【JVM深度解析】类加载与类加载器

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
全局流量管理 GTM,标准版 1个月
简介: 你了解类加载机制吗?类加载器能说一下是什么吗?如何破坏双亲委派呢,多说几种?...不懂?一文带你了解类加载与类加载器

本文思维导图:

image.gif编辑

类生命周期 7 个阶段

类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)7 个阶段。其中验证、准备、解析 3 个部分统称为连接(Linking)

image.gif编辑

阶段顺序

加载、校验(验证)、准备、初始化和卸载这五个阶段的顺序是确定的,但是对于“解析”阶段则不一定,它在某些情况下可以在初始化之后再开始,这样做是为了支持 java 的运行时绑定特征(也称为动态绑定或晚期绑定)。

一、加载的时机

什么是需要开始类第一个阶段“加载”,虚拟机规范没有强制约束,这点交给虚拟机的具体实现来自由把控。JVM 虚拟机的实现都是使用的懒加载,就是什么时候需要这个类了我才去加载,并不是说一个 jar 文件里面有 200 多个类,但实际我只用到了其中的一个类,我不需要把 200 多个类全部加载进来。(如果你自己写一个 JVM 倒是可以这么干!)

“加载 loading”阶段是整个类加载(class loading)过程的一个阶段。

加载阶段虚拟机需要完成以下 3  件事情:

一、通过一个类的全限定名来获取定义此类的二进制字节流。

二、将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。

三、在内存中生成一个代表这个类的 java.lang.Class 对象,作为方法区这个类的各种数据的访问入口。

注意:比如“通过一个类的全限定名来获取定义此类的二进制字节流”没有指定一定得从某个 class 文件中获取,所以我们可以从 zip 压缩包、从网络中获取、运行时计算生成、数据库中读取、或者从加密文件中获取等等。我们也可以通过前面的工具 JHSDB 可以看到,JVM 启动后,相关的类已经加载进入了方法区,成为了方法区的运行时结构。

JHSDB 怎么用?具体见 JHSDB 工具

1、Attarch 上 JVM 启动的进程

2、打开 Class Browser

3、可以看到很多 class 已经被加载进来了

4、找到 JVMObject, 注意!这里已经是内存了,所以说相关的类已经加载进入了方法区,成为了方法区的运行时结构。

二、验证

是连接阶段的第一步,这一阶段的目的是为了确保 Class 文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。但从整体

上看,验证阶段大致上会完成下面 4 个阶段的检验动作:文件格式验证、元数据验证、字节码验证、符号引用验证。

文件格式验证(非重点)

第一阶段要验证字节流是否符合 Class 文件格式的规范,并且能被当前版本的虚拟机处理。这一阶段可能包括下面这些验证点:

一、是否以魔数 OxCAFEBABE 开头。

二、主、次版本号是否在当前 Java 虚拟机接受范围之内。

三、常量池的常量中是否有不被支持的常量类型(检查常量 tag 标志)。

四、指向常量的各种索引值中是否有指向不存在的常量或不符合类型的常量。

五、CONSTANT Utf8 info 型的常量中是否有不符合 UTF-8 编码的数据。

六、Class 文件中各个部分及文件本身是否有被删除的或附加的其他信息。

......

以上的部分还只是一小部分,没必要进行深入的研究。

总结一下:这阶段的验证是基于二进制字节流进行的 , 只有通过了这个阶段的验证之后 , 这段字节流才被允许进人 Java  虚拟机内存的方法区中进行存储 , 所以后面的三个验证阶段全部是基于方法区的存储结构(内存)上进行的,不会再直接读取、操作字节流了。

元数据验证(非重点)

第二阶段是对字节码描述的信息进行语义分析,以保证其描述的信息符合《Java 语言规范》的要求,这个阶段可能包括的验证点如下:

一、这个类是否有父类(除了 java.lang.Object 之外,所有的类都应当有父类)。

二、这个类的父类是否继承了不允许被继承的类(被 final 修饰的类)。

三、如果这个类不是抽象类,是否实现了其父类或接口之中要求实现的所有方法。

四、类中的字段、方法是否与父类产生矛盾(例如覆盖了父类的 final 字段,或者出现不符合规则的方法重载,例如方法参数都一致,但返回值类型却不同等)。

......

以上的部分还只是一小部分,没必要进行深入的研究。

元数据验证是验证的第二阶段,主要目的是对类的元数据信息进行语义校验,保证不存在与《Java 语言规范》定义相悖的元数据信息。

字节码验证(非重点)

字节码验证第三阶段是整个验证过程中最复杂的一一个阶段, 主要目的是通过数据流分析和控制流分析,确定程序语义是合法的、符合逻辑的。在第二阶段对元数据信息中的数据类型校验完毕以后,这阶段就要对类的方法体(Class 文件中的 Code 属性)进行校验分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的行为,例如:

一、保证任意时刻操作数栈的数据类型与指令代码序列都能配合工作,例如不会出现类似于“在操作栈放置了一个 int 类型的数据,使用时却按 long 类型来加载入本地变量表中”这样的情况。

二、保证任何跳转指令都不会跳转到方法体以外的字节码指令上。

三、保证方法体中的类型转换总是有效的,例如可以把-个子类对象赋值给父类数据类型,这是安全的,但是把父类对象赋值给子类数据类型,甚至把对象赋值给与它毫无继承关系、完全不相干的一个数据类型,则是危险和不合法的。

......

以上的部分还只是一小部分,没必要进行深入的研究。

如果一个类型中有方法体的字节码没有通过字节码验证,那它肯定是有问题的。

符号引用验证(非重点)

最后一个阶段的校验行为发生在虚拟机将符号引用转化为直接引用的时候,这个转化动作将在连接的第三阶段一解析阶段中发生。符号引用验证可以看作是对类自身以外(常量池中的各种符号引用)的各类信息进行匹配性校验,通俗来说就是,该类是否缺少或者被禁止访问它依赖的某些外部类、方法、字段等资源。本阶段通常需要校验下列内容。

一、符号引用中通过字符串描述的全限定名是否能找到对应的类。

二、在指定类中是否存在符合方法的字段描述符及简单名称所描述的方法和字段。

三、符号引用中的类、字段、方法的可访问性( private、 protected. public、 <package> )

四、是否可被当前类访问。

......

符号引用验证的主要目的是确保解析行为能正常执行,如果无法通过符号引用验证,将会抛出异常。

验证(总结)

验证阶段对于虚拟机的类加载机制来说,是一个非常重要的、 但却不是必须要执行的阶段,因为验证阶段只有通过或者不通过的差别,只要通过了验证,其后就对程序运行期没有任何影响了。如果程序运行的全部代码(包括自己编写的、第三方包中的、从外部加载的、动态生成的等所有代码)都已经被反复使用和验证过,在生产环境的实施阶段就可以考虑使用-Xverify:none 参数来关闭大部分的类验证措施,以缩短虚拟机类加载的时间。

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html (官方文档)

三、准备

准备阶段是正式为类中定义的变量(被 static 修饰的变量)分配内存设置类变量初始值的阶段,这些变量所使用的内存都将在方法区中进行分配。这个阶段中有两个容易产生混淆的概念需要强调一下:

首先,这时候进行内存分配的仅包括类变量(被 static 修饰的变量),而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在 Java 堆中。

其次,这里所说的初始值“通常情况”下是数据类型的零值,假设一个类变量的定义为:public static int value=123;那变量 value 在准备阶段过后的初始值为 0 而不是 123,因为这时候尚未开始执行任何 Java 方法,而把 value 赋值为 123 是后续的初始化环节。

基本数据类型的零值表

image.gif编辑

四、解析

解析阶段是 JVM 将常量池内的符号引用替换为直接引用的过程。

符号引用是一种定义,可以是任何字面上的含义,而直接引用就是直接指向目标的指针、相对偏移量。

直接引用的对象都存在于内存中,你可以把通讯录里的女友手机号码,类比为符号引用,把面对面和你吃饭的女朋友,类比为直接引用。

解析大体可以分为:(不重要)

一、类或接口的解析

二、字段解析·········

三、类方法解析

四、接口方法解析

我们了解几个经常发生的异常,就与这个阶段有关。

java.lang.NoSuchFieldError 根据继承关系从下往上,找不到相关字段时的报错。(字段解析异常)

java.lang.IllegalAccessError 字段或者方法,访问权限不具备时的错误。(类或接口的解析异常)

java.lang.NoSuchMethodError 找不到相关方法时的错误。(类方法解析、接口方法解析时发生的异常)

五、初始化(重点)

初始化主要是对一个 class 中的 static{}语句进行操作(对应字节码就是 clinit 方法)。

<clinit>()方法对于类或接口来说并不是必需的,如果一个类中没有静态语句块,也没有对变量的赋值操作,那么编译器可以不为这个类生成<clinit>()方法。

初始化阶段,虚拟机规范则是严格规定了有且只有 6 种情况必须立即对类进行“初始化”(而加载、验证、准备自然需要在此之前开始):

一、遇到 newgetstatic、putstatic 或 invokestatic 这 4 条字节码指令时,如果类没有进行过初始化,则需要先触发其初始化。生成这 4 条指令的最常见的Java 代码场景是:

(一)使用 new 关键字实例化对象的时候。

(二)读取或设置一个类的静态字段(被 final 修饰、已在编译期把结果放入常量池的静态字段除外)的时候

(三)调用一个类的静态方法的时候。

二、使用 java.lang.reflect 包的方法对类进行反射调用的时候,如果类没有进行过初始化,则需要先触发其初始化。

三、当初始化一个类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化。

四、当虚拟机启动时,用户需要指定一个要执行的主类(包含 main()方法的那个类),虚拟机会先初始化这个主类。

五、当使用 JDK 1.7 的动态语言支持时,如果一个 java.lang.invoke.MethodHandle 实例最后的解析结果 REF_getStatic、REF_putStatic、REF_invokeStatic 的方法句柄,并且这个方法句柄所对应的类没有进行过初始化,则需要先触发其初始化。

六、当一个接口中定义了 JDK1.8 新加入的默认方法(被 default 关键字修饰的接口方法)时,如果这个接口的实现类发生了初始化,那该接口要在其之前被初始化。

案例分析:

/**
 * 初始化的场景
 * 通过VM参数可以观察操作是否会导致子类的加载-XX:+TraceClassLoading
 *
 * @author macfmc
 * @date 2020/8/22-19:47
 */
public class Initialization {
    public static void main(String[] args) {
        Initialization initialization = new Initialization();
        initialization.M1();//打印子类的静态字段
        initialization.M2();//使用数组的方式创建
        initialization.M3();//打印一个常量
        initialization.M4();//.如果使用常量去引用另外一个常量
    }
    public void M1() {
        //如果通过子类引用父类中的静态字段,只会触发父类的初始化,而不会触发子类的初始化(但是子类会被加载)
        System.out.println(SubClaszz.value);
    }
    public void M2() {
        //使用数组的方式,不 会触发初始化(同样不会触发子类加载)
        SuperClazz[] sca = new SuperClazz[10];
    }
    public void M3() {
        //打印一个常量,不会触发初始化(同样不会触类加载)
        System.out.println(SuperClazz.HELLOWORLD);
    }
    public void M4() {
        // 如果使用常量去引用另外一一个常量(这个值未知,所以必须要触发初始化)
        System.out.println(SuperClazz.WHAT);
    }
}
/**
 * @author macfmc
 */
public class SuperClazz {
    static {
        System.out.println("SuperClazz init! ");
    }
    public static int value = 10;
    public static String HELLOWORLD = "123";
    public static final int WHAT = 20;
}
package main.java.JVM;
/**
 * @author macfmc
 */
public class SubClaszz extends SuperClazz {
    static {
        System.out.println("SubClaszz init! ");
    }
}

image.gif

线程安全

虚拟机会保证一个类的<clinit>()方法在多线程环境中被正确地加锁、同步,如果多个线程同时去初始化一个类,那么只会有一个线程去执行这个类的<clinit>()方法,其他线程都需要阻塞等待,直到活动线程执行<clinit>()方法完毕。如果在一个类的<clinit>()方法中有耗时很长的操作,就可能造成多个进程阻塞。所以类的初始化是线程安全的,项目中可以利用这点。

类加载器

整个类加载过程任务非常繁重,虽然这活儿很累,但总得有人干。类加载器做的就是上面 5 个步骤的事(加载、验证、准备、解析、初始化)。

JDK提供的三层类加载器(重点)

Bootstrap ClassLoader

这是加载器中的扛把子,任何类的加载行为,都要经它过问。它的作用是加载核心类库,也就是 rt.jar、resources.jar、charsets.jar 等。当然这些 jar 包的路径是可以指定的,-Xbootclasspath 参数可以完成指定操作。这个加载器是 C++ 编写的,随着 JVM 启动。

Extention ClassLoader

扩展类加载器,主要用于加载 lib/ext 目录下的 jar 包和 .class 文件。同样的,通过系统变量 java.ext.dirs 可以指定这个目录。这个加载器是个 Java 类,继承自 URLClassLoader。

Application ClassLoader

这是我们写的 Java 类的默认加载器,有时候也叫作 System ClassLoader。一般用来加载 classpath 下的其他所有 jar 包和 .class 文件,我们写的代码,会首先尝试使用这个类加载器进行加载。

Custom ClassLoader

自定义加载器,支持一些个性化的扩展功能。

类加载器的问题

如果你在项目代码里,写一个 java.lang 的包,然后改写 String 类的一些行为,编译后,发现并不能生效。JRE 的类当然不能轻易被覆盖,否则会被别有用心的人利用,这就太危险了。

对于任意一个类,都需要由加载它的类加载器和这个类本身一同确立其在 Java 虚拟机中的唯一性,每一个类加载器,都拥有一个独立的类名称空间。这句话可以表达得更通俗一些:比较两个类是否“相等”,只有在这两个类是由同一个类加载器加载的前提下才有意义,否则,即使这两个类来源于同一个 Class 文件,被同一个虚拟机加载,只要加载它们的类加载器不同,那这两个类就必定不相等。这里所指的“相等”,包括代表类的 Class 对象的 equals()方法、isAssignableFrom()方法、isInstance()方法的返回结果,也包括使用 instanceof 关键字做对象所属关系判定等情况。

双亲委派机制(重点)

双亲委派模型要求除了顶层的启动类加载器外,其余的类加载器都应当有自己的父类加载器。这里类加载器之间的父子关系一般不会以继承(Inheritance)的关系来实现,而是都使用组合(Composition)关系来复用父加载器的代码。

使用双亲委派模型来组织类加载器之间的关系,有一个显而易见的好处就是 Java 类随着它的类加载器一起具备了一种带有优先级的层次关系。例如类java.lang.Object,它存放在 rt.jar 之中,无论哪一个类加载器要加载这个类,最终都是委派给处于模型最顶端的启动类加载器进行加载,因此 Object 类在程序的各种类加载器环境中都是同一个类。相反,如果没有使用双亲委派模型,由各个类加载器自行去加载的话,如果用户自己编写了一个称为java.lang.Object 的类,并放在程序的 ClassPath 中,那系统中将会出现多个不同的 Object 类,Java 类型体系中最基础的行为也就无法保证,应用程序也将会变得一片混乱。

image.gif编辑

我们可以翻阅 JDK 代码的 ClassLoader#loadClass 方法,来看一下具体的加载过程。和我们描述的一样,它首先使用 parent 尝试进行类加载,parent 失败后才轮到自己。同时,我们也注意到,这个方法是可以被覆盖的,也就是双亲委派机制并不一定生效。

image.gif编辑

自定义类加载器

Tomcat  类加载机制

image.gif编辑

tomcat 通过 war 包进行应用的发布,它其实是违反了双亲委派机制原则的。简单看一下 tomcat 类加载器的层次结构。

对于一些需要加载的非基础类,会由一个叫作 WebAppClassLoader 的类加载器优先加载。等它加载不到的时候,再交给上层的 ClassLoader 进行加载。

这个加载器用来隔绝不同应用的 .class 文件,比如你的两个应用,可能会依赖同一个第三方的不同版本,它们是相互没有影响的。

如何在同一个 JVM 里,运行着不兼容的两个版本,当然是需要自定义加载器才能完成的事。

那么 tomcat 是怎么打破双亲委派机制的呢?可以看图中的 WebAppClassLoader,它加载自己目录下的 .class 文件,并不会传递给父类的加载器。

SPI

Java 中有一个 SPI 机制,全称是 Service Provider Interface,是 Java 提供的一套用来被第三方实现或者扩展的 API,它可以用来启用框架扩展和替换组件。

这个说法可能比较晦涩,但是拿我们常用的数据库驱动加载来说,就比较好理解了。在使用 JDBC 写程序之前,通常会调用下面这行代码,用于加载所需要的驱动类。

Class.forName("com.mysql.jdbc.Driver") 这只是一种初始化模式,通过 static 代码块显式地声明了驱动对象,然后把这些信息,保存到底层的一个 List 中。这种方式我们不做过多的介绍,因为这明显就是一个接口编程的思路(这里不进行细讲)。但是你会发现,即使删除了 Class.forName 这一行代码,也能加载到正确的驱动类,什么都不需要做,非常的神奇,它是怎么做到的呢?

MySQL 的驱动代码,就是在这里实现的。

路径:mysql-connector-java-8.0.11.jar!/META-INF/services/java.sql.Driver

里面的内容是:com.mysql.cj.jdbc.Driver

通过在 META-INF/services 目录下,创建一个以接口全限定名为命名的文件(内容为实现类的全限定名),即可自动加载这一种实现,这就是 SPI。

SPI 实际上是“基于接口的编程+策略模式+配置文件”组合实现的动态加载机制,主要使用 java.util.ServiceLoader 类进行动态装载。

image.gif编辑

这种方式,同样打破了双亲委派的机制。

DriverManager 类和 ServiceLoader 类都是属于 rt.jar 的。它们的类加载器是 Bootstrap ClassLoader,也就是最上层的那个。

而具体的数据库驱动,却属于业务代码,这个启动类加载器是无法加载的。这就比较尴尬了,虽然凡事都要祖先过问,但祖先没有能力去做这件事情,怎么办?跟踪代码,来看一下。

image.gif编辑

image.gif编辑

image.gif编辑

通过代码你可以发现它把当前的类加载器,设置成了线程的上下文类加载器。那么,对于一个刚刚启动的应用程序来说,它当前的加载器是谁呢?也就是说,启动 main 方法的那个加载器,到底是哪一个?

所以我们继续跟踪代码。找到 Launcher 类,就是 jre 中用于启动入口函数 main 的类。我们在 Launcher 中找到以下代码。

image.gif编辑

到此为止,事情就比较明朗了,当前线程上下文的类加载器,是应用程序类加载器。使用它来加载第三方驱动。

总结一下

第一、可以让你更好的看到一个打破规则的案例(虽然应该是属于 BootStrap 类加载器加载的,但是还是在 app 类加载器去加载的它)。

第二,这个问题面试时出现的几率也是比较高的,你需要好好理解。

OSGi (了解)

OSGi 曾经非常流行,Eclipse 就使用 OSGi 作为插件系统的基础。OSGi 是服务平台的规范,旨在用于需要长运行时间、动态更新和对运行环境破坏最小的系统。

OSGi 规范定义了很多关于包生命周期,以及基础架构和绑定包的交互方式。这些规则,通过使用特殊 Java 类加载器来强制执行,比较霸道。比如,在一般 Java 应用程序中,classpath 中的所有类都对所有其他类可见,这是毋庸置疑的。但是,OSGi 类加载器基于 OSGi 规范和每个绑定包的manifest.mf 文件中指定的选项,来限制这些类的交互,这就让编程风格变得非常的怪异。但我们不难想象,这种与直觉相违背的加载方式,这些都是由专用的类加载器来实现的。

随着 JPMS 的发展(JDK9 引入的,旨在为 Java SE 平台设计、实现一个标准的模块系统),King 老师认为,现在的 OSGi,深入研究意义已经不是很大了。OSGi 是一个庞大的话题(技术上),你只需要了解到,有这么一个复杂的东西,实现了模块化,每个模块可以独立安装、启动、停止、卸载,就可以了。

OSGI 一般的公司玩不转,都是阿里这些大公司在用。从大家研究技术的角度上来,就算你去这些公司,再去学习也没问题(阿里不可能要求一个小厂出来的程序员对 OSGI 精通)。主要精力还是把放在类加载、双亲委派,以及如何打破这些问题解决即可。

相关文章
|
2月前
|
监控 算法 Java
Java虚拟机(JVM)的垃圾回收机制深度解析####
本文深入探讨了Java虚拟机(JVM)的垃圾回收机制,旨在揭示其背后的工作原理与优化策略。我们将从垃圾回收的基本概念入手,逐步剖析标记-清除、复制算法、标记-整理等主流垃圾回收算法的原理与实现细节。通过对比不同算法的优缺点及适用场景,为开发者提供优化Java应用性能与内存管理的实践指南。 ####
|
1月前
|
存储 Java 开发者
浅析JVM方法解析、创建和链接
上一篇文章《你知道Java类是如何被加载的吗?》分析了HotSpot是如何加载Java类的,本文再来分析下Hotspot又是如何解析、创建和链接类方法的。
|
1月前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
2月前
|
Java 编译器 API
深入解析:JDK与JVM的区别及联系
在Java开发和运行环境中,JDK(Java Development Kit)和JVM(Java Virtual Machine)是两个核心概念,它们在Java程序的开发、编译和运行过程中扮演着不同的角色。本文将深入解析JDK与JVM的区别及其内在联系,为Java开发者提供清晰的技术干货。
44 1
|
3月前
|
缓存 前端开发 Java
JVM知识体系学习二:ClassLoader 类加载器、类加载器层次、类过载过程之双亲委派机制、类加载范围、自定义类加载器、编译器、懒加载模式、打破双亲委派机制
这篇文章详细介绍了JVM中ClassLoader的工作原理,包括类加载器的层次结构、双亲委派机制、类加载过程、自定义类加载器的实现,以及如何打破双亲委派机制来实现热部署等功能。
113 3
|
3月前
|
存储 安全 Java
JVM锁的膨胀过程与锁内存变化解析
在Java虚拟机(JVM)中,锁机制是确保多线程环境下数据一致性和线程安全的重要手段。随着线程对共享资源的竞争程度不同,JVM中的锁会经历从低级到高级的膨胀过程,以适应不同的并发场景。本文将深入探讨JVM锁的膨胀过程,以及锁在内存中的变化。
64 1
|
4月前
|
存储 算法 Java
深入解析 Java 虚拟机:内存区域、类加载与垃圾回收机制
本文介绍了 JVM 的内存区域划分、类加载过程及垃圾回收机制。内存区域包括程序计数器、堆、栈和元数据区,每个区域存储不同类型的数据。类加载过程涉及加载、验证、准备、解析和初始化五个步骤。垃圾回收机制主要在堆内存进行,通过可达性分析识别垃圾对象,并采用标记-清除、复制和标记-整理等算法进行回收。此外,还介绍了 CMS 和 G1 等垃圾回收器的特点。
145 0
深入解析 Java 虚拟机:内存区域、类加载与垃圾回收机制
|
3月前
|
前端开发 Java 应用服务中间件
JVM进阶调优系列(1)类加载器原理一文讲透
本文详细介绍了JVM类加载机制。首先解释了类加载器的概念及其工作原理,接着阐述了四种类型的类加载器:启动类加载器、扩展类加载器、应用类加载器及用户自定义类加载器。文中重点讲解了双亲委派机制,包括其优点和缺点,并探讨了打破这一机制的方法。最后,通过Tomcat的实际应用示例,展示了如何通过自定义类加载器打破双亲委派机制,实现应用间的隔离。
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
110 2
|
27天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析

推荐镜像

更多