人工智能在安防领域的应用

简介: 在人防、物防、技防的大安防市场,人工智能也在发挥着作用,已经成为了一个流行趋势并且将是未来的发展方向。那么,AI技术在安防市场中的应用有哪些方面呢?

随着现代科技的不断发展,人工智能将对各行各业带去不小冲击,从医疗到教育,从金融到娱乐。在各行各业都充斥着人工智能的身影。在人防、物防、技防的大安防市场,人工智能也在发挥着作用,已经成为了一个流行趋势并且将是未来的发展方向。那么,AI技术在安防市场中的应用有哪些方面呢?
d43be6a19f0e73fe16e92556c0e3c69ce759cc.jpg

一、公安行业

在公安行业的应用主要是用于筛选和跟踪犯罪嫌疑人的线索。我们都知道,走在城市的大街上几乎随处都可以看到有监控摄像24小时工作,那么这么多的监控所汇集的数据也是不可估量的,那么要怎样才能最快的速度筛选出犯罪嫌疑人的线索呢?这时AI可以发挥它强大的作用了。人工智能可以快速的帮人们筛选出犯罪嫌疑的信息并快速的传达到前端,往往能把需要几天才能处理完的数据在几分钟之内处理好,给公安抓捕犯罪嫌疑人节省宝贵的时间。

二、交通领域
79cc0e3724eb6c83486681dd07ebc6b781fcd7.png

每年发生交通事故不知道有多少,如果没有一个合理的管理系统,无疑会变得非常麻烦。在城市交通领域,单纯的车牌识别技术已经无法满足实际需求,业界迫切希望能够更快更准确提取更多元的车辆信息,除车牌号码外,还有车辆的厂牌、车身颜色、车辆品牌、车辆类型、车辆特征物等等。支持基于车辆外观特征的快速检索,这些特征在刑事案件侦查、交通事故处理、交通肇事逃逸、违章车辆自动记录等领域具有广泛而迫切的应用需求。

三、社区楼宇领域

社区楼宇是AI+安防除公安交通之外的另一主要应用领域。社区楼宇领域AI安防落地产品可分为两大类,一是以AI摄像机为核心的智能视频监控系统;二是人脸识别门禁及楼宇对讲、车牌识别道闸等智能通行设备。在国家政策大力支持的背景下,随着全国城镇老旧小区改造、“智慧社区”及“智慧安防小区”建设等重点工作的持续推进,预计未来数年AI安防在社区楼宇领域将保持高速稳定发展。目前车牌识别道闸的渗透率相对较高,但受限于闸口数量,未来智能楼宇对讲与人脸识别门禁的发展空间无疑更大。

四、无人便利店

无人零售店天然就是各种监控智能化技术的试验场。从最初的防盗防损,到后来的支持零售精细化管理,到零售基础设施可塑化、智能化和协同化新目标,都是以物联网技术、图像智能分析技术、生物特征识别技术在原有防盗防损的基础上的新应用、新延伸。

摄像头更准确地洞察消费者需求:在高速发展计算机视觉领域,监控市场拥抱人工智能,摄像头智能化已是大势所趋。视频监控已经成功用于考勤、客流量统计、人脸识别、交易统计等作用,连锁店铺企业已经逐渐开始用信息化手段管理店铺的运营。通过摄像头将帮助传统零售企业更准确地洞察消费者需求,为经营和管理提供参考,走向新零售。

智慧大数据,提升客户统计分析:通过安防大数据分析可以为门店提供热点统计系统,开展个人护理类商品陈列和货架布局的顾客行为数据收集及分析,比如顾客在不同商品前的停留时间是多少等,进而作为最终的调整决策参考。从而创新了视频监控系统远程管理零售门店的应用,更为连锁零售行业如何通过视频监控系统开展消费数据比对、分析等大数据应用开创了有益启示。

五、工厂园区

工业机器人由来已久,但大多数是固定在产线上的操作型机器人。可移动巡线机器人在全封闭无人工厂中将有着广泛的应用前景。在工厂园区场所,安防摄像机主要被部署在出入口和周界,对内部边边角角的位置无法涉及,而这些地方恰恰是安全隐患的死角,利用可移动巡线机器人,定期巡逻,读取仪表数值,分析潜在的风险,保障全封闭无人工厂的可靠运行,真正推动“工业4.0”的发展。

安防行业作为AI最先得到广泛应用的领域,经过这几年的迅猛发展,已经进入了一个稳健的成熟期。可以看到,AI产品已是诸多安防项目中的基本配置,没有AI的视频监控系统基本被淘汰,另一方面,AI+安防所面临的技术挑战和困难也非常严峻,需要所有的产业上下游人员一起努力,顺利完成继高清化和网络化之后的第三次安防技术变革。

相关文章
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
66 10
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
43 0
|
3天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
9天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。
|
15天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
20天前
|
机器学习/深度学习 人工智能 JSON
【实战干货】AI大模型工程应用于车联网场景的实战总结
本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。
308 34
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在自然语言处理中的突破:从理论到应用
AI在自然语言处理中的突破:从理论到应用
50 17
|
6天前
|
人工智能 Serverless API
尽享红利,Serverless构建企业AI应用方案与实践
本次课程由阿里云云原生架构师计缘分享,主题为“尽享红利,Serverless构建企业AI应用方案与实践”。课程分为四个部分:1) Serverless技术价值,介绍其发展趋势及优势;2) Serverless函数计算与AI的结合,探讨两者融合的应用场景;3) Serverless函数计算AIGC应用方案,展示具体的技术实现和客户案例;4) 业务初期如何降低使用门槛,提供新用户权益和免费资源。通过这些内容,帮助企业和开发者快速构建高效、低成本的AI应用。
44 12
|
3天前
|
人工智能 容灾 关系型数据库
【AI应用启航workshop】构建高可用数据库、拥抱AI智能问数
12月25日(周三)14:00-16:30参与线上闭门会,阿里云诚邀您一同开启AI应用实践之旅!