客户端单元测试实践——C++篇

简介: 我们团队在手淘中主要负责BehaviX模块,代码主要是一些逻辑功能,很少涉及到UI,为了减少双端不一致问题、提高性能,我们采用了将核心代码C++化的策略。由于团队项目偏底层,测试同学难以完全覆盖,回归成本较高,部分功能依赖研发同学自测,为了提高系统的稳定性,我们在团队中实行了单元测试,同时由于集团客户端C++单元测试相关经验沉淀较少,所以在此分享下团队在做单元测试中遇到的问题与解决思路,希望能对大家所有帮助。

image.png

作者 | 思兼
来源 | 阿里开发者公众号

背景

我们团队在手淘中主要负责BehaviX模块,代码主要是一些逻辑功能,很少涉及到UI,为了减少双端不一致问题、提高性能,我们采用了将核心代码C++化的策略。

由于团队项目偏底层,测试同学难以完全覆盖,回归成本较高,部分功能依赖研发同学自测,为了提高系统的稳定性,我们在团队中实行了单元测试,同时由于集团客户端C++单元测试相关经验沉淀较少,所以在此分享下团队在做单元测试中遇到的问题与解决思路,希望能对大家所有帮助。

为什么要使用单元测试

1、运行快

如果由测试同学手工测试,可能测试周期很长,对于功能比较复杂的功能,测试同学可能并不能完整覆盖所有预期链路,也可能由于某些操作而错过一些关键性步骤。

2、减少回归成本

使用单元测试,可以在每次修改代码后重新运行整套测试,尽可能保证新代码不会破坏现有功能。

3、优化代码结构

当代码耦合度非常大时,可能很难进行单元测试。为代码编写测试将自然地按照预期功能分离你的类。

单测工程搭建历程

单测环境搭建

运行环境的选择

C++工程由于一些三方库的依赖(需要准备多个平台的链接库),同一份代码想要在不同操作系统上运行稍微有点困难。

为了能够让单测工程快速运行起来,同时也方便开发同学调试,兼顾Android/iOS同学的开发习惯,在运行环境上支持单测支持在MacOS和Linux下运行。

依赖剥除

由于单测环境是运行在电脑环境的,所以必须要把一些外部依赖去除。

Java/OC的API依赖

涉及到跨语言通信时,通过NativeBridge封装,内部通过宏或cpp文件链接区分Android和iOS环境

image.png

外部库的依赖

一般采取源码依赖或打出多平台链接库(需要MacOS和Linux版本的依赖)的依赖方式解决。

单测框架

目前业内C++主流单测框架为google的gtest + gmock。

gtest提供了一些单元测试中的断言工具,gmock提供了一些mock功能,但是功能比较弱。

MOCK工具

gtest提供的gmock工具功能比较弱,只能通过继承的方式mock虚函数,对于C++来说是极其不方便的。

在Java中,成员方法是默认可以被派生类重写的,java主流mock工具mockito正是利用了这一特性来完成mock操作。在C++中,所有函数默认是不能被重写的,而且存在一些静态函数和工具函数,无法通过继承重写的方式完成mock。

最终我们基于开源的hook工具 frida 进行封装,实现了自己的mock工具。

image.png

部署到服务器运行

依赖安装

为了使单测工程和其他系统打通(如:钉钉群、Aone),单测工程同时也支持在Linux环境中运行。

因为C++语言的特殊性,从本机环境(MacOS)迁移到Linux并不是一帆风顺的。

集团的服务端机器使用的是CentOS,而且只能下载内网环境中已有的软件,版本也比较老,而且集团机器对C++的环境支持稍弱,如:编译器不支持C++11语法,CMake版本低,没有Clang编译器等。

所以大部分依赖我们都是通过源码的形式导入到服务端机器中,编译出可执行文件安装。

生成镜像(可选)

在编译器、CMake等工具安装好了之后,可以为当前环境创建docker镜像,这样下次就能部署到其他机器直接使用了。

外围功能建设

覆盖率

单测代码覆盖率

通过增加编译参数 -fprofile-arcs 和 -ftest-coverage,在编译完成后每个源文件会生成对应的.gcno文件,在程序运行结束时会生成.gcda文件,然后可以在单元测试运行完成后,使用lcov/gcov,统计代码运行的覆盖率。

注意,推荐使用动态链接的方式将你的待测工程库链接到每个测试用例中,如果使用静态链接,在单元测试运行完成后可能会有一些没有被任何用例覆盖到的文件没有生成.gcda文件,在计算代码覆盖率时这些源文件会被遗漏。

增量代码覆盖率

使用git merge-base可以获取两次提交最佳的公共祖先。

image.png

拿到最佳公共祖先与当前节点的提交记录,通过git diff和git blame,就可以获得两次提交的增量代码行,结合代码覆盖率可以计算出增量代码覆盖率。

内存泄漏检查

C++代码很容易写出内存泄漏,所以我们在单测工程中集成了valgrind工具,能有效的检测出内存泄漏的代码。

下面是一个简单的示例

image.png

钉钉群播报

每次代码合并到develop分支的时候,钉钉群中会播报本次测试的通过率以及代码覆盖率与上次合并时时差值等信息,方便大家及时修复问题,通过覆盖率增长差值也可以调动团队写单测的积极性。

code review卡口

在提交code review时,大家可以看到本次代码的单测通过率、单测覆盖率、增量覆盖率等信息,如果单元测试运行没有通过,或增量覆盖率卡口未通过(目前团队中要求增量单测覆盖率达到90%),则不允许合并代码。

image.png

单元测试实践

如何编写有效的单元测试用例

单元测试的组成部分

一般单元测试由以下几部分组成

  • 测试数据:尽可能稳定,减少对不确定性因素的依赖
  • 逻辑执行体:要明确当前测试用例测试的是哪个函数、哪个分支逻辑,不要一次性覆盖大多
  • 结果校验:尽可能完整,不要只校验函数返回值

单元测试的原则

单元测试必须遵循的原则:

  • 独立性:单元测试是独立的,可以单独运行,并且不依赖于任何外部因素,如文件系统或数据库。
  • 幂等性:每次运行单元测试应与其结果一致,测试中不要依赖如时间、日期等不确定因素
  • 快速:不要依赖网络请求等耗时操作

经验小结

编写单元测试时建议从以下角度思考

  • 实现什么功能,处理哪些数据,最终输出什么?
  • 异常和边界在哪里?
  • 函数的关键结果是否都验证到?包含返回值和中间值。
  • 函数的风险在哪里,哪部分逻辑不太自信,最容易出错?
  • 并不是所有函数都需要单测,如get/set等逻辑比较简单的的,不一定需要写。

提高代码的可测试性

C++是一门多范式的语言,而且由于C+语言本身的一些特性(RAII,模板等),网上很多基于Java等语言总结出来的提高可测试性的方法对C++来说可能过于麻烦,如依赖注入等,不一定特别适用。

下面整理了一些简单常用能提高可测试性的方式。

影响可测试性的常见因素

  • 外部依赖过多,需要mock
  • 数据依赖链过长,导致构造测试数据麻烦
  • 分支逻辑过于复杂
  • 全局变量/静态变量
  • 内部lambda表达式过多
  • 依赖的类对象不可构造/难以构造
  • 函数功能过多

减少全局变量/静态变量的使用

如果你的对象依赖了一些全局变量/静态变量,而且这些全局变量会在多个测试case使用,这种情况是比较难测试的,你不得不在每个测试用例结束之后手动重置全局变量。这样不符合单测测试的独立性原则,所以应该尽量避免使用全局变量。

class MyTest {
public:
    
    int GetIndex() {
        return index++;
    }
    
    static int index;  //静态变量
};

int MyTest::index = 0;

TEST(test, demo) {
    ASSERT_EQ(0, MyTest().GetIndex());
}

TEST(test, demo2) {
    ASSERT_EQ(0, MyTest().GetIndex());  //Error
}
TEST(test, demo) {
    MyTest::index = 0;
    ASSERT_EQ(0, MyTest().GetIndex());
}
TEST(test, demo2) {
    MyTest::index = 0;
    ASSERT_EQ(0, MyTest().GetIndex());
}

迪米特法则

1、如果你代码中引入一些复杂的外部依赖,可以考虑将依赖转移给调用方

如:

class MyClass {
public:
    void doSomething() {
        if(getUserManager().getUser(123).getProfile().isAdmin()) {  //bad 复杂的依赖链
            //xxxx
        } else {
            
        }
    }
};
class MyClass {
public:
    void doSomething(bool isAdmin) {  //简单的参数依赖
        if(isAdmin) {  
            //xxxx
        } else {
            
        }
    }
};

2、直接依赖需要的参数,避免依赖类似于Context大而全的参数(可能非常难以构造)

如:

class MyClass {
public:

    void processOrderBefore(const UserContext & userContext) {  //修改之前
        const User & user = userContext.getUser();
        const PlanLevel & level = userContext.getLevel();
        const Order & order = userContext.getOrder();

        // ... process
    }

    void processOrderAfter(const UserContext & userContext) { //修改后
        const User & user = userContext.getUser();
        const PlanLevel & level = userContext.getLevel();
        const Order & order = userContext.getOrder();

        processOrderAfter(user, level, order);   //核心逻辑抽成新的函数
    }

    void processOrderAfter(const User & user, const PlanLevel & level,const Order & order) {  
        //只需要对新封装函数进行单元测试即可
        // ... process
    }
};

封装分支逻辑

如果一个函数中分支太多,可以考虑将不同分支封装成不同的函数处理,然后对封装的函数分别编写单元测试用例。

合理使用MOCK工具

考虑在以下场景使用mock工具,可以减少你的单元测试成本

  • 代码中依赖的某个功能在你本次测试并不关心,如:db数据读取,发请求
  • 测试用例依赖一些复杂的数据源,如:db数据读取,流水线上游数据,网络请求
  • 一些非幂等性的函数调用或者结果返回不稳定的函数调用,如:随机数获取,时间获取,db写入
  • 对象的某些状态难以创建或者重现,如:网络错误或者文件读写错误
  • 验证一些中间过程值,如:你的函数没有返回值,或者中间过程值不方便验证,可以mock中间某个函数调用来验证中间过程结果是否正确

尝试测试驱动开发(TDD)

如果你的需求所要实现的功能相对明确,那么可以先把接口定义出来,写一个最简单的实现运行起来,为其补充单元测试用例,然后再一步步完善具体实现细节。

如果不能先写测试用例也没关系,重要的是在开发中尽早编写测试测试,不要将它们延迟到最后,这样可以及时重构你的代码。

image.png

常见误区

只测试正常数据

应当尽量补充一些特殊值(如空值、边界值)或异常数据,以校验目标函数在不同的输入是否符合预期,尽量覆盖多的代码分支逻辑。

结果校验不完整

如果你的目标测试函数中对属性进行了修改,那么应该尽可能校验这些修改是否符合预期,而不是单单只校验函数返回值。

输入数据过于复杂

  • 生成测试输入数据的代码应当避免与实际工程代码耦合,如:读取db或从流水线上游产生等
  • 使用最小数据依赖的原则,只输入对当前测试用例会产生影响的数据即可。
  • 如果数据源构造过于复杂,可以将一个大的测试用例拆分成多个小的测试用例。

测试代码存在分支条件

避免测试用例代码中使用if、switch等分支逻辑,保持用例尽量简单,如果需要测试不同分支的代码逻辑,应该拆分成多个测试用例。

维护测试用例

  • 重构代码时,应该同步修改测试用例
  • 发现新增Bug时,应当将能验证此Bug被修复的测试用例的补充到单元测试工程中

测试用例命名规则参考

TEST_F(TestUCPPipelineCenter, checkTaskInProcess_重复触发_true);
测试宏 被测试类名,        被测试函数名_简单描述核心测试逻辑_要校验的结果值

小结

我们小组的单元测试工程已经稳定运行了一段时间,代码提交流程也逐步固化下来了,如下图所示。后续我们会寻找一些指标去量化衡量单元测试所带来的收益。希望本文能帮助大家更加快捷地搭建C++单元测试环境。

image.png

附录


重磅来袭!2022上半年阿里云社区最热电子书榜单!

千万阅读量、百万下载量、上百本电子书,近200位阿里专家参与编写。多元化选择、全领域覆盖,汇聚阿里巴巴技术实践精华,读、学、练一键三连。开发者藏经阁,开发者的工作伴侣~

相关文章
|
4天前
|
测试技术
软件测试的艺术:探索式测试的实践与思考
在软件开发的广阔海洋中,测试是确保航船稳健行驶的关键。本文将带你领略探索式测试的魅力,一种结合创造性思维和严格方法论的测试方式。我们将一起揭开探索式测试的神秘面纱,了解其核心概念、实施步骤和带来的效益。通过实际代码示例,你将学会如何将探索式测试融入日常的软件质量保证流程中,提升测试效率与质量。
|
11天前
|
敏捷开发 人工智能 Devops
探索自动化测试的高效策略与实践###
当今软件开发生命周期中,自动化测试已成为提升效率、保障质量的关键工具。本文深入剖析了自动化测试的核心价值,探讨了一系列高效策略,包括选择合适的自动化框架、设计可维护的测试脚本、集成持续集成/持续部署(CI/CD)流程,以及有效管理和维护测试用例库。通过具体案例分析,揭示了这些策略在实际应用中的成效,为软件测试人员提供了宝贵的经验分享和实践指导。 ###
|
10天前
|
机器学习/深度学习 人工智能 jenkins
软件测试中的自动化与持续集成实践
在快速迭代的软件开发过程中,自动化测试和持续集成(CI)是确保代码质量和加速产品上市的关键。本文探讨了自动化测试的重要性、常见的自动化测试工具以及如何将自动化测试整合到持续集成流程中,以提高软件测试的效率和可靠性。通过案例分析,展示了自动化测试和持续集成在实际项目中的应用效果,并提供了实施建议。
|
11天前
|
Java 测试技术 持续交付
探索自动化测试在软件开发中的关键作用与实践
在现代软件开发流程中,自动化测试已成为提升产品质量、加速交付速度的不可或缺的一环。本文深入探讨了自动化测试的重要性,分析了其在不同阶段的应用价值,并结合实际案例阐述了如何有效实施自动化测试策略,以期为读者提供一套可操作的实践指南。
|
11天前
|
Web App开发 敏捷开发 测试技术
探索自动化测试的奥秘:从理论到实践
【10月更文挑战第39天】在软件质量保障的战场上,自动化测试是提升效率和准确性的利器。本文将深入浅出地介绍自动化测试的基本概念、必要性以及如何实施自动化测试。我们将通过一个实际案例,展示如何利用流行的自动化测试工具Selenium进行网页测试,并分享一些实用的技巧和最佳实践。无论你是新手还是有经验的测试工程师,这篇文章都将为你提供宝贵的知识,帮助你在自动化测试的道路上更进一步。
|
11天前
|
敏捷开发 Java 测试技术
探索自动化测试:从理论到实践
【10月更文挑战第39天】在软件开发的海洋中,自动化测试是一艘能够带领团队高效航行的船只。本文将作为你的航海图,指引你理解自动化测试的核心概念,并分享一段实际的代码旅程,让你领略自动化测试的魅力和力量。准备好了吗?让我们启航!
|
16天前
|
测试技术 API Android开发
探索软件测试中的自动化框架选择与实践####
本文深入探讨了软件测试领域内,面对众多自动化测试框架时,如何依据项目特性和团队需求做出明智选择,并分享了实践中的有效策略与技巧。不同于传统摘要的概述方式,本文将直接以一段实践指南的形式,简述在选择自动化测试框架时应考虑的核心要素及推荐路径,旨在为读者提供即时可用的参考。 ####
|
26天前
|
监控 安全 jenkins
探索软件测试的奥秘:自动化测试框架的搭建与实践
【10月更文挑战第24天】在软件开发的海洋里,测试是确保航行安全的灯塔。本文将带领读者揭开软件测试的神秘面纱,深入探讨如何从零开始搭建一个自动化测试框架,并配以代码示例。我们将一起航行在自动化测试的浪潮之上,体验从理论到实践的转变,最终达到提高测试效率和质量的彼岸。
|
21天前
|
NoSQL 测试技术 Go
自动化测试在 Go 开源库中的应用与实践
本文介绍了 Go 语言的自动化测试及其在 `go mongox` 库中的实践。Go 语言通过 `testing` 库和 `go test` 命令提供了简洁高效的测试框架,支持单元测试、集成测试和基准测试。`go mongox` 库通过单元测试和集成测试确保与 MongoDB 交互的正确性和稳定性,使用 Docker Compose 快速搭建测试环境。文章还探讨了表驱动测试、覆盖率检查和 Mock 工具的使用,强调了自动化测试在开源库中的重要性。
|
26天前
|
测试技术 Python
软件测试的艺术:从理论到实践的探索
【10月更文挑战第23天】在软件开发的世界中,测试是确保产品质量的关键步骤。本文将深入探讨软件测试的核心理念、方法和实践,揭示如何通过精心设计和执行测试来提高软件质量。我们将一起探索测试的不同阶段,包括单元测试、集成测试、系统测试和验收测试,以及它们如何相互补充,共同构建起一个坚实的质量保证体系。文章旨在启发读者思考如何在自己的项目中实施有效的测试策略,从而提升软件的可靠性和性能。