NLP:Transformer的简介(优缺点)、架构详解、案例应用之详细攻略

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: NLP:Transformer的简介(优缺点)、架构详解、案例应用之详细攻略


目录

Transformer的简介(优缺点)、架构详解

1、Transformer的简介

(1)、Transforme的四4个优点和2个缺点

2、Transformer 结构—纯用attention搭建的模型→计算速度更快

Transformer的案例应用


Transformer的简介(优缺点)、架构详解

1Transformer的简介

自 2017 年 Transformer 技术出现以来,便在 NLP、CV、语音、生物、化学等领域引起了诸多进展。

Transformer模型由Google在2017年在 Attention Is All You Need[1] 中提出。该文使用 Attention 替换了原先Seq2Seq模型中的循环结构,给自然语言处理(NLP)领域带来极大震动。随着研究的推进,Transformer 等相关技术也逐渐由 NLP 流向其他领域,例如计算机视觉(CV)、语音、生物、化学等。

因此,我们希望能通过此文盘点 Transformer 的基本架构,分析其优劣,并对近年来其在诸多领域的应用趋势进行梳理,希望这些工作能够给其他学科提供有益的借鉴。

本节介绍 Transformer 基本知识。限于篇幅,在这篇推文中,我们先介绍 Transformer 的基本知识,以及其在 NLP 领域的研究进展;后续我们将介绍 Transformer 在其他领域(CV、语音、生物、化学等)中的应用进展。

(1)Transforme4个优点2个缺点

(1) 每层计算复杂度更优:Total computational complexity per layer,时间复杂度优于R、C等。

(2) 可直接计算点乘结果:作者用最小的序列化运算来测量可以被并行化的计算。也就是说对于某个序列x1,x2……xn ,self-attention可以直接计算xixj的点乘结果,而RNN就必须按照顺序从 x1计算到xn。

(3) 一步计算解决长时依赖问题:这里Path length指的是要计算一个序列长度为n的信息要经过的路径长度。CNN需要增加卷积层数来扩大视野,RNN需要从1到n逐个进行计算,而self-attention只需要一步矩阵计算就可以。所以也可以看出,self-attention可以比rnn更好地解决长时依赖问题。当然如果计算量太大,比如序列长度n>序列维度d这种情况,也可以用窗口限制self-attention的计算数量。

(4) 模型更可解释:self-attention模型更可解释,attention结果的分布表明了该模型学习到了一些语法和语义信息。

实践上:有些RNN轻易可以解决的问题transformer没做到,比如复制string,或者推理时碰到的sequence长度比训练时更长(因为碰到了没见过的position embedding)。

理论上:transformers非computationally universal(图灵完备),(我认为)因为无法实现“while”循环。

2、Transformer 结构—纯用attention搭建的模型→计算速度更快

相关文章

NLP之Transformer:Transformer结构的详细简介(纯用attention搭建的模型→计算速度更快)之详细攻略_一个处女座的程序猿的博客-CSDN博客

Transformer的案例应用


相关文章
|
2月前
|
运维 Cloud Native 持续交付
深入理解云原生架构及其在现代企业中的应用
随着数字化转型的浪潮席卷全球,企业正面临着前所未有的挑战与机遇。云计算技术的迅猛发展,特别是云原生架构的兴起,正在重塑企业的IT基础设施和软件开发模式。本文将深入探讨云原生的核心概念、关键技术以及如何在企业中实施云原生策略,以实现更高效的资源利用和更快的市场响应速度。通过分析云原生架构的优势和面临的挑战,我们将揭示它如何助力企业在激烈的市场竞争中保持领先地位。
|
30天前
|
机器学习/深度学习 自然语言处理 PyTorch
深入剖析Transformer架构中的多头注意力机制
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
|
25天前
|
机器学习/深度学习 人工智能 NoSQL
记忆层增强的 Transformer 架构:通过可训练键值存储提升 LLM 性能的创新方法
Meta研究团队开发的记忆层技术通过替换Transformer中的前馈网络(FFN),显著提升了大语言模型的性能。记忆层使用可训练的固定键值对,规模达百万级别,仅计算最相似的前k个键值,优化了计算效率。实验显示,记忆层使模型在事实准确性上提升超100%,且在代码生成和通用知识领域表现优异,媲美4倍计算资源训练的传统模型。这一创新对下一代AI架构的发展具有重要意义。
54 11
记忆层增强的 Transformer 架构:通过可训练键值存储提升 LLM 性能的创新方法
|
2月前
|
机器学习/深度学习 编解码 人工智能
超越Transformer,全面升级!MIT等华人团队发布通用时序TimeMixer++架构,8项任务全面领先
一支由麻省理工学院、香港科技大学(广州)、浙江大学和格里菲斯大学的华人研究团队,开发了名为TimeMixer++的时间序列分析模型。该模型在8项任务中超越现有技术,通过多尺度时间图像转换、双轴注意力机制和多尺度多分辨率混合等技术,实现了性能的显著提升。论文已发布于arXiv。
205 84
|
27天前
|
机器学习/深度学习 人工智能 并行计算
Titans:谷歌新型神经记忆架构,突破 Transformer 长序列处理的瓶颈
Titans 是谷歌推出的新型神经网络架构,通过神经长期记忆模块突破 Transformer 在处理长序列数据时的瓶颈,支持并行计算,显著提升训练效率。
95 5
Titans:谷歌新型神经记忆架构,突破 Transformer 长序列处理的瓶颈
|
1月前
|
容灾 网络协议 数据库
云卓越架构:云上网络稳定性建设和应用稳定性治理最佳实践
本文介绍了云上网络稳定性体系建设的关键内容,包括面向失败的架构设计、可观测性与应急恢复、客户案例及阿里巴巴的核心电商架构演进。首先强调了网络稳定性的挑战及其应对策略,如责任共担模型和冗余设计。接着详细探讨了多可用区部署、弹性架构规划及跨地域容灾设计的最佳实践,特别是阿里云的产品和技术如何助力实现高可用性和快速故障恢复。最后通过具体案例展示了秒级故障转移的效果,以及同城多活架构下的实际应用。这些措施共同确保了业务在面对网络故障时的持续稳定运行。
|
3月前
|
运维 Kubernetes Docker
深入理解容器化技术及其在微服务架构中的应用
深入理解容器化技术及其在微服务架构中的应用
105 1
|
2月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
3月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
83 3
|
3月前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####

热门文章

最新文章