim.z * blockIdx.z;

总的index (一维情况下)

id = idx + NX * idy + NX * NY * idz;

上面两种方法计算的结果是一样的,但是需要注意的是,第一种方法只能在index在一维情况下使用,而如果 index是二维的情况下的话,建议使用第二种计算方法,此时在设备端数组可以写成

M_dev[idx][idy][idz];

但是个人建议还是使用第一种方法,因为第二种方法涉及到二级指针问题,处理起来稍微会麻烦一点。

参考:https://www.cnblogs.com/tiandsp/p/9458734.html 有15种检索方式

#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
using namespace std;
//thread 1D
__global__ void testThread1(int *c, const int *a, const int *b)
{
    int i = threadIdx.x;
    c[i] = b[i] - a[i];
}
//thread 2D
__global__ void testThread2(int *c, const int *a, const int *b)
{
    int i = threadIdx.x + threadIdx.y*blockDim.x;
    c[i] = b[i] - a[i];
}
//thread 3D
__global__ void testThread3(int *c, const int *a, const int *b)
{
    int i = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;
    c[i] = b[i] - a[i];
}
//block 1D
__global__ void testBlock1(int *c, const int *a, const int *b)
{
    int i = blockIdx.x;
    c[i] = b[i] - a[i];
}
//block 2D
__global__ void testBlock2(int *c, const int *a, const int *b)
{
    int i = blockIdx.x + blockIdx.y*gridDim.x;
    c[i] = b[i] - a[i];
}
//block 3D
__global__ void testBlock3(int *c, const int *a, const int *b)
{
    int i = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;
    c[i] = b[i] - a[i];
}
//block-thread 1D-1D
__global__ void testBlockThread1(int *c, const int *a, const int *b)
{
    int i = threadIdx.x + blockDim.x*blockIdx.x;
    c[i] = b[i] - a[i];
}
//block-thread 1D-2D
__global__ void testBlockThread2(int *c, const int *a, const int *b)
{
    int threadId_2D = threadIdx.x + threadIdx.y*blockDim.x;
    int i = threadId_2D+ (blockDim.x*blockDim.y)*blockIdx.x;
    c[i] = b[i] - a[i];
}
//block-thread 1D-3D
__global__ void testBlockThread3(int *c, const int *a, const int *b)
{
    int threadId_3D = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;
    int i = threadId_3D + (blockDim.x*blockDim.y*blockDim.z)*blockIdx.x;
    c[i] = b[i] - a[i];
}
//block-thread 2D-1D
__global__ void testBlockThread4(int *c, const int *a, const int *b)
{
    int blockId_2D = blockIdx.x + blockIdx.y*gridDim.x;
    int i = threadIdx.x + blockDim.x*blockId_2D;
    c[i] = b[i] - a[i];
}
//block-thread 3D-1D
__global__ void testBlockThread5(int *c, const int *a, const int *b)
{
    int blockId_3D = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;
    int i = threadIdx.x + blockDim.x*blockId_3D;
    c[i] = b[i] - a[i];
}
//block-thread 2D-2D
__global__ void testBlockThread6(int *c, const int *a, const int *b)
{
    int threadId_2D = threadIdx.x + threadIdx.y*blockDim.x;
    int blockId_2D = blockIdx.x + blockIdx.y*gridDim.x;
    int i = threadId_2D + (blockDim.x*blockDim.y)*blockId_2D;
    c[i] = b[i] - a[i];
}
//block-thread 2D-3D
__global__ void testBlockThread7(int *c, const int *a, const int *b)
{
    int threadId_3D = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;
    int blockId_2D = blockIdx.x + blockIdx.y*gridDim.x;
    int i = threadId_3D + (blockDim.x*blockDim.y*blockDim.z)*blockId_2D;
    c[i] = b[i] - a[i];
}
//block-thread 3D-2D
__global__ void testBlockThread8(int *c, const int *a, const int *b)
{
    int threadId_2D = threadIdx.x + threadIdx.y*blockDim.x;
    int blockId_3D = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;
    int i = threadId_2D + (blockDim.x*blockDim.y)*blockId_3D;
    c[i] = b[i] - a[i];
}
//block-thread 3D-3D
__global__ void testBlockThread9(int *c, const int *a, const int *b)
{
    int threadId_3D = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;
    int blockId_3D = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;
    int i = threadId_3D + (blockDim.x*blockDim.y*blockDim.z)*blockId_3D;
    c[i] = b[i] - a[i];
}
void addWithCuda(int *c, const int *a, const int *b, unsigned int size)
{
    int *dev_a = 0;
    int *dev_b = 0;
    int *dev_c = 0;
    cudaSetDevice(0);
    cudaMalloc((void**)&dev_c, size * sizeof(int));
    cudaMalloc((void**)&dev_a, size * sizeof(int));
    cudaMalloc((void**)&dev_b, size * sizeof(int));
    cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
    cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
    //testThread1<<<1, size>>>(dev_c, dev_a, dev_b);
    //uint3 s;s.x = size/5;s.y = 5;s.z = 1;
    //testThread2 <<<1,s>>>(dev_c, dev_a, dev_b);
    //uint3 s; s.x = size / 10; s.y = 5; s.z = 2;
    //testThread3<<<1, s >>>(dev_c, dev_a, dev_b);
    //testBlock1<<<size,1 >>>(dev_c, dev_a, dev_b);
    //uint3 s; s.x = size / 5; s.y = 5; s.z = 1;
    //testBlock2<<<s, 1 >>>(dev_c, dev_a, dev_b);
    //uint3 s; s.x = size / 10; s.y = 5; s.z = 2;
    //testBlock3<<<s, 1 >>>(dev_c, dev_a, dev_b);
    //testBlockThread1<<<size/10, 10>>>(dev_c, dev_a, dev_b);
    //uint3 s1; s1.x = size / 100; s1.y = 1; s1.z = 1;
    //uint3 s2; s2.x = 10; s2.y = 10; s2.z = 1;
    //testBlockThread2 << <s1, s2 >> >(dev_c, dev_a, dev_b);
    //uint3 s1; s1.x = size / 100; s1.y = 1; s1.z = 1;
    //uint3 s2; s2.x = 10; s2.y = 5; s2.z = 2;
    //testBlockThread3 << <s1, s2 >> >(dev_c, dev_a, dev_b);
    //uint3 s1; s1.x = 10; s1.y = 10; s1.z = 1;
    //uint3 s2; s2.x = size / 100; s2.y = 1; s2.z = 1;
    //testBlockThread4 << <s1, s2 >> >(dev_c, dev_a, dev_b);
    //uint3 s1; s1.x = 10; s1.y = 5; s1.z = 2;
    //uint3 s2; s2.x = size / 100; s2.y = 1; s2.z = 1;
    //testBlockThread5 << <s1, s2 >> >(dev_c, dev_a, dev_b);
    //uint3 s1; s1.x = size / 100; s1.y = 10; s1.z = 1;
    //uint3 s2; s2.x = 5; s2.y = 2; s2.z = 1;
    //testBlockThread6 << <s1, s2 >> >(dev_c, dev_a, dev_b);
    //uint3 s1; s1.x = size / 100; s1.y = 5; s1.z = 1;
    //uint3 s2; s2.x = 5; s2.y = 2; s2.z = 2;
    //testBlockThread7 << <s1, s2 >> >(dev_c, dev_a, dev_b);
    //uint3 s1; s1.x = 5; s1.y = 2; s1.z = 2;
    //uint3 s2; s2.x = size / 100; s2.y = 5; s2.z = 1;
    //testBlockThread8 <<<s1, s2 >>>(dev_c, dev_a, dev_b);
    uint3 s1; s1.x = 5; s1.y = 2; s1.z = 2;
    uint3 s2; s2.x = size / 200; s2.y = 5; s2.z = 2;
    testBlockThread9<<<s1, s2 >>>(dev_c, dev_a, dev_b);
    cudaMemcpy(c, dev_c, size*sizeof(int), cudaMemcpyDeviceToHost);
    cudaFree(dev_a);
    cudaFree(dev_b);
    cudaFree(dev_c);
    cudaGetLastError();
}
int main()
{
    const int n = 1000;
    int *a = new int[n];
    int *b = new int[n];
    int *c = new int[n];
    int *cc = new int[n];
    for (int i = 0; i < n; i++)
    {
        a[i] = rand() % 100;
        b[i] = rand() % 100;
        c[i] = b[i] - a[i];
    }
    addWithCuda(cc, a, b, n);
    FILE *fp = fopen("out.txt", "w");
    for (int i = 0; i < n; i++)
        fprintf(fp, "%d %d\n", c[i], cc[i]);
    fclose(fp);
    bool flag = true;
    for (int i = 0; i < n; i++)
    {
        if (c[i] != cc[i])
        {
            flag = false;
            break;
        }
    }
    if (flag == false)
        printf("no pass");
    else
        printf("pass");
    cudaDeviceReset();
    delete[] a;
    delete[] b;
    delete[] c;
    delete[] cc;
    getchar();
    return 0;
}

其他补充内容,二维数组分块计算。

ix=threadIdx.x+blockDim.x*blockIdx.x
iy=threadIdx.y+blockDim.y*blockIdx.y
k=ix+iy*nx
blockId  =blockIdx.x+gridDim.x*blockIdx.y+gridDim.x*gridDim.y*blockIdx.z
threadId=blockId*blockDim.x*blockIdDim.y*blockDim.z+
               threadIdx.z*blockDim.x*blockDim.y
               threadIdx.y*blockDim.x
               threadIdx.x
dim3  thread(tx   ,ty   )
dim3  block (NX/tx,NY/ty)
gridDim.x=NX/tx
gridDim.y=NY/ty
blockDim.x=tx
blockDim.y=ty
a[ix][iy]
索引计算方法1:
k=iy*NX+ix
  =(threadIdx.y+ty*blockIdx.y)*NX+tx*blockIdx.x     +threadIdx.x
  =tx*blockIdx.x    +NX*ty*blockIdx.y+NX*threadIdx.y+threadIdx.x
索引计算方法2:
k=(blockIdx.x+NX/tx*blockIdx.y)*tx*ty+threadIdx.y*tx +threadIdx.x
  =tx*ty*blockIdx.x+NX*ty*blockIdx.y +tx*threadIdx.y +threadIdx.x

虽然上面两种计算方法的表达式不同,但是计算的结果都是一样的,索引值均是从0到NX*NY-1,总共NX*NY个坐标,证明如下,

dim3  thread(tx   ,ty   )
dim3  block (NX/tx,NY/ty)
max{blockIdx.x} =NX/tx-1
max{blockIdx.y} =NY/ty-1
max{threadIdx.x}=tx-1
max{threadIdx.y}=ty-1           
将上式带入到两种索引计算公式中,求得最大索引数
k = tx*blockIdx.x + NX*ty*blockIdx.y + NX*threadIdx.y + threadIdx.x
  = tx*(NX/tx -1) + NX*ty*(NY/ty-1)  + NX*(ty-1)      + tx-1
  = NX*NY-1
k = tx*ty*blockIdx.x + NX*ty*blockIdx.y + tx*threadIdx.y + threadIdx.x
  = tx*ty*(NX/tx-1)  + NX*ty*(NY/ty-1)  + tx*(ty-1)      + tx-1
  = NX*NY-1

 

目录
相关文章
|
6月前
|
并行计算 编译器 C++
CUDA 中的线程组织
CUDA 中的线程组织
122 0
|
缓存 并行计算 算法
【CUDA学习笔记】第四篇:线程以及线程同步(附案例代码下载方式)(二)
【CUDA学习笔记】第四篇:线程以及线程同步(附案例代码下载方式)(二)
352 0
|
存储 缓存 并行计算
【CUDA学习笔记】第四篇:线程以及线程同步(附案例代码下载方式)(一)
【CUDA学习笔记】第四篇:线程以及线程同步(附案例代码下载方式)(一)
595 0
|
并行计算 调度 异构计算
|
存储 并行计算 算法
初识CUDA网格与线程块
初识CUDA网格与线程块
646 0
初识CUDA网格与线程块
|
并行计算 程序员 异构计算
CUDA存储单元的使用数据与线程之间的对应关系
CUDA存储单元的使用数据与线程之间的对应关系
163 0
|
1月前
|
存储 消息中间件 资源调度
C++ 多线程之初识多线程
这篇文章介绍了C++多线程的基本概念,包括进程和线程的定义、并发的实现方式,以及如何在C++中创建和管理线程,包括使用`std::thread`库、线程的join和detach方法,并通过示例代码展示了如何创建和使用多线程。
43 1
C++ 多线程之初识多线程