【算法合集】深搜广搜Prim与Kruskal

简介: 广度优先搜索(BFS)又叫广搜,它像一个有远见的人,它是一层一层来实现搜索的,也挺像下楼梯的。思路: 1.先初始化队列 q; 2.从起点开始访问,并且改变他的状态为已经访问; 3.如果他的队列非空,取出首个元素,将它弹出! 4.如果u == 目标状态,然后对所以与 u 邻近的点进入队列; 5.标记它已经被访问!...............

一、深度优先搜索

深度优先搜索(DFS)又叫深搜,我们可以这么理解,DFS 像一个很固执的一个人(不撞南墙不回头,不见黄河不死心),只要你这里有路我就一定会去走,而且一条路走到底的那种(燕子~没你我怎么活呀,开玩笑了)。

我们先来看看效果图。(对了,上次有小伙伴问,你这效果图是怎么实现的呀,我是在这个网站上绘制效果图的)

1.gif

看完效果图后感觉是不是挺通俗易懂的?好,我们来看看 DFS 的模板。

dfs(int u)
{
    if(找到了||走不下去了)
    {
        return;
    }
    开始下一个情况(dfs(u+1));
}

image.gif

📸实际问题

我们来看看一个经典的问题——n皇后问题。我们先来看看题目。

给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。

现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上

任意的两个白皇后都不在同一行、同一列或同一条对角线上。

我们来看看代码

#include <iostream>
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 20;
int n;
char g[N][N];
int l[N],ug[N],ng[N];
void dfs(int u)
{
    if(u == n)
    {
        for(int i = 0; i < n; i ++)
        {
            cout << g[i] << endl;
        }
        cout << endl;
        return ;
    }
    for(int i = 0; i < n; i ++)
    {
        if(!l[i] && !ug[i + u] && !ng[i - u + n])
        {
            g[u][i] = 'Q';
            l[i] = ug[i + u] = ng[i - u + n] = 1;
            dfs(u + 1);
            l[i] = ug[i + u] = ng[i - u + n] = 0;
            g[u][i] = '.';
        }
    }
}
int main()
{
    cin >> n;
    for(int i = 0; i < n; i ++)
    {
        for(int j = 0; j < n; j ++) 
        {
            g[i][j] = '.';
        }
    }
    dfs(0);
    return 0;
}

image.gif

image.png

二、广度优先搜索

广度优先搜索(BFS)又叫广搜,它像一个有远见的人,它是一层一层来实现搜索的,也挺像下楼梯的。

思路:

 1.先初始化队列 q;

 2.从起点开始访问,并且改变他的状态为已经访问;

 3.如果他的队列非空,取出首个元素,将它弹出!

 4.如果u == 目标状态,然后对所以与 u 邻近的点进入队列;

 5.标记它已经被访问!

我们先来看看效果图

2.gif

我们来看看模板

queue<int> q;
st[0] = true; // 表示1号点已经被遍历过
q.push(0);
while (q.size())
{
    int t = q.front();
    q.pop();
    for (int i = h[t]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!s[j])
        {
            st[j] = true; // 表示点j已经被遍历过
            q.push(j);
        }
    }
}

image.gif

📸实际问题

image.png

image.png

来看看代码

#include <iostream>
#include <bits/stdc++.h>
#define x first
#define y second
using namespace std;
const int N = 1000 + 10;
int n;
typedef pair<int,int> PII;
PII q[N * N];
bool st[N][N];
char g[N][N];
int dx[4] = {-1, 0, 1, 0},dy[4] = {0, 1, 0, -1};
void bfs(int sx, int sy, int &tl, int &bd)
{
    int tt = 0,hh = 0;
    st[sx][sy] = true;
    q[0] = {sx, sy};
    while(hh <= tt)
    {
        PII t = q[hh ++];
        tl ++;
        bool is_bd = false;
        for(int i = 0; i < 4; i ++)
        {
            int x = t.x + dx[i],y = t.y + dy[i];
            if(x < 0 || x >= n || y < 0 || y >= n || st[x][y]) continue;
            if(g[x][y] == '.')
            {
                is_bd = true;
                continue;
            }
            st[x][y] = true;
            q[++ tt] = {x, y};
        }
        if(is_bd) bd++;
    }
}
int main(){
   cin >> n;
   for(int i = 0;i < n;i++) cin >> g[i];
   int cnt  = 0;
   for(int i = 0;i < n;i++)
    for(int j = 0;j < n;j++)
    {
        if(!st[i][j] && g[i][j] == '#')
        {
            int tl = 0,bd = 0;
            bfs(i, j, tl, bd);
            if(tl == bd) cnt ++;
        }
    }
    cout << cnt << endl;
    return 0;
}

image.gif

image.png

看到这里感觉这么样?对 dfs 与 bfs 有了更新的认识吗?我们接下来再来看看两大算法。


扩展:什么是最小生成树?

给定一个无向图,如果它的某个子图中任意两个顶点都互相连通并且是一棵树,那么这棵树就叫生成树。如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Minimum Spanning Tree)。

那么下面我们要讲的两大算法就是与最小生成树有关的。

三、prim 算法

prim 算法也像一个有远见的人,他选择一个节点(假设这个节点上有 n 条边),直接来找这 n 条边上最小的边,然后选择这条最小的边选完之后剩下(n - 1)。再选择连接的最小的边的节点(假设这个节点上有 m 条边)(在 m + n - 1 条边是哪个选择)。选完之后剩下(m + n - 2),依次类推。我们来看看效果图。

3.gif

算法模板

int prim()
{
    memset(dist, 0x3f, sizeof dist);
    int res = 0;
    dist[1] = 0;
    for(int i = 0; i < n; i ++)
    {
        int t = -1;
        for(int j = 1; j <= n; j ++)
        if(!st[j] && (t == -1 || dist[j] < dist[t]))
           t = j;
           st[t] = true;
           res += dist[t];
        for(int j = 1; j <= n; j ++)
            if(dist[j] > g[t][j] && !st[i])
                {
                    dist[j] = g[t][j];
                    pre[j] = t;
                }
    }
    return res;
}

image.gif

📸实际题目

给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。

由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。

这里我们看到上面的效果图,我们可以构成一组数据,如果这组数据没有输出 impossible,那么它存在最小生成树。

9 16
0 1 8
0 2 12
1 4 9
1 3 25
1 2 13
2 6 21
2 3 14
2 6 12
3 5 8
3 7 12
3 8 16
4 5 19
4 3 20
5 7 11
7 8 6
6 8 11

image.gif

image.png

四、Kruskal算法

Kruskal算法它很像一个比较莽撞的人,它直接选择最短的边,只要它满足最小生成树的条件,那么这条边就可行。 我们先来看看效果图。

4.gif

思路:

①将所有边按权重从小到大排序

②枚举每条边 a,b,权重是c

if a,b不连通

   将这条边加入集合

📸实际题目

同样是上面的题目与数据

给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。

由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。

我们来看看代码是如何实现的。

#include<bits/stdc++.h>
using namespace std;
const int N = 2e5+5;
int n,m;
struct Edge
{
  int u, v, w;
  bool operator<(const Edge &a) const
  {
    return w<a.w;
  }
}edge[N];
int p[N];
int find(int x)
{
  return p[x] == x ? x : p[x] = find(p[x]);
}
int main()
{
  int n, m;
  scanf("%d%d",&n, &m);
  for(int i=0;i<m;i++)
    {
    int u, v, w;
    scanf("%d%d%d",&u, &v, &w);
    edge[i] = {u,v,w};
  }
  sort(edge, edge + m);
  for(int i = 1; i <= n; i ++) p[i] = i;
  int cnt = 0, sum = 0;
  for(int i = 0; i < m; i ++)
    {
    int a = edge[i].u, b=edge[i].v, w = edge[i].w;
    a = find(a);
    b = find(b);
    if(a != b)
    {
      cnt ++;
      sum += w;
      p[a] = b;
    }
  }
  if(cnt < n - 1) puts("impossible");
  else printf("%d", sum);
}

image.gif

image.png

用同样的数据,不同的算法得到相同的结果,没毛病。

五、小结

我们来看看时间复杂度的分析

BFS的复杂度分析

最坏的情况下,空间复杂度为O(v)。

每个顶点均需搜索一次,时间复杂度T1=O(v),每条边至少访问1次,时间复杂度为O(E),算法总的时间复 度为O(|V|+|E|)。

查找每个顶点的邻接点所需时间为O(V),即该节点所在的该行该列。又有n个顶点,故算总的时间复杂度为O(|V|^2)。

DFS复杂度分析

它的空问复杂度为O(V)。

查找所有顶点的邻接点所需时间为O(E),访问顶点的邻接点所花时间为O(V),此时,总的时间复杂度为O(V+E)。

查找每个顶点的邻接点所需时间为O(V),要查找整个矩阵,故总的时间度为O(V^2)。

注意: v为图的顶点数,E为边数。

算法对程序员来说及其重要,语言和开发平台不断变化,但是万变不离其宗的是那些算法和理论,依稀记得我那个玩的很好的一个学长(在大二就拿到了 offer),他告诉我想找一个好的工作,那刷题一定是必不可少的

现在算法刷题平台还是蛮多的,给大家介绍一个我认为与大厂关联最深的平台——牛客网

相关文章
|
算法
最小生成树算法:Prim算法
在图论中,最小生成树(Minimum Spanning Tree,简称MST)是一种常用的算法问题。最小生成树是指在一个加权连通图中选取边的子集,使得所有顶点都被覆盖,并且边的总权值最小。
301 0
|
2月前
|
算法 决策智能
基于prim算法求出网络最小生成树实现网络社团划分和规划
该程序使用MATLAB 2022a版实现路线规划,通过排序节点权值并运用Prim算法生成最小生成树完成网络规划。程序基于TSP问题,采用遗传算法与粒子群优化算法进行路径优化。遗传算法通过编码、选择、交叉及变异操作迭代寻优;粒子群优化算法则通过模拟鸟群觅食行为,更新粒子速度和位置以寻找最优解。
|
4月前
|
机器学习/深度学习 算法 Java
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
这篇文章介绍了基于贪婪技术思想的Prim算法和Dijkstra算法,包括它们的伪代码描述、Java源代码实现、时间效率分析,并展示了算法的测试用例结果,使读者对贪婪技术及其应用有了更深入的理解。
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
|
5月前
|
机器学习/深度学习 人工智能 算法
|
6月前
|
算法 C语言
数据结构与算法——最小生成树问题(什么是最小生成树、Prim算法、Kruskal算法)
数据结构与算法——最小生成树问题(什么是最小生成树、Prim算法、Kruskal算法)
38 0
|
算法 搜索推荐
Kruskal算法
Kruskal算法
108 0
|
算法 C++
用prim和kruskal算法求最小生成树问题
用prim和kruskal算法求最小生成树问题
88 0
|
存储 算法 C++
最小生成树问题及Kruskal算法的解析
最小生成树问题及Kruskal算法的解析
278 2
|
供应链 算法 Java
java数据结构最经济的地下通道建设方案prim算法
MX是世界上第一大传媒娱乐企业,该公司数十年的经营历史中创作了很多经典影片,此外还经营着很多的规模十分宏大世界级的主题娱乐公园。最近MX公司刚和C国X城市达成协定,共同投资建设C国国内唯一一家主题娱乐公园。
67 0
|
算法 Java
数据结构(13)最小生成树JAVA版:prim算法、kruskal算法
13.1.概述 最小生成树,包含图的所有顶点的一棵树,树的边采用包含在图中的原有边中权重和最小的边。翻译成人话就是遍历一遍全图所有顶点的最短路径,这条路径就叫最小生成树。 最小生成树存在和图是连通图互为充要条件,顶点都不连通,肯定不可能有路能遍历一遍全图。 求解最小生成树有两种常用算法:
179 0