MySQL中RR模式下死锁一例

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: MySQL中RR模式下死锁一例

一、案例模拟

CREATE TABLE `t8` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `d_id` varchar(40) NOT NULL DEFAULT '',
  `b_id` varchar(40) NOT NULL DEFAULT '',
  `is_dropped` tinyint(1) NOT NULL DEFAULT '0',
  `u_c` varchar(10) NOT NULL DEFAULT '',
  PRIMARY KEY (`id`),
  UNIQUE KEY `DealerAndBrokerAndDropped` (`d_id`,`b_id`,`is_dropped`)
) ENGINE=InnoDB ;

insert into t8 values(1,1,1,0,'a');
insert into t8 values(2,2,2,0,'a');
insert into t8 values(3,3,3,0,'a');
insert into t8 values(4,4,4,0,'a');
insert into t8 values(5,5,5,0,'a');
insert into t8 values(6,6,6,0,'a');
insert into t8 values(7,7,7,0,'a');
insert into t8 values(8,8,8,0,'a');
insert into t8 values(9,9,9,0,'a');
insert into t8 values(10,10,10,0,'a');
insert into t8 values(11,11,11,0,'a');

执行语句如下:

S1 S2
begin
select u_c from t8 where d_id='1' and b_id='1' and is_dropped=0 for update;

select u_c from t8 where d_id='1' and b_id='1' and is_dropped=0 for update; 处于堵塞状态
update t8 set u_c='b' where d_id='1' and b_id='1'; —此时触发死锁 S2回滚

发生死锁记录如下:

image.png

二、死锁分析


仔细分析我们会发现trx id 5679最后被堵塞需要获取的锁为(lock_mode X waiting),堵塞发生在索引DealerAndBrokerAndDropped 上,也就是这是一个next key lock 且需要获取的模式为LOCK_X,处于等待状态。而我们来看trx id 5679前面获取的锁是什么呢?显然可以看到为(lock_mode X locks rec but not gap),获取发生在索引DealerAndBrokerAndDropped 上,也就是这是一个key lock且获取模式为LOCK_X。但是我们需要知道DealerAndBrokerAndDropped明明是一个唯一索引,获取key lock我们很容易理解,但是为什么也会出现获取next key lock呢?这个问题我们先放一下,先来分析一下整个死锁的产生的过程S1(select操作)

通过唯一性索引定位索引数据获取了唯一索引DealerAndBrokerAndDropped 上的

LOCK_REC_NOT_GAP|LOCK_X,获取成功记录就是 d_id='1' b_id='1' is_dropped=0这条数据。S1(select操作)

回表获取全部数据,这个时候需要主键上的相应的行锁。LOCK_REC_NOT_GAP|LOCK_X获取成功S2(select操作)

通过唯一性索引定位索引数据试图获取了唯一索引DealerAndBrokerAndDropped 上的

LOCK_REC_NOT_GAP|LOCK_X,获取失败记录就是 d_id='1' b_id='1' is_dropped=0这条数据,处于等待状态。S1(update操作)

通过索引DealerAndBrokerAndDropped 查找数据(注意这里已经不是唯一性定位操作了,下面会做分析),这个时候首先需要通过查询条件获取出需要更新的第一条数据,实际上这个时候也是d_id='1' b_id='1' is_dropped=0这条数据,需要获取的锁为LOCK_ORDINARY[next_key_lock]|LOCK_X,这个时候我发现虽然S1之前获取了这条数据的锁,但是锁模式变化了(一致不会重新获取,下面会分析这种行为),因此这里需要重新获取,但是这显然是不行的,因为S2都还处于等待中,因此这里也发生了等待。因此通过这个过程就出现死锁,S2等S1 S1等S2。

三、关于锁模式的变化


关于这里我们参考函数lock_rec_lock_fast,这里会不进行行锁冲突验证而进行快速加锁,如果锁模式没有变化则也会再这里进行快速加锁(也就是直接跳过),当然如果块中一个row lock 都没有也会在这里进行加锁,这是每个加行锁的操作都必须经历的判断,如果不能快速加锁则进入slow加锁方式,这里看一下下面的这段代码:

        if (lock_rec_get_next_on_page(lock)

|| lock->trx != trx
|| lock->type_mode != (mode | LOCK_REC)
|| lock_rec_get_n_bits(lock) <= heap_no) {

status = LOCK_REC_FAIL;
}

这里的lock->trx != trx会判断本次加锁事务和上次加锁事务是否是同一个事务,lock->type_mode != (mode | LOCK_REC)会判断锁模式是否相同。如果不能满足条件则判定为LOCK_REC_FAIL,进入slow加锁方式。而我们这里S1加锁第一次是LOCK_REC_NOT_GAP|LOCK_X,而第二次是LOCK_ORDINARY[next_key_lock]|LOCK_X,显然变化了,因此进入slow加锁阶段,进行冲突验证,结果嘛也就冲突了。这是本死锁的一个原因。

四、关于LOCK_ORDINARY[next_key_lock]来历

这是本死锁的一个最重要原因,知道了这个原因这个案例就理解了。首先我们先看这个update语句:

update t8 set u_c='b' where d_id='1' and b_id='1';

我们发现这个时候唯一索引还少一个条件也就是is_dropped字段,这个时候本次定位查询不会判定为唯一性查询,而是普通的二级索引定位方式,这个时候RR模式出现LOCK_ORDINARY[next_key_lock]就显得很自然了,下面是这个判断过程,代码位于row_search_mvcc中。

(match_mode == ROW_SEL_EXACT
&& dict_index_is_unique(index)
&& dtuple_get_n_fields(search_tuple)
== dict_index_get_n_unique(index)
&& (dict_index_is_clust(index)
|| !dtuple_contains_null(search_tuple)))

稍微解释一下,唯一性查找条件至少包含如下3点:

  • 1. 索引具有唯一性
  • 2. 查询的字段数量和索引唯一性字段数量相同
  • 3. 是主键或者查询条件中不包含NULL值

注意第3点源码说明如下:

        /* Note above that a UNIQUE secondary index can contain many
rows with the same key value if one of the columns is the SQL
null. A clustered index under MySQL can never contain null
columns because we demand that all the columns in primary key
are non-null. */

满足上面4点条件才能确认为唯一查找,本查询由于第3条不满足因此,因此判定失败。

不仅如此如果本条数据加锁成功,那么你会看到如下的结果:

---TRANSACTION 25830, ACTIVE 2 sec
4 lock struct(s), heap size 1160, 3 row lock(s), undo log entries 1
MySQL thread id 5, OS thread handle 140737101231872, query id 4115 localhost root starting
show engine innodb status
TABLE LOCK table `test`.`t8` trx id 25830 lock mode IX
RECORD LOCKS space id 1050 page no 4 n bits 80 index DealerAndBrokerAndDropped of table `test`.`t8` trx id 25830 lock_mode X
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
0: len 1; hex 31; asc 1;;
1: len 1; hex 31; asc 1;;
2: len 1; hex 80; asc ;;
3: len 8; hex 8000000000000001; asc ;;

RECORD LOCKS space id 1050 page no 3 n bits 80 index PRIMARY of table `test`.`t8` trx id 25830 lock_mode X locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 7; compact format; info bits 0
0: len 8; hex 8000000000000001; asc ;;
1: len 6; hex 0000000064e6; asc d ;;
2: len 7; hex 5f000000430110; asc _ C ;;
3: len 1; hex 31; asc 1;;
4: len 1; hex 31; asc 1;;
5: len 1; hex 80; asc ;;
6: len 1; hex 62; asc b;;

RECORD LOCKS space id 1050 page no 4 n bits 80 index DealerAndBrokerAndDropped of table `test`.`t8` trx id 25830 lock_mode X locks gap before rec
Record lock, heap no 11 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
0: len 2; hex 3130; asc 10;;
1: len 2; hex 3130; asc 10;;
2: len 1; hex 80; asc ;;
3: len 8; hex 800000000000000a; asc ;;

我们发现DealerAndBrokerAndDropped唯一索引的下一条记录也加了gap lock,这完全是RR模式非唯一索引的加锁行为。

最后

如果我们将语句

update t8 set u_c='b' where d_id='1' and b_id='1';

修改为

update t8 set u_c='b' where d_id='1' and b_id='1' and is_dropped=0;

那么死锁将不会触发了。原因就是第三部分我们说的,这里锁模式完全一致,不会导致加锁操作了。

enjoy MySQL :)

全文完。

            </div>
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
6月前
|
存储 监控 关系型数据库
mysql中的锁及其作用
mysql中的锁及其作用
53 0
|
26天前
|
SQL 关系型数据库 MySQL
京东面试:什么情况下 mysql RR不能解决幻读? RR隔离mysql如何实现?
老架构师尼恩在其读者交流群中分享了关于MySQL事务隔离级别的深入解析,特别针对RR级隔离如何解决幻读问题进行了详细讨论。文章不仅解释了ACID中的隔离性概念,还列举了四种事务隔离级别(未提交读、提交读、可重复读、串行读)的特点及应用场景。尼恩通过具体的例子和图表,清晰地展示了不同隔离级别下的并发事务问题(脏读、不可重复读、幻读)及其解决方案,特别是RR级隔离下的MVCC机制如何通过快照读和当前读来防止幻读。此外,尼恩还提供了相关面试题的解答技巧和参考资料,帮助读者更好地准备技术面试。更多详细内容和实战案例可在《尼恩Java面试宝典》中找到。
|
28天前
|
存储 关系型数据库 MySQL
RR隔离mysql如何实现?什么情况RR不能解决幻读?
【10月更文挑战第9天】在数据库事务中,隔离级别是一个重要的概念,它定义了事务在并发环境下如何相互隔离。MySQL支持四种隔离级别:READ UNCOMMITTED、READ COMMITTED、REPEATABLE READ和SERIALIZABLE。其中,REPEATABLE READ(简称RR)是MySQL的默认隔离级别,它旨在解决脏读、不可重复读和幻读问题。
52 2
|
4月前
|
存储 关系型数据库 文件存储
面试题MySQL问题之简单的SELECT操作在MVCC下加锁如何解决
面试题MySQL问题之简单的SELECT操作在MVCC下加锁如何解决
47 2
|
SQL 监控 算法
MySQL锁定:死锁及其避免方法
MySQL锁定:死锁及其避免方法
|
NoSQL 关系型数据库 MySQL
MySQL 常见死锁场景 -- 并发Replace into导致死锁
### MySQL Replace into issue MySQL 并发 Replace into 引起死锁问题 在之前的文章 [#issue 68021 MySQL unique check 问题](https://zhuanlan.zhihu.com/p/503880736)中, 我们已经介绍了在 MySQL 里面, 由于唯一键的检查(unique check), 导致 MySQ
421 0
|
NoSQL 关系型数据库 MySQL
mysql中的get_lock锁机制解析
mysql中的get_lock锁机制解析
410 0
mysql中的get_lock锁机制解析
|
SQL 存储 网络协议
为什么MySQL默认的隔离级别是RR而大厂使用的是RC?
为什么MySQL默认的隔离级别是RR而大厂使用的是RC?
515 0
为什么MySQL默认的隔离级别是RR而大厂使用的是RC?
|
6月前
|
监控 关系型数据库 MySQL
MySQL 并发 replace 导致的死锁
一 前言死锁其实是一个很有意思也很有挑战的技术问题,大概每个DBA和部分开发朋友都会在工作过程中遇见。关于死锁我会持续写一个系列的案例分析,希望能够对想了解死锁的朋友有所帮助。本文是源于生产过程中一个死锁案例。二 背景知识官方文档[1]中表述:"REPLACE is done like an INS...
178 0

推荐镜像

更多
下一篇
无影云桌面