堆叠降噪自动编码器 Stacked Denoising Auto Encoder(SDAE)

简介: 堆叠降噪自动编码器 Stacked Denoising Auto Encoder(SDAE)

原文链接

自动编码器(Auto-Encoder,AE)

自编码器(autoencoder)是神经网络的一种,经过训练后能尝试将输入复制到输出。自编码器内部有一个隐藏层 h,可以产生编码(code)表示输入。该网络可以看作由两部分组成:一个由函数 h = f(x) 表示的编码器和一个生成重构的解码器 r = g(h)。我们不应该将自编码器设计成输入到输出完全相等。这通常需要向自编码器强加一些约束,使它只能近似地复制,并只能复制与训练数据相似的输入。

自动编码机由三层网络组成,其中输入层神经元数量与输出层神经元数量相等,中间层神经元数量少于输入层和输出层。搭建一个自动编码器需要完成下面三样工作:搭建编码器,搭建解码器,设定一个损失函数,用以衡量由于压缩而损失掉的信息(自编码器是有损的)。编码器和解码器一般都是参数化的方程,并关于损失函数可导,典型情况是使用神经网络。编码器和解码器的参数可以通过最小化损失函数而优化。

自编码器1.png

自动编码机(Auto-encoder)是一个自监督的算法,并不是一个无监督算法,它不需要对训练样本进行标记,其标签产生自输入数据。因此自编码器很容易对指定类的输入训练出一种特定的编码器,而不需要完成任何新工作。自动编码器是数据相关的,只能压缩那些与训练数据类似的数据。比如,使用人脸训练出来的自动编码器在压缩别的图片,比如树木时性能很差,因为它学习到的特征是与人脸相关的。

自动编码器运算过程:原始input(设为x)经过加权(W、b)、映射(Sigmoid)之后得到y,再对y反向加权映射回来成为z。通过反复迭代训练两组(W、b),目的就是使输出信号与输入信号尽量相似。训练结束之后自动编码器可以由两部分组成:

1.输入层和中间层,可以用这个网络来对信号进行压缩

2.中间层和输出层,我们可以将压缩的信号进行还原

自编码器2.png

降噪自动编码器(Denoising Auto Encoder,DAE)

降噪自动编码器就是在自动编码器的基础之上,为了防止过拟合问题而对输入层的输入数据加入噪音,使学习得到的编码器具有鲁棒性而改进的,是Bengio在08年论文:Extracting and composing robust features with denoising autoencoders提出的。
论文中关于降噪自动编码器的示意图如下,类似于dropout,其中x是原始的输入数据,降噪自动编码器以一定概率(通常使用二项分布)把输入层节点的值置为0,从而得到含有噪音的模型输入xˆ。

自编码器3.png

这个破损的数据是很有用的,原因有二:
1.通过与非破损数据训练的对比,破损数据训练出来的Weight噪声比较小。降噪因此得名。原因不难理解,因为擦除的时候不小心把输入噪声给×掉了。
2.破损数据一定程度上减轻了训练数据与测试数据的代沟。由于数据的部分被×掉了,因而这破损数据一定程度上比较接近测试数据。训练、测试肯定有同有异,当然我们要求同舍异。

堆叠降噪自动编码器(Stacked Denoising Auto Encoder,SDAE)

SDAE的思想就是将多个DAE堆叠在一起形成一个深度的架构。只有在训练的时候才会对输入进行腐蚀(加噪),训练完成就不需要在进行腐蚀。结构如下图所示:

自编码器4.png

逐层贪婪训练:每层自编码层都单独进行非监督训练,以最小化输入(输入为前一层的隐层输出)与重构结果之间的误差为训练目标。前K层训练好了,就可以训练K+1层,因为已经前向传播求出K层的输出,再用K层的输出当作K+1的输入训练K+1层。

一旦SDAE训练完成, 其高层的特征就可以用做传统的监督算法的输入。当然,也可以在最顶层添加一层logistic regression layer(softmax层),然后使用带label的数据来进一步对网络进行微调(fine-tuning),即用样本进行有监督训练。

学习更多编程知识,请关注我的公众号:

代码的路

相关文章
|
5月前
|
机器学习/深度学习 Serverless 计算机视觉
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
|
1月前
|
机器学习/深度学习 编解码 算法
【YOLOv11改进 - 注意力机制】MLCA(Mixed local channel attention):混合局部通道注意力
【YOLOv11改进 - 注意力机制】MLCA(Mixed local channel attention):混合局部通道注意力本项目提出了一种轻量级的 Mixed Local Channel Attention (MLCA) 模块,结合通道信息和空间信息,提升网络表达效果。基于此模块,开发了 MobileNet-Attention-YOLO (MAY) 算法,在 Pascal VOC 和 SMID 数据集上表现优异,mAP 分别提高了 1.0% 和 1.5%。MLCA 通过局部池化、一维卷积和信息融合,有效捕获局部和全局信息。项目代码和详细配置可在 GitHub 和 CSDN 获取。
|
5月前
|
计算机视觉
【YOLOv10改进-卷积Conv】动态蛇形卷积(Dynamic Snake Convolution)用于管状结构分割任务
YOLOv10专栏介绍了一种用于精确分割管状结构的新方法DSCNet,它结合了动态蛇形卷积、多视角融合和拓扑连续性约束损失。DSConv创新地聚焦细长局部结构,增强管状特征感知,而多视角融合和TCLoss则改善了全局形态理解和分割连续性。在2D和3D数据集上的实验显示,DSCNet在血管和道路等分割任务上超越了传统方法。DySnakeConv模块整合到YOLOv10中,提升了目标检测的准确性。[链接指向详细文章](https://blog.csdn.net/shangyanaf/article/details/140007047)
|
6月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】 ODConv(Omni-Dimensional Dynamic Convolution):全维度动态卷积
ODConv是一种增强型动态卷积方法,通过多维注意力机制在卷积的四个维度上学习互补注意力,提升轻量级CNN准确性和效率。与现有动态卷积不同,ODConv覆盖了空间、输入/输出通道和核数维度。在ImageNet和MS-COCO上,对MobileNetV2|ResNet等模型有显著性能提升,减少参数的同时超越传统方法。代码和论文链接可用。在YOLO系列中,ODConv改进了特征学习,优化了目标检测性能。
|
6月前
|
机器学习/深度学习 编解码 算法
【YOLOv8改进】MLCA(Mixed local channel attention):混合局部通道注意力(论文笔记+引入代码)
**摘要:** 本文提出轻量级MLCA模块,结合通道、空间、局部及全局信息,提升网络表达效率。在MobileNet-Attention-YOLO(MAY)中应用MLCA,于PASCAL VOC和SMID数据集上对比SE和CA,mAP提升1.0%和1.5%。论文及代码链接提供。MLCA通过局部池化和反池化处理,增强通道交互和空间信息,实现更精确的目标检测。详情见YOLO改进与实战专栏。
|
7月前
|
计算机视觉
【YOLOv8改进】动态蛇形卷积(Dynamic Snake Convolution)用于管状结构分割任务
YOLO目标检测专栏介绍了DSCNet,它针对血管和道路等管状结构的分割任务进行优化。DSCNet采用动态蛇形卷积(DSConv)聚焦细长结构,多视角融合策略增强全局形态理解,且通过持久同调的连续性约束损失改善拓扑连续性。DSConv在2D和3D数据集上表现优于传统方法,实现更高精度和连续性。该技术已应用于yolov8,提升对管状结构的检测效果。
|
机器学习/深度学习
自动编码器(Autoencoder
自动编码器(Autoencoder)是一种无监督式学习模型,旨在通过降低数据维度来提高机器学习模型的性能。它由编码器(Encoder)和解码器(Decoder)两个主要部分组成。编码器的作用是将输入数据压缩成低维度的隐向量,从而捕获数据的主要特征;解码器的作用是将隐向量还原回原始数据空间。自动编码器可以实现类似 PCA 的数据降维和数据压缩功能。
128 2
|
7月前
|
编解码 计算机视觉
YOLOv8改进 | Conv篇 | 2024.1月最新成果可变形卷积DCNv4(适用检测、Seg、分类、Pose、OBB)
YOLOv8改进 | Conv篇 | 2024.1月最新成果可变形卷积DCNv4(适用检测、Seg、分类、Pose、OBB)
1065 0
|
机器学习/深度学习 编解码 数据可视化
使用Grad-CAM探索语义分割网络
使用 Grad-CAM 探索预训练语义分割网络的预测。
748 0
|
机器学习/深度学习 编解码 算法
PCA线性降维 与 自编码器(Auto-Encoder )
本分分享了关于学习参考多篇博客PCA降维算法,自编码神经网络算法的原理后总结的个人理解,以供参考学习
723 0