Computer:如何将表格以正确地姿势从Excel文件复制粘贴到word文件中(保证两个数据源一致)

简介: Computer:如何将表格以正确地姿势从Excel文件复制粘贴到word文件中(保证两个数据源一致)


目录

如何将表格以正确地姿势从Excel文件复制粘贴到word文件中(保证两个数据源一致)

表格粘贴处

T1、普通的复制粘贴:Ctrl+V

T2、带有链接的复制粘贴:Ctrl+Alt+V


如何将表格以正确地姿势从Excel文件复制粘贴到word文件中(保证两个数据源一致)

T1、普通的复制粘贴:Ctrl+V

ML算法

具体算法

有监督学习算法

LoR

DT

RF

SVM

无监督学习算法

Cluster

H-Cluster

Kmeans

T2、带有链接的复制粘贴:Ctrl+Alt+V

从源表格点击复制→选择Ctrl+Alt+V→粘贴即可!

双击表格,可打开源文件


相关文章
|
25天前
|
Java API Apache
Java编程如何读取Word文档里的Excel表格,并在保存文本内容时保留表格的样式?
【10月更文挑战第29天】Java编程如何读取Word文档里的Excel表格,并在保存文本内容时保留表格的样式?
105 5
|
20天前
|
SQL 数据可视化 数据挖掘
想让Excel表格设计更美观?试试这几款好用工具!
Excel表格设计在项目管理和数据分析中至关重要。本文推荐四款辅助工具:板栗看板、Excel自动图表助手、Think-Cell Chart 和 Power BI,分别在任务管理、图表生成、数据可视化等方面表现突出,帮助你设计出更专业、美观的表格。
40 2
|
29天前
|
存储 Java API
Java实现导出多个excel表打包到zip文件中,供客户端另存为窗口下载
Java实现导出多个excel表打包到zip文件中,供客户端另存为窗口下载
37 4
|
2月前
|
JavaScript 前端开发 数据处理
Vue导出el-table表格为Excel文件的两种方式
Vue导出el-table表格为Excel文件的两种方式
|
2月前
|
前端开发 JavaScript API
前端基于XLSX实现数据导出到Excel表格,以及提示“文件已经被损坏,无法打开”的解决方法
前端基于XLSX实现数据导出到Excel表格,以及提示“文件已经被损坏,无法打开”的解决方法
145 0
|
2月前
|
数据采集 存储 JavaScript
自动化数据处理:使用Selenium与Excel打造的数据爬取管道
本文介绍了一种使用Selenium和Excel结合代理IP技术从WIPO品牌数据库(branddb.wipo.int)自动化爬取专利信息的方法。通过Selenium模拟用户操作,处理JavaScript动态加载页面,利用代理IP避免IP封禁,确保数据爬取稳定性和隐私性。爬取的数据将存储在Excel中,便于后续分析。此外,文章还详细介绍了Selenium的基本设置、代理IP配置及使用技巧,并探讨了未来可能采用的更多防反爬策略,以提升爬虫效率和稳定性。
|
4月前
|
关系型数据库 MySQL Shell
不通过navicat工具怎么把查询数据导出到excel表中
不通过navicat工具怎么把查询数据导出到excel表中
46 0
|
2月前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
52 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
2月前
|
easyexcel Java UED
SpringBoot中大量数据导出方案:使用EasyExcel并行导出多个excel文件并压缩zip后下载
在SpringBoot环境中,为了优化大量数据的Excel导出体验,可采用异步方式处理。具体做法是将数据拆分后利用`CompletableFuture`与`ThreadPoolTaskExecutor`并行导出,并使用EasyExcel生成多个Excel文件,最终将其压缩成ZIP文件供下载。此方案提升了导出效率,改善了用户体验。代码示例展示了如何实现这一过程,包括多线程处理、模板导出及资源清理等关键步骤。
|
3月前
|
数据采集 存储 数据挖掘
使用Python读取Excel数据
本文介绍了如何使用Python的`pandas`库读取和操作Excel文件。首先,需要安装`pandas`和`openpyxl`库。接着,通过`read_excel`函数读取Excel数据,并展示了读取特定工作表、查看数据以及计算平均值等操作。此外,还介绍了选择特定列、筛选数据和数据清洗等常用操作。`pandas`是一个强大且易用的工具,适用于日常数据处理工作。